泛函分析第3章__连续线性算子与连续线性泛函
- 格式:docx
- 大小:2.82 MB
- 文档页数:50
泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
《实变函数与泛函分析基础》目录简介内容简介本次修订是在第二版的基础上进行的,作者根据多年来的使用情况以及数学的近代发展,做了部分但是重要的修改。
《实变函数与泛函分析基础(第3版)》共11章:实变函数部分包括集合、点集、测度论、可测函数、积分论、微分与不定积分;泛函分析则主要涉及赋范空间、有界线性算子、泛函、内积空间、泛函延拓、一致有界性以及线性算子的谱分析理论等内容。
这次修订继续保持简明易学的风格,力图摆脱纯形式推演的论述方式,着重介绍实变函数与泛函分析的基本思想方法,尽量将枯燥的数学学术形态呈现为学生易于接受的教育形态;同时,补充了一些现代化的内容,如“分形”的介绍。
《实变函数与泛函分析基础(第3版)》可作为高等院校数学类专业学生的教学用书,也可作为自学参考书。
目录第一篇实变函数第一章集合1 集合的表示2 集合的运算3 对等与基数4 可数集合5 不可数集合第一章习题第二章点集1 度量空间,n维欧氏空间2 聚点,内点,界点3 开集,闭集,完备集4 直线上的开集、闭集及完备集的构造5 康托尔三分集第二章习题第三章测度论1 外测度2 可测集3 可测集类4 不可测集第三章习题第四章可测函数1 可测函数及其性质2 叶果洛夫定理3 可测函数的构造4 依测度收敛第四章习题第五章积分论1 黎曼积分的局限性,勒贝格积分简介2 非负简单函数的勒贝格积分3 非负可测函数的勒贝格积分4 一般可测函数的勒贝格积分5 黎曼积分和勒贝格积分6 勒贝格积分的几何意义·富比尼定理第五章习题第六章微分与不定积分1 维它利定理2 单调函数的可微性3 有界变差函数4 不定积分5 勒贝格积分的分部积分和变量替换6 斯蒂尔切斯积分7 L-S测度与积分第六章习题第二篇泛函分析第七章度量空间和赋范线性空间1 度量空间的进一步例子2 度量空间中的极限,稠密集,可分空间3 连续映射4 柯西点列和完备度量空间5 度量空间的完备化6 压缩映射原理及其应用7 线性空间8 赋范线性空间和巴拿赫空间第七章习题第八章有界线性算子和连续线性泛函1 有界线性算子和连续线性泛函2 有界线性算子空间和共轭空间3 广义函数第八章习题第九章内积空间和希尔伯特(Hilbert)空间1 内积空间的基本概念2 投影定理3 希尔伯特空间中的规范正交系4 希尔伯特空间上的连续线性泛函5 自伴算子、酉算子和正常算子第九章习题第十章巴拿赫空间中的基本定理1 泛函延拓定理2 C[a,b]的共轭空间3 共轭算子4 纲定理和一致有界性定理5 强收敛、弱收敛和一致收敛6 逆算子定理7 闭图像定理第十章习题第十一章线性算子的谱1 谱的概念2 有界线性算子谱的基本性质3 紧集和全连续算子4 自伴全连续算子的谱论5 具对称核的积分方程第十一章习题附录一内测度,L测度的另一定义附录二半序集和佐恩引理附录三实变函数增补例题参考书目。
《应用泛函分析》前四章重点复习大纲1第1章预备知识1.1集合的一般知识1.1.1概念、集合的运算上限集、上极限下限集、下极限1.1.2映射与逆映射1.1.3可列集可列集集合的对等关系~(定义1.1)1.2实数集的基本结构1.2.1建立实数的原则及实数的序关系阿基米德有序域(定义1.4)1.2.2确界与确界原理上确界sup E(定义1.5)下确界inf E确界原理(定理1.7)1.2.3实数集的度量结构数列极限与函数极限单调有界原理区间套定理Bolzano-Weierstrass定理Heine-Bore定理Cauchy收敛准则1.3函数列及函数项技术的收敛性1.3.1函数的连续性与一致连续函数的一致连续性(定义1.10)1.3.2函数列和函数项级数的一致收敛逐点收敛(定义1.11)一致收敛(定义1.12)Weierstrass M-判别法(定理1.15)1.3.3一致收敛的性质极限与积分可交换次序1.4 Lebesgue积分1.4.1一维点集的测度开集、闭集有界开集、闭集的测度m G m F外测度内测度可测集(定义1.16)1.4.2可测函数简单函数(定义1.18)零测度集按测度收敛1.4.3 Lebesgue积分有界可测集上的Lebesgue积分Levi引理Lebesgue控制收敛定理(性质1.9)R可积、L可积1.4.4 Rn空间上的Lebesgue定理1.5 