直流电机双闭环调速系统的设计与仿真
- 格式:doc
- 大小:332.00 KB
- 文档页数:17
基于MATLAB的直流电机双闭环调速系统的设计与仿真直流电机双闭环调速系统是一种常见的控制系统,常用于工业生产中对电机速度的精确控制。
本文将基于MATLAB软件进行直流电机双闭环调速系统的设计与仿真,包括系统设计、参数设置、控制策略选择、系统仿真以及性能分析等方面。
文章将以1200字以上的篇幅进行详细阐述。
一、系统设计直流电机双闭环调速系统由速度环和电流环构成。
速度环控制系统的输入为速度设定值和电机实际速度,输出为电机期望电压;电流环控制系统的输入为速度环输出的电压和电机实际电流,输出为电机实际电压。
通过控制电机的期望电压和实际电压,达到对电机速度的调控。
二、参数设置在进行系统仿真之前,需要确定系统中各个参数的值。
包括电机的额定转矩、额定电压、电感、电阻等参数,以及控制环节的比例增益、积分增益、微分增益等参数。
这些参数的选择会影响系统的稳定性和动态性能,需要根据实际情况进行调整。
三、控制策略选择常见的控制策略包括PID控制、PI控制、PD控制等。
在直流电机双闭环调速系统中,可以选择PID控制策略。
PID控制器由比例环节、积分环节和微分环节组成,可以提高系统的稳定性和响应速度。
四、系统仿真在MATLAB中进行直流电机双闭环调速系统的仿真,可以使用Simulink模块进行搭建。
根据系统设计和参数设置,搭建速度环和电流环的控制器,连接电机实际速度和电机实际电流的反馈信号,输入速度设定值和电机期望电流,输出电机期望电压。
通过仿真可以得到系统的动态响应曲线,评估系统的性能。
五、性能分析在仿真结果中,可以分析系统的静态误差、超调量、调整时间等指标,评估系统的控制性能。
通过参数调整和控制策略更改等方式,可以优化系统的控制性能,使系统达到更好的调速效果。
总结:本文基于MATLAB软件对直流电机双闭环调速系统进行了设计与仿真。
通过系统设计、参数设置、控制策略选择、系统仿真以及性能分析等步骤,可以得到直流电机双闭环调速系统的动态响应曲线,并通过参数调整和控制策略更改等方式,优化系统的控制性能。
本科毕业设计(论文)题目:双闭环直流调速系统的设计与仿真研究Graduation Design (Thesis)Design and Simulation of Double Loop DC Motor Control SystemByWu JieSupervised byAssociate Prof. Zhang zhenyanDepartment of Automation EngineeringNanjing Institute of TechnologyMay, 2014摘要为了提高运动控制系统在实际工程中的应用效率,本文介绍了直流调速系统的工程设计方法[1],利用 MATLAB软件,对直流调速系统进行数学建模和系统仿真的研究。
所给出的仿真方法,可以灵活地调节系统的参数,从而获得理想的设计结果,并对设计出的系统进行分析。
建立调节器工程设计方法所遵循的原则是:1)概念清楚、易懂。
2)计算公式简明、好记。
3)不仅给出参数计算公式,而且指明参数调节方向。
4)能考虑饱和非线性控制的情况,同时给出简单的计算公式。
5)适合于各种可以简化成典型系统的反馈控制系统[2]。
由于这个课题相对简单,我在里面加入了相关性的内容以丰富本课题的广度和深度。
在本设计中,我加入了三种简单的单闭环直流调速系统,并且通过对它们进行仿真分析,比较找出了它们的不足之处,从而更明显地体现了双闭环直流调速系统的优越性。
并且通过对两种典型的双闭环直流调速系统进行仿真分析,从而更好地理解和运用双闭环直流调速系统[3]。
关键词:直流电动机;双闭环调速;MATLAB;仿真;直流调速系统;直流脉宽调制;工程设计方法ABSTRACTIn order to raise application efficiency of the motion control system in actual project ,this article discussed the engineering design methods of the speed-governing system of DC motor. The mathematical modeling and system simulation of direct current governor system are researched by means of MATLAB platform . The simulation method can adjust the system controller parameters flexibly, so as to achieve the ideal design results, and the design of the system are analyzed.A controller design method is the principles of:(1)The concept of clear, easy to understand.