电力系统谐波计算与抑制的模型设计
- 格式:docx
- 大小:3.15 MB
- 文档页数:24
电力系统谐波监测与抑制技术研究随着电力系统的快速发展和电子设备的广泛应用,电力质量问题日益突出。
其中,谐波是造成电力系统质量下降的一个重要因素。
谐波会导致电网设备的破坏、电力损耗的增加以及对用户设备的干扰等问题。
因此,电力系统谐波监测与抑制技术的研究和应用对提高电力系统的可靠性和质量至关重要。
一、谐波监测技术谐波监测是对电力系统中谐波分量进行实时监测和分析的过程。
通过谐波监测,可以了解电力系统中谐波的水平、频率和相位等信息,为进一步的谐波抑制提供依据。
1. 传统谐波监测技术传统的谐波监测技术通常采用数字示波器或功率分析仪等设备。
这些设备可以通过采集电流和电压波形,计算谐波的幅值和相位差等参数,并通过显示和记录的方式反映出谐波的情况。
然而,传统的谐波监测技术受到监测点有限、成本高昂以及数据处理复杂等限制。
2. 基于智能传感器的谐波监测技术近年来,随着传感器技术的发展,基于智能传感器的谐波监测技术得到了广泛应用。
这些智能传感器可以直接安装在电网设备上,实时采集电流和电压的波形数据,并通过无线通信传输给监测系统。
利用智能传感器,可以实现对电力系统多个监测点的谐波监测,提高监测的覆盖面和准确性。
二、谐波抑制技术谐波抑制技术是为了减少电力系统中谐波分量的水平,保持电力质量的稳定性和可靠性。
根据谐波抑制技术的原理和应用范围不同,可以分为有源谐波抑制和无源谐波抑制技术。
1. 有源谐波抑制技术有源谐波抑制技术是通过在电力系统中添加特定的电子器件,实时监测和控制电流和电压的波形,从而在电力系统中产生与谐波相反的波形,以抑制谐波。
有源谐波抑制技术具有响应速度快、抑制效果好等特点,但其设备成本高、容量有限等问题也需要解决。
2. 无源谐波抑制技术无源谐波抑制技术是通过改进电力系统的电网结构和设备设计,减少谐波的产生和传输,从而达到谐波抑制的目的。
无源谐波抑制技术可以通过限制谐波源的接入、加装滤波器和隔离变压器等设备来实现。
电网谐波分析及其建模电网谐波分析一般包括谐波检测、谐波分析和建模三个步骤。
首先,采用谐波分析仪或数据采集系统对电网进行全面的谐波检测,得到电网各节点的电压和电流波形,以及各谐波成分的幅值和相位信息。
其次,在得到谐波数据后,进行谐波分析,主要包括谐波频谱分析、谐波源识别和谐波水平评估。
通过谐波频谱分析可以了解电网谐波的频率成分和幅值情况;谐波源识别可以确定谐波产生的具体设备或负载;谐波水平评估可以评价谐波对电网设备的安全运行和电能质量的影响程度。
最后,根据谐波分析结果,建立电网谐波模型,以便对谐波进行仿真和预测,为电网的设计和运行提供参考依据。
建立电网谐波模型是电网谐波分析的关键步骤之一、电网谐波模型一般采用复数形式,可以分为节点模型和支路模型两种。
节点模型主要用于描述电网节点处的电压谐波情况,采用复数形式表示各谐波成分的相位和幅值;支路模型主要用于描述电网支路中的电流谐波情况,一般采用节点电压差法和支路等值法建立支路模型。
建立电网谐波模型的目的是为了了解电网各节点和支路上谐波的传播和衰减情况,以及谐波对电网设备的影响,进而采取相应的措施进行谐波补偿和谐波过滤。
电网谐波分析与建模在电力系统规划、设计和运行中起着重要的作用。
