2019-2020年高中物理人教必修二微专题讲义7.2 星体的追及相遇问题(原卷版)
- 格式:doc
- 大小:144.83 KB
- 文档页数:5
小专题2 星体的追及相遇类问题【知识清单】1.同一轨道平面内绕同一方向运行的运动天体,在两次相距最近的时间内,运行快的天体比运行慢的天体 :可表达为 、或2.同一轨道平面内绕同一方向运行的运动天体,在两次相距最远的时间内,运行快的天体比运行慢的天体 :可表达为 、或 。
从一次相距最近到一次相距最远的时间内,运行快的天体比运行慢的天体 :可表达为 、或 。
3.同一轨道平面内绕相反方向运行的运动天体,在相邻两次相距最远或相邻两次相距最近的时间内,两天体转过的圆心角 :可表达为 或 。
4.不在同一轨道平面内的卫星或行星,相距最近的时刻只能在特定的位置,两次相距最近的时刻只能是 ,且 。
5.两星体绕同一中心天体运行时,还可采用相对角速度的方法分析求解:以转动较慢的星体为参考系,转动较快的星体以相对角速度绕中心天体转动,其相对角速度21ωωω-=∆,转过相对角度θ∆时经历的时间为=∆t 。
【答案】1.多运行整数圈;N T t T t =∆-∆21;πωωN t t 221=∆-∆ 2.多运行整数圈;N T t T t =∆-∆21;πωωN t t 221=∆-∆;多运行半圈的奇数倍;2121+=∆-∆N T t T t ;πωω)12(21+=∆-∆N t t 3.之和为π2;πωω221=∆+∆t t ;121=∆+∆T t T t 4.两星各运行半圈的奇数倍或各运行整数圈;运行快的比慢的多运行整数圈 5.ωθ∆∆ 【考点题组】【题组一】同一平面内的同向运行1.太阳系中某行星A 运行的轨道半径为R ,周期为T ,但天文学家在观测中发现,其实际运行的轨道与圆轨道存在一些偏离,且每隔时间t 发生一次最大的偏离.形成这种现象的原因可能是A 外侧还存在着一颗未知行星B ,它对A 的万有引力引起A 行星轨道的偏离,假设其运动轨道与A 在同一平面内,且与A 的绕行方向相同,由此可推测未知行星日绕太阳运行的圆轨道半径为A T t t R-.B.32)(T t tTR - C.32)(t T t R - D.32)(t T t R - 【答案】A【解析】由题意知每经过时间t 行星A 比行星B 多运动一周:1=-BT tT t ,再由开普勒第三定律可知32)()(BB R RT T =,两式结合可得32)(T t t R R B -=,A 正确。
天体运动中的追及相遇问题信阳高中陈庆威2013.09.17在天体运动的问题中,我们常遇到一些这样的问题。
比如,A、B两物体都绕同一中心天体做圆周运动,某时刻A、B相距最近,问A、B下一次相距最近或最远需要多少时间,或“至少”需要多少时间等问题。
而对于此类问题的解决和我们在直线运动中同一轨道上的追及相遇问题在思维有上一些相似的地方,即必须找出各相关物理量间的关系,但它也有其自身特点。
根据万有引力提供向心力,即当天体速度增加或减少时,对应的圆周轨道就会发生相应的变化,所以天体不可能在同一轨道上实现真正意义上的追及或相遇。
天体运动的追及相遇问题中往往还因伴随着多解问题而变得更加复杂,成为同学们学习中的难点。
而解决此类问题的关键是就要找好角度、角速度和时间等物理量的关系。
一、追及问题【例1】如图1所示,有A、B两颗行星绕同一颗恒星M做圆周运动,旋转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则①经过多长时间,两行星再次相距最近?②经过多长时间,两行星第一次相距最远?解析:A、B两颗行星做匀速圆周运动,由万有引力提供向心力,因此T1<T2。
可见当A运动完一周时,B还没有达到一周,但是要它们的相距最近,只有A、B行星和恒星M的连线再次在一条直线上,且A、B在同侧,从角度上看,在相同时间内,A比B多转了2π;如果A 、B 在异侧,则它们相距最远,从角度上看,在相同时间内,A 比B 多转了π。
所以再次相距最近的时间t 1,由;第一次相距最远的时间t 2,由。
如果在问题中把“再次”或“第一次”这样的词去掉,那么就变成了多解性问题。
【例2】如图2,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动。
地球的轨道半径为R ,运转周期为T 。
地球和太阳中心的连线与地球和行星的连线的夹角叫地球对行星的观察视角(简称视角)。
已知该行星的最大视角为θ,当行星处于最大视角处时,是地球上天文爱好者观察该行星的最佳时期。
相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者匀速追匀减速2.速度大者追速度小者度大者追速度小者次相遇,则①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔO υA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
