五轴数铣中心下注塑模具自动抛光过程翻译
- 格式:doc
- 大小:72.00 KB
- 文档页数:15
模具加工方法英语词汇大全(一.模具加工方法英语词汇barrel 滚筒(加工)bending 波纹加工broaching 拉刀切削centering 定中心cutting 切削cylindrical lathe cutting 外圆车削electric discharge machine 放电加工electrolytic grinding 电解研磨embossing 压花加工facing 面车削filing 锉刀修润hand finishing 手工修润hemming 卷边加工hobbing 滚齿加工joggling 摇动加工lapping 抛光/研磨修润laser beam machining 雷射加工lathe cutting 车床车削planning 刨削加工polishing 抛亮光reaming 铰孔修润rough machining 粗切削rounding 圆形加工sawing 锯削scaling 清除钢碇缺陷shaping 成形加工skiving 表面研磨slotting 切缝切削taper turning 锥度车削thread cutting 螺纹切削ultrasonic machining 超音波加工up cut milling 逆铣加工二.模具砂轮用语英语词汇abrasive 砂轮Al2O3 氧化铝borazon 氧化硼立方晶buffing wheel 抛光布轮diamond 钻石dresser 砂轮整修机dressing 修整endless grinding belt 循环式研磨带finishing allowance 加工余量grain 磨粒grinding disc 研磨盘jamp up 孔眼堵塞mesh 网筛目resinoid grinding wheel 半树脂型砂轮slitting 切缝量vitrified 陶瓷的三.模具锻铸造相关英语词汇accretion 炉瘤acid converter 酸性转炉acid lining cupola 酸性熔铁炉acid open-hearth furnace 酸性平炉aerator 松砂机air set mold 常温自硬铸模airless blasting cleaning 离心喷光all core molding 集合式铸模all round die holder 通用模座assembly mark 铸造合模记号back pouring 补浇注backing sand 背砂base bullion 粗金属锭base permeability 原砂透气度belling 压凸billet 坏料bleed 漏铸blocker 预锻模膛blocking 粗胚锻件blow hole 铸件气孔board drop hammer 板落锤bottom pour mold 底浇bottom pouring 底注boxless mold 脱箱砂模break-off core 缩颈砂心brick molding 砌箱造模法buckle 剥砂面camber 错箱camlachie cramp 铸包cast blade 铸造叶片casting flange 铸造凸缘casting on flat 水平铸造chamotte sand 烧磨砂charging hopper 加料漏斗cleaning of casting 铸件清理closed-die forging 合模锻造core compound 砂心黏结剂core template 砂心模板core vent 砂蕊排气孔corner gate 压边浇口counter blow hammer 对击锻造counter lock 止口镶嵌方式depression 外缩凹孔die approach 模口角度draw out 锻造拔长draw plate 起模板draw spike 起模长针dummying 预锻embedded core 加装砂心erosion 冲砂fettling 铸件清理filling core 埋入砂心filling in 填砂film play 液面花纹finishing slag 炼後熔渣flash gutter 锻模飞边槽flask molding 砂箱造模forging roll 辊锻机formboard 进模口板gutter 锻模飞边槽hammer man 锻工heading machine 顶镦机impacter 卧式锻造机inblock cast 整体铸造ingot 铸锭ingot blank 铸坯inlay casting 镶铸法investment casting 失模铸造isothermal forging 恒温锻造loose piece 木模活块molding pit 铸模地坑pouring process 浇注法recasting 重铸roll forging 轧锻rolled surface 轧制表面rough sand 粗砂roughing forge 粗锻sand crushing 塌箱seamless forging 无缝锻造separate 分离shave 崩砂shrinkage fit 收缩配合shut height 闭合高度sieve mesh 筛孔sintering of sand 铸砂烧贴slag 熔渣slag inclusion 夹渣stickness 黏模性strip layout 带状胚料排样法tap casting 顶注top gate 顶注浇口unworked casting 不加工铸件upender 翻转装置upending 顶锻uphill casting 底铸white cast iron 白口铸件四.模具线切割放电加工相关英语词汇abnormal glow 不规则辉光放电arc discharge 电弧放电belt 皮带centreless 无心chrome bronze 铭铜clearance angle 後角corner shear drop 直角压陷deflection 桡曲度discharge energy 放电能量dressing 修整dwell 保压flange 凸缘gap 间隙graphite 石墨graphite contraction allowance 电极缩小余量graphite holder 电极夹座hair crack 发裂horn 电极臂magnetic base 磁性座master graphite 规范电极pipe graphite 管状电极pulse 脉冲rib working 肋部加工roller electrode 滚轮式电极rotary surface 旋转面shank 柄部sharp edge 锐角部tough bronze 韧铜traverse 摇臂tungsten bronze 钨青铜waviness 波形起伏working allowance 加工余量working dischard 加工废料五.模具冲压机械及周边英语词汇back shaft 支撑轴blank determination 胚料展开bottom slide press 下传动式压力机board drop hammer 板落锤brake 煞车buckle 剥砂面camlachie cramp 铸包chamotte sand 烧磨砂charging hopper 加料漏斗clearance 间隙closed-die forging 合模锻造clump 夹紧clutch 离合器clutch brake 离合器制动器clutch boss 离合器轮壳clutch lining 离合器覆盖coil car 带卷升降运输机coil cradle 卷材进料装置coil reel stand 钢材卷料架column 圆柱connection screw 连杆调节螺钉core compound 砂心黏结剂counter blow hammer 对击锻锤cradle 送料架crank 曲柄轴crankless 无曲柄式cross crank 横向曲轴depression 外缩凹孔dial feed 分度送料die approach 模口角度die assembly 合模die cushion 模具缓冲垫die height 冲压闭合高度die life 模具寿命die opening 母模逃孔die spotting press 调整冲模用压力机double crank press 双曲柄轴冲床draght angle 逃料倾斜角edging 边锻伸embedded core 加装砂心feed length 送料长度feed level 送料高度filling core 埋入砂心filling in 填砂film play 液面花纹fine blanking press 精密下料冲床forging roll 辊锻机finishing slag 炼後熔渣fly wheel 飞轮fly wheel brake 飞轮制动器foot press 脚踏冲床formboard 进模口板frame 床身机架friction 摩擦friction brake 摩擦煞车gap shear 凹口剪床gear 齿轮gib 滑块引导部gripper 夹具gripper feed 夹持进料gripper feeder 夹紧传送装置hammer 槌机hand press 手动冲床hand rack pinion press 手动齿轮齿条式冲床hand screw press 手动螺旋式冲床hopper feed 料斗送料idle stage 空站inching 微调尺寸isothermal forging 恒温锻造key clutch 键槽离合器knockout 脱模装置knuckle mechanic 转向机构land 模具直线刀面部loader 供料器unloader 卸料机loop controller 闭回路控制器lower die 下模micro inching device 微寸动装置microinching equipment 