通过电网谐波分析和建模,可以了解电网谐波的产生和传播机理,预测潜在的谐波问题,指导电网的设计和建设;可以评估谐波对电网设备的影响,判断其安全运行的可行性;可以设计合理的谐波补偿和谐波过滤设备,提高电能质量,减小谐波对电网的危害。
因此,电网谐波分析与建模对于维护电网稳定运行和提高电能质量具有重要意义。
同时,随着电力电子设备和新能源接入电网的增多,电网谐波问题也日益突出,电网谐波分析和建模的研究和应用将变得越发重要。
电力谐波的产生原因及抑制方法电力谐波是指电力系统中产生的非正弦波形,它由于交流电系统中的非线性负载、电力线上的电容器和电感器等因素引起。
电力谐波在电力系统中的存在可能会导致设备的故障、能源浪费和电网负载能力的下降。
因此,对电力谐波的产生进行有效的抑制是非常重要的。
1.非线性负载:非线性负载是电力谐波的主要源头。
非线性负载通常包括电力电子设备,如电视、计算机、UPS电源、逆变器、风力发电机等。
这些设备的工作原理会产生非线性电流,进而导致电网中谐波的产生。
2.电容器和电感器:电容器和电感器也会对电力谐波的产生做出贡献。
在电力系统中,电容器和电感器常用于无功补偿和电能储存。
然而,由于电容器和电感器的等效电路具有谐振特性,它们会对电力谐波起到放大的作用。
3.电网接地方式:电网的接地方式也会影响电力谐波的产生。
当电网采用不完全中性接地时,地线电流会导致电子设备的谐波污染。
抑制电力谐波的方法有多种,下面将介绍几种常见的方法:1.优化电力系统设计:对于新建的电力系统,可以采用谐波抑制措施进行设计。
例如,将非线性负载远离主要的电源和敏感设备,减少非线性负载对谐波的干扰。
2.增加电力系统的容量:增加系统容量可以降低电力谐波对设备的影响。
通过增加设备的容量,可以减少设备的负载率,从而降低了负载谐波。
3.应用谐波滤波器:谐波滤波器是目前应用最广泛的抑制电力谐波的方法之一、谐波滤波器可将电力谐波从电网中滤除,从而减少对设备的影响。
4.提高设备的抗谐波能力:可以通过改善设备的设计或增加额外的抗谐波装置,使得设备能够更好地抵抗电力谐波的干扰。
5.加强监测和管理:及时监测电力谐波的产生和影响程度,对于谐波超标的情况进行调整和管理。
可以采用在线监测系统对电力谐波进行实时监测,并根据监测结果采取适当的措施。
综上所述,电力谐波的产生原因主要是非线性负载、电容器和电感器以及电网接地方式等因素的综合作用。
为了有效抑制电力谐波,需要采用适当的方法,包括优化电力系统设计、增加系统容量、应用谐波滤波器、提高设备的抗谐波能力以及加强监测和管理等。
电力系统中的谐波及其抑制措施谐波是电力系统中常见的一种电信号,它是由电力系统中非线性设备引起的。
谐波会导致电力系统不稳定、设备损坏和通信干扰等问题,因此谐波的抑制是电力系统设计和运行中的重要问题。
谐波的产生原理是电力系统中的非线性元件(如整流器、变频器、电弧炉等)在电压或电流作用下,产生不对称的电压或电流波形,导致谐波频率的波形在电力系统中传播和扩散。
常见的谐波频率包括3次、5次、7次等奇次谐波,以及2次、4次、6次等偶次谐波。
谐波对电力系统的影响包括以下几个方面:1.电力系统不稳定:谐波产生的电压波形失真会导致电力系统的电压稳定性下降,可能导致设备的过电压或欠电压现象,进而影响到电力系统的正常运行。
2.设备损坏:谐波电流会导致电力设备内部的电机、变压器等元件温度升高,进而影响到设备的寿命和可靠性。
3.通信干扰:谐波会在电力线上传播,通过电网对通信系统产生干扰,降低通信系统的传输质量。
