【精编】2015-2016学年山东省枣庄市山亭区七年级(下)期末数学试卷(b卷)(解析版)
- 格式:doc
- 大小:351.50 KB
- 文档页数:19
枣庄市七年级数学下册期末测试卷及答案一、选择题1.在下列各图的△ABC 中,正确画出AC 边上的高的图形是( )A .B .C .D .2.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角3.已知关于x ,y 的方程组03210ax by ax by +=⎧⎨-=⎩的解为21x y =⎧⎨=-⎩,则a ,b 的值是( ) A .12a b =⎧⎨=⎩ B .21a b =⎧⎨=⎩ C .12a b =-⎧⎨=-⎩D .21a b =⎧⎨=-⎩ 4.下列计算中,正确的是( ) A .235235x x x += B .236236x x x =C .322()2x x x ÷-=-D .236(2)2x x -=- 5.若(x+2)(2x-n)=2x 2+mx-2,则( ) A .m=3,n=1;B .m=5,n=1;C .m=3,n=-1;D .m=5,n=-1; 6.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( ) A .﹣4B .2C .3D .4 7.若(x-2y)2 =(x+2y)2+M,则M= ( )A .4xyB .- 4xyC .8xyD .-8xy 8.下列四个等式从左到右的变形是因式分解的是 ( )A .22()()a b a b a b +-=-B .2()ab a a b a -=-C .25(1)5x x x x +-=+-D .21()x x x x x+=+ 9.点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M 的坐标是( )A .(2,﹣5)B .(﹣2,5)C .(5,﹣2)D .(﹣5,2)10.下列方程组中,是二元一次方程组的为()A.1512nmmn⎧+=⎪⎪⎨⎪+=⎪⎩B.2311546a bb c-=⎧⎨-=⎩C.292xy x⎧=⎨=⎩D.xy=⎧⎨=⎩二、填空题11.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC=_____.12.若 a m=6 , a n=2 ,则 a m−n=________13.每支圆珠笔3元,每本练习簿4元,买圆珠笔和练习簿共花了14元,则买了圆珠笔______支.14.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为________________.15.计算:()20202019133⎛⎫-⋅-=⎪⎝⎭_____.16.若x ay b=⎧⎨=⎩是二元一次方程2x﹣3y﹣5=0的一组解,则4a﹣6b=_____.17.如图,若AB∥CD,∠C=60°,则∠A+∠E=_____度.18.已知关于x,y的方程22146m n m nx y--+++=是二元一次方程,那么点(),M m n位于平面直角坐标系中的第______象限.19.如图,在三角形纸片ABC中剪去∠C得到四边形ABDE,且∠C=40°,则∠1+∠2的度数为_____.20.已知12xy=⎧⎨=-⎩是关于x,y的二元一次方程ax+y=4的一个解,则a的值为_____.三、解答题21.已知a+b=5,ab=-2.求下列代数式的值:(1)22a b+;(2)22232a ab b-+.22.因式分解:(1)249x - (2) 22344ab a b b --23.若规定a c b d =a ﹣b +c ﹣3d ,计算:223223xy x x --- 2574xy x xy-+-+的值,其中x =2,y =﹣1.24.如图 1,直线GH 分别交,AB CD 于点 ,E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;(2)如图2所示,点M N 、在,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量25.如图,△ABC 中,AE 是△ABC 的角平分线,AD 是BC 边上的高.(1)若∠B =35°,∠C =75°,求∠DAE 的度数;(2)若∠B =m °,∠C =n °,(m <n ),则∠DAE = °(直接用m 、n 表示).26.已知m 2,3na a ==,求①m n a +的值; ②3m-2n a 的值27.(知识回顾):如图①,在△ABC 中,根据三角形内角和定理,我们知道∠A +∠B +∠C =180°.如图②,在△ABC 中,点D 为BC 延长线上一点,则∠ACD 为△ABC 的一个外角.请写出∠ACD 与∠A 、∠B 的关系,直接填空:∠ACD = .(初步运用):如图③,点D 、E 分别是△ABC 的边AB 、AC 延长线上一点.(1)若∠A =70°,∠DBC =150°,则∠ACB = °.(直接写出答案)(2)若∠A =70°,则∠DBC +∠ECB = °.(直接写出答案)(拓展延伸):如图④,点D 、E 分别是四边形ABPC 的边AB 、AC 延长线上一点. (1)若∠A =70°,∠P =150°,则∠DBP +∠ECP = °.(请说明理由)(2)分别作∠DBP 和∠ECP 的平分线,交于点O ,如图⑤,若∠O =40°,求出∠A 和∠P 之间的数量关系,并说明理由.(3)分别作∠DBP 和∠ECP 的平分线BM 、CN ,如图⑥,若∠A =∠P ,求证:BM ∥CN .28.计算:(1)0201711(2)(1)()2--+--;(2)()()()3243652a a a +-•-【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形的高的概念判断.【详解】解:AC 边上的高就是过B 作垂线垂直AC 交AC 的延长线于D 点,因此只有C 符合条件, 故选:C .【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.2.C解析:C【分析】根据同旁内角的定义可判断.【详解】∵∠1和∠2都在直线c 的下侧,且∠1和∠2在直线a 、b 之内∴∠1和∠2是同旁内角的关系故选:C .【点睛】本题考查同旁内角的理解,紧抓定义来判断.3.A解析:A【分析】把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩得到关于a ,b 的二元一次方程组,解之即可. 【详解】解:把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩得: 2=06210a b a b -⎧⎨+=⎩, 解得:=1=2a b ⎧⎨⎩, 故选A.【点睛】本题考查了二元一次方程组的解,正确掌握代入法和解二元一次方程组的方法是解题的关键.4.C解析:C【解析】试题解析:A.不是同类项,不能合并,故错误.B.235236.x x x ⋅= 故错误.C.()3222.x x x ÷-=- 正确.D.()32628.x x -=- 故错误. 故选C.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减.5.A解析:A【解析】先根据多项式乘多项式的法则展开,再根据对应项的系数相等求解即可.∵(x+2)(2x-n )=2x 2+4x-nx-2n ,又∵(x+2)(2x-n)=2x 2+mx-2,∴2x 2+(4-n)x-2n=2x 2+mx-2,∴m=3,n=1.“点睛”本题考查多项式乘以多项式的法则,利用多项式的乘法法则展开多项式,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算. 6.D解析:D【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x 的一次项,所以让一次项的系数等于0,得a 的等式,再求解.【详解】解:(4x-a )(x+1),=4x 2+4x-ax-a ,=4x 2+(4-a )x-a ,∵积中不含x 的一次项,∴4-a=0,解得a=4.故选D .【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.7.D解析:D【分析】根据完全平方公式的运算法则即可求解.【详解】∵(x-2y)2 =(x+2y)2+M∴M=(x-2y)2 -(x+2y)2=x 2-4xy+4y 2-x 2-4xy-4y 2=-8xy故选D.【点睛】此题主要考查完全平方公式的运算,解题的关键是熟知完全平方公式的运算法则.8.B解析:B【分析】根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解.【详解】解:根据因式分解的概念,A 选项属于整式的乘法,错误;B 选项符合因式分解的概念,正确;C 选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误.故选B .【点睛】本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.9.A解析:A【分析】先根据到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.【详解】∵M到x轴的距离为5,到y轴的距离为2,∴M纵坐标可能为±5,横坐标可能为±2.∵点M在第四象限,∴M坐标为(2,﹣5).故选:A.【点睛】本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.10.D解析:D【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.【详解】A、属于分式方程,不符合题意;B、有三个未知数,为三元一次方程组,不符合题意;C、未知数x是2次方,为二次方程,不符合题意;D、符合二元一次方程组的定义,符合题意;故选:D.【点睛】考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”.二、填空题11.115°.【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=5解析:115°.【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC =12∠ABC ,∠OCB =12∠ACB , ∴∠OBC +∠OCB =12×(∠ABC +∠ACB )=12×130°=65°, ∴∠BOC =180°﹣(∠OBC +∠OCB )=115°,故答案为:115°.【点睛】本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC +∠OCB 的度数.12.3【解析】.故答案为3.解析:3【解析】623m n m n a a a -=÷=÷=.故答案为3.13.2【分析】设圆珠笔x 支,表示出练习簿的数量,根据圆珠笔和练习簿数量都是整数,求出x 的值即可.【详解】设圆珠笔x 支,则练习簿本,圆珠笔和练习簿数量都是整数,则x=2时,, 故答案为2.【点睛解析:2【分析】设圆珠笔x 支,表示出练习簿的数量,根据圆珠笔和练习簿数量都是整数,求出x 的值即可.【详解】设圆珠笔x 支,则练习簿1434x -本,圆珠笔和练习簿数量都是整数,则x=2时,14324x -=, 故答案为2.【点睛】明确圆珠笔和练习簿数量都是整数是本题的关键,难度较小.14.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:故答案为【点睛】此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 解析:1.3- 【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:()20202019133⎛⎫-⋅- ⎪⎝⎭()2019201911333⎛⎫⎛⎫=-⋅-⨯- ⎪ ⎪⎝⎭⎝⎭()201911333⎡⎤⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 1.3=- 故答案为1.3-【点睛】 此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 16.10【分析】已知是二元一次方程2x ﹣3y ﹣5=0的一组解,将代入二元一次方程2x ﹣3y ﹣5=0中,即可求解.【详解】∵是二元一次方程2x ﹣3y ﹣5=0的一组解∴2a-3b=5∴4a-6b解析:10【分析】已知x a y b =⎧⎨=⎩是二元一次方程2x ﹣3y ﹣5=0的一组解,将x a y b=⎧⎨=⎩代入二元一次方程2x ﹣3y ﹣5=0中,即可求解.【详解】∵x a y b =⎧⎨=⎩是二元一次方程2x ﹣3y ﹣5=0的一组解 ∴2a-3b=5∴4a-6b=10故答案为:10【点睛】本题考查了二元一次方程组解的定义,能使二元一次方程左右两边的值相等的两个未知数的值,叫做二元一次方程的解.由于使二元一次方程的左右两边的值相等的未知数的值不止一组,故每个二元一次方程都有无数组解.17.60【解析】【分析】先由AB∥CD,求得∠C 的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E 的度数.【详解】∵AB∥CD,∴∠C与它的同位角相等,根据三角形的外角等于解析:60【解析】【分析】先由AB∥CD,求得∠C的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E的度数.【详解】∵AB∥CD,∴∠C与它的同位角相等,根据三角形的外角等于与它不相邻的两内角之和,所以∠A+∠E=∠C=60度.故答案为60.【点睛】本题考查了平行线的性质,三角形的外角等于和它不相邻的两个内角的和. ①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角. 18.四【分析】根据题意得到关于m、n的二元一次方程组,确定点M坐标,判断M所在象限即可.【详解】解:由题意得,解得,∴点M坐标为,∴点M在第四象限.故答案为:四【点睛】本题考查了二元解析:四【分析】根据题意得到关于m、n的二元一次方程组,确定点M坐标,判断M所在象限即可.【详解】解:由题意得22111m nm n--=⎧⎨++=⎩,解得11m n =⎧⎨=-⎩, ∴点M 坐标为()1,1-,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元一次方程定义,二元一次方程组解法,点的坐标等知识,综合性较强,根据题意列出方程组是解题关键.19.220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CE解析:220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED ,∠2=∠C+∠EDC ,∴∠1+∠2=∠C+∠CED+∠EDC+∠C ,∵∠C+∠CED+∠EDC =180°,∠C =40°,∴∠1+∠2=180°+40°=220°,故答案为:220°.【点睛】本题考查剪纸问题,三角形内角和定理,三角形的外角的性质等知识,熟悉相关性质是解题的关键.20.6【分析】把代入已知方程可得关于a 的方程,解方程即得答案.【详解】解:把代入方程ax+y=4,得a -2=4,解得:a=6.故答案为:6.【点睛】本题考查了二元一次方程的解的定义,属于基解析:6【分析】把12x y =⎧⎨=-⎩代入已知方程可得关于a 的方程,解方程即得答案. 【详解】解:把12x y =⎧⎨=-⎩代入方程ax +y =4,得a -2=4,解得:a =6. 故答案为:6.【点睛】本题考查了二元一次方程的解的定义,属于基础题型,熟知二元一次方程的解的概念是关键.三、解答题21.(1)29;(2)64.【分析】(1)根据完全平方公式得到()2222a b a b ab +=+-,然后整体代入计算即可; (2)根据完全平方公式得到()22223227a ab b a b ab -+=+-,然后整体代入计算即可.【详解】解:(1)()()2222252229a b a b b a =+-=-⨯-=+;(2)()()222222232242727257264a ab b a ab b ab a b ab -+=++-=+-=⨯-⨯-=.