煤矿井下槽波地震技术与装备
- 格式:pdf
- 大小:50.23 MB
- 文档页数:17
Mine Engineering 矿山工程, 2021, 9(2), 132-137Published Online April 2021 in Hans. /journal/mehttps:///10.12677/me.2021.92020槽波地震勘探法在煤层构造探测中的应用姜启严,吴荣新,周官群安徽理工大学地球与环境学院,安徽淮南收稿日期:2021年3月17日;录用日期:2021年4月18日;发布日期:2021年4月25日摘要在煤矿开采中,槽波地震勘探是探查工作面内隐伏构造及不良地质体的有效手段。
本文以淮北矿业集团童亭煤矿8173工作面为例,采用槽波反射和透视地震方法,通过对采集数据进行滤波、能量分析,得到槽波能量衰减图,确定了工作面内的不良地质构造,与后期钻探资料成果基本吻合,为该工作面的开采提供了地质依据。
关键词物探,槽波,煤层,地质构造Application of In-Seam Wave SeismicExploration Method in the Exploration ofCoal Seam StructureQiyan Jiang, Rongxin Wu, Guanqun ZhouSchool of Earth and Environment, Anhui University of Science and Technology, Huainan AnhuiReceived: Mar. 17th, 2021; accepted: Apr. 18th, 2021; published: Apr. 25th, 2021AbstractIn coal mining, in-seam wave seismic exploration is an effective means to detect hidden structures and bad geological bodies in working face. Tongting coal mine 8173 working face in Huaibei min-ing industry group as an example, uses the channel wave seismic methods, reflection and perspec-tive based on the collected data filtering, energy analysis, to get the channel wave energy attenua-姜启严等tion and determine the adverse geological structure in the face, and is anastomosed with the late drilling data, the basic work for the mining geological basis is provided below.KeywordsGeophysical Prospecting, Channel Wave, Coal Seam, Geological StructureThis work is licensed under the Creative Commons Attribution International License (CC BY 4.0)./licenses/by/4.0/1. 引言目前,我国经济迅速发展,对矿产资源的需求量越来越高,因此矿产资源的开发规模也越来越大[1]。
槽波地震勘探方法研究随着社会经济的快速发展,煤炭开发技术得到了很大进步。
在开采煤炭的过程中应该做好地震的勘探工作,做好地震的防护措施。
当前地震勘探技术有很多,其中槽波地震勘探方法受到大家的广泛关注。
这项技术主要是通过挖掘煤层时激发的地震波在传输的过程中,会形成一定的反射角度,经过多种反射角度的混合,就会在煤层中显现出槽波,进而工作人员能够判断出该区域的地质构造,文章主要阐述了这种方法的特点及具体的探测方法。
标签:槽波;特点;槽波地震勘探;方法1 槽波的特点槽波自身有很多的特点,其中最为突出的特点就是频散,也就是说频率的函数就是关于槽波的传播速度。
槽波存在着很多不同频率的波段,而且这些波段的传播速度是不同的,而且会因为距离的远近而发生变化,在传播的过程中会形成一个不断变化频率的长波队列。
在槽波传播的过程中频散会由于能量的不同导致传播速度发生改变,这种改变在实际观察的过程中会形成一个曲线。
频散通常会给地震勘探带来很多的问题,具体来说可以分为三个方面。
第一,频散会导致设备不能够精准的判断波段到达的时间,在地面上地质勘探分析设备上也存在着传播时间不均匀的情况,所以必须做好这方面的处理工作,当前主要是采用速度分析法来适应这种变化。