为了抑制谐波,可以采取以下几种措施:1.使用谐波滤波器:谐波滤波器是一种专门用于抑制谐波的滤波器。
它可以根据谐波频率的不同,选择相应的滤波器进行安装,从而削弱或消除谐波成分。
2.控制负载谐波含量:减少非线性装置的使用,或者采用符合电力系统标准的电气设备,可以降低谐波的产生和传播。
3.设备绝缘和保护:合理选择电力设备的额定容量和绝缘等级,增加设备的绝缘保护,提高设备的抗谐波能力。
4.进行谐波分析和监测:对电力系统中的谐波进行分析和监测,及时了解谐波的产生和传播情况,以便采取相应的措施进行调整和优化。
5.增加电力系统的容量和稳定性:通过增加线路容量、改善电力系统的稳定性,可以降低谐波对电力系统的影响。
综上所述,谐波是电力系统中的一个重要问题,对电力系统的稳定性和设备的正常运行产生不利影响。
通过采取谐波滤波器、控制负载谐波含量、设备绝缘和保护、谐波分析和监测、以及增加电力系统的容量和稳定性等措施,可以有效地抑制谐波,维护电力系统的正常运行。
电力系统中的谐波分析与抑制技术研究随着电力系统的发展,电气设备的广泛应用和高效能力的需求,电力系统中的谐波问题日益凸显。
谐波是由于非线性元件如电子器件、变频调速器、照明灯具、电动机等在电力系统中的工作状态非正常运行,从而导致基波电流、电压失真,引起的一种频率与基波频率不同的交流电信号。
谐波不仅降低了电力系统能效,还会影响电力设备的工作寿命。
因此,通过谐波分析和抑制技术研究,可以有效提高电力系统的可靠性和能效。
一、谐波分析电力系统中的谐波主要包括电流谐波和电压谐波,它们在电力系统中的传输会产生一系列不利影响。
电流谐波不仅会导致电力变压器铁芯、线圈、绝缘材料等元件中出现高次谐波电流、高温、电弧、电晕等现象,还会引起母线和设备的铜损。
电压谐波则会导致相关设备的故障、损坏,影响电力系统的安全运行。
因此,准确分析谐波特性成为保证电力系统正常运行的重要前提。
谐波分析通过测量和处理电流、电压、功率等参数,对电力系统中的谐波进行分析,了解系统中的谐波含量和频率范围等,为后续的抑制措施提供数据支持。
二、谐波抑制技术为了降低电力系统中谐波的影响,采用一系列设备和技术手段进行谐波抑制,主要包括以下方面。
1.使用线性负载线性负载包括电阻、电感、电容等。
与电子器件、变频调速器等非线性负载相比,线性负载的特性更加稳定,不会产生谐波。
因此,在谐波控制上力求使用线性负载,降低谐波产生的可能性。
2.谐波滤波器谐波滤波器通常由谐波滤波器电抗器和谐波滤波器电容器组成。
谐波滤波器能在电力系统中消除谐波,其原理是将谐波信号通过电感器、电容器等高阻抗元件滤除掉,同时保留基波信号传输到目标设备,以达到谐波抑制的效果。
3.多网侧变压器传输多网侧变压器传输是通过连接两个及以上变电站,在电网多个侧面进行谐波抑制。
多网侧变压器传输中,正、负序谐波和零序谐波会在不同的变压器侧面互相抵消,从而降低电力系统中谐波的含量。
4.使用非线性抑制器非线性抑制器与电力系统中的非线性元件相似,但其特性更加稳定。
电力系统中的谐波分析与抑制方法研究摘要:随着电力系统中非线性负载的普及和不断增长,谐波问题已成为电力系统中一个重要的研究领域。
谐波不仅对电力传输和配电系统的稳定性和可靠性产生负面影响,还对系统中的设备和消费者造成了潜在的危害。
因此,对谐波问题进行深入研究,并采取有效的抑制方法是必要的。