微动装置moving bolster 活动工作台notching press 冲缺口压力机opening 排料逃孔overload protection device 防超载装置pinch roll 导正滚轮pinion 小齿轮pitch 节距pressfit 压入progressive 连续送料pusher feed 推杆式送料pusher feeder 料片押片装置quick die change system 快速换模系统regrinding 再次研磨releasing 松释动作reversed blanking 反转下料robot 机器人roll forming machine 辊轧成形roll forming machine 辊轧成形机roll release 脱辊roller feed 辊式送料roller leveler 辊式矫直机rotary bender 卷弯成形机safety guard 安全保护装置scrap cutter 废料切刀scrap press 废料冲床seamless forging 无缝锻造shave 崩砂shear angle 剪角sheet loader 薄板装料机shot 单行程工作shrinkage fit 收缩配合shut height 闭合高度sieve mesh 筛孔sintering of sand 铸砂烧贴slide balancer 滑动平衡器slug hole 逃料孔spin forming machine 旋压成形机spotting 合模stack feeder 堆叠拨送料机stickness 黏模性straight side frame 冲床侧板stretcher leveler 拉伸矫直机strip feeder 料材送料装置stripping pressure 弹出压力stroke冲程take out device 取料装置toggle press 肘杆式压力机transfer feed 连续自动送料装置turrent punch press 转塔冲床two speed clutch 双速离合器uncoiler 闭卷送料机unloader 卸载机vibration feeder 振动送料机wiring press 嵌线卷边机六.模具冲模加工英语词汇barreling 滚光加工belling 压凸加工bending 弯曲加工blanking 下料加工bulging 撑压加工burring 冲缘加工cam die bending 凸轮弯曲加工coining 压印加工compressing 压缩加工compression bending 押弯曲加工crowning 凸面加工curl bending 卷边弯曲加工curling 卷曲加工cutting 切削加工dinking 切断蕊骨double shearing 叠板裁断drawing 引伸加工drawing with ironing 抽引光滑加工embossing 浮花压制加工extrusion 挤制加工filing 锉削加工fine blanking 精密下料加工finish blanking 光制下料加工finishing 精整加工flanging 凸缘加工folding 折边弯曲加工folding 摺叠加工forming 成形加工impact extrusion 冲击挤压加工indenting 压痕加工ironing 引缩加工knurling 滚花lock seaming 固定接合louvering 百叶窗板加工marking 刻印加工necking 颈缩加工notching 冲口加工parting 分断加工piercing 冲孔加工progressive bending 连续弯曲加工progressive blanking 连续下料加工progressive drawing 连续引伸加工progressive forming 连续成形加工reaming 铰孔加工restriking 二次精冲加工riveting 铆接加工roll bending 滚筒弯曲加工roll finishing 滚压加工rolling 压延加工roughing 粗加工scrapless machining 无废料加工seaming 折弯重叠加工shaving 缺口修整加工shearing 切断加工sizing 精压加工/矫正加工slitting 割缝加工spinning 卷边?接stamping 锻压加工swaging 挤锻压加工trimming 整缘加工upsetting 锻粗加工wiring 抽线加工七.模具常用刀具工作法英语词汇adjustable spanner 活动扳手angle cutter 角铣刀arbour 心轴backing 衬垫belt sander 带式打磨机buffing 抛光chamfering machine 倒角机chamfering tool 去角刀具chisel 扁錾chuck 夹具compass 两角规concave cutter 凹面铣刀convex cutter 凸形铣刀cross joint 十字接头cutting edge clearance 刃口余隙角drill stand 钻台edge file 刃用锉刀file 锉刀flange joint 凸缘接头grinder 砂轮机hammer 铁锤hand brace 手摇钻hatching 剖面线hexagon headed bolt 六角头螺栓hexagon nut 六角螺帽index head 分度头jack 千斤顶jig 治具kit 工具箱lapping 研磨metal saw 金工锯nose angle 刀角pinchers 钳子pliers 铗钳plug 柱塞头polisher 磨光器protable driller 手提钻孔机punch 冲头sand paper 砂纸scraper 刮刀screw driver 螺丝起子scribing 划线second out file 中纹锉spanner 扳手spline broach 方栓槽拉刀square 直角尺square sleeker 方形镘刀square trowel 直角度stripping 剥离工具T-slot T形槽tool for lathe 车刀tool point angle 刀刃角tool post 刀架tosecan 划线盘trimming 去毛边waffle die flattening 压纹效平wiper 脱模钳wrench 螺旋扳手八.模具表面处理英语词汇age hardening 时效硬化ageing 老化处理air hardening 气体硬化air patenting 空气韧化annealing 退火anode effect 阳极效应anodizing 阳极氧化处理atomloy treatment 阿托木洛伊表面austempering 奥氏体等温淬火austenite 奥斯田体/奥氏体bainite 贝氏体banded structure 条纹状组织barrel plating 滚镀barrel tumbling 滚筒打光blackening 染黑法blue shortness 青熟脆性bonderizing 磷酸盐皮膜处理box annealing 箱型退火box carburizing 封箱渗碳bright electroplating 辉面电镀bright heat treatment 光辉热处理bypass heat treatment 旁路热处理carbide 炭化物carburized case depth 浸碳硬化深层carburizing 渗碳cementite 炭化铁chemical plating 化学电镀chemical vapor deposition 化学蒸镀coarsening 结晶粒粗大化coating 涂布被覆cold shortness 低温脆性comemtite 渗碳体controlled atmosphere 大气热处理corner effect 锐角效应creeping discharge 蠕缓放电decarburization 脱碳处理decarburizing 脱碳退火depth of hardening 硬化深层diffusion 扩散diffusion annealing 扩散退火electrolytic hardening 电解淬火embossing 压花etching 表面蚀刻ferrite 肥粒铁first stage annealing 第一段退火flame hardening 火焰硬化flame treatment 火焰处理full annealing 完全退火gaseous cyaniding 气体氧化法globular cementite 球状炭化铁grain size 结晶粒度granolite treatment 磷酸溶液热处理graphitizing 石墨退火。
模具加工方法英语词汇大全在模具加工领域,掌握相关英语词汇是非常重要的。
本文将为你提供一个模具加工方法英语词汇大全,帮助你更好地理解和交流相关的知识。