专题11 卫星的变轨问题和追及相遇问题一、卫星的变轨问题1.2018年5月21日5点28分,在我国西昌卫星发射中心,由中国航天科技集团有限公司抓总研制的嫦娥四号中继星“鹊桥”搭乘长征四号丙运载火箭升空。
卫星由火箭送入近地点约200公里、远地点约40万公里的地月转移轨道1。
在远地点40万公里处点火加速,由椭圆轨道变成高度为40万公里的圆轨道2,在此圆轨道上飞船运行周期等于月球公转周期。
下列判断正确的是( )A .卫星在轨道1的运行周期大于在轨道2的运行周期B .卫星在圆轨道2的P 点向心加速度小于轨道1上的P 点向心加速度C .卫星在此圆轨道2上运动的角速度等于月球公转运动的角速度D .卫星变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度 【答案】C【解析】A .由开普勒第三定律得33122212R R T T 轨道1的半长轴小于轨道2的半径,故卫星在轨道1的运行周期小于在轨道2的运行周期,A 错误;BD .根据牛顿第二定律,万有引力提供向心力,提供卫星的向心加速度,同一位置,万有引力一定,向心加速度相等,卫星变轨前通过椭圆轨道远地点时的加速度等于变轨后沿圆轨道运动的加速度BD 错误;C .圆轨道2上飞船运行周期等于月球公转周期,故卫星在此圆轨道2上运动的角速度等于月球公转运动的角速度,C 正确。
故选C 。
2.如图所示,“嫦娥一号”探月卫星进入月球轨道后,首先在椭圆轨道Ⅰ上运动,P 、Q 两点是轨道Ⅰ的近月点和远月点,Ⅰ是卫星绕月做圆周运动的轨道,轨道Ⅰ和Ⅰ在P 点相切,关于该探月卫星的运动,下列说法正确的是( )A .卫星在轨道Ⅰ上运动周期大于在轨道Ⅰ上运动的周期B .卫星由轨道Ⅰ进入轨道Ⅰ必须要在P 点加速C .卫星在轨道Ⅰ上运动时,P 点的速度小于Q 点的速度D .卫星在轨道Ⅰ上运动时,P 点的加速度小于Q 点的加速度 【答案】A【解析】A .根据开普勒第三定律可知,卫星在轨道Ⅰ上运动周期大于在轨道Ⅰ上运动的周期,故A 正确;B .卫星由轨道Ⅰ进入轨道Ⅰ必须要在P 点减速,做近心运动,故B 错误;C .根据开普勒第二定律,卫星在轨道Ⅰ上运动时,近地点P 点的速度大于远地点Q 点的速度,故C 错误;D .卫星在轨道Ⅰ上运动时,根据2MmG ma R ,P 点的加速度大于Q 点的加速度,故D 错误。
第七章 万有引力与宇宙航行
小专题2 星体的追及相遇类问题
【知识清单】
1.同一轨道平面内绕同一方向运行的运动天体,在两次相距最近的时间内,运行快的天体比运行慢的天体 :可表达为 、或
2.同一轨道平面内绕同一方向运行的运动天体,在两次相距最远的时间内,运行快的天体比运行慢的天体 :可表达为 、或 。
从一次相距最近到一次相距最远的时间内,运行快的天体比运行慢的天体 :可表达为 、或 。
3.同一轨道平面内绕相反方向运行的运动天体,在相邻两次相距最远或相邻两次相距最近的时间内,两天体转过的圆心角 :可表达为 或 。
4.不在同一轨道平面内的卫星或行星,相距最近的时刻只能在特定的位置,两次相距最近的时刻只能是 ,且 。
5.两星体绕同一中心天体运行时,还可采用相对角速度的方法分析求解:以转动较慢的星体为参考系,转动较快的星体以相对角速度绕中心天体转动,其相对角速度21ωωω-=∆,转过相对角度θ∆时经历的时间为=∆t 。
【考点题组】
【题组一】同一平面内的同向运行
1.太阳系中某行星A 运行的轨道半径为R ,周期为T ,但天文学家在观测中发现,其实际运行的轨道与圆轨道存在一些偏离,且每隔时间t 发生一次最大的偏离.形成这种现象的原因可能是A 外侧还存在着一颗未知行星B ,它对A 的万有引力引起A 行星轨道的偏离,假设其运动轨道与A 在同一平面内,且与A 的绕行方向相同,由此可推测未知行星日绕太阳运行的圆轨道半径为 A T t t R
-.B.32)
(T t tT R - C.32)(t T t R - D.32)(t T t R -
2.2019年将出现“火星合日”的天象。
“火星合日”是指火星、太阳、地球三者之间形成一条直线时,从地球的方位观察,火星位于太阳的正后方,火星被太阳完全遮蔽的现象,如图所示已知地球、火星绕太阳运行的方向相同,若把火星和地球绕太阳运行的轨道视为圆,火星绕太阳公转周期约等于地球公转周期的2倍,
由此可知
A .“火星合日”约每1年出现一次
B .“火星合日”约每2年出现一次
C .火星的公转半径约为地球公转半径的34倍
D .火星的公转半径约为地球公转半径的8倍
3.据路透社2019年4月24日报道,日前,美国“洞察号”火星探测器搭载的法国科研设备在火星上检测到了疑似地震的波动,或将证明火星仍是一颗活跃的星球。
这也是人类首次在另一颗星球上记录到地震震动。
假设火星和地球绕太阳的运动可以近似看作同一平面内同方向的匀速圆周运动,已知火星的轨道半径r 1=2.4×1011m ,地球的轨道半径r 2=1.5×1011m ,如图所示,从图示的火星与地球相距最近的时刻开始计时,请估算火星再次与地球相距最近需多长时间:( )
