圆心角、弧、弦、圆周角
- 格式:doc
- 大小:102.00 KB
- 文档页数:7
弧、弦、圆心角、圆周角之间的关系解题技巧:1、顶点在圆心的角叫圆心角,顶点在圆周上的角叫圆周角2、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等(知道一组相等,就可以推出其它三组相等)3、圆周角定理:同弧所对圆周角是圆心角的一半4、直径所对圆周角等于90°,90°的圆周角所对的弦是直径例1、下列说法正确的是_________________①相等的圆周角所对的弧相等②相等的弦所对的弧相等③等弦对等弧④等弧对等弦例2、如图,点A、B、C在⊙O上,OC、OB是半径,∠COB=100°,则∠A的度数等于()A、20°B、40°C、50°D、100°例3、如图所示,BD是⊙O的直径,∠CBD=30°,则∠A的度数为()A、30°B、45°C、60°D、75°例4、如图,AB是⊙O的直径,BD=BC,∠A=25°,则∠BOD的度数为()A、12.5°B、30°C、40°D、50°例5、如图所示,AB是⊙的直径,AC=CD=BD,E是⊙O上一点,连接CE、DE,则∠CED的度数为()A、25°B、30°C、40°D、60°例6、如图,⊙O的直径是AB,∠C=35°,则∠DAB的度数是()A、60°B、55°C、50°D、45°例7、如图,经过原点的⊙P与x轴,y轴分别交于A(3,0)、B(0,4)两点,点C是OB上一点,且BC=2,则AC=____1、如图,AB和CD都是⊙O的直径,∠AOC=52°,则∠C的度数是()A、22°B、26°C、38°D、48°2、如图,AB为⊙O直径,∠ABC=25°,则∠D的度数为()A、70°B、75°C、60°D、65°3、如图,AB是⊙O的直径,若∠BDC=30°,则∠AOC的度数为()A、80°B、100°C、120°D、无法确定4、如图,⊙O中弦AB等于半径OA,点C在优弧AB上运动,则∠ACB的度数是()A、30°B、45°C、60°D、无法确定5、如图所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是()A、60°B、45°C、30°D、22.5°6、如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAB的度数是()A、35°B、55°C、65°D、70°7、如图,AB是⊙O的直径,CD是⊙O的弦。
人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿一. 教材分析人教版九年级数学上册第24章《圆》的第三节“弧、弦、圆心角”是整个章节的重要组成部分。
本节内容主要介绍了弧、弦、圆心角的定义及其相互关系,旨在让学生理解和掌握圆的基本概念和性质,为后续学习圆的周长、面积等知识打下基础。
教材从生活实例出发,引出弧、弦、圆心角的概念,并通过观察、操作、猜想、证明等环节,让学生体会圆的性质。
教材注重培养学生的空间想象能力、逻辑思维能力和动手操作能力,使其能够运用所学知识解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对图形的认识和观察能力有一定的提高。
但是,对于弧、弦、圆心角的定义和相互关系,学生可能还存在一定的模糊认识。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生从生活实际出发,理解并掌握弧、弦、圆心角的性质。
三. 说教学目标1.知识与技能:理解和掌握弧、弦、圆心角的定义及其相互关系,能够运用所学知识解决实际问题。
2.过程与方法:通过观察、操作、猜想、证明等环节,培养学生的空间想象能力、逻辑思维能力和动手操作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养其积极思考、合作探究的学习态度。
四. 说教学重难点1.教学重点:弧、弦、圆心角的定义及其相互关系。
2.教学难点:圆心角、弧、弦之间的数量关系。
五. 说教学方法与手段1.教学方法:采用问题驱动、观察猜想、证明验证的教学方法,引导学生主动探究,提高其思维能力。
2.教学手段:利用多媒体课件、实物模型等辅助教学,增强学生的直观感受。
六. 说教学过程1.导入:从生活实例出发,引出弧、弦、圆心角的概念,激发学生的学习兴趣。
2.新课讲解:讲解弧、弦、圆心角的定义,通过观察、操作、猜想、证明等环节,让学生理解并掌握其相互关系。