空间Lp空间(定义1.28)Holder不等式Minkowski不等式(性质1.16)2第2章度量空间与赋范线性空间2.1度量空间的基本概念2.1.1距离空间度量函数度量空间(X,ρ)2.1.2距离空间中点列的收敛性点列一致收敛按度量收敛2.2度量空间中的开、闭集与连续映射2.2.1度量空间中的开集、闭集开球、闭球内点、外点、边界点、聚点开集、闭集2.2.2度量空间上的连续映射度量空间中的连续映射(定义2.7)同胚映射2.3度量空间中的可分性、完备性与列紧性2.3.1度量空间的可分性稠密子集(定义2.9)可分性2.3.2度量空间的完备性度量空间中Cauchy列(定义2.11)完备性完备子空间距离空间中的闭球套定理(定理2.9)闭球套半径趋于零,则闭球的交为2.3.3度量空间的列紧性列紧集、紧集(定义2.13)全有界集2.4 Banach压缩映射原理压缩映像不动点Banach压缩映射原理(定理2.16)2.4.1应用隐函数存在性定理(例2.31)2.5 线性空间2.5.1线性空间的定义线性空间(定义2.17)维数与基、直和2.5.2线性算子与线性泛函线性算子线性泛函(定义2.18)零空间ker(T)与值域空间R(T) 2.6 赋范线性空间2.6.1赋范线性空间的定义及例子赋范线性空间Banach空间(定义2.20)2.6.2赋范线性空间的性质收敛性——一致收敛绝对收敛连续性与有界性2.6.3有限维赋范线性空间N维实赋范线性空间3Riesz定理(引理2.2)第3章连续线性算子与连续线性泛函3.1连续线性算子与有界线性算子算子、线性算子、泛函、线性泛函线性算子连续←→有界有解线性算子的范数(定义3.3)有界线性算子空间L(X, Y)L(X, Y)的完备性3.2共鸣定理及其应用有界线性算子列的一致收敛、强收敛稀疏集、第一纲Baire纲定理算子列的一致有界原理(定理3.8)算子范数的有界→强收敛3.3 Hahn-Banach定理次可加正齐次泛函Hahn-Banach定理(定理3.12)Banach保范延拓定理(定理3.14)3.4共轭空间与共轭算子3.4.1共轭空间共轭空间(注定理3.6 p.93)嵌入子空间、等距同构(定义3.7)自反空间(定义3.8)嵌入算子(定理3.15)弱收敛点列(定义3.9)共轭空间上泛函的收敛(定义3.10)线性算子列弱收敛3.4.2共轭算子共轭算子(定义3.12)共轭算子的性质3.5开映射、逆算子及闭图像定理逆算子的有界性开映射Banach开映射定理Banach逆算子定理乘积赋范线性空间闭图像闭算子闭图像定理→算子连续3.6算子谱理论简介复Banach 空间线性算子的正则点谱点:特征值、连续谱、剩余谱正则集——开集谱——有界闭集谱半径(定义3.17)全连续算子(定义3.18)Riesz-Schauder定理4第4章内积空间4.1基本概念内积空间Schwaraz不等式内积空间 Hilbert空间4.2内积空间中元素的直交与直交分解4.2.1直交及其性质直交、直交补(定义4.2)直交投影最佳逼近元极小化向量定理(定理4.2)4.2.2投影定理投影定理(定理4.3)直交分解4.3直交系标准直交系元素x 关于的Fourier级数(定义4.6)Bessel不等式(定理4.5)标准直交系是完全的(定义4.7)Parseval等式(定理4.7)Gram-Schmidt标准正交化法4.4 Hilbert空间上的有界线性泛函4.4.1 Riesz定理Riesz定理4.4.2Hilbert空间上的共轭算子共轭算子(定义4.8)共轭算子的性质4.5自共轭算子自共轭算子(定理4.13)4.6投影算子、正算子和酉算子投影算子(定义4.10)投影算子<->自共轭算子<->幂等算子(定理4.19)正算子(定义4.11)平方根算子(定理4.21)酉算子(定理4.22)。
泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
泛函分析知识点 SANY GROUP system office room 【SANYUA16H-泛函分析知识点知识体系概述(一)、度量空间和赋范线性空间第一节度量空间的进一步例子1.距离空间的定义:设X是非空集合,若存在一个映射d:X×X→R,使得∀x,y,z∈X,下列距离公理成立:(1)非负性:d(x,y)≥0,d(x,y)=0⇔x=y;(2)对称性:d(x,y)=d(y,x);(3)三角不等式:d(x,y)≤d(x,z)+d(z,y);则称d(x,y)为x与y的距离,X为以d为距离的距离空间,记作(X,d)2.几类空间例1离散的度量空间例2序列空间S例3有界函数空间B(A)例4可测函数空M(X)例5C[a,b]空间即连续函数空间例6l2第二节度量空间中的极限,稠密集,可分空间1.开球定义设(X,d)为度量空间,d是距离,定义U(x0,ε)={x∈X|d(x,x0)<ε}为x0的以ε为半径的开球,亦称为x0的ε一领域.2. 极限定义若{x n }⊂X,∃x ∈X,s.t.()lim ,0n n d x x →∞=则称x 是点列{x n }的极限. 3. 有界集定义若()(),sup ,x y Ad A d x y ∀∈=<∞,则称A 有界4. 稠密集定义设X 是度量空间,E 和M 是X 中两个子集,令M 表示M 的闭包,如果E M ⊂,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。