A.1.4年
B.4年
C.2.0年
D.1年
4.如图所示有A 、B 两个行星绕同一恒星O 做圆周运动,运转方向相同,A 行星的周期为T 1,B 行星的周期为T 2.在某一时刻两行星第一次相遇(即两行星相距最近)则( )
A.经过时间t=T 1+T 2两行星将第二次相遇
B.经过时间1
221T T T T t -=两行星将第二将相遇
C.经过时间221T T t +=
两行星第一次相距较远 D.经过时间)
(22121T T T T t +=
两行星第一次相距最远 5.(2014课标I ,19)(多选)(难)太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动,当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”。
据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日。
已知地球及各地外行星绕太阳运动的轨道半径如下表所示,则下列说法正确的是
A.各地
外行星
每年都
会出现冲日现象
B .在2015年内一定会出现木星冲日
C .天王星相邻两次冲日的时间间隔为土星的一半
D.地外行星中,海王星相邻两次冲日的时间间隔最短
6.人造卫星a 的圆形轨道离地面高度为h ,地球同步卫星b 离地面高度为H ,h<H ,两卫星共面且旋转方向相同.某时刻卫星a 恰好出现在赤道上某建筑物c 的正上方,设地球赤道半径为R ,地面重力加速度为g ,则
A . a 、b 线速度大小之比为
H R h R ++ B . a 、c 角速度之比为33
)h R R +(
C . b 、c 向心加速度大小之比R
H R + D .a 下一次通过c 正上方所需时间等于23
)(2gR h R t +=π
【题组二】其它情况
1.在地球周围现一平面内的两颗卫星A 和B ,绕地球转动的线速度分别为v 1、v 2,则两卫星由距离最近转至
距离最远时所需的时间最短的是(已知v 1>v 2,地球半径为R ,表面重力加速度为 g )( ) A.32312v v gR -π
B.32312v v R g -π
C.22212v v gR -π
D.2
12v v gR -π
2.人造卫星甲、乙分别绕地球做匀速圆周运动,卫星乙是地球同 步卫星,卫星甲、乙的轨道平面互相垂直,乙的轨道半径是甲轨道半径的倍,某时刻两卫星和地心在同一直线上,且 乙在甲的正上方(称为相遇),如图所示。
在这以后,甲运动8 周的时间内,它们相遇了
A.4次
B. 3次
C. 2次
D.1次
3.地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动.地球的轨道半径为R=1.50×1011m ,运转周期为T=3.16×107s .地球和太阳中心的连线与地球和行星的连线所夹的角叫地球对该行星的观察视角(简称视角).当行星处于最大视角处时,是地球上的天文爱好者观察该行星的最佳时期,如图甲或图乙所示,该行星的最大视角θ=1
4.5°.求
(1)该行星的轨道半径r 和运转周期T 1(sin14.5°=0.25,最终计算结果均保留两位有效数字)
(2)若已知地球和行星均为逆时针转动,以图甲和图乙为初始位置,分别经过多少时间能再次出现观测行星的最佳时期.(最终结果用T 、T 1、θ 来表示)
4.设地球的质量为M ,绕太阳做匀速圆周运动,有一质量为m 的飞船,由静止开始自P 点在恒力F 的作用下,沿PD 方向做匀加速直线运动.若一年后飞船在D 点掠过地球上空,且再过两个月又在Q 处掠过地球上
空,如图所示,根据以上条件,求地球与太阳间的万有引力的大小.(忽略飞船受地球和太阳的万有引力作用的影响)
5.从地球表面向火星发射火星探测器.设地球和火星都在同一平面上绕太阳做匀速圆周运动.火星轨道半径Rm为地球轨道半径R0的1.5倍.简单而又比较节省能量的发射过程可分为两步进行:第一步,在地球表面用火箭对探测器进行加速,使之获得足够的动能,成为一个绕地球运行的人造卫星;第二步,在适当时刻点燃与探测器连在一起的火箭发动机.在短时间内对探测器沿原方向加速,使其速度数值增加到适当值,使探测器沿半个椭圆轨道(该椭圆长轴两端分别与地球公转轨道及火星公转轨道相切)射到火星上.如图(a)所示.已知地球半径Re=
6.4×106m,重力加速度g=10m/s2.
(1)为使探测器成为绕地球运行的人造卫星,探测器在地面附近至少要获得多大的速度(不考虑地球自转).(2)求火星探测器的飞行时间为多少天(已知5=2.2,1年为365天).
(3)当探测器绕地球运行稳定后,在某年 3月 1 日零时测得探测器与火星之间的角度为60°,如图(b)所示.求应在何年何月何日点燃探测器上的火箭发动机方能使探测器恰好落在火星表面(时间计算仅需精确到天,已知5.1=1.2,1年为365天)。