【点睛】本题考查了代数式求值,完全平方公式和整体代入的思想,熟练掌握完全平方公式是解题的关键.22.(1)()()2323x x +-;(2)()22--b a b . 【分析】(1)直接利用平方差公式因式分解即可;(2)先提取公因式,然后利用完全平方公式分解因式即可.【详解】(1) ()()249=2323x x x -+-; (2)()223224444ab a b b b a ab b--=--+=()22--b a b .【点睛】 本题考查了用提公因式法和公式法进行因式分解.注意先提公因式,再利用公式法分解,同时因式分解要彻底,直到不能分解为止.23.﹣5x2﹣4xy+18,6.【分析】将原式利用题中的新定义化简得到最简结果,把x与y的值代入计算即可求值.【详解】原式=(3xy﹣2x2)﹣(﹣5xy+x2)+(﹣2x2﹣3)﹣3(﹣7+4xy)=3xy﹣2x2+5xy﹣x2﹣2x2﹣3+21﹣12xy=﹣5x2﹣4xy+18,当x=2,y=﹣1时,原式=﹣20+8+18=6.【点睛】本题考查了整式的混合运算—化简求值,熟练掌握运算法则是解题的关键.24.(1)证明过程见解析;(2)12N AEM NFD∠=∠-∠,理由见解析;(3)13∠N+∠PMH=180°.【分析】(1)根据同旁内角互补,两直线平行即可判定AB∥CD;(2)设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y,过M作MP∥AB,过N作NQ∥AB 可得∠PMN=3α-x,∠QNM=2α-y,根据平行线性质得到3α-x=2α-y,化简即可得到1 2N AEM NFD ∠=∠-∠;(3)过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R,根据平行线的性质可得∠BPM=∠PMI,由已知得到∠MON=∠MPN+∠PMI=3∠PMI及∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH,根据平行线的性质得到3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-∠PMI=13∠FNP,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH,即得到1 3∠FNP=180°-∠PMH,即13∠N+∠PMH=180°.【详解】(1)证明:∵∠1=∠BEF,12180︒∠+∠=∴∠BEF+∠2=180°∴AB∥CD.(2)解:12N AEM NFD ∠=∠-∠设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y 过M作MP∥AB,过N作NQ∥AB∵//AB CD,MP∥AB,NQ∥AB ∴MP∥NQ∥AB∥CD∴∠EMP=x,∠FNQ=y∴∠PMN=3α-x,∠QNM=2α-y ∴3α-x=2α-y即α=x-y∴12N AEM NFD ∠=∠-∠故答案为12N AEM NFD ∠=∠-∠(3)解:13∠N+∠PMH=180°过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.∵//AB CD,MI∥AB,NQ∥CD∴AB∥MI∥NQ∥CD∴∠BPM=∠PMI∵∠MPN=2∠MPB∴∠MPN=2∠PMI∴∠MON=∠MPN+∠PMI=3∠PMI∵∠NFH=2∠HFD∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD∵∠RFN=∠HFD∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM∴∠MON+∠PRF+∠RFM=360°-∠OMF即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF ∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH∵3∠PMI+∠PNH=180°∴3∠PMI+∠FNP+∠FNH=180°∵3∠RFM+∠FNH=180°∴3∠PMI-3∠RFM+∠FNP=0°即∠RFM-∠PMI=13∠FNP∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH∠FNP-2×13∠FNP=180°-∠PMH13∠FNP=180°-∠PMH即13∠N+∠PMH=180°故答案为13∠N+∠PMH=180°【点睛】本题主要考查了平行线的判定与性质.解题的关键是正确作出辅助线,通过运用平行线性质得到角之间的关系.25.(1)20°;(2)11 22 n m【分析】(1)根据∠DAE=∠EAC﹣∠DAC,求出∠EAC,∠DAC即可.(2)计算方法与(1)相同.【详解】解:(1)∵∠B=35°,∠C=75°,∴∠BAC=180°﹣35°﹣75°=70°,∵AE平分∠BAC,∴∠CAE=12∠CAB=35°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣75°=15°,∴∠DAE=∠EAC﹣∠DAC=35°﹣15°=20°.(2)∵∠B=m°,∠C=n°,∴∠BAC=180°﹣m°﹣n°,∵AE平分∠BAC,∴∠CAE=12∠CAB=90°﹣(12m)°﹣(12n)°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣n°,∴∠DAE=∠EAC﹣∠DAC=(12n﹣12m)°,故答案为:(12n﹣12m).【点睛】本题考查三角形内角和定理角平分线的定义,三角形的高的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.①6;②8 9【解析】解:①②27.知识回顾:∠A+∠B;初步运用:(1)80;(2)250;拓展延伸:(1)220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由见解析;(3)见解析.【分析】知识回顾:根据三角形内角和即可求解.初步运用:(1)根据知识与回顾可求出∠DBC度数,进而求得∠ACB度数;(2)已知∠A度数,即可求得∠ABC+∠ACB度数,进而求得∠DBC+∠ECB度数.拓展延伸:(1)连接AP,根据三角形外角性质,∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,得到∠DBP+∠ECP=∠BAC+∠BPC,已知∠BAC=70°,∠BPC=150°,即可求得∠DBP+∠ECP度数;(2)如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,即可求出∠A和∠P之间的数量关系;(3)如图,延长BP交CN于点Q,根据角平分线定义,∠DBP=2∠MBP,∠ECP=2∠NCP,且∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,得到∠BPC=∠MBP+∠NCP,因为∠BPC=∠PQC+∠NCP,证得∠MBP=∠PQC,进而得到BM∥CN.【详解】知识回顾:∵∠ACD+∠ACB=180°,∠A+∠B+∠ACB=180°,∴∠ACD=∠A+∠B;故答案为:∠A+∠B;初步运用:(1)∵∠DBC=∠A+∠ACB,∠A=70°,∠DBC=150°,∴∠ACB=∠DBC﹣∠A=150°﹣70°=80°;故答案为:80;(2)∵∠A=70°,∴∠ABC+∠ACB=110°,∴∠DBC+∠ECB=360°﹣110°=250°,故答案为:250;拓展延伸:(1)如图④,连接AP,∵∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,∵∠BAC=70°,∠BPC=150°,∴∠DBP+∠ECP=∠BAC+∠BPC=70°+150°=220°,故答案为:220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,2∠A+2∠O=∠A+∠P,∵∠O=40°,∴∠P=∠A+80°;(3)证明:如图,延长BP交CN于点Q,∵BM平分∠DBP,CN平分∠ECP,∴∠DBP=2∠MBP,∠ECP=2∠NCP,∵∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,∴2∠MBP+2∠NCP =∠A+∠BPC =2∠BPC ,∴∠BPC =∠MBP+∠NCP ,∵∠BPC =∠PQC+∠NCP ,∴∠MBP =∠PQC ,∴BM ∥CN .【点睛】本题考查了三角形内角和定理,三角形内角和为360°;三角形外角性质定理,三角形的任一外角等于不相邻的两个内角和;角平分线定义,根据角平分线定义证明;以及平行线的判定,内错角相等两直线平行.28.(1)-2(2)12a【分析】(1)根据零指数幂和负指数幂的运算法则进行化简即可求解;(2)根据幂的运算法则即可求解.【详解】(1)0201711(2)(1)()2--+-- =1-1-2=-2(2)()()()3243652a a a +-•- =()126654a a a +•- =121254a a -=12a .【点睛】此题主要考查实数与幂的运算,解题的关键是熟知其运算法则.。
山东省枣庄市数学七年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2015七下·简阳期中) 在方程3x﹣y=2,,,x2﹣2x﹣3=0中一元一次方程的个数为()A . 1个B . 2个C . 3个D . 4个2. (2分) (2020九上·双台子期末) 下列图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分)用一批完全相同的正多边形地砖铺地面,不能进行镶嵌的是()。
A . 正三角形B . 正四边形C . 正六边形D . 正八边形4. (2分)(2017·湖州竞赛) 某校进行校园歌手大奖赛预赛,评委给每位选手打分时,最高分不超过10分,所有评委的评分中去掉一个最高分,去掉一个最低分后的平均分即为选手的最后得分.小敏的最后得分为9.68分,若只去掉一个最低分,小敏的得分为9.72分,若只去掉一个最高分,小敏的得分为9.66分,那么可以算出这次比赛的评委有()A . 9名B . 10名C . 11名D . 12名5. (2分)(2017·番禺模拟) 如图所示,一张△ABC纸片,点D,E分别在线段AC,AB上,将△ADE沿着DE 折叠,A与A′重合,若∠A=α,则∠1+∠2=()A . αB . 2αC . 180°﹣αD . 180°﹣2α6. (2分)在等式y=kx+b中,当x=2时,y=﹣4;当x=﹣2时,y=8,则这个等式是()A . y=3x+2B . y=﹣3x+2C . y=3x﹣2D . y=﹣3x﹣27. (2分) (2019八上·下陆期末) 如图,在△ABC中,AB=6,AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB,AC于M、N,则△AMN的周长为()A . 12B . 10C . 8D . 不确定8. (2分)若一个正多边形的一个外角是40°,则这个正多边形的边数是()A . 10B . 9C . 8D . 69. (2分)已知一个多边形的内角和是它的外角和的3倍,则此多边形的边数为()A . 12B . 8C . 4D . 610. (2分)若a:b:c=2:3:7,且a-b+3=c-2b ,则c值为何?()A . 7B . 63C .D .11. (2分)不等式组的整数解的个数是()A . 3B . 5C . 7D . 无数个12. (2分)一个多边形的每个内角均为108°,则这个多边形是A . 七边形B . 六边形C . 五边形D . 四边形二、填空题 (共4题;共4分)13. (1分) (2018七上·辛集期末) 若关于x的方程x﹣1=1与2x+3m﹣1=0的解相同,则m的值等于________.14. (1分)若|x+2|+|y﹣3|=0,则xy=________.15. (1分)不等式的正整数解为________.16. (1分) (2019八下·雅安期中) 在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得的锐角为46°,则底角∠B的大小为________.三、综合题 (共6题;共50分)17. (10分)已知关于x的一元一次方程与2(x-1)-10=0的解相同.(1)求n的值;(2)已知线段AB=4n,C为线段AB上一点,且AC=3BC,M、N分别为线段AC、BC的中点,求AM、BN的值.18. (15分) (2020八上·长兴期末) 如图,在正方形网格中,每个小正方形的边长为1,格点三角形(顶点在网格线的交点的三角形)ABC的顶点A,C坐标分别是(a,5),(-1,b)。
2015-2016学年山东省枣庄市山亭区七年级(下)第一次月考数学试卷一、选择题:每小题4分,共32分1.(4分)下列运算正确的是()A.a4+a5=a9B.a3•a3•a3=3a3C.2a4×3a5=6a9D.(﹣a3)4=a72.(4分)(﹣)2016×(﹣2)2016=()A.﹣1 B.1 C.0 D.20163.(4分)设(5a+3b)2=(5a﹣3b)2+A,则A=()A.30ab B.60ab C.15ab D.12ab4.(4分)已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣195.(4分)已知x a=3,x b=5,则x3a﹣2b=()A.B.C.D.526.(4分)如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A.①② B.③④ C.①②③D.①②③④7.(4分)计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a8+2a4b4+b8B.a8﹣2a4b4+b8C.a8+b8D.a8﹣b88.(4分)已知(m﹣n)2=32,(m+n)2=4000,则m2+n2的值为()A.2014 B.2015 C.2016 D.4032二、填空题:每小题4分,共32分9.(4分)若(x+m)与(x+3)的乘积中不含x的一次项,则m=.10.(4分)已知(a+b)2=9,ab=﹣1,则a2+b2=.11.(4分)设4x2+mx+121是一个完全平方式,则m=.12.(4分)已知x+=5,那么x2+=.13.(4分)方程(x+3)(2x﹣5)﹣(2x+1)(x﹣8)=41的解是.14.(4分)已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)=.15.(4分)若m2﹣n2=6,且m﹣n=3,则m+n=.16.(4分)将4个数排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,若=6,则x=.三、解答题:共36分17.(8分)计算:(1)(﹣1)2016+()﹣2﹣(3.14﹣π)0(2)(2x3y)2•(﹣2xy)﹣(﹣2x3y)3÷(2x2)18.(8分)(1)已知x=3,求代数式(x+1)2﹣4(x+1)+4的值;(2)先化简,再求值:(2a﹣b)2﹣(a﹣b)(a+b)+(a+2b)2,其中a=,b=﹣2.19.(10分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.20.(10分)若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.2015-2016学年山东省枣庄市山亭区七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:每小题4分,共32分1.(4分)(2012•大田县校级自主招生)下列运算正确的是()A.a4+a5=a9B.a3•a3•a3=3a3C.2a4×3a5=6a9D.(﹣a3)4=a7【分析】①同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加;②幂的乘方法则,幂的乘方底数不变指数相乘;③合并同类项法则,把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.