状态观测器的设计
- 格式:ppt
- 大小:894.00 KB
- 文档页数:25
实验五 状态观测器设计一、实验目的:(1) 理解观测器在自动控制设计中的作用(2) 理解观测器的极点设置(3) 会设计实用的状态观测器二、实验原理:如果控制系统采用极点配置的方法来设计,就必须要得到系统的各个状态,然后才能状态反馈进行极点配置。
然而,大多数被控系统的状态是不能直接得到的,怎么办?于是提出了利用被控系统的输入量和输出量重构原系统的状态,这样原系统的状态就能被等价取出,从而进行状态反馈,达到改善系统的目的。
另外,状态观测器可以用来监测被控系统的各个参量。
观测器的设计线路不是唯一的,本实验采用较实用的设计。
给一个被控二阶系统,其开环传递函数是12(1)(1)K T s T s ++ ,12 K K K = 设被控系统状态方程X=AX+BuY=CX构造开环观测器, X、 Y 为状态向量和输出向量估值 X=AX+Bu Y=CX由于初态不同,估值 X状态不能替代被控系统状态X ,为了使两者初态跟随,采用输出误差反馈调节,即加入 H(Y-Y),即构造闭环观测器,闭环观测器对重构造的参数误差也有收敛作用。
X=AX+Bu+H(Y-Y)Y=CX也可写成 X=(A-HC)X+Bu+HY Y=CX只要(A-HC )的特征根具有负实部,状态向量误差就按指数规律衰减,且极点可任意配置,一般地,(A-HC )的收敛速度要比被控系统的响应速度要快。
工程上,取小于被控系统最小时间的3至5倍,若响应太快,H 就要很大,容易产生噪声干扰。
实验采用X=AX+Bu+H(Y-Y)结构,即输出误差反馈,而不是输出反馈形式。
由图可以推导: 11112222[()]1[()]1K x u Y y g T s K x u Y y g T s =+-+=+-+所以: 111111112222122121 ()1 ()K g K x x u Y y T T T K g K x x x Y y T T T =-++-=-+- 比较: X=Ax+Bu+H(Y-Y)Y=Cx可以得到:[]1111111222221210 , B= , C=01,10g K K T T g T A H g K g K T T T ⎡⎤⎡⎤-⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥==≠⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦-⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦选择观测器极点为1λ,2λ即有:12()()s s λλ++故:特征式 d e t ()S I A H C-+=12()()s s λλ++ 取:1212min 3520,5,2,0.5,0.2K K T T t λ-======,求解12g g ⎡⎤⎢⎥⎣⎦三、实验设备:THBDC-1实验平台THBDC-1虚拟示波器Matlab/Simulink 软件四、实验步骤:按要求设计状态观测器(一)在Matlab环境下实现对象的实时控制1、将ZhuangTai_model.mdl复制到E:\MA TLAB6p5\work子目录下,运行matlab,打开ZhuangTai_model.mdl注:‘实际对象’模块对应外部的实际被控对象,在simulink下它代表计算机与外部的接口:●DA1对应实验面板上的DA1,代表对象输出,输出通过数据卡传送给计算机;●AD1对应实验面板上的AD1,代表控制信号,计算机通过数据卡将控制信号送给实际对象;2、如图,在Simulink环境下搭建带状态观测器的系统实时控制方框图3、如图正确接线,并判断每一模块都是正常的,包括接好测试仪器、设置参数、初始化各个设备和模块;接成开环观测器,双击误差开关,使开关接地。
实验四 状态观测器的设计一、实验目的1. 了解和掌握状态观测器的基本特点。
2. 设计状态完全可观测器。
二、实验要求设计一个状态观测器。
三、实验设备1. 计算机1台2. MATLAB6.X 软件1套四、实验原理说明设系统的模型如式(3-1)示。