(2)Simple formula, easy to remember.(3)Not only gives the parameter calculation formula, and indicates the parameter adjustment direction.(4)Can consider the saturation nonlinear control, and gives a simple formula.(5)Suitable for all kinds of feedback control systems can be simplified into a typical system.Because this subject is relatively simple, I joined the correlation content inside to enrich the breadth and depth of the subject. In this design, I added three simple single loop DC speed regulation system, and then analyze them, compared to find their deficiencies, and thus more clearly showed the superiority of double closed loop DC speed regulating system. And through the simulation analysis of two kinds of typical double loop DC speed control system, so as to better understand and use the double loop DC speed control system.Keywords: DC motor, double closed loop,MATLAB,Simulation,V-M,PWM-M,The engineering design method目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1 课题研究背景 (1)1.2 直流调速系统国内外研究现状 (1)1.3 研究双闭环直流调速系统的意义 (2)1.4 论文的主要研究内容 (2)第二章仿真软件以及相关硬件简介 (3)2.1 MATLAB/Simulink仿真平台 (3)2.2 仿真的数值算法 (3)2.3 工程设计法 (4)2.4 直流电动机 (4)第三章简单闭环调速系统的设计与仿真 (5)3.1 单闭环有静差转速负反馈调速系统的设计与仿真 (5)3.2 单闭环无静差转速负反馈调速系统的设计与仿真 (11)3.3 带电流截止负反馈的转速反馈系统的设计与仿真 (13)3.4 简单闭环调速系统的优缺点比较 (15)第四章转速、电流双闭环直流调速系统的设计与仿真 (17)4.1 转速、电流双闭环调速系统的设计与仿真 (17)4.2 V-M直流调速系统的设计与仿真 (19)4.3 PWM-M直流调速系统的设计与仿真 (26)第五章总结与展望 (34)致谢 (35)参考文献 (36)第一章绪论1.1 课题研究背景在现代化的工业生产过程中,许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求有良好的稳态、动态性能[4]。
matlab课程设计--基于Matlab 的直流电机双闭环调速系统的设计与仿真基于MATLAB的直流电机双闭环调速系统的设计与仿真班级:自动化12-1班姓名:学号:指导老师:前言MATLAB是一种对技术计算高性能的语言,它集成了计算、可视化和编程于一个易用的环境中。
在此环境下,问题和解答都表达为我们熟悉的数学符号。