5. 可分空间定义如果X 有一个可数的稠密子集,则称X 是可分空间。
第三节连续映射1.定义设X=(X,d),Y=(Y,~d )是两个度量空间,T 是X 到Y 中映射,x0X ∈,如果对于任意给定的正数ε,存在正数0δ>,使对X 中一切满足()0,d x x δ< 的x ,有()~0,d Tx Tx ε<,则称T 在0x 连续.2.定理1设T 是度量空间(X,d )到度量空间~Y,d ⎛⎫ ⎪⎝⎭中的映射,那么T 在0x X ∈连续的充要条件为当()0n x x n →→∞时,必有()0n Tx Tx n →→∞3.定理2度量空间X 到Y 中的映射T 是X 上连续映射的充要条件为Y 中任意开集M 的原像1T M -是X 中的开集.第四节柯西(cauchy )点列和完备度量空间1.定义设X=(X,d)是度量空间,{}n x 是X 中点列,如果对任意给定的正数0ε>,存在正整数()N N ε=,使当n,m>N 时,必有(),n m d x x ε<,则称{}n x 是X 中的柯西点列或基本点列。
第三章:泛函分析初步(参见教材Ch6)§3.1 线性空间定义(线性空间):设W ≠∅(W 为非空集合)(1) W 中元对“+”构成交换群,即对,,W ∀∈X Y Z ,有ⅰ)W +∈X Y (加法封闭性)ⅱ)()()++=++X Y Z X Y Z (结合律) ⅲ)W ∃∈0,使0+X X =(存在零元) ⅳ)W ∃-∈X ,使()-+=0X X (存在逆元) ⅴ)+=+X Y Y X (交换律)(2) 对,,,W C αβ∀∈∀∈X Y (复数域)有:ⅵ)()()W αβαβ=∈X X ⅶ)()αβαβ+=+X X X ⅷ)()ααα+=+X Y X Y ⅸ)⋅1X X =称W 为线性空间,若,C αβ∈,则W 为复线性空间,若,R αβ∈,则W 为实线性空间。
注:1)加法封闭+数乘封闭,i i W C α⇔∀∈∀∈X ,有1Ni i i W α=∈∑X 。
2)[]C ,a b ([],a b 上所有连续函数的全体)是线性空间。
3){}12,,,n span X X X 为由12,,,n X X X 张成的线性空间。
定义(线性算子):线性空间上的算子为L 线性算子{}11N Ni i i i i i αα==⎧⎫⇔=⎨⎬⎩⎭∑∑L L X X(3-1)推论:零状态线性系统⇔系统算子为线性算子。
§3.2 线性子空间定义(线性子空间):设V W ∅≠⊂,V 是W 的线性子空间⇔对,,,W C αβ∀∈∀∈X Y ,有V αβ∈+X Y 。
定义(直和):设12,,,p W W W 是W 的子空间,若W ∀∈X 对,X 可唯一表示成1p =++X X X ,其中() 1,,i i W i p ∈=X ,则称W 是12,,,p W W W 的直和,记为:12p W W W W =⊕⊕⊕。
§3.3 距离空间(度量空间——Metric Space )定义(距离空间):设W ≠∅,称W 为距离空间,指在W 中定义了映射:(),:W W R ρ+⨯→X Y (包括0),,W ∀∈X Y 满足以下三条公理: ⅰ)(),0ρ≥X Y ,且(),0ρ=⇔X Y X Y = (正定性)ⅱ)()(),,ρρ=X Y Y X (可交换性)ⅲ)()()(),,,ρρρ≤+X Z X Y Y Z (三角不等式)(),ρX Y 称为W 上的距离,(),W ρ为度量空间。
泛函分析第3章--连续线性算子与连续线性泛函第3章 连续线性算子与连续线性泛函本章将介绍赋范线性空间上,特别是Banach 空间上的有界线性算子与有界线性泛函的基本理论,涉及到泛函分析的三大基本定理,即共鸣定理,逆算子定理及Hahn-Banach 定理。
他们是泛函分析早期最光辉的成果,有广泛的实际背景,尤其在各种物理系统研究中应用十分广泛。
3.1 连续线性算子与有界线性算子在线性代数中,我们曾遇到过把一个n 维向量空间n E 映射到另一个m 维向量空间m E 的运算,就是借助于m 行n 列的矩阵111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭对n E 中的向量起作用来达到的。