1. 模具加工方法基础词汇Mold (模具)•Cavity: 空腔•Core: 芯子•Ejector Pins: 推杆•Draft Angle: 脱模锥度•Runner: 浇口Machining (加工)•Milling: 铣削•Turning: 车削•Drilling: 钻削•Grinding: 磨削•Boring: 镗削Surface Treatment (表面处理) •Polishing: 抛光•Electroplating: 电镀•Anodizing: 阳极氧化•Coating: 涂层•Sandblasting: 喷砂Measurement (测量)•Caliper: 卡尺•Micrometer: 千分尺•Height Gauge: 高度规•CMM (Coordinate Measuring Machine): 三坐标测量机•Profile Projector: 轮廓投影仪2. 模具加工方法高级词汇CNC Machining (数控加工)•CNC Milling: 数控铣削•CNC Turning: 数控车削•CNC Grinding: 数控磨削•CNC Wire EDM (Electrical Discharge Machining): 数控线切割•CAM (Computer-ded Manufacturing): 计算机辅助制造Injection Molding (注塑)•Mold Design: 模具设计•Mold Flow Analysis: 模流分析•Mold Temperature Control: 模具温度控制•Gate Design: 浇口设计•Venting: 排气Die Casting (压铸)•Die Design: 压铸模具设计•Die Lubrication: 压铸模具润滑•Die Casting Defects: 压铸缺陷•Cold Chamber Die Casting: 冷室压铸•Hot Chamber Die Casting: 热室压铸Stamping (冲压)•Progressive Die: 渐进模具•Blanking: 冲裁•Piercing: 穿孔•Bending: 弯曲•Deep Drawing: 深冲3. 模具加工方法其他相关词汇Mold Materials (模具材料)•Tool Steel: 工具钢•Stnless Steel: 不锈钢•Aluminum: 铝•Copper: 铜•Plastic: 塑料Mold Components (模具部件)•Guide Pins: 导柱•Ejector Sleeves: 推杆套筒•Sprue Bushing: 浇口套筒•Inserts: 嵌件•Lifter: 脱模销Mold Mntenance (模具维护)•Cleaning: 清洁•Lubrication: 润滑•Repr: 修复•Storage: 存储•Replacement: 更换以上是一个模具加工方法英语词汇大全,涵盖了基本和高级词汇以及其他相关词汇。
五轴抛光工艺流程Polishing is a crucial step in the manufacturing process, especially for complex shapes and surfaces. 抛光是制造过程中至关重要的一步,特别对于复杂的形状和表面。
五轴抛光工艺流程是一种高级的抛光技术,能够在一次夹持中完成多个角度和曲面的抛光。
Five-axis polishing process is an advanced polishing technique that can achieve multi-angle and multi-surface polishing in one clamping.This process involves the use of sophisticated machinery equipped with five-axis control to manipulate the polishing tool in various directions. 这个过程涉及使用配备五轴控制的精密机械来操纵抛光工具朝各个方向移动。
One of the key advantages of five-axis polishing is its ability to achieve a high level of precision and consistency in the final finish. 五轴抛光的关键优势之一是能够在最终表面处理中实现高度精度和一致性。
Moreover, this technique can significantly reduce the need for manual intervention, thus improving efficiency and reducing labor costs. 此外,这种技术能够大大减少对手动干预的需求,从而提高效率并降低劳动成本。
英语中机械加工常用术语抛光polishing安装to assemble扳手wrench半机械化semi-mechanization; semi-mechanized半自动滚刀磨床semi-automatic hob grinder半自动化semi-automation; semi-automatic备件spare parts边刨床side planer变速箱transmission gear柄轴arbor部件units; assembly parts插床slotting machine拆卸to disassemble超高速内圆磨床ultra-high-speed internal grinder车床lathe; turning lathe车刀lathe tool车轮车床car wheel lathe车削turning车轴axle衬套bushing 按英文字母排序3-Jaws indexing spacers 三爪、分割工具头A.T.C.system 加工中心机刀库Aluminum continuous melting holding furnaces 连续溶解保温炉Balancing equipment 平衡设备Bayonet 卡口Bearing fittings 轴承配件Bearing processing equipment 轴承加工机Bearings 轴承Belt drive 带传动Bending machines 弯曲机Blades 刀片Blades,saw 锯片Bolts,screws nuts 螺栓,螺帽及螺丝Boring heads 搪孔头Boring machines 镗床Cable making tools 造线机Casting,aluminium 铸铝Casting,copper 铸铜Casting,gray iron 铸灰口铁Casting,malleable iron 可锻铸铁Casting,other 其他铸造Casting,steel 铸钢Chain drive 链传动899Chain making tools 造链机Chamfer machines 倒角机Chucks 夹盘Clamping/holding systems 夹具/支持系统CNC bending presses 电脑数控弯折机CNC boring machines 电脑数控镗床CNC drilling machines 电脑数控钻床CNC EDM wire-cutting machines 电脑数控电火花线切削机CNC electric discharge machines 电脑数控电火花机CNC engraving machines 电脑数控雕刻机CNC grinding machines 电脑数控磨床CNC lathes 电脑数控车床CNC machine tool fittings 电脑数控机床配件CNC milling machines 电脑数控铣床CNC shearing machines 电脑数控剪切机CNC toolings CNC刀杆CNC wire-cutting machines 电脑数控线切削机Conveying chains 输送链Coolers 冷却机Coupling 联轴器Crimping tools 卷边工具Cutters 刀具Cutting-off machines 切断机Diamond cutters 钻石刀具Dicing saws 晶圆切割机Die casting dies 压铸冲模Die casting machines 压铸机Dies-progressive 连续冲模Disposable toolholder bits 舍弃式刀头Drawing machines 拔丝机Drilling machines 钻床Drilling machines bench 钻床工作台Drilling machines,high-speed 高速钻床Drilling machines,multi-spindle 多轴钻床Drilling machines,radial 摇臂钻床Drilling machines,vertical 立式钻床drills 钻头Electric discharge machines(EDM) 电火花机Electric power tools 电动刀具Engraving machines 雕刻机Engraving machines,laser 激光雕刻机Etching machines 蚀刻机Finishing machines 修整机Fixture 夹具900Forging dies 锻模Forging,aluminium 锻铝Forging,cold 冷锻Forging,copper 铜锻Forging,other 其他锻造Forging,steel 钢锻Foundry equipment 铸造设备Gear cutting machines 齿轮切削机Gears 齿轮Gravity casting machines 重力铸造机Grinder bench 磨床工作台Grinders,thread 螺纹磨床Grinders,tools & cutters 工具磨床Grinders,ultrasonic 超声波打磨机Grinding machines 磨床Grinding machines,centerless 无心磨床Grinding machines,cylindrical 外圆磨床Grinding machines,universal 万能磨床Grinding tools 磨削工具Grinding wheels 磨轮Hand tools 手工具Hard/soft and free expansion sheet making plant 硬(软)板(片)材及自由发泡板机组Heat preserving furnaces 保温炉Heating treatment funaces 熔热处理炉Honing machines 搪磨机Hydraulic components 液压元件Hydraulic power