典型的应用有:1.数学和计算;2.算法开发;3.建模、模拟和原形化;4.数据分析、探索和可视化;5.科学与工程制图;6.应用开发,包括图形用户界面的建立。
MATLAB在信号与系统中的应用主要包括符号运算和数值计算仿真分析。
由于信号与系统课程的许多内容都是基于公式演算,而MATLAB借助符号数学工具箱提供的符号运算功能,能基本满足信号与系统课程的需求。
例如解微分方程、傅里叶正反变换、拉普拉斯正反变换和z正反变换等。
MATLAB在信号与系统中的另一主要应用是数值计算与仿真分析,主要包括函数波形绘制、函数运算、冲击响应与阶跃响应仿真分析、信号的时域分析、信号的频谱分析、系统的S域分析和零极点图绘制等内容。
数值计算仿真分析可以帮助学生更深入地理解理论知识,并为将来使用MATLAB进行信号处理领域的各种分析和实际应用打下基础。
此次课程设计主要是为了进一步熟悉对matlab软件的使用,以及学会利用matlab对直流电机双闭环调速系统这种实际问题进行处理,将理论应用于实际,加深对它的理解。
目录前言第一章Matlab软件简介1.1 Matlab的产生和历史背景 (1)1.2 Matlab的语言特点 (2)第二章系统介绍2.1 设计参数要求 (4)2.2 稳态参数计算 (4)2.3 电流环设计 (5)2.4 转速换设计 (8)第三章仿真调试3.1 仿真结果分析 (11)3.2 转速电流双闭环程序流程框图 (11)3.3 Matlab源程序 (12)第四章总结 (14)参考文献第一章 Matlab软件简介1.1 Matlab的产生和历史背景在20世纪70年代中期,Cleve Moler博士和其同事在美国国家科学基金的资助下开发了调用EISPACK和LINPACK的FORTRAN子程序库。
运动控制系统课程设计题目:转速电流双闭环直流调速系统仿真与设计转速电流双闭环直流调速系统仿真与设计1. 设计题目转速电流双闭环直流调速系统仿真与设计2. 设计任务已知某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:1)直流电动机:160V、120A、1000r/min、C e=r,允许过载倍数λ=2)晶闸管装置放大系数:K s=303)电枢回路总电阻:R=Ω4)时间常数:T l=,T m=,转速滤波环节时间常数T on取5)电压调节器和电流调节器的给定电压均为10V试按工程设计方法设计双闭环系统的电流调节器和转速调节器,并用Simulink建立系统模型,给出仿真结果;系统要求:1)稳态指标:无静差2)动态指标:电流超调量σi ≤5%;空载起动到额定转速时超调量σn ≤10%3. 设计要求根据电力拖动自动控制理论,按工程设计方法设计双闭环调速系统的步骤如下:1)设计电流调节器的结构和参数,将电流环校正成典型I型系统;2)在简化电流环的条件下,设计速度调节器的结构和参数,将速度环校正成典型II型系统;3)进行Simulink仿真,验证设计的有效性;4.设计内容1 设计思路:带转速负反馈的单闭环系统,由于它能够随着负载的变化而相应的改变电枢电压,以补偿电枢回路电阻压降的变化,所以相对开环系统它能够有效的减少稳态速降;当反馈控制闭环调速系统使用带比例放大器时,它依靠被调量的偏差进行控制的,因此是有静差率的调速系统,而比例积分控制器可使系统在无静差的情况下保持恒速,实现无静差调速;对电机启动的冲击电流以及电机堵转时的堵转电流,可以用附带电流截止负反馈作限流保护,但这并不能控制电流的动态波形;按反馈的控制规律,采用某个物理量的负反馈就可以保持该基本量基本不变,采用电流负反馈就应该能够得到近似的恒流过程;另外,在单闭环调速系统中,用一个调节器综合多种信号,各参数间相互影响,难于进行调节器的参数调速;例如,在带电流截止负反馈的转速负反馈的单闭环系统中,同一调节器担负着正常负载时的速度调节和过载时的电流调节,调节器的动态参数无法保证两种调节过程均具有良好的动态品质;按照电机理想运行特性,应该在启动过程中只有电流负反馈,达到稳态转速后,又希望只有转速反馈,双闭环调速系统的静特性就在于当负载电流小于最大电流时,转速负反馈起主要作用,当电流达到最大值时,电流负反馈起主要作用,得到电流的自动保护;2双闭环调速系统的组成:a.