p m n R y R u R x D Cx y Bu Ax x ∈∈∈⎩⎨⎧+=+=& (3-1)系统状态观测器包括全维观测器和降维观测器。
设计全维状态观测器的条件是系统状态完全能观。
全维状态观测器的方程为:Bu y K z C K A z z z ++-=)(& (3-2)五、实验步骤已知系数阵A 、B 、和C 阵分别如式(3-4)示,设计全维状态观测器,要求状态观测器的极点为[-1 -2 -3]上⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=234100010A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=631B []001=C (3-4) 设计全维状态观测器,要求状态观测器的极点为[-1 -2 -3]。
对系统式(3.4)所示系统,用MATLAB 编程求状态观测器的增益阵K z =[k1 k2 k3]T程序:%实验4A=[0 1 0;0 0 1;-4 -3 -2];B=[1;3;-6];C=[1 0 0];D=[0];[num,den]=ss2tf(A,B,C,D,1); %求出原系统特征多相式denf=[-1 -2 -3]; %希望的极点的特征多相式k1=den(:,1)-denf(:,1)k2=den(:,2)-denf(:,2) %计算k2=d2-a2k3=den(:,3)-denf(:,3) %计算k3=d3-a3Kz=[k1 k2 k3]'运行结果:k1 =2k2 =4.0000k3 =6.0000Kz =2.00004.00006.0000。
现代控制实验状态反馈器和状态观测器的设计现代控制实验中,状态反馈器和状态观测器是设计系统的重要组成部分。
状态反馈器通过测量系统的状态变量,并利用反馈回路将状态变量与控制输入进行耦合,以优化系统的性能指标。
状态观测器则根据系统的输出信息,估计系统的状态变量,以便实时监测系统状态。
本文将分别介绍状态反馈器和状态观测器的设计原理和方法。
一、状态反馈器的设计:状态反馈器的设计目标是通过调整反馈增益矩阵,使得系统的状态变量在给定的性能要求下,达到所需的一组期望值。
其设计步骤如下:1.系统建模:通过对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。
通常表示为:ẋ=Ax+Buy=Cx+Du其中,x为系统状态向量,u为控制输入向量,y为系统输出向量,A、B、C、D为系统的状态矩阵。
2.控制器设计:根据系统的动态性能要求,选择一个适当的闭环极点位置,并计算出一个合适的增益矩阵。
常用的设计方法有极点配置法、最优控制法等。
3.状态反馈器设计:根据控制器设计得到的增益矩阵,利用反馈回路将状态变量与控制输入进行耦合。
状态反馈器的输出为:u=-Kx其中,K为状态反馈增益矩阵。
4.性能评估与调整:通过仿真或实验,评估系统的性能表现,并根据需要对状态反馈器的增益矩阵进行调整。
二、状态观测器的设计:状态观测器的设计目标是根据系统的输出信息,通过一个状态估计器,实时估计系统的状态变量。
其设计步骤如下:1.系统建模:同样地,对被控对象进行数学建模,得到描述系统动态行为的状态空间表达式。
2.观测器设计:根据系统的动态性能要求,选择一个合适的观测器极点位置,以及一个合适的观测器增益矩阵。
常用的设计方法有极点配置法、最优观测器法等。
3.状态估计:根据观测器设计得到的增益矩阵,通过观测器估计系统的状态变量。
状态观测器的输出为:x^=L(y-Cx^)其中,L为观测器增益矩阵,x^为状态估计向量。
4.性能评估与调整:通过仿真或实验,评估系统的状态估计精度,并根据需要对观测器的增益矩阵进行调整。