3.例题讲解:分析并解决典型例题,让学生运用所学知识解决实际问题。
4.课堂练习:布置针对性的练习题,巩固所学知识。
圆周角定理及其推论一、知识点总结1.圆心角:顶点在圆心的角.注意:圆心角的底数等于它所对弧的度数.2.在同圆或等圆中,圆心角、弧、弦、弦心距中,只要有一组量相等,那么另外三组量也分别相等考点一:圆心角,弧,弦的位置关系二、弧、弦、圆心角、弦心距间的关系举例例1 如图,AB 为⊙O 的弦,点C 、D 为弦AB 上两点,且OC=OD ,延长OC 、OD 分别交⊙O 于点E 、F ,试证明弧AE=弧BF . 分析:“弧AE=弧BF”←“∠______=∠______” 把证弧相等转化为证________________. 证明:例2 如图,点O 是∠BPD 的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A 、B 和C 、D .求证:AB=CD . 分析:把证明弦相等转化为证明_弦心距_相等.例3如图所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E ,连接AC 、 OC 、BC .(1)求证:∠ACO=∠BCD .(2)若EB=8cm ,CD=24cm ,求⊙O 的直径. 分析: (1)∠ACO=∠______, 而∠______=∠______. (2)在Rt ⊿______中,利用勾股定理列方程求例4 已知,如图,在⊿ABC 中,AD ,BD 分别平分∠BAC 和∠ABC ,延长AD 交⊿ABC 的外接圆于E ,连接BE .求证:BE=DE . 分析:把证BE=DE 转化为证∠____=∠____. CDBF E ONMDCB AOEAO DC DA1.如图1,在⊙O中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是()2.如图2,BE是半径为6的圆D的14圆周,C点是BE上的任意一点,△ABD 是等边三角形,则四边形ABCD的周长P的取值范围是()2、已知AB^、CD^是同圆的两段弧,且AB^=2CD^,则弦AB与2CD之间的关系为()A、AB=2CDB、AB<2CDC、AB>2CDD、不能确定4、下列语句中正确的是()A、相等的圆心角所对的弧相等B、平分弦的直径垂直于弦C、长度相等的两条弧是等弧D、经过圆心的每一条直线都是圆的对称轴5、在一扇形统计图中,有一扇形的圆心角为60°,则此扇形占整个圆的()6、有下列说法:①等弧的长度相等;②直径是圆中最长的弦;③相等的圆心角对的弧相等;④圆中90°角所对的弦是直径;⑤同圆中等弦所对的圆周角相等.其中正确的有()7、如图3,AB是⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出下列五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE是劣孤DE的2倍;⑤AE=BC.其中正确结论的序号是()图1图2图38.如图所示,⊙O半径为2,弦,A为弧BD的中点,E为弦AC的中点,且在BD上,则四边形ABCD的面积为9.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是CAD^上一点(不与C、D重合),求证:∠CPD=∠COB;(2)点P′在劣弧CD上(不与C、D重合)时,∠CP′D与∠COB有什么数量关系?请证明你的结论.3.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.1.如图1,∠A 是⊙O 的圆周角,且∠A =35°,则∠OBC=_____.2.如图2,圆心角∠AOB=100°,则∠ACB= .3:如图3,AB 是⊙O 的直径,点C D E ,,都在⊙O 上,若C D E ==∠∠∠,则A B +=∠∠ º. 4:如图4,⊙O 的直径CD 过弦EF 的中点G ,40EOD ∠=,则DCF ∠= .图2 图14.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.注:有直径时,常添加辅助线,构造直径所对的圆周角,由此转化为直角三角形的问题.考点2:圆周角定理1、如图,△ABC 中,∠A=60°,BC 为定长,以BC 为直径的⊙O 分别交AB ,AC 于点D ,E .连接DE ,已知DE=EC .下列结论:①BC=2DE ;②BD+CE=2DE .其中一定正确的有( )2.