系统电路原理图图2-1为转速、电流双闭环调速系统的原理图;图中两个调节器ASR和ACR 分别为转速调节器和电流调节器,二者串级连接,即把转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置;电流环在内,称之为内环;转速环在外,称之为外环;两个调节器输出都带有限幅,ASR的输出限幅什U im决定了电流调节器ACR 的给定电压最大值U im,对就电机的最大电流;电流调节器ACR输出限幅电压U cm 限制了整流器输出最大电压值,限最小触发角α;图2-1 双闭环调速系统电路原理图b.系统动态结构图图2-2为双闭环调速系统的动态结构框图,由于电流检测信号中常含有交流分量,须加低通滤波,其滤波时间常数T oi按需要选定;滤波环节可以抑制反馈信号中的交流分量,但同时也给反馈信号带来了延滞;为了平衡这一延滞作用,在给定信号通道中加入一个相同时间常数的惯性环节,称作给定滤波环节;其作用是:让给定信号和反馈信号经过同样的延滞,使二者在时间上得到恰当的配合,从而带来设计上的方便;由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,滤波时间常数用T on表示;根据和电流环一样的道理,在转速给定通道中也配上时间常数为T on的给定滤波环节;T oi—电流反馈滤波时间常数T on—转速反馈滤波时间常数图2-2双闭环调速系统的动态结构图3)按工程设计方法设计双闭环系统的ACR:设计多环控制系统的一般原则是:从内环开始,一环一环地逐步向外扩展;在这里是:先从电流环入手,首先设计好电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器;a.确定时间常数整流滤波时间常数T s,三相桥式电路的平均失控时间T s=;电流滤波时间常数T oi,三相桥式电路每个波头的时间是,为了基本虑平波头,应有1~2Toi=,因此取Toi=2ms=;电流环小时间常数T∑i,按小时间常数近似处理,取T∑i=T s+T oi=;b.选择电流调节器结构由设计要求:σi%≤5%,并保证系统稳态电流无误差,因此可按典型I型系统设计,电流调节器选用PI 型,其传递函数为: W ACR s =isis Ki ττ1+ c.校验近似条件电流环截止频率11.135-==s KI ci ω; 晶闸管装置传递函数近似条件为:13ci sw T ≤=,满足近似条件; 忽略反电动势对电流环影响的条件为:ci w ≥满足近似条件; 小时间常数近似条件处理条件为:ci w ≤=, 满足近似条件;d.计算调节器电阻和电容电流调节器原理如图3-1所示,按所用运算放大器取R 0=40kΩ,各电阻和电容值计算如下:,取30k; ,取;-图3-1含给定滤波与反馈滤波的PI 型电流调节器按照上述参数,电流环可以达到的动态指标为:σi %=%<5%,满足设计4按工程设计方法设计双闭环系统的ASR :a.确定时间常数电流环等效时间常数为20.0074i T s ∑=;转速滤波时间常数Ton ,根据所用测速发电机波纹情况,取Ton=; 转速环小时间常数n T ∑ 按小时间常数近似处理,取n T ∑=20.0174i T Ton s ∑+=;b .选择转速调节器结构由于设计要求无静差,转速调节器必须含有积分环节;又根据动态要求,应按典型Ⅱ型系统设计速度环,故ASR 选用PI 调节器,其传递函数为:1()n ASR nn s W s K sττ+= c.计算速度调节器参数按跟随和抗干扰性能较好的原则,取h=5,则ASR 的超前时间常数为:50.01740.087n n hT s τ∑==⨯=,转速环开环增益: 2224.39621-∑=+=s T h h K nN 于是,ASR 的比例系数: =d.校验近似条件由转速截止频率:15.341-===s n KN KNcn τωω; 电流环传递函数简化条件: ,满足简化条件; 转速环小时间常数近似条件为: ,满足近似条件;e.计算调节器电阻和电容转速调节原理图如图3-2所示,取040R k =Ω,则,取550k; ,取;图3-2含给定滤波与反馈滤波的PI 型转速调节器-按照上述参数,电流环可以达到的动态指标为:当h=5时,查表得%,虽然不满足设计要求,而实际上,突加阶跃给定时,ASR 饱和,应按退饱和的情况重新计算超调量,实际%,满足设计要求;5内、外开环对数幅频特性的比较图4-1把电流环和转速环的开环对数幅频特性画在一张图上,其中各转折频率和截止频率依次为:13.2700037.011-==∑s i T ,151.570174.011-==∑s n T , 151.34-=s cn ω,15.11087.011-=s n τ; 以上频率一个比一个小,从计算过程可以看出,这是必然的规律;因此,这样设计的双闭环系统,外环一定比内环慢;一般来说,1150~100-=s ci ω,150~20-=s cn ω;从外环的响应速度受到限制,这是按上述方法设计多环控制系统时的缺点;然而,这样一来,每个环本身都是稳定的,对系统的组成和调试工作非常有利;总之,多环系统的设计思想是:以稳为主,稳中求快;L/dBO1/-s ωiT ∑1ciωnT ∑1cn ωnτ1InI-电流内环 n-转速外环图4-1又闭环系统内环和外环的开环对数幅频特性-20-40-20-406 晶闸管的电压、电流定额计算a.