第二,不同类型的槽波会在传播的过程中出现重叠现象,而且这种重叠很难被分开。
第三,随着波段队列不断的分散,就会导致振幅不断的减弱。
通过图1我们可以观察到在同一频率的情况下,煤层的厚度和勒夫波频散成反比,也就是说煤层越厚,勒夫波频散的速度就越低。
在外面不了解煤层的厚度时,我们通常可以先探测一下煤层,如果发现煤层的厚度超过了一定量,那么我们就可以降低频率,如果我们发现煤层的厚度比较薄,我们就需要增加频率。
通过对槽波特点进行了解,我们能够更好地采取措施,尽量减少频散对地震勘探带来的问题,提高地震勘探的准确度和有效性。
图1 勒夫波频散与煤层厚度的变化关系槽波在煤层内部传播的过程中会有低速度、高频率的特征。
槽波地震仪正如前言所述,德国DMT公司研发的新一代防爆槽波地震仪Summit ⅡEx是世界上最先进的槽波地震仪,目前它已销往西班牙、波兰、英国、俄罗斯等欧洲产煤国,并在德国国内得到广泛应用。
我国义马煤业集团和河北煤炭研究院、龙煤集团、中国矿业大学定购了新一代防爆槽波地震仪Summit Ⅱ Ex。
在工作面实测验收结果表明,仪器性能先进、轻便、操作简单,工作非常稳定,观测结果理想。
我国定购的防爆槽波地震仪Summit Ⅱ Ex均已圆满通过“安标国家矿用产品安全标志中心”和“煤炭工业电气防爆检验站”的安全防爆检测,并已获得“进口矿用产品安全标志证书”。
1.Summit Ⅱ Ex 防爆槽波地震仪包括:中心站(主机)数据采集站中继站双分量水平检波器触发单元触发脉冲单元爆炸机(可选用国内矿用爆炸机)数据传输电缆充电器槽波数据处理和解释软件包现简述如下:1)中心站(主机)外壳和键盘均采用不锈钢金属材料,专为井下勘探设计,具有极高安全系数和防爆功能。
15英寸LED背光彩色显示器,四组镍镉防爆可充电电池。
主机控制整个仪器操作,数据采集、管理和实时显示观测结果。
重22Kg。
配置四组防爆可充电电池。
2)数据采集站采集站外壳为导电塑料材质,具极高防爆功能,有2个状态指示灯LED指示采集站工作状态,重2.7Kg。
3)中继站中继站外壳以导电塑料材料。
每250m长测线接一个中继站,用来增强信号信号幅度。
状态指示灯LED代表中继站工作状态。
重2.7kg。
4)双分量水平检波器检波器互为垂直的双分量水平检波器,直径为55mm 。
检波器插入煤层中的孔洞后,用气筒给检波器胶囊充气使其膨胀,以便检波器紧紧的贴在巷道壁上。
在移出检波器时,只需轻轻按下阀门便可释放橡胶囊内部气体。
重3.3Kg 。
5)触发单元当触发单元接收到爆炸信号后,便立即触发数据采集单元和中继站开始记录,重 2.7Kg主机中内置的 USB 接口也具有触发功能,可以代替触发单元。
第43卷 第3期 煤田地质与勘探Vol. 43 No.32015年6月 COAL GEOLOGY & EXPLORA TION Jun . 2015收稿日期: 2013-11-11基金项目: 国家科技重大专项课题(2011ZX05040-002)作者简介: 任亚平(1982—),男,陕西西安人,硕士,助理研究员,从事地球探测与信息技术工作. E-mail :renyaping@ 引用格式: 任亚平. 槽波地震勘探在煤矿大型工作面的应用[J]. 煤田地质与勘探,2015,43(3):102–104.文章编号: 1001-1986(2015)03-0102-03槽波地震勘探在煤矿大型工作面的应用任亚平(中煤科工集团西安研究院有限公司,陕西 西安 710077)摘要: 以陕北某煤矿大型工作面槽波地震工程为例,开展了超大型工作面内断层的槽波地震探测技术研究。
槽波探测采用全排列接收,最大限度地保障了槽波信息的获得。
根据得到的槽波记录数据以及CT 成像结果,解释了工作面内断层的发育情况,与后期巷道揭露情况基本吻合。
槽波地震勘探在大型工作面的成功应用,可为矿井实现盘区勘探提供技术支持。
关 键 词:地震;槽波;断层;盘区勘探;矿井中图分类号:P631 文献标识码:A DOI: 10.3969/j.issn.1001-1986.2015.03.021Application of ISS in supper large coal faceREN Yaping(Xi ′an Research Institute , China Coal Technology and Engineering Group Crop , Xi ′an 710077, China )Abstract: ISS has been developed for years. However, the application of ISS has never came to the truth in supper coal face. This paper studied the application of ISS in one supper coal face in northern Shaanxi. The