【解答】解:A、a4+a5=a4+a5,不是同类项不能相加;B、a3•a3•a3=a9,底数不变,指数相加;C、正确;D、(﹣a3)4=a12.底数取正值,指数相乘.故选C.【点评】注意把各种幂运算区别开,从而熟练掌握各种题型的运算.2.(4分)(2016春•山亭区月考)(﹣)2016×(﹣2)2016=()A.﹣1 B.1 C.0 D.2016【分析】逆用积的乘方公式可得.【解答】解:原式=(﹣)2016×(﹣)2016=[(﹣)×(﹣)]2016=1,故选:B.【点评】本题主要考查幂的乘方与积的乘方,熟练掌握运算公式是解题的关键.3.(4分)(2016春•岱岳区期末)设(5a+3b)2=(5a﹣3b)2+A,则A=()A.30ab B.60ab C.15ab D.12ab【分析】已知等式两边利用完全平方公式展开,移项合并即可确定出A.【解答】解:∵(5a+3b)2=(5a﹣3b)2+A∴A=(5a+3b)2﹣(5a﹣3b)2=(5a+3b+5a﹣3b)(5a+3b﹣5a+3b)=60ab.故选B【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.4.(4分)(2012春•成都期末)已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣19【分析】把x2+y2利用完全平方公式变形后,代入x+y=﹣5,xy=3求值.【解答】解:∵x+y=﹣5,xy=3,∴x2+y2=(x+y)2﹣2xy=25﹣6=19.故选:C.【点评】本题的关键是利用完全平方公式求值,把x+y=﹣5,xy=3当成一个整体代入计算.5.(4分)(2014秋•昆明校级期末)已知x a=3,x b=5,则x3a﹣2b=()A.B.C.D.52【分析】利用同底数幂的除法和幂的乘方的性质的逆用计算即可.【解答】解:∵x a=3,x b=5,∴x3a﹣2b=(x a)3÷(x b)2,=27÷25,=.故选:A.【点评】本题本题考查同底数的幂的除法,幂的乘方的性质,逆用性质,把原式转化为(x a)3÷(x b)2是解决本题的关键.6.(4分)(2015春•黄岛区期末)如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A.①② B.③④ C.①②③D.①②③④【分析】①大长方形的长为2a+b,宽为m+n,利用长方形的面积公式,表示即可;②长方形的面积等于左边,中间及右边的长方形面积之和,表示即可;③长方形的面积等于上下两个长方形面积之和,表示即可;④长方形的面积由6个长方形的面积之和,表示即可.【解答】解:①(2a+b)(m+n),本选项正确;②2a(m+n)+b(m+n),本选项正确;③m(2a+b)+n(2a+b),本选项正确;④2am+2an+bm+bn,本选项正确,则正确的有①②③④.故选D.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.7.(4分)(2016春•高青县期中)计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a8+2a4b4+b8B.a8﹣2a4b4+b8C.a8+b8D.a8﹣b8【分析】这几个式子中,先把前两个式子相乘,这两个二项式中有一项完全相同,另一项互为相反数.相乘时符合平方差公式得到a2﹣b2,再把这个式子与a2+b2相乘又符合平方差公式,得到a4﹣b4,与最后一个因式相乘,可以用完全平方公式计算.【解答】解:(a﹣b)(a+b)(a2+b2)(a4﹣b4),=(a2﹣b2)(a2+b2)(a4﹣b4),=(a4﹣b4)2,=a8﹣2a4b4+b8.故选B.【点评】本题主要考查了平方差公式的运用,本题难点在于连续运用平方差公式后再利用完全平方公式求解.8.(4分)(2016春•山亭区月考)已知(m﹣n)2=32,(m+n)2=4000,则m2+n2的值为()A.2014 B.2015 C.2016 D.4032【分析】根据完全平方公式,即可解答.【解答】解:(m﹣n)2=32,m2﹣2mn+n2=32 ①,(m+n)2=4000,m2+2mn+n2=4000 ②,①+②得:2m2+2n2=4032m2+n2=2016.故选:C.【点评】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.二、填空题:每小题4分,共32分9.(4分)(2014秋•东西湖区校级期末)若(x+m)与(x+3)的乘积中不含x的一次项,则m=﹣3.【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x 的同类项,令x的系数为0,得出关于m的方程,求出m的值.【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故答案为:﹣3.【点评】本题主要考查了多项式乘多项式的运算,根据乘积中不含哪一项,则哪一项的系数等于0列式是解题的关键.10.(4分)(2016春•山亭区月考)已知(a+b)2=9,ab=﹣1,则a2+b2=12.【分析】利用完全平方公式化简,将ab的值代入计算即可求出所求式子的值.【解答】解:∵(a+b)2=a2+b2+2ab=9,ab=﹣1,∴a2+b2=9﹣2×(﹣)=12,故答案为:12.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.11.(4分)(2015春•宿州期末)设4x2+mx+121是一个完全平方式,则m=±44.【分析】这里首末两项是2x和11这两个数的平方,那么中间一项为加上或减去2x和11积的2倍.【解答】解:∵4x2+mx+121是一个完全平方式,∴mx=±2×11•2x,∴m=±44.故答案为:±44.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.12.(4分)(2014秋•岳池县期末)已知x+=5,那么x2+=23.【分析】所求式子利用完全平方公式变形后,将已知等式代入计算即可求出值.【解答】解:∵x+=5,∴x2+=(x+)2﹣2=25﹣2=23.故答案为:23.【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.13.(4分)(2015春•济宁校级期中)方程(x+3)(2x﹣5)﹣(2x+1)(x﹣8)=41的解是x=3.【分析】方程的左边,按多项式与多项式的乘法运算计算,再合并同类项,最后节方程.【解答】解:2x2﹣5x+6x﹣15﹣(2x2﹣16x+x﹣8)=41,2x2﹣5x+6x﹣15﹣2x2+16x﹣x+8=41,16x﹣7=41,16x=48,x=3.故答案为:x=3.【点评】此题主要考查一元一次方程的解法,关键是掌握多项式与多项式的乘法运算.14.(4分)(2014•杭州模拟)已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)=﹣3.【分析】原式利用多项式乘以多项式法则计算,变形后,将m+n与mn的值代入计算即可求出值.【解答】解:∵m+n=2,mn=﹣2,∴(1﹣m)(1﹣n)=1﹣(m+n)+mn=1﹣2﹣2=﹣3.故答案为:﹣3.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.15.(4分)(2010•益阳)若m2﹣n2=6,且m﹣n=3,则m+n=2.【分析】将m2﹣n2按平方差公式展开,再将m﹣n的值整体代入,即可求出m+n的值.【解答】解:m2﹣n2=(m+n)(m﹣n)=3(m+n)=6;故m+n=2.【点评】本题考查了平方差公式,比较简单,关键是要熟悉平方差公式(a+b)(a﹣b)=a2﹣b2.16.(4分)(2015秋•咸阳校级期中)将4个数排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,若=6,则x=±.【分析】根据新定义得到(x+1)2﹣(1﹣x)(x﹣1)=6,然后整理得到x2=2,再利用直接开平方法解方程即可.【解答】解:根据题意得(x+1)2﹣(1﹣x)(x﹣1)=6,整理得x2=2,x=±,所以x1=,x2=﹣.故答案为±.【点评】本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(nx+m)2=p(p≥0)的形式,那么nx+m=±.三、解答题:共36分17.(8分)(2016春•高青县期中)计算:(1)(﹣1)2016+()﹣2﹣(3.14﹣π)0(2)(2x3y)2•(﹣2xy)﹣(﹣2x3y)3÷(2x2)【分析】(1)直接利用负整数指数幂的性质结合零指数幂的性质化简求出答案;(2)直接利用积的乘方运算法则化简,进而结合单项式乘以单项式以及单项式除以单项式运算法则求出答案.【解答】解:(1)(﹣1)2016+()﹣2﹣(3.14﹣π)0=1+4﹣1=4;(2)(2x3y)2•(﹣2xy)﹣(﹣2x3y)3÷(2x2)=4x6y2•(﹣2xy)+8x9y3÷(2x2)=﹣8x7y3+4x7y3=﹣4x7y3.【点评】此题主要考查了实数运算以及整式的混合运算,正确掌握运算法则是解题关键.18.(8分)(2016春•山亭区月考)(1)已知x=3,求代数式(x+1)2﹣4(x+1)+4的值;(2)先化简,再求值:(2a﹣b)2﹣(a﹣b)(a+b)+(a+2b)2,其中a=,b=﹣2.【分析】(1)先算乘法,再合并同类项,最后代入求出即可;(2)先算乘法,再合并同类项,最后代入求出即可.【解答】解:(1)(x+1)2﹣4(x+1)+4=x2+2x+1﹣4x﹣4+4=x2﹣2x+1,当x=3时,原式=9﹣6+1=4;(2)(2a﹣b)2﹣(a﹣b)(a+b)+(a+2b)2=4a2﹣4ab+b2﹣a2+b2+a2+4ab+4b2=4a2+6b2,当a=,b=﹣2时,原式=1+24=25.【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键,19.(10分)(2016春•沧州期末)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.【分析】长方形的面积等于:(3a+b)•(2a+b),中间部分面积等于:(a+b)•(a+b),阴影部分面积等于长方形面积﹣中间部分面积,化简出结果后,把a、b的值代入计算.【解答】解:S阴影=(3a+b)(2a+b)﹣(a+b)2,=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2,=5a2+3ab(平方米)当a=3,b=2时,5a2+3ab=5×9+3×3×2=45+18=63(平方米).【点评】本题考查了阴影部分面积的表示和多项式的乘法,完全平方公式,准确列出阴影部分面积的表达式是解题的关键.20.(10分)(2015•张家港市模拟)若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【分析】(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.【解答】解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.【点评】本题考查了整式的混合运算和完全平方公式的应用,题目是一道比较典型的题目,难度适中.。
2014-2015学年山东省枣庄市山亭区七年级(下)期末数学试卷一、选择题1.(3分)下列大学的校徽图案是轴对称图形的是()A.清华大学B.北京大学C.中国人民大学D.浙江大学2.(3分)下列运算正确的是()A.a6÷a2=a3B.a3•a3•a3=3a3 C.(a3)4=a12D.(a+2b)2=a2+4b23.(3分)下列不能用平方差公式运算的是()A.(x+3)(x﹣3)B.(﹣x﹣y)(﹣x+y)C.(2x﹣y)(y﹣2x)D.(2a+3b)(3b﹣2a)4.(3分)以下说法正确的是()A.在367人中至少有两个人的生日相同B.一次摸奖活动的中奖率是1%,那么摸100次必然会中一次奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个不透明的袋中装有3个红球,5个白球,搅匀后想中任意摸出一个球,摸到红球的可能性大于摸到白球的可能性5.(3分)下列判断正确的个数是()(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等;(4)全等三角形对应边相等.A.1个 B.2个 C.3个 D.4个6.(3分)如图所示是一条街道的路线图,若AB∥CD,且∠ABC=130°,那么当∠CDE等于()时,BC∥DE.A.40°B.50°C.70°D.130°7.(3分)如图所示,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中不一定相等的线段有()A.AC=AE=BE B.AD=BD C.AC=BD D.CD=DE8.(3分)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是()A.B.C.D.9.(3分)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC10.(3分)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.30°B.45°C.60°D.75°11.(3分)在四张完全相同的卡片上,分别画有等腰三角形、钝角、线段和直角三角形,现从中任意抽取一张,卡片上的图形一定是轴对称图形的概率是()A.B.C.D.112.(3分)如图,在Rt△ABC中,∠C=90°,点B沿CB所在直线远离C点移动,下列说法不正确的是()A.三角形面积随之增大B.∠CAB的度数随之增大C.边AB的长度随之增大D.BC边上的高随之增大13.(3分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若CD=BD,点D到边AB的距离为6,则BC的长是()A.6 B.12 C.18 D.2414.(3分)已知m﹣n=2,mn=﹣1,则(1+2m)(1﹣2n)的值为()A.﹣7 B.1 C.7 D.915.(3分)计算:(2xy2)4•(﹣6x2y)÷(﹣12x3y2)的结果为()A.16x3y7B.4x3y7C.8x3y7D.8x2y7二、填空题:每题4分16.(4分)已知a2+b2=7,ab=1,则(a+b)2=.17.(4分)众所周知,手机的电话号码是由11位数字组成的,某人的手机号码位于中间的数字为5的概率是.18.(4分)如图,已知△ABC中,∠B=90°,角平分线AD、CF相交于E,则∠AEC 的度数是.19.(4分)如图,已知AC=BD,要使△ABC≌△DCB,在图形所给出的字母中,需添加一个条件是(从符合的条件中任选一个即可)20.(4分)科学发现:植物的花瓣、萼片、果实的数目以及其他方面的特征,都非常吻合于一个奇特的数列﹣﹣著名的裴波那契数列:1,1,2,3,5,8,13,21,34,55,…仔细观察以上数列,则它的第11个数应该是.21.(4分)如图,△ABC中,AB=AC,∠A=38°,MN垂直平分AB,则∠BNC=.三、解答题22.(10分)(1)计算:2﹣2+()0+(﹣0.2)2014×52015(2)先化简,再求值:[(x+2y)2﹣(3x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣,y=1.23.(6分)在3×3的正方形网格中,有一个以格点为顶点的三角形(阴影部分)如图所示,请你在图①,图②,图③中,分别画出一个与该三角形成轴对称且以格点为顶点的三角形,并将所画三角形涂上阴影.(注:所画的三个图不能重复.)24.(6分)一只口袋里放着4个红球、8个黑球和若干个白球,这三种球除颜色外没有任何区别,并搅匀.(1)取出红球的概率为,白球有多少个?(2)取出黑球的概率是多少?(3)再在原来的袋中放进多少个红球,能使取出红球的概率达到?25.(7分)如图,AD∥BC,∠BAC=70°,DE⊥AC于点E,∠D=20°.(1)求∠B的度数,并判断△ABC的形状;(2)若延长线段DE恰好过点B,试说明DB是∠ABC的平分线.26.