一个圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长100m ,测得圆周角∠ACB=45°,则这个人工湖的直径AD 为( )3.如图AB 是⊙O 的直径, AC^所对的圆心角为60°, BE^所对的圆心角为20°,且∠AFC=∠BFD ,∠AGD=∠BGE ,则∠FDG 的度数为( )4. 如图,AB 是⊙O 的直径,C ,D 两点在⊙O 上,若∠C=40°,则∠ABD 的度数为( )1题图 2题 3题4题5:已知:如图,AD•是⊙O•的直径,∠ABC=•30•°,则∠CAD=_______.CBO A O AB C 图3 B C D E O EF C DG O 图46:已知⊙O 中,30C ∠=,2cm AB =,则⊙O 的半径为cm .7.已知:如图等边ABC △内接于⊙O ,点P 是劣弧BC ⋂上的一点(端点除外),延长BP 至D ,使BD AP =,连结CD .(1)若AP 过圆心O ,如图①,请你判断PDC △是什么三角形?并说明理由. (2)若AP 不过圆心O ,如图②,PDC △又是什么三角形?为什么?8.如图AB 是圆O 的直径,C 是圆O 上的一点,若AC=8㎝,AB=10㎝,OD ⊥BC 于点D ,求BD 的长9.如图,在⊙O 中,直径AB 与弦CD 相交于点P ,∠CAB=40°,∠APD=65°. (1)求∠B 的大小;(2)已知圆心0到BD 的距离为3,求AD 的长._D_B _A_O OAA O C PB 图① AOC PB 图②10.11.如图,AB、CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长是12.如图,已知点C、D在以O为圆心,AB为直径的半圆上,且OC⊥BD 于点M,CF⊥AB于点F交BD于点E,BD=8,CM=2.(1)求⊙O的半径;(2)求证:CE=BE.13.5.圆内接多边形:一个多边形的顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆6.圆内接四边形:圆内接四边形的对角互补如图所示,A、B、C三点在圆O上,∠AOC=100°,则∠ABC等于()A. 140°B. 110°C. 120°D. 130°7.确定圆的条件:不在同一直线上的三个点确定一个圆.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图5所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块 C.第③块D.第④块8.三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.这个三角形叫做圆的内接三角形。
完整版)圆心角圆周角练习题知识点三:弧、弦、圆心角与圆周角1.定义圆心角为顶点在圆心的角。
2.在同圆或等圆中,弧、弦、圆心角之间的关系:两个圆心角相等,圆心角所对的弧相等(无论是优弧还是劣弧),圆心角所对的弦相等。
3.一个角是圆周角必须满足两个条件:(1)角的顶点在圆上;(2)角的两边都与圆有除顶点外的交点。
4.同一条弧所对的圆周角有两个。
5.圆周角定理:圆周角等于圆心角的一半。
6.圆周角定理的推论:(1)同弦或等弦所对的圆周角相等;(2)半圆或直径所对的圆周角相等;(3)90°的圆周角所对的弦是直径。
需要注意的是,“同弦或等弦”改为“同弧或等弧”结论就不一定成立了,因为一条弦所对的圆周角有两类,它们是相等或互补关系。
7.圆内接四边形定义为所有顶点都在圆上的多边形,圆心即为这个圆内接四边形的交点。
圆内接四边形的对角线相互垂直,且交点为对角线的中点。
夯实基础1.如果两个圆心角相等,则它们所对的弧相等,选项B正确。
2.不正确的语句为③,因为圆不一定是轴对称图形,只有圆上的任何一条直径所在直线才是它的对称轴。
3.错误的说法是D,相等圆心角所对的弦不一定相等。
4.根据圆心角的性质,∠A=2∠B,所以∠A=140°。
5.∠BAC与∠BCD互补,∠BCD与∠CBD相等,所以与∠BAC相等的角有2个,即∠CBD和∠ABD。
6.因为∠CAB为30°,所以∠ABC为60°,由正弦定理可得BC=5√3.7.根据圆周角定理,∠ACB=40°。
8.设∠A=3x,∠B=4x,∠C=6x,则∠D=360°-3x-4x-6x=120°。
9.∠DCE=∠A。
1、如图,AB是⊙O的直径,C,D是BE上的三等分点,∠AOE=60°,求证∠COE=80°。