晶闸管额定电压U N晶闸管额定电压必须大于元件在电路中实际承受的最大电压Um ,考虑到电网电压的波动和操作过电压等因素,还要放宽2~3倍的安全系数,即按下式选取U N =2~3Um ,式中系数2~3的取值应视运行条件,元件质量和对可靠性的要求程度而定;b.晶闸管额定电流I N为使晶闸管元件不因过热而损坏,需要按电流的有效值来计算其电流额定值;即必须使元件的额定电流有效值大于流过元件实际电流的最大有效值;可按下式计算:I N =~2K fb I MAX ;式中计算系数K fb =Kf/由整流电路型式而定,Kf 为波形系数,Kb 为共阴极或共阳极电路的支路数;当α=0时,三相全控桥电路K fb =,故计算的晶闸管额定电流为I N =~2K fb I MAX =~2 ××220×=~,取200A;7平波电抗器计算由于电动机电枢和变压器存在漏感,因而计算直流回路附加电抗器的电感量时,要从根据等效电路折算后求得的所需电感量中,扣除上述两种电感量;a.电枢电感量L M 按下式计算)(2103mH I Pn U K L NN N D M ⨯=P —电动机磁极对数,K D —计算系数,对一般无补偿电机:K D =8~12; b.整流变压器漏电感折算到次级绕组每相的漏电感L B 按下式计算)(100%2mH I U U K L dK BB •= U 2—变压器次级相电压有效值,I d —晶闸管装置直流侧的额定负载电流,K B —与整流主电路形式有关的系数;c.变流器在最小输出电流I dmin 时仍能维持电流连续时电抗器电感量L 按下式计算min2d I U K L •=, K 是与整流主电路形式有关的系数,三相全控桥K 取则L =mH.6)进行Simulink 仿真,验证设计的有效性a. 电流闭环的仿真如下图:为了研究系统的参数对动态性能的影响,分别取K I T ∑i =、、、,此时K I 的值也会随之变化,运行仿真,即可得不同K I 值的阶跃响应曲线:图6-1 KT=的阶跃响应曲线图6-2KT=的阶跃响应曲线图6-3 KT=的阶跃响应曲线图6-4 KT=的阶跃响应曲线由曲线可以看出如果要求动态响应快,可取KT=;如果要求系统超调小,则应把KT 的值取小些,可取KT<;无特殊要求,取折中值KT=,,称为最佳二阶系统;图6-1~图6-4反映了PI 调节器的参数对系统品质的影响趋势,在工程设计中,可以根据工艺的要求,直接修改PI 调节器的参数,找到一个在超调量和动态响应快慢上都较满意的电流环调节器;b. 转速环的仿真设计在增加转速环调节后,转速环开环传递函数如下: )1()1()(n 2n N n ++=∑s T s s K s W τ 校正后的调速系统动态结构框图如下所示:其中me n n N T C R K K βτα=;在matlab中搭建好系统的模型,如下图:转速环的仿真设计为满足系统在不同需求下的跟随性与抗扰行能要求,取h的之分别为:3、5、7、9. 用matlab仿真结果如下:图7-1h=3时的阶跃响应曲线图7-2h=5时的阶跃响应曲线图7-3h=7时的阶跃响应曲线图7-4h=9时的阶跃响应曲线由图可以看出:h值越小,动态降落也越小,恢复时间、调节时间也短,抗扰性能也越好,但是,从h<5以后,由于震荡剧烈h越小,恢复时间反而延长,综合起来看,h=5是最佳选择,也即最佳三阶系统;对电流环与转速环都是根据实际需要调节参数的,对比Ⅰ型、Ⅱ型系统可以发现:Ⅰ型系统可以在跟随性上做到超调小,但抗扰性能差;而Ⅱ型系统超调却相对较大,抗扰性能较好;5.设计心得a.通过该次设计,更加熟悉掌握了电流转速双闭环直流调速系统的结构组成以及它的工作原理,加深了对开环、闭环有静差、无静差调速的理解---闭环结构保证系统的稳定性与抗干扰能力;无静差调速则保证系统有较低的稳态误差;b.由此也初步掌握双闭环调节器的整个设计过程,其基本思想是先内环再外环;在结构框图的处理过程中有多处近似处理,简化了传递函数,从而使问题得到简化,因此称为被称为“工程设计方法”,这意味着在实际的应用中,在可以大大简化分析过程却很小影响分析结果的方法是很有价值的;从开环到闭环、从闭环无静差到有静差、从单环到双环着一些列的变化显示人们人知的渐进性;仿真是自己临时捡起matlab课本重新回顾才完成的,仿真的直观的证明了最佳二阶、三阶系统的参数,并再一次体现了matlab在控制中的重要作用,的确是一个很强大的仿真工具;整个仿真过程也加深了自己对电力拖动控制相关知识理解程度,相当于也许经过证明的才是最可靠的;d.由于水平有限,设计中肯定有许多错误和不足的地方,敬请老师指正;6.参考文献【1】陈伯时,电力拖动自动控制系统;机械工业出版社;【2】李荣生,电气传动控制设计指导;;。