(6分)中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费.下表是超出部分国内拨打的收费标准时间/分12345…0.360.72 1.08 1.44 1.8…电话费/元(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果用x表示超出时间,y表示超出部分的电话费,那么y与x的表达式是什么?(3)如果打电话超出25分钟,需付多少电话费?(4)某次打电话的费用超出部分是54元,那么小明的爸爸打电话超出几分钟?27.(8分)如图1,将一块等腰直角三角板ABC的直角顶点C置于直线l上,图2是由图1抽象出的几何图形,过A、B两点分别作直线l的垂线,垂足分别为D、E.(1)△ACD与△CBE全等吗?说明你的理由.(2)猜想线段AD、BE、DE之间的关系.(直接写出答案)28.(8分)生活中的数学:(1)如图1所示,一扇窗户打开后,用窗钩AB要将其固定,这里所运用的几何原理是:.(2)小河的旁边有一个甲村庄(如图2所示),现计划在河岸AB上建一个泵站,向甲村供水,使得所铺设的供水管道最短,请在上图中画出铺设的管道,这里所运用的几何原理是:.(3)如图3所示,在新修的小区中,有一条“Z”字形绿色长廊ABCD,其中AB∥CD,在AB,BC,CD三段绿色长廊上各修一小凉亭E,M,F,且BE=CF,点M 是BC的中点,在凉亭M与F之间有一池塘,不能直接到达,要想知道M与F 之间的距离,只需要测出线段ME的长度(用两个字母表示线段).这样做合适吗?请说出理由.2014-2015学年山东省枣庄市山亭区七年级(下)期末数学试卷参考答案与试题解析一、选择题1.(3分)下列大学的校徽图案是轴对称图形的是()A.清华大学B.北京大学C.中国人民大学D.浙江大学【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:B.2.(3分)下列运算正确的是()A.a6÷a2=a3B.a3•a3•a3=3a3 C.(a3)4=a12D.(a+2b)2=a2+4b2【解答】解:A、a6÷a2=a4,故A错误;B、a3•a3•a3=a9,故B错误;C、(a3)4=a12,故C正确;D、(a+2b)2=a2+4b2+4ab,故D错误.故选:C.3.(3分)下列不能用平方差公式运算的是()A.(x+3)(x﹣3)B.(﹣x﹣y)(﹣x+y)C.(2x﹣y)(y﹣2x)D.(2a+3b)(3b﹣2a)【解答】解:(x+3)(x﹣3)=x2﹣9,(﹣x﹣y)(﹣x+y)=x2﹣y2,(2a+3b)(3b ﹣2a)=9b2﹣4a2,则不能利用平方差公式计算的是(2x﹣y)(y﹣2x),故选:C.4.(3分)以下说法正确的是()A.在367人中至少有两个人的生日相同B.一次摸奖活动的中奖率是1%,那么摸100次必然会中一次奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个不透明的袋中装有3个红球,5个白球,搅匀后想中任意摸出一个球,摸到红球的可能性大于摸到白球的可能性【解答】解:A、在367人中至少有两个人的生日相同,故A正确;B、一次摸奖活动的中奖率是1%,那么摸100次可能中奖,可不中奖,故B错误;C、一副扑克牌中,随意抽取一张是红桃K,这是随机事件,故C错误;D、一个不透明的袋中装有3个红球,5个白球,搅匀后想中任意摸出一个球,摸到红球的可能性小于摸到白球的可能性,故D错误;故选:A.5.(3分)下列判断正确的个数是()(1)能够完全重合的两个图形全等;(2)两边和一角对应相等的两个三角形全等;(3)两角和一边对应相等的两个三角形全等;(4)全等三角形对应边相等.A.1个 B.2个 C.3个 D.4个【解答】解:(1)能够完全重合的两个图形全等,正确;(2)两边和一角对应相等的两个三角形全等,必须是SAS才可以得出全等,错误;(3)两角和一边对应相等的两个三角形全等,是一角的对边或两角的夹边对应相等,正确;(4)全等三角形对应边相等,正确.所以有3个判断正确.故选:C.6.(3分)如图所示是一条街道的路线图,若AB∥CD,且∠ABC=130°,那么当∠CDE等于()时,BC∥DE.A.40°B.50°C.70°D.130°【解答】解:∵AB∥CD,且∠ABC=130°,∴∠BCD=∠ABC=130°,∵当∠BCD+∠CDE=180°时BC∥DE,∴∠CDE=180°﹣∠BCD=180°﹣130°=50°,故选:B.7.(3分)如图所示,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中不一定相等的线段有()A.AC=AE=BE B.AD=BD C.AC=BD D.CD=DE【解答】解:∵∠B=30°,∠C=90°,∴∠BAC=60°,AC=,∵DE是AB的垂直平分线,∴AD=BD,AE=BE=AB,∴∠DAB=30°,AC=AE=BE,故A、B正确;∴∠CAD=30°,∴AD是∠BAC的平分线∵CD⊥AC,DE⊥AB,∴CD=DE,故D正确;故选:C.8.(3分)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是()A.B.C.D.【解答】解:由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、B;由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除D选项.故选:C.9.(3分)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC【解答】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;B、根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;C、∵在△ADF和△CBE中∴△ADF≌△CBE(SAS),正确,故本选项错误;D、∵AD∥BC,∴∠A=∠C,∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;故选:B.10.(3分)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.30°B.45°C.60°D.75°【解答】解:∵∠2=90°﹣45°=45°(直角三角形两锐角互余),∴∠3=∠2=45°,∴∠1=∠3+30°=45°+30°=75°.故选:D.11.(3分)在四张完全相同的卡片上,分别画有等腰三角形、钝角、线段和直角三角形,现从中任意抽取一张,卡片上的图形一定是轴对称图形的概率是()A.B.C.D.1【解答】解:卡片中,轴对称图形有等腰三角形、钝角、线段,根据概率公式,P(轴对称图形)=.故选:C.12.(3分)如图,在Rt△ABC中,∠C=90°,点B沿CB所在直线远离C点移动,下列说法不正确的是()A.三角形面积随之增大B.∠CAB的度数随之增大C.边AB的长度随之增大D.BC边上的高随之增大【解答】解:A、S=BC•AC,则BC越长,该三角形的面积越大.故A正确;△ABCB、如图,随着点B的移动,∠CAB的度数随之增大.故B正确;C、如图,随着点B的移动边AB的长度随之增大.故C正确;D、BC边上的高是AC,线段AC的长度是不变的.故D错误.故选:D.13.(3分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若CD=BD,点D到边AB的距离为6,则BC的长是()A.6 B.12 C.18 D.24【解答】解:过D作DE⊥AB于E,∵点D到边AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=6,∵CD=DB,∴DB=12,∴BC=6+12=18,故选:C.14.(3分)已知m﹣n=2,mn=﹣1,则(1+2m)(1﹣2n)的值为()A.﹣7 B.1 C.7 D.9【解答】解:∵m﹣n=2,mn=﹣1,∴原式=1﹣2n+2m﹣4mn=1+2(m﹣n)﹣4mn=1+4+4=9.故选:D.15.(3分)计算:(2xy2)4•(﹣6x2y)÷(﹣12x3y2)的结果为()A.16x3y7B.4x3y7C.8x3y7D.8x2y7【解答】解:(2xy2)4•(﹣6x2y)÷(﹣12x3y2)=(16x4y8)•(﹣6x2y)÷(﹣12x3y2)=﹣96x6y9÷(﹣12x3y2)=8x3y7.故选:C.二、填空题:每题4分16.(4分)已知a2+b2=7,ab=1,则(a+b)2=9.【解答】解:∵a2+b2=7,ab=1,∴原式=a2+b2+2ab=7+2=9,故答案为:917.(4分)众所周知,手机的电话号码是由11位数字组成的,某人的手机号码位于中间的数字为5的概率是.【解答】解:∵某人的手机号码位于中间的数字共有10种等可能的结果,数字为5的只有1种情况,∴某人的手机号码位于中间的数字为5的概率是:.故答案为:.18.(4分)如图,已知△ABC中,∠B=90°,角平分线AD、CF相交于E,则∠AEC 的度数是135°.【解答】解:∵∠B=90°,∴∠BAC+∠ACB=180°﹣90°=90°,∵角平分线AD、CF相交于E,∴∠EAC+∠ECA=(∠BAC+∠ACB)=×90°=45°,在△ACE中,∠AEC=180°﹣(∠EAC+∠ECA)=180°﹣45°=135°.故答案为:135°.19.(4分)如图,已知AC=BD,要使△ABC≌△DCB,在图形所给出的字母中,需添加一个条件是∠ACB=∠DBC(从符合的条件中任选一个即可)【解答】解:添加得条件为∠ACB=∠DBC,证明:在△ABC和△DCB中,,∴△ABC≌△DCB(SAS),故答案为:∠ACB=∠DBC20.(4分)科学发现:植物的花瓣、萼片、果实的数目以及其他方面的特征,都非常吻合于一个奇特的数列﹣﹣著名的裴波那契数列:1,1,2,3,5,8,13,21,34,55,…仔细观察以上数列,则它的第11个数应该是89.【解答】解:第11个数是34+55=89.21.(4分)如图,△ABC中,AB=AC,∠A=38°,MN垂直平分AB,则∠BNC=76°.【解答】解:∵MN垂直平分AB,∴AN=BN,∴∠A=∠ABN=38°,∵∠BNC是△ABN的外角,∴∠BNC=∠A+∠ABN=76°,故答案为:76°.三、解答题22.(10分)(1)计算:2﹣2+()0+(﹣0.2)2014×52015(2)先化简,再求值:[(x+2y)2﹣(3x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣,y=1.【解答】解:(1)原式=+1+(0.2×5)2014×5=+1+5=6;(2)[(x+2y)2﹣(3x+y)(3x﹣y)﹣5y2]÷2x=[x2+4xy+4y2﹣9x2+y2﹣5y2]÷2x=(﹣8x2+4xy)÷2x=﹣4x+2y,当x=﹣,y=1时,原式=﹣4×(﹣)+2×1=4.23.(6分)在3×3的正方形网格中,有一个以格点为顶点的三角形(阴影部分)如图所示,请你在图①,图②,图③中,分别画出一个与该三角形成轴对称且以格点为顶点的三角形,并将所画三角形涂上阴影.(注:所画的三个图不能重复.)【解答】解:如图所示:.24.(6分)一只口袋里放着4个红球、8个黑球和若干个白球,这三种球除颜色外没有任何区别,并搅匀.(1)取出红球的概率为,白球有多少个?(2)取出黑球的概率是多少?(3)再在原来的袋中放进多少个红球,能使取出红球的概率达到?【解答】解:(1)设袋中有白球x个.由题意得:4+8+x=4×5,解得:x=8,答:白球有8个;(2)取出黑球的概率为:,答:取出黑球的概率是,(3)设再在原来的袋中放入y个红球.由题意得:3(4+y)=20+y,或2(4+y)=8+8,解得:y=4,答:再在原来的袋中放进4个红球,能使取出红球的概率达到.25.(7分)如图,AD∥BC,∠BAC=70°,DE⊥AC于点E,∠D=20°.(1)求∠B的度数,并判断△ABC的形状;(2)若延长线段DE恰好过点B,试说明DB是∠ABC的平分线.【解答】解:(1)∵DE⊥AC于点E,∠D=20°,∴∠CAD=70°,∵AD∥BC,∴∠C=∠CAD=70°,∵∠BAC=70°,∴∠B=40°,AB=AC,∴△ABC是等腰三角形;(2)∵延长线段DE恰好过点B,DE⊥AC,∴BD⊥AC,∵△ABC是等腰三角形,∴DB是∠ABC的平分线.26.(6分)中国联通在某地的资费标准为包月186元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费.下表是超出部分国内拨打的收费标准时间/分12345…0.360.72 1.08 1.44 1.8…电话费/元(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果用x表示超出时间,y表示超出部分的电话费,那么y与x的表达式是什么?(3)如果打电话超出25分钟,需付多少电话费?(4)某次打电话的费用超出部分是54元,那么小明的爸爸打电话超出几分钟?【解答】解:(1)国内拨打时间与电话费之间的关系,打电话时间是自变量、电话费是因变量;(2)由题意可得:y=0.36x;(3)当x=25时,y=0.36×25=9(元),即如果打电话超出25分钟,需付186+9=195(元)的电话费;(4)当y=54时,x==150(分钟).答:小明的爸爸打电话超出150分钟.27.(8分)如图1,将一块等腰直角三角板ABC的直角顶点C置于直线l上,图2是由图1抽象出的几何图形,过A、B两点分别作直线l的垂线,垂足分别为D、E.(1)△ACD与△CBE全等吗?说明你的理由.(2)猜想线段AD、BE、DE之间的关系.(直接写出答案)【解答】证明:(1)∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠ACD=∠CBE=90°﹣∠ECB.在△ACD与△CBE中,,∴△ACD≌△CBE(AAS);(2)AD=BE﹣DE,理由如下:∵△ACD≌△CBE,∴CD=BE,AD=CE,又∵CE=CD﹣DE,∴AD=BE﹣DE.28.(8分)生活中的数学:(1)如图1所示,一扇窗户打开后,用窗钩AB要将其固定,这里所运用的几何原理是:三角形的稳定性.(2)小河的旁边有一个甲村庄(如图2所示),现计划在河岸AB上建一个泵站,向甲村供水,使得所铺设的供水管道最短,请在上图中画出铺设的管道,这里所运用的几何原理是:垂线段最短.(3)如图3所示,在新修的小区中,有一条“Z”字形绿色长廊ABCD,其中AB∥CD,在AB,BC,CD三段绿色长廊上各修一小凉亭E,M,F,且BE=CF,点M 是BC的中点,在凉亭M与F之间有一池塘,不能直接到达,要想知道M与F 之间的距离,只需要测出线段ME的长度(用两个字母表示线段).这样做合适吗?请说出理由.【解答】解:(1)一扇窗户打开后,用窗钩AB要将其固定,这里所运用的几何原理是三角形的稳定性;(2)过甲向AB做垂线,运用的原理是:垂线段最短;(3)∵AB∥CD,∴∠B=∠C,∵点M是BC的中点,∴MB=MC,在△MCF和△MBE中,∴△MEB≌△MFC(SAS),∴ME=MF,∴想知道M与F之间的距离,只需要测出线段ME的长度.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DA1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:a+bx-aa 45°DBa +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.ABFEDCF。