同样,在数学分析中,我们也遇到过一个函数变成另一个函数或者一个数的运算,即微分和积分的运算等。
把上述的所有运算抽象化后,我们就得到一般赋范线性空间中的算子概念。
撇开各类算子的具体属性,我们可以将它们分成两类:一类是线性算子;一类是非线性算子。
本章介绍有界线性算子的基本知识,非线性算子的有关知识留在第5章介绍。
[定义3.1] 由赋范线性空间X 中的某子集D 到赋范线性空间Y 中的映射T 称为算子,D 称为算子T 的定义域,记为()D T ,为称像集(){},y y Tx x D T =∈为算子的值域,记作()T D 或TD 。
若算子T 满足: (1)()()(),T x y Tx Ty x y D T +=+∀∈ (2)()()(),T x TxF x D T ααα=∀∈∈称T 为线性算子。
对线性算子,我们自然要求()T D 是X 的子空间。
特别地,如果T 是由X 到实数(复数)域F 的映射时,那么称算子T 为泛函。
例 3.1 设X 是赋范线性空间,α是一给定的数,映射:T x x α→是X 上的线性算子,称为相似算子;当1α=时,称T 为单位算子或者恒等算子,记作I 。
泛函分析第3章--连续线性算子与连续线性泛函第3章 连续线性算子与连续线性泛函本章将介绍赋范线性空间上,特别是Banach 空间上的有界线性算子与有界线性泛函的基本理论,涉及到泛函分析的三大基本定理,即共鸣定理,逆算子定理及Hahn-Banach 定理。
他们是泛函分析早期最光辉的成果,有广泛的实际背景,尤其在各种物理系统研究中应用十分广泛。
3.1 连续线性算子与有界线性算子在线性代数中,我们曾遇到过把一个n 维向量空间n E 映射到另一个m 维向量空间m E 的运算,就是借助于m 行n 列的矩阵111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪=⎪⎪⎝⎭L L M M M L 对n E 中的向量起作用来达到的。
同样,在数学分析中,我们也遇到过一个函数变成另一个函数或者一个数的运算,即微分和积分的运算等。
把上述的所有运算抽象化后,我们就得到一般赋范线性空间中的算子概念。
撇开各类算子的具体属性,我们可以将它们分成两类:一类是线性算子;一类是非线性算子。
本章介绍有界线性算子的基本知识,非线性算子的有关知识留在第5章介绍。
[定义3.1] 由赋范线性空间X 中的某子集D 到赋范线性空间Y 中的映射T 称为算子,D 称为算子T 的定义域,记为()D T ,为称像集(){},y y Tx x D T =∈为算子的值域,记作()T D 或TD 。
若算子T 满足: (1)()()(),T x y Tx Ty x y D T +=+∀∈ (2)()()(),T x TxF x D T ααα=∀∈∈称T 为线性算子。
对线性算子,我们自然要求()T D 是X 的子空间。
特别地,如果T 是由X 到实数(复数)域F 的映射时,那么称算子T 为泛函。
例 3.1 设X 是赋范线性空间,α是一给定的数,映射:T x x α→是X 上的线性算子,称为相似算子;当1α=时,称T 为单位算子或者恒等算子,记作I 。
泛函分析1.范数&线性泛函的定义定义 设X 是线性空间,若对∀x ∈X ,有唯一实数∥x ∥与之应对,且使得(1) ∥x ∥≥0,且x =0⟺∥x ∥=0(2) ∥x +y ∥≤∥x ∥+∥y ∥, x,y ∈X(3) ∥αx ∥=|α|⋅∥x ∥,α∈R or C,x ∈X则称∥x ∥为X 的范数,此时的线性空间X 称为赋范线性空间.2.设x,y 为线性赋范空间,T:x →y 为线性算子.若T 在x 0处连续,则T 在x 上一致连续,且T 连续当且仅当存在M >0,使得∥Tx ∥≤M ∙∥x ∥,x ∈X证明 (1) 因为T 在x 0处连续,则有∀ε>0,∃δ>0,使得当∥x −x 0∥<δ时,有∥Tx −Tx 0∥<ε对∀y,z ∈X ,∥z −y ∥<δ.令x =z −y +x 0,则x −x 0=z −y.∥Tz −Ty ∥=∥T (z −y )∥=∥T (x −x 0)∥=∥Tx −Tx 0∥<ε若T 在x 0处连续,则T 在x 上一致连续(2) 必要性 设T 在x 上一致连续,则在0处也连续。