本文将详细分析电力系统中的谐波问题,并介绍相应的谐波分析与抑制方法。
1. 引言电力系统中的谐波问题源自电力负载设备的非线性特性、瞬时扰动和其他外部干扰。
谐波可以导致电力系统中的电流和电压波形失真,对系统稳定性、功率质量和设备寿命产生不利影响。
因此,对谐波进行准确的分析和抑制,对电力系统的可靠性和稳定性至关重要。
2. 谐波分析方法谐波分析是在电力系统中检测和评估谐波的能力。
常用的谐波分析方法包括频谱分析、时域分析和矢量分析。
频谱分析是基于傅里叶变换理论,将信号从时域转换为频域,通过频谱图可以直观地观察到谐波的频率和幅值信息。
时域分析是通过观察波形数据的振幅和频率变化,确定谐波的存在和程度。
矢量分析是通过矢量图形和相量法进行谐波分析,可以更清晰地显示不同谐波成分之间的相位差。
3. 谐波抑制方法为了解决电力系统中的谐波问题,采取一定的抑制方法非常必要。
以下是几种常用的谐波抑制方法:(1) 被动滤波器被动滤波器是应用最广泛的谐波抑制方法之一。
它通过将谐波电流引入并与谐波电压相消,从而减小谐波的影响。
被动滤波器按照谐波频率进行选择,并根据谐波电流和电压的幅值和相位关系进行设计。
(2) 有源滤波器有源滤波器是一种主动干预的谐波抑制方法。
它通过检测谐波电流和电压,并使用控制算法来产生相应的逆谐波电流,从而抵消谐波电流。
有源滤波器具有较高的抑制效果和灵活性,但也存在成本较高和复杂性较大的问题。
(3) 直流回路抑制器直流回路抑制器是一种适用于直流输电系统的谐波抑制方法。
它通过在直流回路中加入谐波抑制器,将谐波电流从直流回路引导到地。
电力系统谐波基本分析方法抑制方法電力系統諧波----基本原理、分析方法、抑制方法【摘要】变频器在工业生产中无可比拟的优越性,使越来越多的系统和装置采用变频器驱动方案,而且采用变频器驱动电动机系统因其节能效果明显,调节方便维护简单,网络化等优点,而被越来越多应用,但它非线性,冲击性用电工作方式,带来干扰问题亦倍受关注。
一台变频器来讲,它输入端和输出端都会产生高次谐波,输入端谐波会输入电源线对公用电网产生影响。
本文从变频器产生的谐波原理、谐波测试分析方法,谐波的抑制方法方面进行探讨。
【关键词】电力系统,变频器,谐波分析,谐波抑制。
【引言】谐波存在于电力系统已经很多年了,但是,近年来,随着技术的发展成熟,越来越多的设备系统为提高可靠性和效率广泛采用电力电子变频器,而且电力公司为降低设备所需的额定值以及线路损耗和电压降落,强制要求电力用户提高其自身的功率因数,而电力用户及工厂端改善功率因数的方法是使用功率因数补偿器—电容模组,这两种情况的出现,使得电力系统的谐波问题变得更加严重。
电力用户和工厂端普遍使用的变速传动和电力电子设备是产生这一现象的根源,而这些设备与功率因数校正电容模组之间的相互作用导致了电压和电流的放大效应;半导体电子工业的迅猛发展也导致了大批精密设备的诞生,与过去粗笨的设备相比,这些设备对电力公司供给的电能质量更加敏感,但同时也导致交流电流和电压稳态波形的畸变。
而为了得到可靠清洁的电力能源,人们必须面对电流和电压畸变的问题,而电流和电压的畸变的主要形式是谐波畸变。
【正文】1、变频器谐波产生从结构来看,变频器可分为间接变频和直接变频两大类。
间接变频将工频电流整流器变成直流,然后再由逆变器将直流变换成可控频率交流。
直接变频器则将工频交流变换成可控频率交流,没有中间直流环节。