现代控制实验--状态反馈器和状态观测器的设计-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN状态反馈器和状态观测器的设计一、实验设备PC 计算机,MATLAB 软件,控制理论实验台,示波器二、实验目的(1)学习闭环系统极点配置定理及算法,学习全维状态观测器设计法;(2)掌握用极点配置的方法(3)掌握状态观测器设计方法(4)学会使用MATLAB工具进行初步的控制系统设计三、实验原理及相关知识(1)设系统的模型如式所示若系统可控,则必可用状态反馈的方法进行极点配置来改变系统性能。
引入状态反馈后系统模型如下式所示:(2)所给系统可观,则系统存在状态观测器四、实验内容(1)某系统状态方程如下10100134326x x u •⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦[]100y x =理想闭环系统的极点为[]123---.(1)采用 Ackermann 公式计算法进行闭环系统极点配置;代码:A=[0 1 0;0 0 1;-4 -3 -2];B=[1; 3; -6];P=[-1 -2 -3];K=acker(A,B,P)Ac=A-B*Keig(Ac)(2)采用调用 place 函数法进行闭环系统极点配置;代码:A=[0 1 0;0 0 1;-4 -3 -2];B=[1;3;-6];eig(A)'P=[-1 -2 -3];K=place(A,B,P)eig(A-B*K)'(3)设计全维状态观测器,要求状态观测器的极点为[]---123代码:a=[0 1 0;0 0 1;-4 -3 -2];b=[1;3;-6];c=[1 0 0];p=[-1 -2 -3];a1=a';b1=c';c1=b';K=acker(a1,b1,p);h=(K)'ahc=a-h*c(2)已知系统状态方程为:10100134326x x u •⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦[]100y x =(1)求状态反馈增益阵K ,使反馈后闭环特征值为[-1 -2 -3];代码:A=[0 1 0;0 0 1;4 -3 -2];b=[1;3;-6];p=[-1 -2 -3];k=acker(A,b,p)A-b*keig(A-b*k)(2)检验引入状态反馈后的特征值与希望极点是否一致。
最优控制问题的状态观测器设计最优控制问题是指在某个系统中,通过对输入信号进行调节以使得某个性能指标达到最优的控制方法。
在实际应用中,由于受限于物理条件等因素,我们往往不能直接获取系统的全部状态信息,而只能通过一部分可观测的状态信息来进行控制。
而状态观测器则是一种用来估计系统未知状态的辅助装置,它基于已知的输入和观测值,通过数学模型计算得到对系统状态的估计值,并将其用于最优控制问题的解决。
在最优控制问题中,我们通常通过构建性能指标,使用最优化方法来求解控制输入的优化变量。
然而,这些优化方法通常需要精确的系统状态信息作为输入才能得到准确的优化结果。
而实际中,往往无法直接测量到系统的全部状态变量。
因此,为了解决这个问题,我们需要设计一种状态观测器来估计系统的未知状态,以便在最优控制问题中得到准确的结果。
状态观测器设计的目标是通过已知的输入信号和可观测的输出信号来估计系统的未知状态,使得估计值与实际值尽可能接近。
常见的状态观测器设计方法有卡尔曼滤波、扩展卡尔曼滤波和无迹卡尔曼滤波等。
其中,卡尔曼滤波是最常见的一种方法,它基于线性系统和高斯噪声的假设,能够较好地处理线性系统的状态估计问题。
卡尔曼滤波的基本原理是利用系统的状态方程和观测方程来建立一个状态估计模型。
状态方程描述了系统状态的演变规律,观测方程描述了观测量与系统状态之间的关系。
通过不断迭代计算,卡尔曼滤波器可以根据当前的观测值和上一时刻的状态估计值,得到当前时刻的最优状态估计值。
卡尔曼滤波器的设计包括两个关键步骤:预测步和更新步。
在预测步中,我们利用上一时刻的状态估计值和系统的状态方程来预测当前时刻的状态估计值。
在更新步中,我们将当前时刻的观测值与预测值进行比较,通过观测方程来修正状态估计值,从而得到更准确的估计结果。
通过不断迭代这两个步骤,我们可以逐渐趋近于系统的真实状态。
除了卡尔曼滤波器,还有其他一些高级的状态观测器设计方法,如无迹卡尔曼滤波器和扩展卡尔曼滤波器。