证明:由三等分点的性质可知,BC=CD=DE,又∠AOE=60°,所以∠AOC=120°。
弧圆心角圆周角的关系稿子一嘿,亲爱的小伙伴们!今天咱们来聊聊弧圆心角圆周角的关系,这可有意思啦!你看哈,圆心角就好像是圆的“内心独白”,它的两条边都是从圆心出发的。
而圆周角呢,就像是圆的“周边故事”,它的顶点在圆上,两条边是圆上的弦。
当一条弧对着一个圆心角的时候,它们的度数是相等的哟!比如说,圆心角是 60 度,那这条弧所对的圆心角也就是 60 度。
可圆周角就有点特别啦!同弧所对的圆周角是圆心角的一半。
就好比圆心角是 100 度,那同弧所对的圆周角就是 50 度。
这关系是不是很神奇呀?想象一下,圆就像一个大舞台,圆心角是舞台中央的主角,光芒四射;圆周角就是舞台周边的配角,虽然没有那么耀眼,但也起着重要的作用。
而且哦,如果有两条弧相等,那么它们所对的圆心角和圆周角也分别相等。
这就好像是一对双胞胎,长得一样,性格也差不多。
怎么样,是不是觉得弧圆心角圆周角的关系挺有趣的?多琢磨琢磨,数学的世界可精彩啦!稿子二哈喽呀!今天咱们来唠唠弧圆心角圆周角的那些事儿!先来说说圆心角,它可是圆的“老大”,从圆心出发,那威风劲儿可足啦!而圆周角呢,就像是圆的“小伙伴”,在圆的边上玩耍。
你知道吗?当一条弧在那的时候,它对应的圆心角和圆周角可有特别的联系。
比如说,圆心角就像是个大老板,定了个度数,那同弧所对的圆周角只能乖乖地是它的一半。
举个例子,圆心角是 80 度,那圆周角就只能是 40 度,是不是很神奇?这就好像圆心角是大哥,圆周角是小弟,得听大哥的。
还有哦,如果有好多条弧都一样长,那它们对应的圆心角和圆周角也都一样。
就好像一群小伙伴,穿一样的衣服,做一样的动作。
再想想,如果一个圆里有好多好多的弧,那这些弧对应的圆心角和圆周角就组成了一个奇妙的大家庭,互相有着固定的关系,谁也跑不掉。
所以呀,弄清楚弧圆心角圆周角的关系,数学的大门就为咱们开得更大啦,能看到更多有趣的东西!怎么样,是不是有点意思?。
重点考点训练:圆心角、弧、弦以及圆心角与圆周角关系 知识梳理一、圆心角、弧、弦之间的关系1.定理在同圆或等圆中,相等的圆心角所对的弧________,所对的弦________.2.推论同圆或等圆中:(1)两个圆心角相等;(2)两条弧相等;(3)两条弦相等.三项中有一项成立,则其余对应的两项也成立.二、圆心角与圆周角1.定义顶点在________上的角叫做圆心角;顶点在________上,角的两边和圆都________的角叫做圆周角.2.性质(1)一条弧所对的圆周角的度数等于它所对________的度数的一半.(2)同弧或等弧所对的圆周角________,同圆或等圆中相等的圆周角所对的弧________.(3)半圆(或直径)所对的圆周角是______,90°的圆周角所对的弦是________.三、圆内接四边形的性质圆内接四边形的对角互补.重点考题1.如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠COD =34°,则∠AEO 的度数是( )A.51°B.56C.68°D.78°2.如图,点A ,B ,C 在⊙O 上,∠AOC =60°,则∠ABC 的度数是__________°.3.如图,AB 是⊙O 的直径,C ,D ,E 是⊙O 上的点,则∠1+∠2=__________.4. 如图,AB 是⊙O 的直径,BC ,CD ,DA 是⊙O 的弦,且BC =CD =DA ,则∠BCD 的度数为( )A.100°B.110°C.120°D.135°5.如图,四边形ABCD 内接于⊙O ,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC.若∠ABC =105°,∠BAC =25°,则∠E 的度数为( )A.45°B.50°C.55°D.60°6.如图,四边形ABCD 内接于⊙O ,四边形ABCO 是平行四边形,则∠ADC =( )A.45°B.50°C.60°D.75°7.如图,在⊙O 中,点A 、B 、C 在⊙O 上,且∠ACB =110°,则∠α= .8.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD =105°,则∠DCE 的大小是( )A.115°B.105°C.100°D.95°9.如图,点O 为优弧ACB ︵所在圆的圆心,∠AOC =108°,点D 在AB 的延长线上,BD =BC ,则∠D = .10.