tools 液压工具Hydraulic power units 液压动力元件Hydraulic rotary cylinders 液压回转缸Jigs 钻模Lapping machines 精研机Lapping machines,centerless 无心精研机Laser cutting 激光切割Laser cutting for SMT stensil 激光钢板切割机Lathe bench 车床工作台Lathes,automatic 自动车床Lathes,heavy-duty 重型车床Lathes,high-speed 高速车床Lathes,turret 六角车床Lathes,vertical 立式车床Lubricants 润滑液Lubrication Systems 润滑系统Lubricators 注油机Machining centers,general 通用加工中心901Machining centers,horizontal 卧式加工中心Machining centers,horizontal & vertical 卧式及立式加工中心Machining centers,vertical 立式加工中心Machining centers,vertical double-column type 立式双柱加工中心Magnetic tools 磁性工具Manifolds 集合管Milling heads 铣头Milling machines 铣床Milling machines,bed type 床身式铣床Milling machines,duplicating 仿形铣床Milling machines,horizontal 卧式铣床Milling machines,turret vertical 六角立式铣床Milling machines,universal 万能铣床Milling machines,vertical 立式铣床Milling machines,vertical & horizontal 立式及卧式铣床Mold & die components 模具单元Mold changing systems 换模系统Mold core 模芯Mold heaters/chillers 模具加热器/冷却器Mold polishing/texturing 模具打磨/磨纹Mold repair 模具维修Molds 模具Nail making machines 造钉机Oil coolers 油冷却器Overflow cutting machines for aluminium wheels 铝轮冒口切断机P type PVC waterproof rolled sheet making plant P型PVC高分子防水PCB fine piecing systems 印刷电器板油压冲孔脱料系统Pipe & tube making machines 管筒制造机Planing machines 刨床Planing machines vertical 立式刨床Pneumatic hydraulic clamps 气油压虎钳Pneumatic power tools 气动工具Powder metallurgic forming machines 粉末冶金成型机Presses,cold forging 冷锻冲压机presses,crank 曲柄压力机Presses,eccentric 离心压力机Presses,forging 锻压机Presses,hydraulic 液压冲床Presses,knuckle joint 肘杆式压力机Presses,pneumatic 气动冲床Presses,servo 伺服冲床Presses,transfer 自动压力机Pressing dies 压模Punch formers 冲子研磨器902Quick die change systems 速换模系统Quick mold change systems 快速换模系统Reverberatory furnaces 反射炉Rollers 滚筒Rolling machines 辗压机Rotary tables 转台Sawing machines 锯床Sawing machines,band 带锯床Saws,band 带锯Saws,hack 弓锯Saws,horizontal band 卧式带锯Saws,vertical band 立式带锯shafts 轴Shapers 牛头刨床Shearing machines 剪切机Sheet metal forming machines 金属板成型机Sheet metal working machines 金属板加工机Slotting machines 插床spindles 主轴Stamping parts 冲压机Straightening machines 矫直机Switches & buttons 开关及按钮Tapping machines 攻螺丝机Transmitted chains 传动链Tube bending machines 弯管机Vertical hydraulic broaching machine 立式油压拉床Vises 虎钳Vises,tool-maker 精密平口钳Wheel dressers 砂轮修整器Woven-Cutting machines 织麦激光切割机Wrenches 扳手903。
中文译文:5轴数铣中心下注塑模具自动抛光过程材料加工技术杂志Xavier Pessoles, Christophe Tournier*LURPA, ENS Cachan, 61 av du pdt Wilson, 94230 Cachan, France christophe.tournier@lurpa.ens-cachan.fr, Tel : 33 147 402 996, Fax : 33 147 402 211【摘要】注塑模具的制造过程包括抛光作业时关键的表面粗糙度或镜面效果必须出示透明部分。
这抛光进行手动操作主要是通过技术工人进行分步完成。
在本文中,我们提出一个5轴铣削自动抛光技术中心,以加工生产使用相同的手段和抛光方式来降低成本。
我们开发的特殊算法来计算5轴刀具位置上自由形式的溶洞,为了模仿工人的技能。
这是基于两填充曲线和摆线曲线。
抛光力是基于一个力传感器的校正设置来保证被动刀具本身的位移与力量。
刀具的精密运动有助于避免在5轴数控中心下对刀具的运动误差的影响。
在表面的条款效力的方法粗糙度的质量和执行简单的是通过5轴数控加工过程实验证明的。
【关键词】自动抛光,5轴铣削中心,镜面效果,表面粗糙度,希尔伯特曲线,摆线曲线几何参数CE (XE, YE, ZE)刀具起始点(u, v) 参数空间坐标的摆线参数曲线s 横坐标曲线C(s) 导数参数方程P(s) 轨迹参数方程n (s) 法向量p 步轨迹Dtr 轨迹直径A 轨迹线的幅度Step 循环加强轨迹技术参数D 刀具半径Deff 抛光刀具有效直径E 磨带振幅e 刀具偏差值θ刀轴倾斜角u (i, j, k) 刀具坐标系f 导线切矢量Cc 摆切线加工参数N 主轴转速Vc 切速度Vf 进给速度fz 进给量ap 切削厚度at 加工点T 运转时间表面粗糙度参数Ra 表面算术平均差(2D)Sa 表面高度平均差(3D)Sq 表面均方根差Ssk 偏态分布幅值Sku 偏态分布峰值1简介在高速加工(HSM)的发展极大地改变了注塑模具和模具制造商。
英文原文Automated surface finishing of plastic injection mold steel with spherical grindingand ball burnishing processesAbstractThis study investigates the possibilities of automated spherical grinding and ball burnishing surface finishing processes in a freeform surface plastic injection mold steel PDS5 on a CNC machining center. The design and manufacture of a grinding tool holder has been accomplished in this study. The optimal surface grinding parameters were determined using Taguchi’s orthogonal array method for plastic injection molding steel PDS5 on a machining center. The optimal surface grinding parameters for the plastic injection mold steel PDS5 were the combination of an abrasive material of PA Al2O3, a grinding speed of 18 000 rpm, a grinding de pth of 20 μm, and a feed of 50 mm/min. The surface roughness Ra of the specimen can be improved from about 1.60 μm to 0.35 μm by using the optimal parameters for surface grinding. Surface roughness Ra can be further improved from about 0.343 μm to 0.06 μm by using the ball burnishing process with the optimal burnishing parameters. Applying