山东省枣庄市山亭区2015~2016学年度七年级上学期期末数学试卷一、选择题(本题共12个小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,填涂在答题卡上,每小题3分)1.2016的相反数是()A.B.﹣2016 C.﹣D.20162.下列说法中,(1)﹣a一定是负数;(2)|﹣a|一定是正数;(3)倒数等于它本身的数是±1;(4)绝对值等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个3.下列方程为一元一次方程的是()A.y+3=0 B.x+2y=3 C.x2=2x D.+y=24.下列各图中,可以是一个正方体的平面展开图的是()A.B.C.D.5.2013年我国各级政府投入医疗卫生领域的资金达8500亿元人民币,用科学记数法表示“850000000000”为()A.85×1010B.8.5×1010C.8.5×1011D.0.85×10126.把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.70°B.90°C.105°D.120°7.能反映事物发展变化的规律和趋势的统计图是()A.条形统计图B.扇形统计图C.折线统计图D.环形统计图8.下面合并同类项正确的是()A.3x+2x2=5x3B.2a2b﹣a2b=1 C.﹣ab﹣ab=0 D.﹣y2x+xy2=09.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔芯的使用寿命B.了解全国中学生的节水意识C.了解你们班学生早餐是否有喝牛奶的习惯D.了解全省2015~2016学年度七年级学生的视力情况10.数a,b在数轴上的位置如图所示,则a+b是()A.正数 B.零C.负数 D.都有可能11.在解方程时,去分母后正确的是()A.5x=15﹣3(x﹣1) B.x=1﹣(3x﹣1)C.5x=1﹣3(x﹣1)D.5x=3﹣3(x﹣1)12.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…根据上述算式中的规律,你认为32016的末位数字是()A.3 B.9 C.7 D.1二、填空题(每题4分,共24分)13.若几何体从正面看是圆,从左面和上面看都是长方形,则该几何体是.14.若x=2是方程8﹣2x=ax的解,则a=.15.如图,已知∠AOC=75°,∠BOC=50°,OD平分∠BOC,则∠AOD=.16.若单项式2xy m﹣1与﹣x2n﹣3y3和仍是单项式,则m﹣n的值是.17.小彬和小强每天早晨坚持跑步,小彬每秒跑4m,小强每秒跑6m.如果他们站在百米跑道的两端同时相向起跑,那么秒后两人相遇.18.过两点最多可以画1(1=)条直线;过三点最多可以画3(3=)条直线;过四点最多可以画条直线;…;过同一平面上的n个点最多可以画条直线.三、解答题19.计算题:(1)﹣16﹣(﹣34)﹣12×|﹣|;(2)﹣32﹣|﹣6|﹣3×(﹣)+(﹣2)2÷.20.(1)先化简,再求值:2(a2b﹣ab2)﹣3(a2b﹣1)+2ab2+1,其中a=1,b=2(2)=.21.如图,是由一些棱长都为1cm的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.22.“五•一”长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?23.某校为了了解2016届九年级学生体育测试成绩情况,以2016届九年级(1)班学生的体育测试成绩为样本,按B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分~74分;D 级:60分以下)(1)求出D级学生的人数占全班总人数的百分比;(2)求出扇形统计图(图2)中C级所在的扇形圆心角的度数;(3)若该校2016届九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?24.将一张纸如图所示折叠后压平,点F在线段BC上,EF、GF为两条折痕,若∠1=57°,∠2=20°,求∠3的度数.25.如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.26.如图,在长方形ABCD中,AB=12厘米,BC=6厘米,点P沿AB边从点A开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动,如果P、Q同时出发,用t(秒)表示移动的时间,那么:(1)如图1,当t为何值时,线段AQ的长度等于线段AP的长度?(2)如图2,当t为何值时,AQ与AP的长度之和是长方形ABCD周长的?(3)如图3,点P到达B后继续运动,到达C点后停止运动;Q到达A后也继续运动,当P点停止运动的同时点Q也停止运动.当t为何值时,线段AQ的长度等于线段CP长度的一半?山东省枣庄市山亭区2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题(本题共12个小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,填涂在答题卡上,每小题3分)1.2016的相反数是()A.B.﹣2016 C.﹣D.2016【考点】相反数.【专题】推理填空题;实数.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:2016的相反数是﹣2016.故选:B.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.下列说法中,(1)﹣a一定是负数;(2)|﹣a|一定是正数;(3)倒数等于它本身的数是±1;(4)绝对值等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个【考点】有理数;相反数;绝对值;倒数.【分析】本题须根据负数、正数、倒数、绝对值的有关定义以及表示方法逐个分析每个说法,得出正确的个数.【解答】解:∵如果α为负数时,则﹣α为正数,∴﹣α一定是负数是错的.∵当a=0时,|﹣a|=0,∴|﹣a|一定是正数是错的.∵倒数等于它本身的数只有±1,∴(3)题对.∵绝对值都等于它本身的数是非负数,不只是1,∴绝对值等于它本身的数是1的说法是错误的.所以正确的说法共有1个.故选:A.【点评】本题考查了负数、正数、倒数、绝对值的有关定义以及表示方法.3.下列方程为一元一次方程的是()A.y+3=0 B.x+2y=3 C.x2=2x D.+y=2【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、正确;B、含有2个未知数,不是一元一次方程,选项错误;C、最高次数是2次,不是一元一次方程,选项错误;D、不是整式方程,不是一元一次方程,选项错误.故选A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.4.下列各图中,可以是一个正方体的平面展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.【解答】解:A、属于“田”字型,不是正方体的展开图,故选项错误;B、属于“7”字型,不是正方体的展开图,故选项错误;C、属于“1+4+1”字型,是正方体的展开图,故选项正确;D、属于“凹”字型,不是正方体的展开图,故选项错误.故选:C.【点评】考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.5.2013年我国各级政府投入医疗卫生领域的资金达8500亿元人民币,用科学记数法表示“850000000000”为()A.85×1010B.8.5×1010C.8.5×1011D.0.85×1012【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将850000000000用科学记数法表示为:8.5×1011.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.70°B.90°C.105°D.120°【考点】角的计算.【分析】∠ABC等于30度角与直角的和,据此即可计算得到.【解答】解:∠ABC=30°+90°=120°.故选D.【点评】本题考查了角度的计算,理解三角板的角的度数是关键.7.能反映事物发展变化的规律和趋势的统计图是()A.条形统计图B.扇形统计图C.折线统计图D.环形统计图【考点】统计图的选择.【分析】根据统计图的特点,能反映事物发展变化的规律和趋势,选择折线统计图.【解答】解:能反映事物发展变化的规律和趋势的统计图是折线图.故选C.【点评】扇形统计图表示的是部分在总体中所占的百分比;折线统计图表示的是事物的变化情况;而条形统计图和直方图能清楚地表示出每个项目的具体数目.8.下面合并同类项正确的是()A.3x+2x2=5x3B.2a2b﹣a2b=1 C.﹣ab﹣ab=0 D.﹣y2x+xy2=0【考点】合并同类项.【分析】本题考查同类项的定义,所含字母相同,相同字母的指数也相同的项叫做同类项,几个常数项也是同类项,合并时系数相加减,字母与字母的指数不变.【解答】解:3x+2x2不是同类项不能合并,2a2b﹣a2b=a2b,﹣ab﹣ab=﹣2ab,﹣y2x+x y2=0.故选D.【点评】本题考查同类项的定义,合并同类项时把系数相加减,字母与字母的指数不变.注意当同类项的系数互为相反数时,合并的结果为0.9.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔芯的使用寿命B.了解全国中学生的节水意识C.了解你们班学生早餐是否有喝牛奶的习惯D.了解全省2015~2016学年度七年级学生的视力情况【考点】全面调查与抽样调查.【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国中学生的节水意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、了解你们班学生早餐是否有喝牛奶的习惯,人数较少,便于测量,应当采用全面调查,故本选项正确.D、了解全省2015~2016学年度七年级学生的视力情况,人数多,耗时长,应当采用抽样调查的方式,故本选项错误.故选:C.【点评】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.10.数a,b在数轴上的位置如图所示,则a+b是()A.正数 B.零C.负数 D.都有可能【考点】数轴;有理数的加法.【专题】数形结合.【分析】首先根据数轴发现a,b异号,再进一步比较其绝对值的大小,然后根据有理数的加法运算法则确定结果的符号.异号两数相加,取绝对值较大的加数的符号.【解答】解:由图,可知:a<0,b>0,|a|>|b|.则a+b<0.故选:C.【点评】本题结合数轴,主要考查了有理数的加法法则,体现了数形结合的思想.11.在解方程时,去分母后正确的是()A.5x=15﹣3(x﹣1) B.x=1﹣(3x﹣1)C.5x=1﹣3(x﹣1)D.5x=3﹣3(x﹣1)【考点】解一元一次方程.【分析】方程两边都乘以分母的最小公倍数即可得解.【解答】解:方程两边都乘以15得,5x=15﹣3(x﹣1).故选A.【点评】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.12.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…根据上述算式中的规律,你认为32016的末位数字是()A.3 B.9 C.7 D.1【考点】尾数特征.【分析】从运算的结果可以看出尾数以3、9、7、1四个数字一循环,用2016除以4,余数是几就和第几个数字相同,由此解决问题即可.【解答】解:已知31=3,末位数字为3,32=9,末位数字为9,33=27,末位数字为7,34=81,末位数字为1,35=243,末位数字为3,36=729,末位数字为9,37=2187,末位数字为7,38=6561,末位数字为1,…由此得到:3的1,2,3,4,5,6,7,8,…次幂的末位数字以3、9、7、1四个数字为一循环,又∵2016÷4=504,%32016的末位数字与34的末位数字相同是1.故选D.【点评】此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.二、填空题(每题4分,共24分)13.若几何体从正面看是圆,从左面和上面看都是长方形,则该几何体是圆柱.【考点】由三视图判断几何体.【分析】几何体从正面看是圆,从左面和上面看都是长方形,符合这个条件的几何体只有圆柱.【解答】解:根据圆柱的性质得出:此几何体是圆柱.故答案为:圆柱.【点评】此题主要考查了由三视图判断几何体,熟练掌握常见图形的三视图是解题关键.14.若x=2是方程8﹣2x=ax的解,则a=2.【考点】一元一次方程的解.【分析】把x=2,代入方程得到一个关于a的方程,即可求解.【解答】解:把x=2代入方程,得:8﹣4=2a,解得:a=2.故答案是:2.【点评】本题考查了方程的解的定义,理解定义是关键.15.如图,已知∠AOC=75°,∠BOC=50°,OD平分∠BOC,则∠AOD=100°.【考点】角平分线的定义.【专题】计算题.【分析】先根据角平分线的定义得到∠COD=∠BOC=25°,然后根据∠AOD=∠AOC+∠COD进行计算.【解答】解:∵OD平分∠BOC,∴∠COD=∠BOC=×50°=25°,∴∠AOD=∠AOC+∠COD=75°+25°=100°.故答案为100°.【点评】本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.16.若单项式2xy m﹣1与﹣x2n﹣3y3和仍是单项式,则m﹣n的值是2.【考点】合并同类项.【分析】根据单项式可合并,可得同类项,根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,根据有理数的减法,可得答案.【解答】解:由单项式2xy m﹣1与﹣x2n﹣3y3和仍是单项式,得.解得.m﹣n=4﹣2=2,故答案为:2.【点评】本题考查了合并同类项,利用同类项得出m、n的值是解题关键.17.小彬和小强每天早晨坚持跑步,小彬每秒跑4m,小强每秒跑6m.如果他们站在百米跑道的两端同时相向起跑,那么10秒后两人相遇.【考点】一元一次方程的应用.【分析】利用行程中的相遇问题解答,两人所行路程和等于总路程.【解答】解:设x秒后两人相遇,则小彬跑了4x米,小强跑了6x米,则方程为6x+4x=100,解得x=10.故答案为:10.【点评】此题考查行程问题中相遇问题与追及问题,最基本的数量关系:速度×时间=路程.18.过两点最多可以画1(1=)条直线;过三点最多可以画3(3=)条直线;过四点最多可以画6=条直线;…;过同一平面上的n个点最多可以画条直线.【考点】规律型:图形的变化类.【专题】计算题;规律型.【分析】仿照过两点与过三点画直线的条数,计算出过四点画直线的条数,依此类推得到过同一平面上的n个点最多可以画直线的条数.【解答】解:过四点最多可以画6=条直线;依此类推,过同一平面上的n个点最多可以画条直线,故答案为:6=;【点评】此题考查了规律型:图形的变化类,弄清题中的规律是解本题的关键.三、解答题19.计算题:(1)﹣16﹣(﹣34)﹣12×|﹣|;(2)﹣32﹣|﹣6|﹣3×(﹣)+(﹣2)2÷.【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式先计算乘法运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣16+34﹣9=9;(2)原式=﹣9﹣6+1+8=﹣7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(1)先化简,再求值:2(a2b﹣ab2)﹣3(a2b﹣1)+2ab2+1,其中a=1,b=2(2)=.【考点】整式的加减—化简求值;解一元一次方程.【专题】计算题;整式.【分析】(1)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)原式=2a2b﹣2ab2﹣3a2b+3+2ab2+1=﹣a2b+4,当a=1,b=2时,原式=﹣2+4=2;(2)去分母得:3(y+1)﹣12=2(2y+1),去括号得:3y+3﹣12=4y+2,解得:y=﹣11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,是由一些棱长都为1cm的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为34;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.【考点】作图-三视图.【分析】(1)有顺序的计算上下面,左右面,前后面的表面积之和即可;(2)从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右4列正方形的个数依次为1,2,1,2,依此画出图形即可.