geologic con-dition of ISS is very well for getting interesting records. For finding out the layout of the faults already exposed in roadway, all patches were set on for mostly receiving the channel waves. By analyzing the records of ISS and the CT image we got, the layout of the interest faults has been explained, which coincides basically with the actual situation later exposed in roadway. The explanation of the faults provides important information for the coal face production. The successful application of ISS in supper coal face provides technical support for exploration in panel.Key words: seismics; ISS; faults; panel exploration; coal mine槽波地震勘探技术最先研究与应用是20世纪60年代的德国[1-2],20世纪80年代引入到我国。
2019年第11期西部探矿工程*收稿日期:2019-03-13修回日期:2019-03-21作者简介:赵护林(1965-),男(汉族),陕西渭南人,工程师,现从事煤炭地质工作。
透射法槽波地震勘探技术在采煤工作面的应用赵护林*(山西省煤炭地质144勘查院,山西洪洞041600)摘要:槽波地震勘探技术是近年来发展起来的矿井物探新技术、新方法。
以山西某矿150117工作面为例,阐述了槽波地震勘探技术在解决采煤工作面内隐伏地质构造方面的应用效果。
关键词:槽波;采煤工作面;地质构造中图分类号:P632文献标识码:B 文章编号:1004-5716(2019)11-0145-03槽波地震勘探是利用在煤层中激发、煤层中传播、煤层中接收的导波,来探测煤层不连续性的—种物探方法。
槽波勘探,属于地震勘探的一个分支,可以查明采煤工作面内隐伏断层、陷落柱、冲刷带、煤层变薄带等地质构造,具有探测距离大、精度高、抗干扰能力强、信噪比高以及最终成果直观的优点,尤其在探测精度和距离上,优于其他矿井物探方法。
下面以山西某矿150117工作面为例,分析说明透射法槽波地震勘探技术在采煤工作面的应用效果。
1勘探区地质概况1.1矿区地质概况该矿区位于山西地台中部,祁吕贺“山”字型构造,前弧东翼之外侧,山西经向构造亚带与阳曲—盂县纬向构造带结合部位之东南隅,沁水坳陷的东北边缘,地处太原东山背斜南翼与晋中新断陷接壤部位。
区域以断裂为主,褶皱次之,地质构造总体上近东西走向,倾向向南的单斜构造,北山地区的一系列NE 向断层构成的山前断裂带,对西北部低山区和东南部丘陵的形成起到控制作用。
煤矿开采15号煤层过程中,揭露了一些断层、褶皱、陷落柱等构造,15号煤层共揭露55条断层,均为正断层,落差在1.2~40m 之间,其中落差大于或等于10m 的断层4条,落差小于10m 且大于或等于5m 的断层13条,其余断层落差均小于5m 。
1.2矿井工作面地质概况该矿150117工作面位于矿井东南部,开采石炭系上统太原组15号煤层,煤的密度为1.44g/cm 3,煤层厚度从1.97~7.15m ,平均煤厚5.97m ,煤层倾角小于8°,煤层稳定可采,有两层夹矸,厚度为0.2m 和0.4m 。
YZD11矿用槽波地震电法仪介绍YZD11矿用本安型槽波地震电法仪山东中煤集团由网络槽波地震电法仪主机、YZD-11C矿用本安型槽波地震电法仪采集站、电极、矿用本安型拾震传感器和线缆组成。
zmjt052使用全电场观测技术同步采集所有测点的自然电场、一次电场电位和二次电场电位数据,极大提高了电法数据采集效率和采集精度。
仪器中的槽波地震采集模块利用地震波射线穿透地质体,通过对地震波走时、能量和频率的观测,并经计算机处理反演,重现工作面内部或者钻孔之间的地质结构图像。
YZD11矿用本安型槽波地震电法仪可广泛应用于矿山开采、隧道、地铁、水利、城市公共安全、电力等地下工程隐患探测与监测及资源勘察领域;广泛应用于矿井工作面槽波勘探和震波CT勘探等,可探测煤层的不连续性,如煤层厚度变化,矸石层分布,大、小断层,陷落柱,剥蚀带,古河床冲刷带,岩墙,老窑等;可应用于评估煤层地压的相对高带以及可能的瓦斯富集区,保证工作面的安全开采。