Chapter6 状态观测器设计在工程实际中能量测的信号只是系统的输出y ,而不是系统的内部状态。
有的状态变量是物理量,有的则不是物理量,因而状态变量未必都可以测量得到。
当状态不能全部量测时,我们就无法获得系统的状态信息,因而状态反馈在工程上就不能实现。
1964年,Luenberg er G D ⋅⋅(龙伯格)提出的“状态观测器”理论成功的解决了系统状态信息的获取问题。
Luenberg er G D ⋅⋅认为,当已知系统输入为u ,系统的输出为y ,他们必然与其内部状态x 有联系,也就是说我们应该能通过测量),(y u 对未知的状态量x 进行推论和估计。
“状态观测器”本质上是一个“状态估计器”(或称动态补偿器),其基本思路是利用容易量测的被控对象的输入u 和输出y 对状态进行估计(和推测)。
6.1 观测器设计考虑线性时不变系统Cx y Bu Ax x=+=,& (6-1) 基于(6-1)人为地构造一个观测器,观测器的输出为x ~,如果能满足 0)~(lim =-∞→x x t (6-2)则观测器的输出x ~可以作为内部状态)(t x 的估值,从而实现“状态重构-即重新构造“状态x ~”来作为“原状态x ”的估值。
观测器的输出x ~应该能由系统输入u 和系统输出y 综合而成(系统输入u 和系统输出y 在工程实际中容易检测到)。
∞→t 只是数学上的表述,实际工程中是很快的过程(<s 1)。
为了得到估计值x ~,一个很自然的想法是构造一个模拟系统 Bu x A x +=~~&,x C y ~~= (6-3) 用该模拟部件(6-3)去再现系统(6-1)。
因为模拟系统(6-3)是构造的,故x ~是可量测的信息,若以x ~作为x 的估值。
其估计误差为x x e -≡~,(6-3)减(6-1),满足方程 Ae e =& (6-4) 讨论:①若A 存在不具有负实部的特征值,Ae e=&将不会稳定,则当初始误差0)0(≠e ,即)0()0(~x x ≠时,有0)]()(~[lim ≠-∞→t x t x t ,这样x ~就不能作为x 的估计值,即Ae e =&不能作为一个观测器。
最优控制问题的状态观测器设计算法优化最优控制问题的状态观测器是一种用于估计系统状态的重要技术。
在控制系统中,有时无法直接测量系统的状态变量,而只能通过测量输出变量来推测系统状态。
因此,设计一个有效的状态观测器对于实现最优控制至关重要。
本文将探讨最优控制问题的状态观测器设计算法优化的相关内容。
简介最优控制问题在许多领域中都有重要应用,如工业控制、机器人控制、飞行器控制等。
最优控制的目标是找到一种控制策略,使得系统在给定约束条件下达到最佳性能。
为了实现最优控制,需要对系统状态进行准确估计,这就需要设计一个高效的状态观测器。
状态观测器的概念状态观测器是一种通过对系统输出变量进行测量来估计系统状态的设备。
它基于系统的数学模型和观测方程来对状态进行预测和修正。
由于存在测量误差和模型误差,状态观测器的设计通常是一个优化问题。
传统状态观测器设计算法传统的状态观测器设计算法包括Kalman滤波器和扩展Kalman滤波器。
Kalman滤波器是线性系统的最优观测器,能够有效地处理高斯噪声。
扩展Kalman滤波器是对非线性系统的扩展,通过线性化模型来处理非线性问题。
传统算法在一定程度上能够实现状态的准确估计,但在处理非线性问题时存在局限性。
基于粒子滤波的状态观测器设计算法为了解决传统算法在处理非线性问题时的局限性,研究者们提出了基于粒子滤波的状态观测器设计算法。
粒子滤波器是一种非参数滤波方法,通过使用一组粒子来估计系统状态。
它通过对系统状态进行随机采样和重采样来逼近真实分布,并通过粒子的权重对状态进行修正。
相比传统算法,粒子滤波器在处理非线性问题时更加灵活准确。
算法优化为了进一步优化状态观测器设计算法,可以考虑以下几点:1. 粒子数目的选择:粒子滤波器的性能与粒子数目直接相关。
增加粒子数目可以提高滤波器的精度,但会增加计算量。
因此,需要在满足精度要求的前提下选择合适的粒子数目。
2. 采样策略的改进:采样策略决定了粒子的生成方式。