【解答】解:(1)6×2+6×2+5+5=34cm2;(2)如图所示(每个图形2分)【点评】用到的知识点为:计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错;三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.22.“五•一”长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?【考点】一元一次方程的应用.【专题】行程问题.【分析】等量关系为:哥哥所走的路程=弟弟和妈妈所走的路程.【解答】解:设哥哥追上弟弟需要x小时.由题意得:6x=2+2x,解这个方程得:.∴弟弟行走了=1小时30分<1小时45分,未到外婆家,答:哥哥能够追上.【点评】难点是得到弟弟和妈妈所用的时间,关键是找到相应的等量关系.23.某校为了了解2016届九年级学生体育测试成绩情况,以2016届九年级(1)班学生的体育测试成绩为样本,按B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分~74分;D 级:60分以下)(1)求出D级学生的人数占全班总人数的百分比;(2)求出扇形统计图(图2)中C级所在的扇形圆心角的度数;(3)若该校2016届九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据A级的人数和所占的百分比求出总人数,再根据D级的人数即可求出D级学生的人数占全班总人数的百分比;(2)用360°乘以C级学生所占的百分比即可;(3)用总人数乘以A级和B级的学生所占的百分比即可.【解答】解:(1)全班总人数是:13÷26%=50(人),则D级学生的人数占全班总人数的百分比是:×100%=4%;(2)扇形统计图中C级所在的扇形圆心角的度数是:360°×(1﹣50%﹣26%﹣4%)=72°;(3)这次考试中A级和B级的学生共有学生是:500×(50%+26%)=380(人),答:这次考试中A级和B级的学生共有380人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.将一张纸如图所示折叠后压平,点F在线段BC上,EF、GF为两条折痕,若∠1=57°,∠2=20°,求∠3的度数.【考点】角的计算;翻折变换(折叠问题).【分析】根据折叠的特点可找到相等的角,在展开图中,利用∠EFB′+∠1+∠2+∠3+∠GFC′等于平角得出结论.【解答】解:如图由折叠可知,∠EFB′=∠1=57°,∠2=20°,∠3=∠GFC′,∵∠EFB′+∠1+∠2+∠3+∠GFC′=180°,∴∠3==23°.【点评】本题考查了角的计算以及翻折变换,解题的关键是利用翻折的特点找到等量关系,在利用拆分平角,得出结论.25.如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.【考点】两点间的距离.【专题】方程思想.【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE和CF,再根据EF=AC﹣AE﹣CF=2.5x,且E、F之间距离是10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【解答】解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5xcm,CF=CD=2xcm.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点评】本题主要考查了两点间的距离和中点的定义,注意运用数形结合思想和方程思想.26.如图,在长方形ABCD中,AB=12厘米,BC=6厘米,点P沿AB边从点A开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动,如果P、Q同时出发,用t(秒)表示移动的时间,那么:(1)如图1,当t为何值时,线段AQ的长度等于线段AP的长度?(2)如图2,当t为何值时,AQ与AP的长度之和是长方形ABCD周长的?(3)如图3,点P到达B后继续运动,到达C点后停止运动;Q到达A后也继续运动,当P点停止运动的同时点Q也停止运动.当t为何值时,线段AQ的长度等于线段CP长度的一半?【考点】一元一次方程的应用;两点间的距离.【专题】几何动点问题.【分析】(1)根据题意得出QD=tcm,AQ=(6﹣t)cm,AP=2tcm,进而利用AQ=AP求出即可;(2)根据题意得出QD=tcm,AQ=(6﹣t)cm,AP=2tcm,进而利用AQ与AP的长度之和是长方形ABCD周长的求出即可;(3)根据题意得出AQ=(t﹣6)cm,CP=(18﹣2t)cm,进而利用线段AQ的长度等于线段CP长度的一半求出即可.【解答】解:(1)由题意可得:QD=tcm,AQ=(6﹣t)cm,AP=2tcm,则6﹣t=2t,解得:t=2;(2)由题意可得:QD=tcm,AQ=(6﹣t)cm,AP=2tcm,则6﹣t+2t=×2×(6+12),解得:t=3;(3)由题意可得:AQ=(t﹣6)cm,CP=(18﹣2t)cm,则t﹣6=(18﹣2t),解得:t=7.5.【点评】此题主要考查了一元一次方程的应用以及两点间的距离,根据题意用t表示出线段长是解题关键.。
山东省枣庄市七年级下学期期末数学试卷(五四学制)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共23分)1. (2分) (2017七下·射阳期末) 已知是方程的一个解,则的值为()A . 5B . 3C . 4D . 92. (2分)不等式﹣2x﹣1≥1的解集是()A . x≥﹣1B . x≤﹣1C . x≤0D . x≤13. (2分) (2016八上·余杭期中) 下列命题中:(1)形状相同的两个三角形全等;(2)斜边和一条直角边对应相等的两个直角三角形一定全等;(3)等腰三角形两腰上的高线相等;(4)三角形的三条高线交于三角形内一点.其中真命题的个数有().A . 0个B . 1个C . 2个D . 3个4. (2分)下面给出了5个式子:①3>0,②4x+3y>O,③x=3,④x﹣1,⑤x+2≤3,其中不等式有()A . 2个B . 3个C . 4个D . 5个5. (2分)下列事件中,必然发生的事件是()A . 泰州地区明天会下雪B . 2012年12月21日是世界末日C . 2013年一月份有31天D . 明年有369天6. (2分)已知,如图,AD与BC相交于点O,AB∥CD,如果∠B=20°,那么∠C为()A . 40°B . 30°C . 20°D . 10°7. (2分)(2018·阜新) 如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是()A .B .C .D .8. (2分) (2020八上·岑溪期末) 如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC 于E,与CD相交于点F,DH⊥BC于H,交BE于G,下列结论中正确的是()①△BCD为等腰三角形;②BF=AC;③CE= BF;④BH=CE,A . ①②B . ①③C . ①②③D . ①②③④9. (2分)下列命题正确的是()A . 对角线相等且互相平分的四边形是菱形B . 对角线相等且互相垂直的四边形是菱形C . 对角线相等且互相平分的四边形是矩形D . 对角线相等的四边形是等腰梯形10. (2分)在一次知识竞赛中,共有16道选择题,评分办法是:答对一题目得6分,答错一题扣2分,不答则不得分也不扣分,得分超过60为合格,明明有两道题未答,问他要达到合格,至少应答对几道题.()A . 9B . 10C . 11D . 1211. (2分)已知a,b满足方程组,则a+b的值为()A . -1B . 1C . 3D . 512. (1分) (2020八上·昆明期末) 如图,在直角△ABC 中,已知∠ACB=90°,AB 边的垂直平分线交 AB 于点 E,交 BC 于点 D,且∠ADC=30°,BD=12cm,则 AC 的长是________cm.二、填空题 (共6题;共8分)13. (1分) (2018七下·深圳期中) 如图,已知,那么 ________.14. (2分) (2020九上·玉环期末) 某水果公司以2.2元/千克的成本价购进苹果.公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分数据如下:苹果损坏的频率0.1060.0970.1020.0980.0990.101估计这批苹果损坏的概率为________精确到0.1),据此,若公司希望这批苹果能获得利润23000元,则销售时(去掉损坏的苹果)售价应至少定为________元/千克.15. (1分)(2017·娄底模拟) 若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是________(写出一个即可).16. (1分) (2016九上·温州期末) 如图,P是AB为直径的半圆周上一点,点C在∠PAB的平分线上,且CB⊥AB 于B,PB交AC于E,若AB=4,BE=2,则PE的长为________.17. (1分) (2020八上·邳州期末) 如图,在坐标系中,一次函数与一次函数的图像交于点,则关于的不等式的解集是________.18. (2分)八块相同的长方形地砖拼成一个矩形,则每块长方形地砖的长和宽分别是________cm 、________ cm三、解答题 (共7题;共71分)19. (10分)(2018·三明模拟) 某乡村在开展“美丽乡村”建设时,决定购买A,B两种树苗对村里的主干道进行绿化改造,已知购买A种树苗3棵,B种树苗4棵,需要380元;购买A种树苗5棵,B种树苗2棵,需要400元.(1)求购买A,B两种树苗每棵各需多少元?(2)现需购买这两种树苗共100棵,要求购买A种树苗不少于60棵,且用于购买这两种树苗的资金不超过5620元.则有哪几种购买方案?20. (10分)如图,已知△ABC,按要求作图.(1)①过点A作BC的垂线段AD;②过C作AB、AC的垂线分别交AB于点E、F;(2) AB=15,BC=7,AC=20,AD=12,求点C到线段AB的距离.21. (6分) (2018九上·台州期末) 动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为________;(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.22. (5分)如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.23. (15分)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组完成商店所需费用少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)24. (10分)如图,PA,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=60°.(1)求∠BAC的度数;(2)当OA=2时,求AB的长.25. (15分)某企业生产一种节能产品,投放市场供不应求.若该企业每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于120万元.已知这种产品的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=190—2z,月产量x(套)与生产总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2与x之间的函数关系式;(2)求月产量x的取值范围;(3)当月产量x(套)为多少时,这种产品的利润W(万元)最大?最大利润是多少?参考答案一、选择题 (共12题;共23分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共8分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共71分)19-1、19-2、20-1、20-2、21-1、答案:略21-2、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、第11 页共11 页。
2015--2016学年度第一学期期末检测七 年 级 数 学参考答案2016.1一、1-5 DAACC 6-10 DCDCC 11-12 AD二、13. 圆柱 14. 2 15. 100° 16. 2. 17. 10 18. 6, n (1)2n ⨯- .三、解答题19.解:(1)原式=-16+34-1234⨯ ……………2分=18-9=9. ……………4分(2)原式=-9-6+1+8 ……………6分=-6. ……………8分20. 解:(1)22222(a b ab )3(a b 1)2ab 1---++=22222a b 2ab 3a b 32ab 1--+++……………………2分=2a b 4-+……………………3分当a=1,b=2时,原式=2124-⨯+=2……………………5分(2)3(y 1)122(2y 1)+-=+……………………6分3y 3124y 2+-=+……………………8分y 11-=y 11=-……………………10分21.(1)342m ……………………2分(2)……………………6分22. 解:设哥哥追上弟弟需要x 小时,由题意得:…………1分x x 226+=…………5分 解这个方程得:21=x …………6分 所以,弟弟行走了(211+小时)小于1小时45分,未到外婆家,哥哥能够追上。
…7分23. 解:(1)13÷26%=50人……………………1分2÷50=4%……………………3分(2)360°×(1-50%-26%-4%)=72°……………………6分(3)500×(50%+26%)=380人……………………9分24. (1)解:如图由折叠可知,∠'EFB =∠1=057,∠2=020,∠3=∠'GFC ……………………1分∠'EFB +∠1+∠2+∠3+∠'GFC =0180.……………………3分∠3=000180114202--=023……………………5分 (2)设BD=x cm,AB=3x cm ,CD=4x cm ,AC=6x cm ……………………1分.点E 、F 分别为AB 、 CD 的中点,∴AE=12AB=1.5x cm , CF=12CD=2x cm. EF=AC-AE-CF=2.5x cm. ……………………2分EF=10cm ,∴2.5x =10,解得:x =4.cm ……………………4分AB=12cm CD=16cm ……………………5分25.解;( 1)可知:DQ=t cm ,AQ=(6)t -cm ,AP=2t cm ,依题意得6-t=2t解得:t=2………………3分(2)可知:DQ=t cm ,AQ=(6)t -cm ,AP=2t cm ,依题意得6-t+2t=1364⨯解得:t=3………………3分(3)可知:AQ=(6)t -cm ,CP=(182)t -cm ,AP=2t cm , 依题意得t-6=1(182)2t - 解得:t=7.5………………4分。