the optimal surface grinding and burnishing parameters sequentially to a fine-milled freeform surface mold insert, the surface roughness Ra of freeform surface region on the tested part can be improved from about 2.15 μm to 0.07 μm.Keywords Automated surface finishing · Ball burnishing process · Grinding process · Surface roughness · Taguchi’s method1 IntroductionPlastics are important engineering materials due to their specific characteristics, such as corrosion resistance, resistance to chemicals, low density, and ease of manufacture, and have increasingly replaced metallic components in industrial applications. Injection molding is one of the important forming processes for plastic products. The surface finish quality of the plastic injection mold is an essential requirement due to its direct effects on the appearance of the plastic product. Finishing processes such as grinding, polishing and lapping are commonly used to improve the surface finish.The mounted grinding tools (wheels) have been widely used in conventional mold and die finishing industries. The geometric model of mounted grinding tools for automated surfacefinishing processes was introduced in. A finishing process mode of spherical grinding tools for automated surface finishing systems was developed in. Grinding speed, depth of cut, feed rate, and wheel properties such as abrasive material and abrasive grain size, are the dominant parameters for the spherical grinding process, as shown in Fig. 1. The optimal spherical grinding parameters for the injection mold steel have not yet been investigated based in the literature.Fig.1. Schematic diagram of the spherical grinding process In recent years, some research has been carried out in determining the optimal parameters of the ball burnishing process (Fig. 2). For instance, it has been found that plastic deformation on the workpiece surface can be reduced by using a tungsten carbide ball or a roller, thus improving the surface roughness, surface hardness, and fatigue resistance. The burnishing process is accomplished by machining centers and lathes. The main burnishing parameters having significant effects on the surface roughness are ball or roller material, burnishing force, feed rate, burnishing speed, lubrication, and number of burnishing passes, among others. The optimal surface burnishing parameters for the plastic injection mold steel PDS5 were a combination of grease lubricant, the tungsten carbide ball, a burnishing speed of 200 mm/min, a burnishing force of 300 N, and a feed of 40 μm. The depth of penetration of the burnished surface using the optimal ballburnishing parameters was about 2.5 microns. The improvement of the surface roughness through burnishing process generally ranged between 40% and 90%.Fig. 2. Schematic diagram of the ball-burnishing process The aim of this study was to develop spherical grinding and ball burnishing surface finish processes of a freeform surface plastic injection mold on a machining center. The flowchart of automated surface finish using spherical grinding and ball burnishing processes is shown in Fig. 3. We began by designing and manufacturing the spherical grinding tool and its alignment device for use on a machining center. The optimal surface spherical grinding parameters were determined by utilizing a Taguchi’s orthogonal array method. Four factors and three corresponding levels were then chosen for the Taguchi’s L18 matrix experiment. The optimal mounted spheri cal grinding parameters for surface grinding were then applied to the surface finish of a freeform surface carrier. To improve the surface roughness, the ground surface was further burnished, using the optimal ball burnishing parameters.Fig. 3. Flow chart of automated surface finish using spherical grinding and ballburnishing processes2 Design of the spherical grinding tool and its alignment deviceTo carry out the possible spherical grinding process of a freeform surface, the center of the ball grinder should coincide with the z-axis of the machining center. The mounted spherical grinding tool and its adjustment device was designed, as shown in Fig. 4. The electric grinder was mounted in a tool holder with two adjustable pivot screws. The center of the grinder ball was well