YZD11矿用本安型槽波地震电法仪功能特点1.可实现地面多种地电场二维或三维电法勘探,包括电阻率法勘探、自然电位法勘探、充电法勘探、激电法勘探(时间域和频率域)等;可多分量数据采集,实现多波地震勘探。
2.可以实时显示电流、电压信号的波形等。
3.采用激励、接收分离的双模式电极。
4.一体化主机内置ARM、网络通讯、内部电源和外接本安电源等功能模块组成,可以连接矿井物联网。
5.一体化主机连接n个采集基站,构成16n路激发和16n路接收的网络并行地电场勘探、监测系统,或者构成16n路震波勘探系统,用户可根据需求任意选择仪器道数。
6.具有一键成图模式,操作更加简化智能。
7.采集基站内置大容量存储,支持历史数据查看8.软件功能完备,配置兼具数据采集与处理的专业系统软件,且国内同行业内具有权威性,可实现数据的采集、显示、管理、对比、处理成像及判别分析。
9.智能化Android系统平台、高清彩色触摸屏及机械辅助按键,人机交互便捷。
地震槽波勘探技术原理一、槽波原理及特征1.1 槽波形成原理矿井地下工作面指的是开采地下煤矿所设置的开采区域,矿井与各个地下工作面的位置关系如图1所示,由矿井井口可以下到联络巷,从而可以到达地下的各个采煤区域,即不同的工作面。
图 1 矿井及地下工作面位置示意图一个标准的工作面由四面围成,包括左右两侧的回风巷和进风巷(或者运输巷,两条巷道的名字根据矿方命名),与矿井联系的联络大巷,以及切眼。
其中切眼处连接采煤机,从而由切眼向联络大巷回采煤矿。
图2为工作面的平面展布示意图。
一个工作面赋存在地层中间,其上部顶板和下部底板分别由不同岩性的岩石层构成,与工作面内的煤层在地质和物理属性上存在差异。
在工作面回采过程中,一些特殊的地质构造会造成回采风险,威胁人身安全。
因此,提前预知危险地带是煤矿勘探的一个有意义的工作,而独特的工作面赋存状态为该工作提供了契机,我们利用相应的地球物理属性完成勘探工作。
图 2 工作面示意图由理论经验所知,工作面内的煤层纵波速度为1500-2500m/s,密度为1.0-2.0,顶板和底板多为砂岩页岩,其纵波速度大约为2500-3500m/s,密度为2.5-3.5。
顶板底版波阻抗为煤的3-5倍(图3)。
两种高波阻抗介质中夹一层低阻抗介质,而煤层和顶板、底板之间的反射系数很大,一般在0.4-0.6,或者更大,导致煤层中激发的地震波大部分能量在顶、底界面之间来回反射并干涉,从而形成一种特殊的地震波——槽波,形成机理如图4所示。
图 3 煤层与顶底板的波速、密度和阻抗差异图 4 煤层中的波传播,横(s)纵(p)波经过反射、干扰、叠加,形成特殊的导波1.2 槽波的特征槽波为一种柱面波,分为两种类型:(1)Rayligh型槽波,是p波和sv波叠加干涉形成,在x和z方向都有分量,主要为与传播方向一致的z方向;(2)Love 型槽波,主要由顶板反射回的sh波和底板反射回的sh波叠加干涉形成,在x和z方向都有分量,主要为与传播方向垂直的x方向(图5)。
槽波地震勘探在煤矿中的应用摘要:概述了槽波地震的勘探方法及基本原理。
利用透射槽波勘探法和反射槽波勘探法来圈定构造所在位置,为采场布置提供依据。
关键词:槽波地震勘探方法试验1 槽波地震勘探方法及基本原理如图1所示,任何一个透射二次波,当他的波速大于入射波速的条件下,只要入射角大于临界角都可能产生全反射。
当多层介质中有一个低速层时,其速度比上下围岩低,它的顶界面都将是一个强反射面。
槽波地震勘探的物理前提是煤层具有槽导性。
在煤系地层中,与围岩相比煤层具有速度低、密度小的特点,煤与围岩的密度、速度比值约为1:1.5~3.0之间,煤的密度一般为1.2~1.5g/cm3,纵波速为1400~2700m/s,横波速为800~1600m/s,而煤层顶底板大多是岩化程度较高的泥岩或灰岩,它们的密度较大,通常2.2~2.8g/cm3,纵波速为1800~5000m/s,横波速为1600~4000m/s,且多数速度值偏高。
在地质剖面中,煤层是一个典型的低速夹层,在物理上构成一个“波导”。
因此,许多煤层与顶底板岩层界面均是高波阻抗。
当煤层中激发的体波包括纵波与横波,激发的部分能量由于顶底界面的多次全反射被禁锢在煤层及其邻近的岩石中(简称煤槽),不向围岩辐射,在煤层中相互叠加、相长干涉,形成一个强的干涉扰动,即槽波。
它以煤层为波导沿煤层向外传播,因此槽波又称煤层波或导波。
槽波勘探方法分为透射槽波勘探法和反射槽波勘探法:1.1 透射勘探法如图2、3所示激发点(炮点)布置在工作面的一个巷道内,数据采集站布置在工作面的另一个巷道内,接收来自炮点的地震透射信息。
主要用于探测煤层的地质结构和内部异常,包括煤层厚度变化,夹矸石分布,大、小断层,陷落柱,剥蚀带,古河床冲刷,岩墙,老窑等,在某些情况下判断煤层内部压力相对变化。
透射法的探测距离是煤层厚度的300倍左右。
1.2 反射勘探法如图4、5所示,炮点和检波器点布设在一条巷道里进行探测,接收的是反射槽波信号。