1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001…D. 3/42. 下列各式中,正确的是()A. 2/3 + 3/4 = 17/12B. 2/3 - 3/4 = 1/12C. 2/3 × 3/4 = 1/2D.2/3 ÷ 3/4 = 8/93. 已知方程 2x - 3 = 7,则 x 的值是()A. 5B. 4C. 3D. 24. 下列函数中,y 与 x 成正比例关系的是()A. y = 2x + 1B. y = 3x^2 - 2C. y = 4xD. y = 5/x5. 在直角坐标系中,点 A(-2, 3) 关于 y 轴的对称点是()A. (2, 3)B. (-2, -3)C. (2, -3)D. (-2, 3)6. 下列各数中,绝对值最大的是()A. -5B. 0C. 3D. -87. 一个等腰三角形的底边长为 6cm,腰长为 8cm,则该三角形的周长是()A. 18cmB. 22cmC. 24cmD. 26cm8. 已知 a + b = 10,a - b = 2,则 a 的值是()A. 6B. 8C. 10D. 129. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^210. 在梯形 ABCD 中,AD 平行于 BC,AB = 5cm,CD = 8cm,AD = BC = 12cm,则梯形 ABCD 的面积是()A. 30cm²B. 40cm²C. 50cm²D. 60cm²11. 计算:(-3)² × (-2) = ______12. 简化表达式:2(3x - 4) - 5(2x + 1) = ______13. 解方程:3x - 5 = 2x + 714. 求下列函数的值:y = 2x + 3,当 x = -1 时,y = ______15. 在直角坐标系中,点 P(4, -2) 关于原点的对称点是 ______16. 计算下列三角形的面积:底边长为 6cm,高为 4cm,面积为______cm²17. 已知 a = 3,b = 2,则 (a + b)(a - b) = ______18. 简化下列分式:3/(2x - 4) - 2/(x - 2) = ______19. 已知等边三角形的边长为 10cm,则该三角形的面积是______cm²20. 解下列方程:x² - 5x + 6 = 0三、解答题(每题10分,共40分)21. 已知 a, b, c 是等差数列的前三项,且 a + b + c = 21,求 a, b, c 的值。
2015-2016学年山东省枣庄市山亭区七年级(下)期末数学试卷(A卷)一、选择题(本大题共12个小题,每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,填涂在答题卡上,每小题3分)1.(3分)下列运算正确的是()A.x2•x2=2x4B.(x2)3=x5C.x4÷x2=x2D.(a﹣b)2=a2﹣b22.(3分)下列用科学记数法表示正确的是()A.0.008=8×102B.0.0056=56×102C.0.00012=1.2×105D.19000=1.9×1043.(3分)“a是实数,|a|≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件4.(3分)图中所示的几个图形是国际通用的交通标志.其中不是轴对称图形的是()A.B.C.D.5.(3分)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+15)cm2D.(8a+15)cm2 6.(3分)如图,直线EF分别与直线AB,CD相交于点G、H,已知∠1=∠2=50°,GM平分∠HGB交直线CD于点M.则∠3=()A.60°B.65°C.70°D.130°7.(3分)用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等8.(3分)如图,在△ABC中,CD是∠ACB的平分线,∠A=80°,∠ACB=60°,那么∠BDC=()A.80°B.90°C.100° D.110°9.(3分)对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为()A.0 B.1 C.2 D.310.(3分)小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.11.(3分)将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个圆形小洞后展开铺平得到的图形是()A.B.C.D.12.(3分)如图,已知线段AB=18米,MA⊥AB于点A,MA=6米,射线BD⊥AB于B,P点从B点向A运动,每秒走1米,Q点从B点向D运动,每秒走2米,P、Q同时从B出发,则出发x秒后,在线段MA上有一点C,使△CAP与△PBQ全等,则x的值为()A.4 B.6 C.4或9 D.6或9二、填空题(每小题4分,共24分)13.(4分)等腰三角形的周长为24,腰长为x,则x的取值范围是.14.(4分)小明早晨从进学校骑车到学校,先上坡后下坡,行程情况如图所示,若返回时上坡、下坡的速度和原来相同,那么小亮从学校骑车回家用的时间是分钟.15.(4分)将一直角三角形与两边平行的纸条如图所示放置,下列结论①∠1=∠2,②∠3=∠4,③∠2+∠4=90°,④∠4+∠5=180°,其中正确的有(填序号).16.(4分)如图,在△ABC中,D是BC边上的中点,∠BDE=∠CDE,请你添加一个条件,使DE=DF,你添加的条件是(不再添加辅助线和字母)17.(4分)一只自由飞行的小鸟,将随意地落在如图所示方格地面上(每个小方格都是边长相等的正方形),则小鸟落在阴影方格地面上的概率为.18.(4分)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第6个图形需要黑色棋子的个数是.三、解答题(共60分)19.(8分)求值:x(x+2y)﹣(x+1)2+2x,其中.20.(8分)计算:(1)(3x2)3•(﹣4y3)2÷(6x2y)3(2)(﹣1)2016+(﹣)﹣2﹣(3.14﹣π)0.21.(8分)化简求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.22.(8分)看图填空:已知,如图,BC∥EF,AD=BE,BC=EF.试说明△ABC≌△DEF解:∵AD=BE∴=BE+DB;即:=DE∵BC∥EF∴∠=∠()在△ABC和△DEF中,BC=EF,,,∴△ABC≌△DEF ().23.(8分)在“五•四”青年节中,全校举办了文艺汇演活动.小丽和小芳都想当节目主持人,但现在只有一个名额.小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示.游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?24.(10分)如图,已知,BD与CE相交于点O,AD=AE,∠B=∠C,请解答下列问题:(1)△ABD与△ACE全等吗?为什么?(2)BO与CO相等吗?为什么?25.(10分)一水果个体户在批发市场按每千克1.8元批发了若干千克的西瓜在城镇出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)水果个体户自带的零钱是多少?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的西瓜?(4)请问这位水果个体户一共赚了多少钱?2015-2016学年山东省枣庄市山亭区七年级(下)期末数学试卷(A卷)参考答案与试题解析一、选择题(本大题共12个小题,每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,填涂在答题卡上,每小题3分)1.(3分)下列运算正确的是()A.x2•x2=2x4B.(x2)3=x5C.x4÷x2=x2D.(a﹣b)2=a2﹣b2【解答】解:A、原式=x4,错误;B、原式=x6,错误;C、原式=x2,正确;D、原式=a2﹣2ab+b2,错误,故选:C.2.(3分)下列用科学记数法表示正确的是()A.0.008=8×102B.0.0056=56×102C.0.00012=1.2×105D.19000=1.9×104【解答】解:确定a×10n(1≤|a|<10,n为整数)中n的值是易错点,A、0.008=8×10﹣3,A错误;B、0.005 6=5.6×10﹣3,B错误;C、0.000 12=1.2×10﹣4,B错误;D、19 000=1.9×104,D正确.故选:D.3.(3分)“a是实数,|a|≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件【解答】解:因为数轴上表示数a的点与原点的距离叫做数a的绝对值,因为a是实数,所以|a|≥0.故选:A.4.(3分)图中所示的几个图形是国际通用的交通标志.其中不是轴对称图形的是()A.B.C.D.【解答】解:A、B、D都是轴对称图形,而C不是轴对称图形.故选:C.5.(3分)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+15)cm2D.(8a+15)cm2【解答】解:矩形的面积为:(a+4)2﹣(a+1)2=(a2+8a+16)﹣(a2+2a+1)=a2+8a+16﹣a2﹣2a﹣1=6a+15.故选:C.6.(3分)如图,直线EF分别与直线AB,CD相交于点G、H,已知∠1=∠2=50°,GM平分∠HGB交直线CD于点M.则∠3=()A.60°B.65°C.70°D.130°【解答】解:∵∠1=50°,∴∠BGH=180°﹣50°=130°,∵GM平分∠HGB,∴∠BGM=65°,∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行),∴∠3=∠BGM=65°(两直线平行,内错角相等).故选:B.7.(3分)用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等【解答】解:连接NC,MC,在△ONC和△OMC中,∴△ONC≌△OMC(SSS),∴∠AOC=∠BOC,故选:A.8.(3分)如图,在△ABC中,CD是∠ACB的平分线,∠A=80°,∠ACB=60°,那么∠BDC=()A.80°B.90°C.100° D.110°【解答】解:∵CD是∠ACB的平分线,∠ACB=60°,∴∠ACD=30°(平分线的定义),∵∠A=80°,∴∠BDC=110°(三角形的一个外角等于与它不相邻的两个内角的和).故选:D.9.(3分)对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为()A.0 B.1 C.2 D.3【解答】解:关于某一直线成轴对称的两个三角形全等,所以(1)为真命题;等腰三角形的对称轴是直线而等腰三角形顶角的平分线为线段,所以(2)为假命题;一条线段的两个端点关于该线段的垂直平分线对称,所以(3)为假命题;两个全等三角形不一定是轴对称图形,所以(4)为假命题.故选:B.10.(3分)小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.【解答】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=.故选:C.11.(3分)将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个圆形小洞后展开铺平得到的图形是()A.B.C.D.【解答】解:由折叠可知,得到的四个圆形小洞一定不在一条直线上,故D不正确;四个圆形小洞不靠近原正方形的四个角,所以A不正确;选项C的位置也不符合原题意的要求,故只有B是按要求得到的.故选:B.12.(3分)如图,已知线段AB=18米,MA⊥AB于点A,MA=6米,射线BD⊥AB于B,P点从B点向A运动,每秒走1米,Q点从B点向D运动,每秒走2米,P、Q同时从B出发,则出发x秒后,在线段MA上有一点C,使△CAP与△PBQ全等,则x的值为()A.4 B.6 C.4或9 D.6或9【解答】解:当△APC≌△BQP时,AP=BQ,即18﹣x=2x,解得:x=6;当△APC≌△BPQ时,AP=BP=AB=9米,此时所用时间为9秒,AC=BQ=18米,不合题意,舍去;综上,出发6秒后,在线段MA上有一点C,使△CAP与△PBQ全等.故选:B.二、填空题(每小题4分,共24分)13.(4分)等腰三角形的周长为24,腰长为x,则x的取值范围是6<x<12.【解答】解:底边是24﹣2x,根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.得:0<24﹣2x<2x.解得6<x<12.故答案为:6<x<12.14.(4分)小明早晨从进学校骑车到学校,先上坡后下坡,行程情况如图所示,若返回时上坡、下坡的速度和原来相同,那么小亮从学校骑车回家用的时间是37.2分钟.【解答】解:由图可得,去校时,上坡路的距离为36百米,所用时间为18分,∴上坡速度=36÷18=2(百米/分),下坡路的距离是96﹣36=60百米,所用时间为30﹣18=12(分),∴下坡速度=60÷12=5(百米/分);∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小亮从学校骑车回家用的时间是:60÷2+36÷5=30+7.2=37.2(分钟).故答案为:37.215.(4分)将一直角三角形与两边平行的纸条如图所示放置,下列结论①∠1=∠2,②∠3=∠4,③∠2+∠4=90°,④∠4+∠5=180°,其中正确的有①②③④(填序号).【解答】解:∵AB∥CD,∴∠1=∠2(两直线平行,同位角相等),①正确;同理,∠3=∠4(两直线平行,内错角相等),∠4+∠5=180°(两直线平行,同旁内角互补),②④正确;∵∠EFG=90°,∴∠2+∠4=90°(平角的性质),③正确.∴其中正确的有①②③④.16.(4分)如图,在△ABC中,D是BC边上的中点,∠BDE=∠CDE,请你添加一个条件,使DE=DF,你添加的条件是∠B=∠C或∠BED=∠CFD(不再添加辅助线和字母)【解答】解:要使△BDE≌△CDF,已知∠BDE=∠CDF,BD=DC,也可添加∠B=∠C,运用ASA来判定其全等;或添加∠BED=∠CFD,运用AAS来判定其全等.故答案为∠B=∠C或∠BED=∠CFD.17.(4分)一只自由飞行的小鸟,将随意地落在如图所示方格地面上(每个小方格都是边长相等的正方形),则小鸟落在阴影方格地面上的概率为.【解答】解:因为所有方格面积为:S1=25;阴影的面积为:S2=9.所以小鸟停在小圆内(阴影部分)的概率是.18.(4分)如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第6个图形需要黑色棋子的个数是48.【解答】解:∵第1个图形需要黑色棋子的个数是2×3﹣3=3,第2个图形需要黑色棋子的个数是3×4﹣4=8,第3个图形需要黑色棋子的个数是4×5﹣5=15,…∴第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2+2n;则第6个图形需要黑色棋子的个数是36+12=48,故答案为:48.三、解答题(共60分)19.(8分)求值:x(x+2y)﹣(x+1)2+2x,其中.【解答】解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣(x2+2x+1)+2x=x2+2xy﹣x2﹣2x﹣1+2x=2xy﹣1.当时,原式=2xy﹣1,=2××(﹣25)﹣1,=﹣3.20.(8分)计算:(1)(3x2)3•(﹣4y3)2÷(6x2y)3(2)(﹣1)2016+(﹣)﹣2﹣(3.14﹣π)0.【解答】解:(1)(3x2)3•(﹣4y3)2÷(6x2y)3=27x6×16y6÷216x6y3=2y3;(2)(﹣1)2016+(﹣)﹣2﹣(3.14﹣π)0=1+4﹣1=4.21.(8分)化简求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.【解答】解:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x=(x2+4xy+4y2﹣3x2﹣2xy+y2﹣5y2)÷2x=(﹣2x2+2xy)÷2x=y﹣x,当x=﹣2,y=时,原式=﹣(﹣2)=.22.(8分)看图填空:已知,如图,BC∥EF,AD=BE,BC=EF.试说明△ABC≌△DEF解:∵AD=BE∴AD+DB=BE+DB;即:AB=DE∵BC∥EF∴∠ABC=∠E(两直线平行,同位角相等)在△ABC和△DEF中,BC=EF,∠ABC=∠E,AB=DE,∴△ABC≌△DEF (SAS).【解答】解:∵AD=BE,∴AD+DB=BE+DB,即AB=DE,∵BC∥EF,∴∠ABC=∠E,(两直线平行,同位角相等)在△ABC和△DEF中,BC=EF,∠ABC=∠E,AB=DE,∴△ABC≌△DEF (SAS).23.(8分)在“五•四”青年节中,全校举办了文艺汇演活动.小丽和小芳都想当节目主持人,但现在只有一个名额.小丽想出了一个办法,她将一个转盘(均质的)均分成6份,如图所示.游戏规定:随意转动转盘,若指针指到3,则小丽去;若指针指到2,则小芳去.若你是小芳,会同意这个办法吗?为什么?【解答】解:不会同意.(2分)因为转盘中有两个3,一个2,这说明小丽去的可能性是,而小丽去的可能性是,所以游戏不公平.(2分)24.(10分)如图,已知,BD与CE相交于点O,AD=AE,∠B=∠C,请解答下列问题:(1)△ABD与△ACE全等吗?为什么?(2)BO与CO相等吗?为什么?【解答】解:△ABD与△ACE全等,理由:(1)在△ABD与△ACE中∵∠A=∠A,∠B=∠C,AD=AE,∴△ABD≌△ACE(AAS).(2)BO与CO相等,理由:∵△ABD≌△ACE,∴AB=AC,∵AE=AD,∴AB﹣AE=AC﹣AD,即BE=CD,在△BOE与△COD中,∵∠EOB=∠DOC,∠B=∠C,BE=CD,∴△BOE≌△COD(AAS).∴BO=CO.25.(10分)一水果个体户在批发市场按每千克1.8元批发了若干千克的西瓜在城镇出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)水果个体户自带的零钱是多少?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的西瓜?(4)请问这位水果个体户一共赚了多少钱?【解答】解:(1)由图可得水果个体户自带的零钱为50元,答:农民自带的零钱为50元;(2)(330﹣50)÷80=280÷80=3.5元.答:降价前他每千克西瓜出售的价格是3.5元;(3)(450﹣330)÷(3.5﹣0.5)=120÷3=40(千克),80+40=120千克.答:他一共批发了120千克的西瓜;(4)450﹣120×1.8﹣50=184元.答:这个水果贩子一共赚了184元钱.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