aligned with the help of the conic groove of the alignment components. Having aligned the grinder ball, two adjustable pivot screws were tightened; after which, the alignment components could be removed. The deviation between the center coordinates of the ball grinder and that of the shank was about 5 μm, which was measured by a CNC coordinate measuring machine. The forceinduced by the vibration of the machine bed is absorbed by a helical spring. The manufactured spherical grinding tool and ball-burnishing tool were mounted, as shown in Fig. 5. The spindle was locked for both the spherical grinding process and the ball burnishing process by a spindle-locking mechanism.Fig.4. Schematic illustration of the spherical grinding tool and its adjustment deviceFig.5. (a) Photo of the spherical grinding tool (b) Photo of the ball burnishing tool3 Planning of the matrix experiment3.1 Configuration of Taguchi’s orthogonal arrayThe effects of several parameters can be determined efficiently by conducting matrix experiments using Taguchi’s orthogonal array. To match the aforementioned spherical grinding parameters, the abrasive material of the grinder ball (with the diameter of 10 mm), the feed rate, the depth of grinding, and the revolution of the electric grinder were selected as the four experimental factors (parameters) and designated as factor A to D (see Table 1) in this research. Three levels (settings) for each factor were configured to cover the range of interest, and were identified by the digits 1, 2, and 3. Three types of abrasive materials, namely silicon carbide (SiC), white aluminum oxide (Al2O3, WA), and pink aluminum oxide (Al2O3, PA), were selected and studied. Three numerical values of each factor were determined based on the pre-study results. The L18 orthogonal array was selected to conduct the matrix experiment for four 3-level factors of the spherical grinding process.Table1. The experimental factors and their levels3.2 Definition of the data analysisEngineering design problems can be divided into smaller-the better types, nominal-the-best types, larger-the-better types, signed-target types, among others [8]. The signal-to-noise (S/N) ratio is used as the objective function for optimizing a product or process design. The surface roughness value of the ground surface via an adequate combination of grinding parameters should be smaller than that of the original surface. Consequently, the spherical grinding process is an example of a smaller-the-better type problem. The S/N ratio, η, is defined by the followingequation:η =−10 log10(mean square quality characteristic)=−10 log10⎥⎦⎤⎢⎣⎡∑=n i i y n 121where:yi : observations of the quality characteristic under different noise conditions n : number of experimentAfter the S/N ratio from the experimental data of each L18 orthogonal array is calculated, the main effect of each factor was determined by using an analysis of variance (ANOVA) technique and an F-ratio test. The optimization strategy of the smaller-the better problem is to maximize η, as defined by Eq. 1. Levels that maximize η will be selected for the factors that have a significant effect on η. The optimal conditions for spherical grinding can then be determined.4 Experimental work and resultsThe material used in this study was PDS5 tool steel (equivalent to AISI P20), which is commonly used for the molds of large plastic injection products in the field of automobile components and domestic appliances. The hardness of this material is about HRC33 (HS46). One specific advantage of this material is that after machining, the mold can be directly used for further finishing processes without heat treatment due to its special pre-treatment. The specimens were designed and manufactured so that they could be mounted on a dynamometer to measure the reaction force. The PDS5 specimen was roughly machined and then mounted on the dynamometer to carry out the fine milling on a three-axis machining center made by Yang-Iron Company (type MV-3A), equipped with a FUNUC Company NC-controller (type 0M). The pre-machined surface roughness was measured, using Hommelwerke T4000 equipment, to be about 1.6 μm. Figure 6 shows the experimental set-up of the spherical grinding process. A MP10 touch-trigger