它每相都是一个两组晶闸管整流装置反并联可逆线路。
正反两组按一定周期相互切换,负荷上就获了交变输出电压,幅值决定于各整流装置控制角,频率决定于两组整流装置切换频率。
1.2谐波产生的机理
1.3谐波的产生源
1.3.1电输配电系统产生的谐波
1.3.2电源质量不高产生的谐波
1.3.3用电设备产生的谐波
2 谐波的危害
五抑制谐波的方法
5.1对整流设备。
换流设备增加可控硅变换装置脉冲数
5.2增设无功补偿装置
增设动态无功补偿装置。
动态无功补偿装置(静止同步补装置、静止无功补偿装置)可以补偿负荷快速变动的无功需求,滤出系统谐波、改善功率因数、减少向系统注入的谐波电流,降低三相电压不平衡度,稳定母线电压等,从而提高电力系统承受谐波的能力。
此外,在谐波源处通常装设无功补偿装置。
5.3安装无源滤波装置
无源滤波器实际上就是利用电容和电抗器的适当连接.组
成对某次谐波为低阻抗的谐振回路来吸收符合所产生的高次谐波电流,这也是目前较多采用的一种被动式谐波抑制措施
5.4安装有源滤波装置
有源滤波器就是利用时域补偿原理制造的滤波装置,其优点就是能做到适时补偿,且不增加电网的容性元件,但缺点就是造价太高。
这种谐波抑制方式是今后发展的主流
5.5装设隔离变压器
装设隔离变压器。
在重要的配电系统中,把隔离变压器就
地装设在每一个配电盘上,可以有效防止3N次谐波电流从线
路传回电源,使谐波电流与配电系统相隔离。
此外,在三相四
线式供电系统中,应适当增大中性线导线的截面积,要求至少
与相线的截面积相等,这样可以有效地防止谐波电流对中性线
的危害。
隔离变压器要适当提高其额定值,否则也会产生电压
畸变和过热。
六.实际应用
矩阵变换器谐波计算方法与滤波器设计
矩阵变换器(Matrix Converter,简称MC)的研究从概念提出
至今已有30多年,与传统的电力变换器相比MC有一系列优
点:能量双向流动,四象限运行;正弦输入电流、输出电压;
可控功率因素;不需要直流储能元件等
由于MC包含开关较多,数学模型复杂,控制繁琐,到目前
大多数控制策略仍然不能直接实现MC输入输出正弦,在输人
和输出中仍然含有高次和低次谐波;因此,研究谐波的幅值和
分布规律对改进控制策略和设计输入、输出滤波器有重大意义。
但是,国内外MC的谐波计算方法的研究文献和论文都较少。
本例应用了间接空问矢量调制的基本原理,然后,提出了一种矩阵变换器谐波计算的方法;并在Matlab/Simulink中建立计算
模型。
仿真证明了提出的计算方法的正确性和可行性。
6.1 MC间接空间矢量调制的原理
图1(a)为三相MC的主电路拓扑结构,主电路由9个双向开关组成,其中双向开关采用普通的IGBT的共集电极式结构。
MC间接空间矢量调制的原理是一种基于虚拟直流环节概的控制方法。
将MC在理论上等效为一个整流器和逆变器的虚拟连接如图1(b)。
对虚拟的整流和逆变器采用空间矢量脉宽调制(SVPWM)技术并将两个过程进行合成,从而实现MC的正弦输入、输出和可控功率因素。
6.1.1虚拟逆变器调制
设MC输出线电压空间矢量定义为
6.1.2虚拟整流器的调制
6.1..3虚拟整流器和虚拟逆变器的结合
6.2MC谐波计算方法及计算模型
6.2.1MC谐波计算方法
6.2.2谐波计算模型
6.3输入输出滤波器的设计
6.4仿真结果
6.4.1输入输出特性
6.4.2 谐波分布
6.4.3 滤波特性
6.5结论。