如图,把直角三角板的直角顶点O 放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M 、N ,量得OM =8 cm ,ON =6 cm ,则该圆玻璃镜的半径是( )A.10B.5 cmC.6 cmD.10 cm11.如图,∠BOD的度数是( )A.55°B.110°C.125°D.150°12.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D. (1)求BC的长;(2)求BD的长.13.如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于点F.(1)求证:CF﹦BF;(2)若CD﹦6,AC﹦8,则⊙O的半径为,CE的长是.14.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.。
1圆的基本性质考点一、圆的相关概念 (1)圆的定义圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
固定的端点O 叫做圆心,线段OA 叫做半径。
(2)圆的几何表示以点O 为圆心的圆记作“⊙O ”,读作“圆O ”考点二、弦、弧等与圆有关的定义(1)弦:连接圆上任意两点的线段叫做弦。
(如图中的AC )(2)直径:经过圆心的弦叫做直径。
(如图中的AB )直径等于半径的2倍。
(3)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(4)弧、优弧、劣弧弧:圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A ,B为端点的弧记作“”,读作“圆弧AB ”或“弧AB ”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)考点三、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为:过圆心直径 平分弦知二推三 平分弦所对的优弧 平分弦所对的劣弧考点四、圆的对称性 (1)圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
(2)圆的中心对称性圆是以圆心为对称中心的中心对称图形。
2考点五、弧、弦、弦心距、圆心角之间的关系定理(1)圆心角:顶点在圆心,角的两边和圆相交的角叫做圆心角。
(2)弦心距:从圆心到弦的距离叫做弦心距。
(3)弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相 等,那么它们所对应的其余各组量都分别相等。
圆心角、弧、弦、圆周角
学习要求:
1、理解并初步掌握弧、弦、圆心角的相互对应的关系,会证明两条弦等、两条弧等,两个圆心角等;
2、掌握圆周角定理及推论,能在圆中熟练地进行角的相互转化,从而通过解直角三角形或利用相似的
知识求相关的线段长或证明比例线段。
内容分析:
1、圆心角、弧、弦的关系
在同圆或等圆中,若两个圆心角相等,则它们所对的两条弧、两条弦也分别对应相等;
在同圆或等圆中,若两条弧相等,则它们所对的两个圆心角、两条弦也分别对应相等;
在同圆或等圆中,若两条弦相等,则它们所对的两个圆心角、所对的两条优弧、两条劣弧也分别对应相等。
2、圆周角
(1)定义:顶点在圆上,角的两边都与圆相交的角。
(2)定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
推论1:同圆或等圆中,相等的圆周角所对的弧相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:圆内接四边形的对角互补,一个外角等于它的内对角。
3、学好本单元内容的两个关键:
(1)同弧或等弧是沟通圆周角之间、圆心角与圆周角之间联系的桥梁,利用同弧或等弧进行圆周角之
间的相互转化是解决问题的关键;
(2)通过作弦心距或直径将一般的圆周角转化到特殊的直角三角形中,是解决问题的关键。
例题分析:
1、已知,如图,⊙O是的外接圆,∠A=60°,BC=12,求⊙O的半径
的长.
解法一:过O作OD⊥BC于D,连接OB.
则BD=BC=6,∠BOD=∠BOC.
∵∠A=∠BOC,∴∠BOD=∠A=60°
在△BOD中,∠BDO=90°,
∴BO=
∴⊙O的半径的长为
解法二:作直径BE,连接CE.
则∠BCE=90°.
又∠A=∠E=60°
∴在△BCE中,BE=
∴⊙O的半径的长为.