2015-2016学年山东省枣庄市山亭区七年级(下)期末数学试卷(B卷)一、选择题(本题共12个小题,每小题3分)1.(3分)下列各式计算正确的是()A.a2+a2=a4 B.C.(3x)2=6x2D.(x+y)2=x2+y22.(3分)有下列长度的三条线段,能组成三角形的是()A.2cm,3cm,4cm B.1cm,4cm,2cm C.1cm,2cm,3cm D.6cm,2cm,3cm3.(3分)生物学家发现一种病毒的长度约为0.000043mm,用科学记数法表示这个数的结果为(单位:mm)()A.4.3×10﹣5B.4.3×10﹣4C.4.3×10﹣6D.43×10﹣54.(3分)下列图形中,是轴对称图形的是()A. B.C.D.5.(3分)以下事件中,必然发生的是()A.打开电视机,正在播放体育节目B.正五边形的外角和为180°C.通常情况下,水加热到100℃沸腾D.掷一次骰子,向上一面是5点6.(3分)下列多项式乘法中,可用平方差公式计算的是()A.(2a+b)(2a﹣3b)B.(x+1)(1+x)C.(x﹣2y)(x+2y)D.(﹣x﹣y)(x+y)7.(3分)小狗在如图所示的方砖上走来走去,随意停在黑色方砖上的概率为()A.B.C.D.8.(3分)如图,直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为()A.115°B.125°C.155° D.165°9.(3分)已知等腰三角形的两边长是5cm和6cm,则此三角形的周长是()A.16cm B.17cm C.11cm D.16cm或17cm10.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°11.(3分)小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是()A.B.C.D.12.(3分)如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.二、填空题(每小题4分,共24分)13.(4分)若a m=3,a n=2,则a m﹣n=.14.(4分)如果一个角的补角是150°,那么这个角的余角的度数是度.15.(4分)一个多项式的完全平方是a2+12a+m,则m=.16.(4分)如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是(只需添加一个条件即可)17.(4分)如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于多少度.18.(4分)观察图中图形的构成规律,根据此规律,第6个图形中有个圆圈.三、解答题(共60分)19.(8分)小河AB的同旁有甲、乙两个村庄,现计划在河岸AB上建一个水泵站,向两村供水,用以解决村民生活用水问题.若要求水泵站到甲、乙两村庄的距离相等,水泵站M应建在河岸AB上的何处?(要求:不写作法,但要保留作图痕迹,并写出作图结果)20.(8分)小河的同旁有甲、乙两个村庄(如图),现计划在河岸AB上建一个水泵站,向两村供水,用以解决村民生活用水问题.(1)如果要求水泵站到甲、乙两村庄的距离相等,水泵站M应建在河岸AB上的何处?(2)如果要求建造水泵站使用建材最省,水泵站M又应建在河岸AB上的何处?21.(8分)某校办工厂现在年产值是15万元,计划以后每年增加2万元.(1)写出年产值y(万元)与年数x之间的关系式.(2)用表格表示当x从0变化到6(每次增加1)y的对应值.(3)求5年后的年产值.22.(8分)如图已知BE、EC分别平分∠ABC、∠BCD,且∠1与∠2互余,试说明AB∥DC.23.(8分)两个大小不同的等腰直角三角形三角板如图1所示位置,图2是由它抽象出的几何图形,B、C、E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并说明理由(说明:结论中不得有未标识的字母);(2)判断DC⊥BE是否成立?说明理由.24.(10分)如图,欢欢将一张白纸对折,折痕为PQ.以PQ上的线段AD为一条直角边画出直角三角形ABD,使∠DAB=30°,沿折线DBA剪下三角形纸片,将其打开展平,得到△ABC.(1)计算∠BAC的度数;(2)判断△ABC的形状,并说明理由.25.(10分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球试验,将球搅匀后,从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近于多少?(2)假如你去摸一次,你摸到白球的可能性为多大?这时摸到黑球的可能性为多大?(3)试估算口袋中黑、白两种颜色的球各有多少个?2015-2016学年山东省枣庄市山亭区七年级(下)期末数学试卷(B卷)参考答案与试题解析一、选择题(本题共12个小题,每小题3分)1.(3分)下列各式计算正确的是()A.a2+a2=a4 B.C.(3x)2=6x2D.(x+y)2=x2+y2【解答】解:A、应为a2+a2=2a2,故本选项错误;B、a﹣1÷a=×=,故本选项正确;C、应为(3x)2=9x2,故本选项错误;D、应为(x+y)2=x2+2xy+y2,故本选项错误.故选:B.2.(3分)有下列长度的三条线段,能组成三角形的是()A.2cm,3cm,4cm B.1cm,4cm,2cm C.1cm,2cm,3cm D.6cm,2cm,3cm【解答】解:根据三角形任意两边的和大于第三边,得A中,3+2>4,能组成三角形;B中,1+2<4,不能组成三角形;C中,1+2=3,不能够组成三角形;D中,2+3<6,不能组成三角形.故选:A.3.(3分)生物学家发现一种病毒的长度约为0.000043mm,用科学记数法表示这个数的结果为(单位:mm)()A.4.3×10﹣5B.4.3×10﹣4C.4.3×10﹣6D.43×10﹣5【解答】解:0.000043=4.3×10﹣5,故选:A.4.(3分)下列图形中,是轴对称图形的是()A. B.C.D.【解答】解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:A.5.(3分)以下事件中,必然发生的是()A.打开电视机,正在播放体育节目B.正五边形的外角和为180°C.通常情况下,水加热到100℃沸腾D.掷一次骰子,向上一面是5点【解答】解:A、打开电视机,可能播放体育节目、也可能播放戏曲等其它节目,为随机事件,故A选项错误;B、任何正多边形的外角和是360°,故B选项错误;C、通常情况下,水加热到100℃沸腾,符合物理学原理,故C选项正确;D、掷一次骰子,向上一面可能是1,2,3,4,5,6,中的任何一个,故D选项错误.故选:C.6.(3分)下列多项式乘法中,可用平方差公式计算的是()A.(2a+b)(2a﹣3b)B.(x+1)(1+x)C.(x﹣2y)(x+2y)D.(﹣x﹣y)(x+y)【解答】解:A、这两个数不同,一个b,另一个是3b,故A错误;B、只有两个数的和,没有两个数的差,故B错误;C、x与2y的和乘以x与2y的差,符合平方差公式,故C正确;D、(﹣x﹣y)(x+y)=﹣(x+y)(x+y),不符合平方差公式,故D错误;故选:C.7.(3分)小狗在如图所示的方砖上走来走去,随意停在黑色方砖上的概率为()A.B.C.D.【解答】解:根据题意,共9个面积相等的正方形,其中有2块黑色的方砖,根据几何概率的求法,小狗停在黑色方砖上的概率为黑色的方砖的面积与总面积的比值,故其概率为.故选:C.8.(3分)如图,直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为()A.115°B.125°C.155° D.165°【解答】解:如图,过点D作c∥a.则∠1=∠CDB=25°.又a∥b,DE⊥b,∴b∥c,DE⊥c,∴∠2=∠CDB+90°=115°.故选:A.9.(3分)已知等腰三角形的两边长是5cm和6cm,则此三角形的周长是()A.16cm B.17cm C.11cm D.16cm或17cm【解答】解:根据题意,①当腰长为5cm时,周长=5+5+6=16(cm);②当腰长为7cm时,周长=5+6+6=17(cm).故选:D.10.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A.70°B.80°C.40°D.30°【解答】解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.11.(3分)小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是()A.B.C.D.【解答】解:严格按照图中的顺序向左对折,向上对折,从直角三角形的一直角边的正中间剪去一个正方形,展开后实际是从正方形的一条对角线上剪去两个小长方形,得到结论.故选B.12.(3分)如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.【解答】解:根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢.故选:C.二、填空题(每小题4分,共24分)13.(4分)若a m=3,a n=2,则a m﹣n=.【解答】解:a m﹣n=a m÷a n=3÷2=,故答案为:.14.(4分)如果一个角的补角是150°,那么这个角的余角的度数是60度.【解答】解:180°﹣150°=30°,90°﹣30°=60°.故答案为:60°.15.(4分)一个多项式的完全平方是a2+12a+m,则m=36.【解答】解:∵a2+12a+m=a2+2•a•6+m,∴m=62=36.故答案为:36.16.(4分)如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是AE=AC(只需添加一个条件即可)【解答】解:AE=AC;理由是:∵在△ABC和△ADE中∴△ABC≌△ADE(SAS),故答案为:AE=AC.17.(4分)如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于多少60度.【解答】解:从图中我们发现向北的两条方向线平行,∠NAB=45°,∠MBC=15°,根据平行线的性质:两直线平行内错角相等,可得∠ABM=∠NAB=45°,所以∠ABC=45°+15°=60°.故答案为:60.18.(4分)观察图中图形的构成规律,根据此规律,第6个图形中有37个圆圈.【解答】解:∵第1个图形中,圆圈的个数为:1×1+1=2个;第2个图形中,圆圈的个数为:2×2+1=5个;第3个图形中,圆圈的个数为:3×3+1=10个;第4个图形中,圆圈的个数为:4×4+1=17个;…∴第6个图形中,圆圈的个数为:6×6+1=37个;故答案为:37.三、解答题(共60分)19.(8分)小河AB的同旁有甲、乙两个村庄,现计划在河岸AB上建一个水泵站,向两村供水,用以解决村民生活用水问题.若要求水泵站到甲、乙两村庄的距离相等,水泵站M应建在河岸AB上的何处?(要求:不写作法,但要保留作图痕迹,并写出作图结果)【解答】解:如图所示:点M就是水泵站所在的位置.20.(8分)小河的同旁有甲、乙两个村庄(如图),现计划在河岸AB上建一个水泵站,向两村供水,用以解决村民生活用水问题.(1)如果要求水泵站到甲、乙两村庄的距离相等,水泵站M应建在河岸AB上的何处?(2)如果要求建造水泵站使用建材最省,水泵站M又应建在河岸AB上的何处?【解答】解:21.(8分)某校办工厂现在年产值是15万元,计划以后每年增加2万元.(1)写出年产值y(万元)与年数x之间的关系式.(2)用表格表示当x从0变化到6(每次增加1)y的对应值.(3)求5年后的年产值.【解答】解:(1)根据题意,k=2,b=15,∴关系式为:y=2x+15;(2)如图:(3)当x=5时,y=2×5+15=25,∴5年后的年产值是25万元.22.(8分)如图已知BE、EC分别平分∠ABC、∠BCD,且∠1与∠2互余,试说明AB∥DC.【解答】解:∵∠1与∠2互余,∴∠1+∠2=90°,∵BE、EC分别平分∠ABC、∠BCD,∴∠ABC=2∠1,∠BCD=2∠2,∴∠ABC+∠BCD=2∠1+2∠2=2(∠1+∠2)=180°,∴AB∥DC.23.(8分)两个大小不同的等腰直角三角形三角板如图1所示位置,图2是由它抽象出的几何图形,B、C、E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并说明理由(说明:结论中不得有未标识的字母);(2)判断DC⊥BE是否成立?说明理由.【解答】解:(1)结论:△ABE≌△ACD.理由:∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠EAC=∠DAE+∠EAC,∴∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS).(2)∵△ABE≌△ACD,∴∠AEB=∠ADC.∵∠ADC+∠AFD=90°,∴∠AEB+∠AFD=90°.∵∠AFD=∠CFE,∴∠AEB+∠CFE=90°,∴∠FCE=90°,∴DC⊥BE.24.(10分)如图,欢欢将一张白纸对折,折痕为PQ.以PQ上的线段AD为一条直角边画出直角三角形ABD,使∠DAB=30°,沿折线DBA剪下三角形纸片,将其打开展平,得到△ABC.(1)计算∠BAC的度数;(2)判断△ABC的形状,并说明理由.【解答】解:(1)由折叠的性质得:∠BAD=∠CAD=30°,∴∠BAC=2∠DAB=60°;(2)∵∠DAB=30°,∠ADB=90°,∴∠B=60,由折叠的性质得:∠C=∠B=60°,∴△ABC是等边三角形.25.(10分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球试验,将球搅匀后,从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到白球的频率将会接近于多少?(2)假如你去摸一次,你摸到白球的可能性为多大?这时摸到黑球的可能性为多大?(3)试估算口袋中黑、白两种颜色的球各有多少个?【解答】解:(1)根据题意可得当n很大时,摸到白球的频率将会接近0.6;(2)因为当n很大时,摸到白球的频率将会接近0.6;所以摸到白球的概率是,摸到黑球的概率是(3)因为摸到白球的概率是,摸到黑球的概率是所以口袋中黑、白两种颜色的球有白球是20×=12个,黑球是20×=8个感谢再次感谢。