双闭环直流调速系统的设计与仿真实验报告一、系统结构设计双闭环直流调速系统由两个闭环控制组成,分别是速度子环和电流子环。
速度子环负责监测电机的转速,并根据设定值与实际转速的误差,输出电流指令给电流子环。
电流子环负责监测电机的电流,并根据电流指令与实际电流的误差,输出电压指令给电机驱动器,实现对电机转速的精确控制。
二、参数选择在进行双闭环直流调速系统的设计之前,需选择合适的控制参数。
根据实际的电机参数和转速要求,确定速度环和电流环的比例增益和积分时间常数等参数。
同时,还需根据电机的动态特性和负载特性,选取合适的速度和电流传感器。
三、控制策略速度子环采用PID控制器,通过计算速度误差、积分误差和微分误差,生成电流指令,并传递给电流子环。
电流子环也采用PID控制器,通过计算电流误差、积分误差和微分误差,生成电压指令,并输出给电机驱动器。
四、仿真实验为了验证双闭环直流调速系统的性能,进行了仿真实验。
首先,通过Matlab/Simulink建立双闭环直流调速系统的模型,并设置不同转速和负载条件,对系统进行仿真。
然后,通过调整控制参数,观察系统响应速度、稳定性和抗干扰性等指标的变化。
五、仿真结果分析根据仿真实验的结果可以看出,双闭环直流调速系统能够实现对电机转速的精确控制。
当系统负载发生变化时,速度子环能够快速调整电流指令,使电机转速保持稳定。
同时,电流子环能够根据速度子环的电流指令,快速调整电压指令,以满足实际转速的要求。
此外,通过调整控制参数,可以改善系统的响应速度和稳定性。
六、总结双闭环直流调速系统是一种高精度的电机调速方案,通过双重反馈控制实现对电机转速的精确控制。
本文介绍了该系统的设计与仿真实验,包括系统结构设计、参数选择、控制策略及仿真结果等。
仿真实验结果表明,双闭环直流调速系统具有良好的控制性能,能够满足实际转速的要求。
转速电流双闭环直流调速系统设计一、引言直流调速系统是控制直流电机转速的一种常用方法。
在实际应用中,为了提高系统性能,通常采用双闭环控制结构,即转速环和电流环。
转速环用于控制电机转速,电流环用于控制电机电流。
本文将对转速、电流双闭环直流调速系统进行详细设计。
二、转速环设计转速环的主要功能是通过控制电机的转矩来实现对转速的精确控制。
转速环设计步骤如下:1.系统建模:根据电机的特性曲线和转矩方程,建立电机数学模型。
通常采用转速-电压模型,即Tm=Kt*Ua-Kv*w。
2.设计转速环控制器:选择适当的控制器类型和参数,比如PID控制器。
根据电机数学模型,可以使用根轨迹法、频域法等进行控制器参数设计。
确定控制器增益Kp、Ki和Kd。
3.闭环仿真:使用仿真软件,进行闭环仿真,验证控制器的性能。
4.实际系统调试:将设计好的转速环控制器实施到实际系统中,进行调试和优化。
根据实际情况对控制器参数进行微调。
三、电流环设计电流环的主要功能是控制电机的电流,以确保电机输出的转矩能够满足转速环的要求。
电流环设计步骤如下:1.系统建模:根据电机的特性曲线和电流方程,建立电机数学模型。
通常采用电流-电压模型,即Ia=(Ua-R*Ia-Ke*w)/L。
2.设计电流环控制器:选择适当的控制器类型和参数,比如PID控制器。
根据电机数学模型,可以使用根轨迹法、频域法等进行控制器参数设计。
确定控制器增益Kp、Ki和Kd。
3.闭环仿真:使用仿真软件,进行闭环仿真,验证控制器的性能。
4.实际系统调试:将设计好的电流环控制器实施到实际系统中,进行调试和优化。
根据实际情况对控制器参数进行微调。
四、双闭环控制系统设计在转速环和电流环都设计好的基础上,将两个闭环控制器连接起来,形成双闭环控制系统。
具体步骤如下:1.控制系统结构设计:将电流环置于转速环的前端,形成串级控制结构。
2.系统建模:将转速环和电流环的数学模型进行串联,建立双闭环控制系统的数学模型。