令ε=1,∃δ>0,当∥u ∥<δ时,∥Tu ∥<1对∀x ∈X,x =∥x∥δ(δ∥x∥⋅x).令c =∥x∥δ,u =δ∥x∥⋅x ,则∥u ∥=δ,x =cu ∥Tx ∥=∥T (cu )∥=c ∥Tu ∥≤c =∥x ∥δ 令δ−1=M ,则∥Tx ∥≤M ∙∥x ∥充分性 若∥Tx ∥≤M ∙∥x ∥,x ∈X ,当x 0=0时,对于∀ε>0,∃δ=εM ,当∥x −0∥<δ时,有 ∥Tx ∥≤M ∙∥x ∥<M ∙δ=M ∙εM=ε 则对x =0,T 是连续的.3.算子范数∥T ∥=sup ∥x∥<1∥Tx ∥,设T:x →y 为连续线性算子,定义∥T ∥为T 的范数,证明: ∥T ∥=sup ∥x∥<1∥Tx ∥=sup ∥x∥=1∥Tx ∥=sup ∥x∥≠0∥Tx ∥∥x ∥证明 sup ∥x∥≠0∥Tx∥∥x∥=sup ∥x∥≠0∥1∥x∥Tx ∥=sup ∥x∥≠0∥T(1∥x∥x)∥≤sup ∥x∥=1∥Tx ∥≤sup ∥x∥≤1∥Tx ∥=∥T ∥ sup∥x∥≠0∥Tx ∥∥x ∥≥sup ∥x∥≤1∥Tx ∥∥x ∥≥sup ∥x∥≤1∥Tx ∥=∥T ∥ 则∥T ∥=sup ∥x∥≠0∥Tx∥∥x∥=sup ∥x∥≤1∥Tx ∥ 4.完备性的证明 什么是柯西列,收敛列,收敛列为什么是柯西列答 度量空间X 中的任意柯西列收敛与X 中的一点,则称X 是完备的柯西列:设空间X 为线性空间,{x n }⊂X ,若∀ε>0,∃N ,当n,m >N 时,有∥x n −x m ∥<ε,则{x n }称为柯西列收敛列:设空间X 有{x n },lim x n =x ,由极限的性质,对∀ε>0,∃N ,当n >N 时,有∥x n −x ∥<ε, 当m >N 时,有∥x −x m ∥<ε. 则当n,m >N 时,有∥x n −x m ∥=∥x n −x +x −x m ∥=∥(x n −x )−(x m −x )∥≤∥x n −x ∥+∥x −x m ∥<2ε 则称{x n }为一个收敛列由定义可知,收敛列必定是柯西列,但柯西列不一定是收敛列.比如:有理数集Q ,级数展开式中e =∑1n!∞n=0=1+1+12+⋯ S n =1n!这个数列是柯西列,但是在Q 上不收敛5.内积空间与赋范线性空间的关系内积空间→赋范线性空间(定义∥x ∥=√(x,x))赋范线性空间→内积空间(满足平行四边形法则)6. 证明:内积空间和线性赋范空间,当∥x ∥=√(x,x)证:(1) ∥x +y ∥2=(x +y,x +y )=(x,x +y )+(y,x +y )=(x,x )+(x,y )+(y,x )+(y,y) 由Cauchy-Schwarz 不等式,可知(x,y )≤√(x,x)√(y,y),则上式有∥x +y ∥2≤(x,x )+√(x,x )√(y,y )+√(y,y )√(x,x )+(y,y )=∥x ∥2+∥y ∥2+2∥x ∥∥y ∥=(∥x ∥+∥y ∥)2即∥x +y ∥≤∥x ∥+∥y ∥(2) ∥αx ∥2=(αx,αx )=αα̅(x,x),因为αα̅=|α|2,则等式=|α|2(x,x)则∥αx ∥=|α|√(x,x )=|α|∥x ∥(3) ∥x ∥=√(x,x ),因为(x,x )≥0,所以∥x ∥≥0(4) 当∥x ∥=√(x,x )=0时,(x,x )=0,即x =07.正交系(集)性质,勾股,三角不等式,线性相关的证明答: 向量集S 称为正交的,是指对于每一对x,y 都有x ⊥y ,其中x ∈S,y ∈S 且x ≠y.若对于每一个x ∈S 还有∥x ∥=1,则称这个集为标准正交集平行四边形法则:∥x +y ∥2+∥x −y ∥2=2∥x ∥2+2∥y ∥2证明: ∥x +y ∥2+∥x −y ∥2=(x +y,x +y )+(x −y,x −y )=(x,x )+(x,y )+(y,x )+(y,y )+(x,x )−(x,y )−((y,x )−(y,y ))=(x,x )+(x,y )+(y,x )+(y,y )+(x,x )−(x,y )−(y,x )+(y,y )=2(x,x )+2(y,y )=2∥x ∥2+2∥y ∥2ε1,ε2,…,εn 为正交向量组,且k 1ε1+k 2ε2+⋯k n εn =0,则0=(0,εi )=(k 1ε1+k 2ε2+⋯k n εn )=k i (εi ,εi )=k i ,即k i =0(i =1,2,…,n),所以ε1,ε2,…,εn 线性无关.8. X 是一个线性空间,S ⊂X,S ⊥={x ′:x ′∈X f |(x,x ′)=0,x ∈S}⊂X f ,证明S ⊥是X f 一个子空间证明 X 是线性空间,则X f 也是线性空间.因为S ⊥⊂X f ,则对任意x ′,y ′∈S ⊥,有x ′,y ′∈X f 而(x ′+y ′)(x )=x ′(x )+y ′(x )=0,故x ′+y ′∈S ⊥.∀α∈R,x ′(αx )=αx ′(x )=0.故αx ′∈S ⊥,则S ⊥是X f 一个子空间。
《泛函分析》教学大纲数学与应用数学(师范类)专业用一、说明部分(一)课程性质、目的和教学任务泛函分析是数学学科的一门专业限选课程。