probe made by the Renishaw Company was also integrated with the machining center tool magazine to measure and determine the coordinated origin of the specimen to be ground. The NC codes needed for the ball-burnishing path were generated by PowerMILL CAM software. These codes can be transmitted to the CNC controller of the machining center via RS232 serial interface.Fig.6. Experimental set-up to determine the optimal spherical grinding parameters Table 2 summarizes the measured ground surface roughness alue R a and the calculated S/N ratio of each L18 orthogonal array sing Eq. 1, after having executed the 18 matrix experiments.The average S/N ratio for each level of the four actors is shown graphically in Fig. 7.Fig.7. Plots of control factor effectsThe goal in the spherical grinding process is to minimize the surface roughness value of the ground specimen by determining the optimal level of each factor. Since −log is a monotone decreasing function, we should maximize the S/N ratio. Consequently, we can determine the optimal level for each factor as being the level that has the highest value of η. Therefore, based on the matrix experiment, the optimal abrasive material was pink aluminum oxide; the optimal feed was 50 mm/min; the optimal depth of grinding was 20 μm; and the optimal revolution was 18 000 rpm, as shown in Table 3.The optimal parameters for surface spherical grinding obtained from the Taguchi’s matrix experiments were applied to the surface finish of the freeform surface mold insert to evaluate the surface roughness improvement. A perfume bottle was selected as the tested carrier. The CNCmachining of the mold insert for the tested object was simulated with Power MILL CAM software. After fine milling, the mold insert was further ground with the optimal spherical grinding parameters obtained from the Taguchi’s matrix experiment. Shortly afterwards, the ground surface was burnished with the optimal ball burnishing parameters to further improve the surface roughness of the tested object (see Fig. 8). The surface roughness of the mold insert was measured with Hommelwerke T4000 equipment. The average surface roughness value R a on a fine-milled surface of the mold insert was 2.15 μm on average; that on the ground surface was 0.45 μm on average; and that on burnished surface was 0.07 μm on average. The surface roughness improvement of the tested object on ground surface was about (2.15−0.45)/2.15 = 79.1%, and that on the burnished surface was about (2.15−0.07)/2.15 = 96.7%.Fig.8. Fine-milled, ground and burnished mold insert of a perfume bottle5 ConclusionIn this work, the optimal parameters of automated spherical grinding and ball-burnishing surface finishing processes in a freeform surface plastic injection mold were developed successfully on a machining center. The mounted spherical grinding tool (and its alignment components) was designed and manufactured. The optimal spherical grinding parameters for surface grinding were determined by conducting a Taguchi L18 matrix experiments. The optimal spherical grinding parameters for the plastic injection mold steel PDS5 were the combination of the abrasive material of pink aluminum oxide (Al2O3, PA), a feed of 50 mm/min, a depth of grinding 20 μm, and a revolution of 18 000 rpm. The surface roug hness R a of the specimen can beimproved from about 1.6 μm to 0.35 μm by using the optimal spherical grinding conditions for surface grinding. By applying the optimal surface grinding and burnishing parameters to the surface finish of the freeform surface mold insert, the surface roughness improvements were measured to be ground surface was about 79.1% in terms of ground surfaces, and about 96.7% in terms of burnished surfaces.中文译文基于注塑模具钢研磨和抛光工序的自动化表面处理摘要这篇文章研究了注塑模具钢自动研磨与球面抛光加工工序的可能性,它可以在数控加工中心完成注塑模具钢PDS5的塑性曲面。
塑胶模具抛光的流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 设计与制造模具根据产品的需求和设计要求,制造出塑胶模具。
确保模具的结构合理、精度高,以满足后续抛光的要求。
五轴数铣中心下注塑模具自动抛光过程材料加工技术杂志LURPA, ENS Cachan, 61 av du pdt Wilson, 94230 Cachan, France christophe.tournier@lurpa.ens-cachan.fr, Tel : 33 147 402 996, Fax : 33 147 402 211【摘要】当表面粗糙度很关键, 或生产透明的成型零件要求镜面效果时, 塑料注射模制造就要求抛光。
这样的抛光主要由分包商公司的技术工人手动地完成。
在本论文中,我们提出一种自动抛光技术, 在5轴数控铣削加工中心自动抛光,使模具生产从加工到抛光都使用同样的工具,以节约成本。
我们还研发了一种特殊的算法来计算5轴铣刀在自由型腔上的位置以模仿工人的技术。