4•仿真实验95•仿真波形分析13三、心得体会14四、参考文献161•课题研究的意义从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。
双闭环直流调速系统就是一个典型的系统,该系统一般含晶闸管可控整流主电路、移相控制电路、转速电流双闭环调速控制电路、以及缺相和过流保护电路等。
直流调速是现代电力拖动自动控制系统中发展较早的技术。
就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。
且直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。
由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。
所以加深直流电机控制原理理解有很重要的意义。
2•课题研究的背景电力电子技术是电机控制技术发展的最重要的助推器,电力电机技术的迅猛发展,促使了电机控制技术水平有了突破性的提高。
从20世纪60年代第一代电力电子器件-晶闸管(SCR)发明至今,已经历了第二代有自关断能力的电力电子器件-GTR、GTO、MOSFET,第三代复合场控器件-IGBT、MCT等,如今正蓬勃发展的第四代产品-功率集成电路(PIC)。
每一代的电力电子元件也未停顿,多年来其结构、工艺不断改进,性能有了飞速提高,在不同应用领域它们在互相竞争,新的应用不断出现。
同时电机控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术和微机应用技术的最新发展成就。
正是这些技术的进步使电动机控制技术在近二十多年内发生了天翻地覆的变化。
(3-16) 取:(3-17) ◎i=4.3%<5%,满足课题所给要求。
3.3速度调节器设计电流环等效时间常数1/K。
取KT乙=0.5,贝IJ:1二2X0.0067二0.0134K(3-15)转速滤波时间常数T on。
转速电流双闭环的数字式可逆直流调速系统的仿真与设计一、设计目的应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。
应用计算机仿真技术,通过在MATLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。
在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。
二、设计参数1、直流电动机(1):输出功率为:7.5Kw 电枢额定电压220V电枢额定电流 36A 额定励磁电流2A额定励磁电压110V 功率因数0.85电枢电阻0.2欧姆电枢回路电感100mH电机机电时间常数2S 电枢允许过载系数1.5额定转速 1430rpm2、环境条件:电网额定电压:380/220V,电网电压波动:10%环境温度:-40~+40摄氏度,环境湿度:10~90%3、控制系统性能指标:电流超调量小于等于5%空载起动到额定转速时的转速超调量小于等于30%调速范围D=20,静差率小于等于0.03.三系统方案选择(1)可控电源选择直流电动机具有良好的起制动性能在广泛范围内可实现平滑调速,在需要高性能可控电力拖动的领域中得到了广泛的应用。
从生产机械要求控制的物理量来看,各种系统往往都通过控制转速来实现的。
因而直流调速系统是最基本的拖动控制系统。
直流变电压调速是直流调速系统用的主要方法,调节电枢供电电压所需的可控制电源通常有3种:① 转电流机组② 适用于调速要求不高、要求可逆运行的系统但其设备多、体积大、费用高、效率低。
②静止可控整流器可通过调节触发装置的控制电压来移动触发脉冲的相位从而实现平滑调速且控制作用快速性能好提高系统动态性能。
③PWM(脉宽调制变换器)或称直流斩波器利用直流斩波器或脉宽调制变换器产生可变平均电压,与V—M系统相比,PWM系统在很多方面有较大的优越性:主电路线路简单,需要的功率器件少,开关频率高;电流容易连续,谐波少,电机损耗及发热都较小;低速性能好,稳速精度高,调速范围宽;若与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强;功率开关器件工作在开关状态,道通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率高;直流电源采用不控整流时,电网功率因数比相控整流高。
直流电动机双闭环调速系统MATLAB仿真实验报告
实验目的:
本实验旨在设计并实现直流电动机的双闭环调速系统,并使用MATLAB进行仿真实验,验证系统的性能和稳定性。