本课程的目的在于运用泛函分析的理论和方法进一步研究无限维空间的结构。
通过教学,使学生了解和掌握这一学科的基本概念,理论,培养学生的理论思维能力,为从事数学学科的教学和研究打下一定的理论基础。
泛函分析的前期课程是《数学分析》《高等代数》《实变函数》。
泛函分析课程主要讲授第一章度量空间和赋泛线性空间,第二章有界线性算子和连续线性泛函,内积空间和希尔伯特(Hilbert)空间三章内容。
通过泛函分析的教学,具体使学生了解和掌握度量空间,赋泛线性空间,有界线性算子,连续线性泛函的基本概念和基本理论,培养学生理论思维能力,为进一步学习数学的有关学科打下扎实的理论基础。
(二)课程的教学原则和方法本课程的教学原则是逻辑推理和理论分析相结合、讲解法与自学相结合的原则。
教学方法是要在主要采用讲授法为主配合教改,使用讨论法、练习法等,仔细推敲概念间的相互联系和差异。
(三)课程的主要内容学时分配本课程为一学期课程,总学时为48学时,其中授课38学时,习题课10学时,各章节安排如下第一章度量空间和赋范线性空间32学时第二章有界线性算子和连续线性泛函10学时第三章内积空间和希尔伯特(Hilbert)空间6学时(四)课程大纲的编写执笔人执笔人孙丽男黑河学院数学系函数论教研室审定。
二、正文部分第一章度量空间和赋范线性空间(一)教学的目的和要求1.理解泛函分析研究的对象,掌握度量空间的定义及度量空间中极限,稠密集,可分空间的概念,能够对具体的问题进行判断;2.进一步了解连续映射的概念;3.掌握完备的度量空间;4.理解压缩映射原理,掌握压缩映射原理,能够应用压缩映射原理证明实际问题;5.掌握线性空间、赋范线性空间和Banach空间;(二)教学重点1.度量空间2.完备度量空间3.压缩映射原理4.赋范线性空间5.Banach空间(三)教学难点1.完备度量空间2.压缩映射原理3.赋范线性空间(四)主要教学内容及学时分配1.度量空间2学时2.度量空间的极限,稠密集,可分空间4学时3.连续映射4学时4.柯西点列和完备度量空间4学时5.度量空间的完备化2学时6.压缩映射原理及其应用2学时7.线性空间4学时8.赋范线性空间和Banach空间4学时9.习题课6学时第二章有界线性算子和连续线性泛函(一)教学的目的和要求1.掌握赋范线性空间的有界线性映射的概念;2.掌握赋范线性空间X到赋范线性空间Y上的线性映射的全体也是一个赋范线性空间;3.掌握线性同构的概念;(二)教学重点1.有界线性算子2.连续线性泛函3.有界线性算子空间4.共轭空间(三)教学难点1.有界线性算子空间2.共轭空间(四)主要教学内容及学时分配1.有界线性算子和连续线性泛函4学时2.有界线性算子空间和共轭空间4学时3.习题课2学时第三章内积空间和希尔伯特(Hilbert)空间(一)教学的目的和要求1.熟练掌握内积空间中的基本概念2.了解逼近理论并熟练掌握投影定理及其应用(二)教学重点1.内积空间的基本概念2.投影定理(三)教学难点1.投影定理(四)主要教学内容及学时分配1.内积空间的基本概念2学时2.投影定理2学时3.习题课2学时三、考核方式和成绩记载说明考核方式为考试。
第3章 连续线性算子与连续线性泛函本章将介绍赋范线性空间上,特别是Banach 空间上的有界线性算子与有界线性泛函的基本理论,涉及到泛函分析的三大基本定理,即共鸣定理,逆算子定理及Hahn-Banach 定理。
他们是泛函分析早期最光辉的成果,有广泛的实际背景,尤其在各种物理系统研究中应用十分广泛。
3.1 连续线性算子与有界线性算子在线性代数中,我们曾遇到过把一个n 维向量空间n E 映射到另一个m 维向量空间m E 的运算,就是借助于m 行n 列的矩阵111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭对n E 中的向量起作用来达到的。
同样,在数学分析中,我们也遇到过一个函数变成另一个函数或者一个数的运算,即微分和积分的运算等。
把上述的所有运算抽象化后,我们就得到一般赋范线性空间中的算子概念。
撇开各类算子的具体属性,我们可以将它们分成两类:一类是线性算子;一类是非线性算子。
本章介绍有界线性算子的基本知识,非线性算子的有关知识留在第5章介绍。
[定义3.1] 由赋范线性空间X 中的某子集D 到赋范线性空间Y 中的映射T 称为算子,D 称为算子T 的定义域,记为()D T ,为称像集(){},y y Tx x D T =∈为算子的值域,记作()T D 或TD 。
若算子T 满足: (1)()()(),T x y Tx Ty x y D T +=+∀∈ (2)()()(),T x TxF x D T ααα=∀∈∈称T 为线性算子。