这一切计算都基于填充曲线和摆线曲线。
被动刀具和装置通过位移与来自力传感器的力之间的校准保证抛光力。
合规的刀具有助于成型零件在五轴刀具运动中避免运动学误差效应。
就模具表面粗糙度的质量和执行的简单性而言,这个方法的有效性通过一个旋转式发动机和摆动升降台在五轴加工中心中试验来展现出来。
【关键词】自动抛光5轴加工中心镜面效果表面粗糙度希尔伯特曲线摆线曲线几何参数C E (X E, Y E, Z E) 刀具起始点(u, v) 参数空间坐标的摆线参数曲线摆线曲线参数s曲线横坐标C(s) 导线参数方程P(s) 轨迹参数方程n (s) 法向量p 轨迹线的步长(步轨迹)D tr 轨迹直径A 轨迹线振幅Step 轨迹线两个循环间的步长工艺参数D 刀具直径D eff抛光刀具的有效直径E 抛光条振幅e 刀具压缩产生的位移θ刀具轴的倾斜角u(i,j,k) 刀具坐标系f 导线切向量Cc 摆切线加工参数N 主轴转速Vc 切削速度V f给进速度F z 给进量a p 切削厚度a t加工点T 运转时间表面粗糙度参数Ra 表面算术平均差(2D)Sa 表面高度平均差(3D)Sq 表面均方根差Ssk 偏态分布幅值Sku 偏态分布峰值【简介】高速加工(HSM)的发展大大改善了塑料注射模和模具制造商。
特别是在大多数情况下,HSM取代了电火花加工,使模具生产循环周期时间减少了。
尽管有了这样的发展,HSM还是不能够省掉抛光这一道程序。
在本文中,我们讨论表面的高质量精加工和镜面效果的关系。
这就意味着成型零件必须绝对光滑,没有条纹反射。
例如,为了使塑料部件十分平滑透明,塑料注射模型腔的质量必须要高。
从经济学的角度来说,抛光是一道耗时长又烦人的工序,要求丰富的经验。
就价钱和模具的停工期而言,抛光的价钱很昂贵,这也正好促进了自动抛光的发展。
我们的目标是从切削加工到抛光都用同样的生产加工工具,以降低成本。
因此,本文提出了在五轴机床上进行自动抛光的方法。
相关的资料也提供了各种自动抛光实验。
这些实验中的抛光一般由拟人机器人来完成,使用拟人机器人来进行抛光主要有两个原因。
第一,拟人机器人的轴数使其能够轻而易举地进入复杂模型的任何地方。
第二,拟人机器人能够装各种各样的刀具,尤其是带有抛光力控制机制的主轴。
资料中还有关于用特制的刀具来控制抛光力,在三轴或五轴数控铣床上以及在并联机器人上进行了自动抛光的研究[2]。
抛光力在自动抛光的过程中确实是一个重要的参数。
磨损速率随着抛光压力的增大而变快。
但是正如上文[3]中提到的接触压力不仅取决于抛光力,还与成型零件的几何变量有关。
在粗抛光的铣削中,适当的抛光力可以去掉残留在成型零件上的尖头或条纹。
然而,为了避免过度抛光,接触压力必须尽可能不变,遵循极限公差。
因而文献资料的很多作者都选择了让抛光力进行动态管理的磨料系统。
在[5]中, Nagata et al.一个抗阻模型沿着力控制的方向来调节成型零件与砂光工具之间的接触力。
在[6]中,Ryuh et al.开发了一个顺从的工具,用一个气压缸为工件表面和成型零件提供恒定的压力。
像这样的被动机制也可以用在[7],接触力来自于弹簧的压缩力。
为了完成自动抛光,就要使用经过改编的刀具轨迹。
根据[8],为了使模具表面都抛光,减少波动误差,抛光路径应该是多个方向的,而不是单一方向的,而且多向抛光路径与人工抛光的路径差不多。
要是我们观察手工抛光,就会注意到他们会根据不同的样品模式沿着原来的抛光路径返回去再抛光。
例如,摆线抛光路径,(或者摆线编制路径)[8](图一)。
因此,这样的轨迹路径有利于达到零件所要求的质量。
比如,一些论文用分形轨迹,如:波亚诺轨迹分形[9],这是一个空间填充曲线的典型例子,而不是沿着平面彻底抛光[10]。
Figure 1(图1) – Manual polishing patterns(人工抛光模式)相关的文件资料表明,用一个带被动工具的五轴加工机床来进行抛光难度不大。
本文的目的是表明用五轴加工机床进行自动抛光的可行性,并提出一些抛光策略。
在第一部分中,我们展示了在五轴高速加工中心怎样进行自动抛光。
我们特别介绍了实验中所用的刀具的灵活性和顺从性。
另外,要特别注意刀具的位移与产生的抛光力之间的相互关系。
五轴自动抛光一旦被证明可行,我们发展的不同的专用抛光战略在第二部分有详细介绍。
这些战略大部分来自于宝贵的实践经验,至于分形刀具轨迹则来自于自动化抛光或是代表手动抛光的摆线编织路径。
在第三部分,这个方法的有效性可以通过在成型零件表面进行各种测试来证实。
所有的工件铣削、抛光都是在五轴Mikron UCP710铣削加工中心完成。
在文献资料中,抛光效果是通过求算术平均粗糙度Ra[2]来计算得。
然而,因为这是一个二维参数,所以这种计算标准不能够正确反映出三维抛光的表面质量。
因此,我们建议用三维参数来计算得到抛光面的抛光质量。
这一点将在最后一部分讨论,本论文的最后一部分还拿自动抛光的表面粗糙度和人工抛光的进行比较,这一点在现有的文献资料中几乎没有提到过。
三维表面粗糙度的测量是用非接触式的测量系统来完成。
2实验步骤2.1刀具的特点我们在上文中提过,我的目的是开发一种简单实用的自动抛光系统。
因此,自动抛光中所用的刀具与人工抛光用的刀具是一样的。
抛光可分为粗抛和精抛。
粗抛是通过一个安装在适合的支架上的砂盘来完成。
磨料粒度的大小根据欧洲磨料生产者联合会的标准(FEPA)而定,所使用的支架是个用弹性材料制作的可变形的零件,固定在主轴的钢轴上。
因此,我们涉及到一个被动式工具,因而没有力反馈控制,但是有一个定位反馈控制。
我们研究了砂盘支架的偏转度和施加在成型零件上的抛光力之间的关系。
我们把Kistler9011A石英力传感器安装在一个特制的工件固定器上,来建立偏转度和抛光力之间的关系。
把Kistler9011A石英力传感器连接到Kistler5015增压表上,而增压表则通过一个数据收集装置——威尼尔采集器保存数据,并连接到电脑上。
实验系统如图二所示。
此外,所用的传感器是一个动态传感器,因而施力点要随着时间改变,不然就会产生测量偏离。
为了使施力点能够随着时间移改变,刀具的运动就要是呈三角形的。
Figure 2 – Experimental set-up(实验设备装置)为了保证微型芯片在抛光过程中能撤出来,同时保证零件与刀具接触时磨损速度不为0,抛光面的法向量为n,并且n与给进方向f垂直,使刀具轴u向法向量n倾斜,倾斜角ө如图3所示:Figure 3 – Tool axis tilting(刀具轴倾斜图)抛光分别以5°,10°,15°的倾斜角(刀具轴与给进方向表面的法向量之间的倾斜角)进行了实验,刀具偏差与抛光力之间的相互关系如图4所示:Figure 4 – Polishing forces vs displacement(抛光力vs位移)当刀具偏转角度过大时,砂盘就分开了,所以图4中的绿色曲线中断了。
在这个配置中,倾斜角太小,砂盘支架的主体因为向工件靠近并与之接触,更加坚硬了,这使砂盘更加分开了。
当倾斜角在10°~15°之间时,刀具偏转更有价值,抛光力VS位移的曲线一直延伸。
然而,倾斜角小的装置,刀具运动得更快,因为五轴机床的旋转轴转得相对慢了。
[11].另外,从图中可知,考虑到程序化给进速率,余摆刀具路径就需要动态机床。
[12]当倾斜角小时五轴装置和抛光时间就比较重要了。
另外,刀具的灵活性则有助于减少或避免五轴的运动误差[13]。
事实上,因为在两个连续的刀具位置之间刀具轴定向推进,刀具和工件可能会相互阻碍。
因此,砂盘支架的挠曲度可以避免模具表面变形。
根据普勒斯特定理,在抛光中,材料切削率h与平均接触压力P 及相对于工件的刀具速度V成正比:h=KpPV在式子中,Kp是一个常数(m²·s/N ),并且包含了所有的其他的参数(零件材料、磨料、润滑性能等)。
因此,为了达到适合的接触压力,必须提高刀具的挠曲度(偏转度),同时不断提高剪切应力,分开砂轮。
从运动学的角度分析,旋转轴运动慢,抛光时间就会进减少。
所以我们必须要一个相对低的倾斜角(5~10度)和一个相对高的刀具挠曲度(偏转)来保证材料去除速率。
2.2 设置五轴抛光刀具路径为了生成刀具路径,在五轴铣削中所描绘的经典刀具路径是使用一个平头铣刀产生的。
这样就能确定沿着刀具路径的刀具极端点C E 和刀具轴坐标系u(I,j,k)的方向。
至于抛光策略,我们使用摆线刀具路径是为了模仿手工操作使主轴运转。
为了避免工件表面上有刀痕或者具体的图案,我们选择在分形曲线中生成刀具路径,多向式均匀抛光。
而且,我们还特别使用了波亚诺曲线中的一个特例——希尔伯特曲线。
在加工中使用这些曲线的优点是,它们所生成的路径能够覆盖工件的整个表面,均匀抛光[15]。
希尔伯特曲线作为摆线曲线的导线,接下来我们将描述一下希尔伯特曲线,然后再检查摆线曲线。
2.2.1希尔伯特曲线的定义运用分形曲线有两个好处。
第一,刀具路径不用沿着具体的方向来确保均匀抛光。
第二,能够与刀具路径的编程连接起来。
事实上,刀具路径可以在区间[0, 1]²范围内,通过抛光面的参数空间u,v计算出来。
希尔伯特曲线也被称为填充曲线,在参数空间中[16]覆盖一整单位正方形,所以希尔伯特曲线能够填充整个三维表面,使工件表面都均匀地抛光。
希尔伯特曲线可以用递推算法来确定,n阶曲线如下所示:如果n = 0 :x0 = 0y0 = 0 (3)否则:x n = 0.5[ −0.5 + y n−1 −0.5 + x n−1 0.5 + x n−1 0.5 − y n−1 ]y n = 0.5[ −0.5 + x n−1 0.5 + y n−1 0.5 + y n−1 −0.5 − x n−1 ] (4)接着很容易就可以算出一阶、二阶、三阶,最后得到希尔伯特曲线,如图5所示:Figure 5 –Hilbert’s curves (first, second and third order curve)希尔伯特曲线(一阶,二阶,三阶曲线)希尔伯特曲线是摆线刀具路径的导线,为了保持沿着希尔伯特曲线相切的连续性,我们给抛光分形的角嵌边。