【小结】在圆中,常常作弦心距或直径,将圆周角转化到直角三角形中,通过解直角三角形从而解决问题。
两种解法中的基本图形同学们要牢记。
2、已知:AB是⊙O的直径,弦CD⊥AB于E,M是弧AC上一点,延长DC、AM交于F,
求证:∠FMC=∠AMD.
证明:方法一:如图1连结AD.
∵四边形ADCM是圆内接四边形
∴∠FMC=∠ADC
∵AB是⊙O的直径,弦CD⊥AB
∴
∴∠AMD=∠ADC
∴∠FMC=∠AMD.
方法二:如图2,连结MB
∵AB是⊙O的直径,
∴∠FMB=∠AMB=90°
∵弦CD⊥AB
∴
∴∠CMB=∠DMB
∴∠FMC=∠AMD
【小结】1、在圆中,有直径的条件时,常常考虑用垂径定理或构造直径所对的圆周角;
2、在圆中,常常利用圆内接四边形的性质将圆外部的角转化为圆周角解决问题。
3、已知:A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD.
(1)求证:DB平分∠ADC;(2)若BE=3,ED=6,求AB的长.
解:(1)∵AB=BC
∴
∴∠ADB=∠CDB ,即DB平分∠ADC.
(2)∵
∴∠BAE=∠ADB
又∠ABE=∠DBA
∴△ABE∽△DBA
∴
∵BE=3,ED=6 ,∴DB=9
∴
∴AB=
【小结】在圆中常常利用圆周角定理及它的推论来证明角相等,进而通过证明三角形相似来解决问题,沟通角之间关系的桥梁往往是同弧或等弧。
4、已知:BC为⊙O的直径,AD⊥BC于D,,BF和AD相交于E,求证:AE=BE.
证明:方法一:如图1,连结OA、AB
∵
∴OA⊥BF
∵AD⊥BC
∴∠DAO+∠AEF=∠EBD+∠BED=90°
∵∠AEF=∠BED
∴∠DAO=∠EBD
∵OA=OB
∴∠BAO=∠ABO
∴∠ABE=∠BAE
∴AE=BE.
方法二:如图2,延长AD交⊙O于H
∵BC为⊙O的直径,AD⊥BC
∴
∵
∴
∴∠ABE=∠BAE
∴AE=BE.
方法三:如图3,连结AC
∵BC为⊙O的直径
∴∠BAC=90°
∵AD⊥BC
∴∠BAE+∠DAC=∠DAC+∠ACD=90°
∴∠BAE=∠ACD
∵
∴∠ACD=∠ABE
∴∠ABE=∠BAE
∴AE=BE.
【提示】此题还可证明AB2=BE·BF ; BE·BF=BD·BC等,
请同学们自己尝试一下。
5、已知:如图,⊙O的半径为R,弦AB、CD互相垂直,连结AD、BC.
(1)求证:;
(2)若AD、BC是方程的两根(),求⊙O半径及点O到AD的距离.
解:(1)证明:
过O作OE⊥AB于E,OF⊥BC于F,连结OA、OC、OB、OD
则AE=AD,CF=BC
且∠ACD=∠AOE=∠AOB,∠CAB=∠COF=∠COB
∵AB⊥CD
∴∠ACD+∠CAB=90°
∴∠AOE+∠COF=90°
∵∠AOE+∠OAE=90°
∴∠OAE=∠COF
∵∠AEO=∠CFO=90°,OA=OC
∴△AOE≌△OCF
∴OE=CF=BC
在Rt△AOE中,有
∴,即;
(2)依题意,AD=5,BC=1,由(1)可得R=, O到AD的距离为OE=
BC=.
【小结】1、本题充分利用了垂径定理和圆周角定理,巧妙地构造了全等三角形来解决问题。
2、本题在第(1)问中证明了OE=BC,同时有OF=AD,这个结论也可用下面的方法证明。
作直径MD,连结AM,则∠MAD=90°,可得OE∥AM ,
∵DO=MO
∴AE=DE
∴OE=AM
连结AC
∵AB⊥CD
∴∠ACD+∠CAB=90°
∵∠M+∠MDA=90°,且∠M=∠ACD
∴∠CAB=∠MDA
∴AM=BC
∴OE=BC,同理:OF=AD.。