对线性算子,我们自然要求()T D 是X 的子空间。
特别地,如果T 是由X 到实数(复数)域F 的映射时,那么称算子T 为泛函。
例 3.1 设X 是赋范线性空间,α是一给定的数,映射:T x x α→是X 上的线性算子,称为相似算子;当1α=时,称T 为单位算子或者恒等算子,记作I 。
例3.2 [],x C a b ∀∈,定义()()ta Tx t x d ττ=⎰由积分的线性知,T 是[],C a b 到[],C a b 空间中的线性算子。
若令()()[](),baf x x d x C a b ττ=∀∈⎰则f 是[],C a b 上的线性泛函。
[定义3.2] 设,X Y 是两个赋范线性空间,:T X X →是线性算子,称T 在x 点连续的,是指若{},n n x X x x ∈→,则()n Tx Tx n →→∞;若T 在X 上每一点都连续,则称T 在X 上连续;称T 是有界的,是指T 将X 中的有界集映成Y 中有界集。
[定理3.1] 设,X Y 是赋范线性空间,T 是X 的子空间D 到Y 中的线性算子,若T 在某一点()0x D T ∈ 连续,则T 在()D T 上连续。
证明:对()x D T ∀∈,设{}()n x D T ⊂,且()n x x n →→∞,于是()00n x x x x n -+→→∞,由假设T 在0x 点连续,所以当n →∞时,有()000n n T x x x Tx Tx Tx Tx -+=-+→因此,n Tx Tx →,即T 在x 点连续。
由x 的任意性可知,T 在()D T 上连续。
定理3.1说明线性算子若在一点连续,可推出其在定义的空间上连续。
特别地,线性算子的连续性可由零元的连续性来刻画,即线性算子T 连续等价于若n x θ→(X 中零元),则n Tx θ→(Y 中零元)。
例3.3 若T 是n 维赋范线性空间X 到赋范线性空间Y 中的线性算子,则T 在X 上连续。
证明:在X 中取一组基{}12,,,n e e e ,设()()11,2,3,nm m j j j x x e Xm ==∈=∑且()m x m θ→→∞,即()0m x m →→∞,则()()()12210nm j j x m =⎡⎤→→∞⎢⎥⎣⎦∑从而()()()01,2,3,m j x j n m →=→∞。
于是()()()111max 0nnm m m jj jjj nj j Tx xTe x Tem ≤≤===≤→→∞∑∑因此,()m Tx m θ→→∞,即T 在x θ=处连续,进而T 在X 上每点连续。
[定理3.2] 设,X Y 是赋范线性空间,T 是X 的子空间D 到Y 中的线性映射,则T 有界的充分必要条件是:存在常数0M >,使不等式成立,即()()T x M xxD T≤∈ 证明:必要性。
因T 有界,所以T 将D 中的闭单位球(){}11B x x θ=≤映成Y 中的有界集,即像集()1TB θ是Y 中的有界集。
记(){}1sup :M Tx x B θ=∈,此时,对每个()()1,,xx D T x B xθθ∈≠∈,由M 的定义有x T M x ⎛⎫≤ ⎪ ⎪⎝⎭……………………(3.1) 即Tx M x ≤,而当x θ=时,不等式(3.1)变成等式。
故()x D T ∀∈有 T x M x≤ 充分性。
设A 是()D T 的任一有界集,则存在常数1M 使()1x M x A ≤∀∈。
由()()Tx M x x D T ≤∈知()1Ty M y MM y A ≤≤∈ 故TA 有界。
证毕。
[定理3.3] 设,X Y 是两个赋范线性空间,T 是从X 的子空间D 到Y 中的线性映射,则T 是连续的充要条件是T 是有界的。
证明:充分性。
设T 有界,则存在常数0M >,使对一切(),x D T Tx M x ∈≤,从而对(){}(),n n x x n x D T ∂→→∞⊂有()()0n n n Tx Tx T x x M x x n -=-≤-→→∞即()n Tx Tx n →→∞。
所以,T 是连续的。
必要性。
若T 连续但T 是无界的,那么对每个n N ∈,必存在()n x D T ∈,使n n Tx n x >,令n n n x y n x =,那么()10n y n n=→→∞,即n y θ→,由T 的连续性,()n Ty n θ→→∞,但是另一方面,1n nn nnn x Tx Ty n x n x =>=,引出矛盾,故T 有界。
定理 3.3说明,对于线性算子,连续性与有界性是两个等价概念,今后用(),L X Y 表示X 到Y 的有界线性算子组成的集合。
例3.1 ,例3.2的线性算子均易证明是有界线性算子,但无界线性算子是存在的。
例3.4 考察定义在区间[]0,1上的连续可微函数全体,记作[]10,1C ,其中范数定义为()01max t x x t ≤≤=,不难证明,微分算子ddt是把[]10,1C 映入[]0,1C 中的线性算子。
取函数列{}sin n t π,显然,sin 1n t π=,但()sin cos dn t n n t n n dtππππ==→∞→∞ 因此,微分算子是无界的。
[定义3.3] 设,X Y 是赋范线性空间,T 是从X 到Y 的有界线性算子,对一切x X ∈,满足Tx M x ≤的正数M 的下确界,称为算子T 的范数,记作T 。
由定义可知,对一切x X ∈,都有Tx T x ≤。
[定理3.4] 设,X Y 是赋范线性空间,T 是从X 到Y 的有界线性算子,则有11sup sup supx Xx Xx Xx x x Tx T Tx Tx xθ∈∈∈=≤≠===证明:由Tx T x ≤,易得1sup x Xx T Tx ∈==……………………………………(3.2)根据T 的定义,对于任给的0ε>,存在非零0x X ∈,使()00Tx T x ε≥-令0x x x '=,则有()0Tx T ε'≥-,因此 ()11sup sup x Xx Xx x T Tx Tx ε∈∈=≤-≤≤令0ε→得 11sup sup x Xx Xx x T Tx Tx ∈∈=≤≤≤……………………(3.3)由式(3.2)和式(3.3),便得11sup sup x Xx Xx x T Tx Tx ∈∈=≤==而supx Xx Tx T xθ∈≠=,由定义易知。
例3.5 在[]1,L a b 上定义算子T 如下()()()[]()1,,xaTf x f t dt f L a b =∀∈⎰(1)把T 视为[]1,L a b 到[],C a b 的算子,求T ; (2)把T 视为[]1,L a b 到[]1,L a b 的算子,求T 。
解:算子T 的线性是显然的,下面分别求T 。
(1)设T :[][]1,,L a b C a b →,任取[]1,f L a b ∈,由于[],Tf C a b ∈,从而()()()m a x m a xxa a x ba xb T f T f x f t d t≤≤≤≤==⎰ ()()max x b aaa x bf t dt f t dt f ≤≤≤≤=⎰⎰故T 是有界的,并且1T ≤。
另一方面,取()[]01,,f t t a b b a=∈-,并且()0011bb a af f t dt dt b a===-⎰⎰于是0111sup max 1x b aa a x bf T Tf Tf dt dt b ab a ≤≤==≥===--⎰⎰故1T =。
(2)设T :[][]11,,L a b L a b →,任取[]1,f L a b ∈,由于[]1,Tf L a b ∈,从而()()()bx b x aaa a T f f t d t d xft d t d x =≤⎰⎰⎰⎰()()()b baaf t dt dx b a f≤=-⎰⎰因此,T 是有界的,并且T b a ≤-;另一方面,对任何使得1a b n+<的自然数n ,作函数()1,,10,,n n x a a n f x x a b n ⎧⎡⎤∈+⎪⎢⎥⎪⎣⎦=⎨⎛⎤⎪∈+ ⎥⎪⎝⎦⎩ 显然[],n f L a b ∈,且()1b n n af f t dt ==⎰,而()bxn n aaTf f t dt dx =⎰⎰()11110a b a x nnaa aa nnn x a dx ndt dt dx ++++=-++⎰⎰⎰⎰11122b a b a n n n=+--=--所以,又有sup n T Tf b a ≥=-因此,T b a =-。
此例告诉我们,虽然形式上是一样的算子,但由于视作不同空间的映射,他们的算子范数未必相同。
一般说来,求一个具体算子的范数并不容易,因此,在很多场合,只能对算子的范数作出估计。
例3.6 设(),K s t 在[][],,a b a b ⨯上连续,定义算子T :[][],,C a b C a b →为()()(),baTx s K s t x t dt =⎰则[][](),,,T L C a b C a b ∈,且(){}max,:baT K s t dt a s b ≤≤≤⎰证明:由于()()()max,ba a sb Tx s K s t x t dt ≤≤=⎰()()max ,max b aa s ba s bK s t dt x t ≤≤≤≤≤⎰(){}max,:baK s t dt a s bx =≤≤⎰故结论成立。