实验原理:
直流电动机调速系统是通过改变电机的输入电压来实现调速的。
双闭环调速系统采用了速度环和电流环两个闭环控制器,其中速度环的输入为期望转速和实际转速的误差,输出为电机的电流设定值;电流环的输入为速度环输出的电流设定值和实际电流的误差,输出为电机的输入电压。
实验步骤:
1.建立直流电动机的数学模型。
2.设计速度环控制器。
3.设计电流环控制器。
4.进行系统仿真实验。
实验结果:
经过仿真实验,得到了直流电动机双闭环调速系统的性能指标,包括上升时间、峰值过渡性能和稳态误差等。
同时,还绘制了调速曲线和相应的控制输入曲线,分析了调速系统的性能和稳定性。
实验结论:
通过对直流电动机双闭环调速系统的仿真实验,验证了系统的性能和
稳定性。
实验结果表明,所设计的双闭环控制器能够实现快速且稳定的直
流电动机调速,满足了实际工程应用的需求。
实验心得:
本实验通过使用MATLAB进行仿真实验,深入理解了直流电动机的双
闭环调速系统原理和实现方式。
通过实验,我不仅熟悉了MATLAB的使用,还掌握了直流电动机的调速方法和控制器设计的原则。
同时,实验中遇到
了一些问题,比如系统的超调过大等,通过调整控制器参数和优化系统结
构等方法,最终解决了这些问题。
通过本次实验,我对直流电动机调速系
统有了更加深入的理解,为之后的工程应用打下了坚实的基础。
一. 设计要求与设计参数:设一转速、电流双闭环直流调速系统,采用双极式H 桥PWM 方式驱动,已知电动机参数为:额定功率200W ; 额定转速48V ; 额定电流4A ; 额定转速=500r/min ; 电枢回路总电阻8=R Ω; 允许电流过载倍数λ=2; 电势系数=e C 0.04Vmin/r ; 电磁时间常数=L T 0.008s ; 机电时间常数=m T 0.5;电流反馈滤波时间常数=oi T 0.2ms ; 转速反馈滤波时间常数=on T 1ms ;要求转速调节器和电流调节器的最大输入电压==**im nm U U 10V ;两调节器的输出限幅电压为10V ; PWM 功率变换器的开关频率=f 10kHz ; 放大倍数=s K 4.8。
试对该系统进行动态参数设计,设计指标: 稳态无静差; 电流超调量≤i σ5%;空载起动到额定转速时的转速超调量σ ≤ 25%; 过渡过程时间=s t 0.5 s 。
二. 设计过程1. 计算电流和转速反馈系数电流反馈系数:A A VI U im /V 25.14210nom *=⨯==λβ;转速反馈系数:rV r Vn U nm min/02.0min /50010max *⋅===α2. 电流环的动态校正过程和设计结果(1) 确定时间常数由已知条件知滤波时间常数=oi T 0.2ms=0.0002s ,按电流环小时间常数环节的近似处理方法,取(2) 选择电流调节器结构电流环可按典型I 型系统进行设计。
电流调节器选用PI 调节器,其传递函数为(3) 选择调节器参数超前时间常数==0.008s 。
电流环超调量≤i σ5%考虑,电流环开环增益:取,因此于是,电流调节器的比例系数为(4) 检验近似条件电流环的截止频率 1) 近似条件一:现在,,满足近似条件。
2) 近似条件二:现在,,满足近似条件。
3) 近似条件三:现在,,满足近似条件。
(5) 编制MATLAB 程序,绘制经过小参数环节合并近似后的电流环开环频率特性曲线和单位阶跃响应曲线根据设计过程和结果,建立如下图所示的经过小参数环节合并并简化后的电流环动态结构图。
也可通过编制MARLAB程序进行仿真,程序如下:>>sys0=1/1.25;>> sys1=tf(6,[0.0003 1]);>> sys2=tf(0.125,[0.008 1]);>> w=17.78*tf([0.008 1],[0.008 0]);>> figure(1);>> margin(sys1*sys2* w);>> hold on>> grid on>> figure(2);>> closys1=sys0*sys1*sys2 *w/(1+sys1*sys2* w);>> t=0:0.0001:0.0035;>> step(closys1,t);>> grid on通过MATLAB仿真,获得如下图所示的经过小参数环节合并近似后的电流环开环频率特性曲线和单位阶跃响应曲线:经过小参数环节合并近似后的电流环开环频率特性曲线经过小参数环节合并近似后的单位阶跃响应曲线=4.32%5%,满足设计对阶跃响应曲线进行分析,如下图所示,可知电流超调量i指标要求。
(6)编制MATLAB程序,未经过小参数环节合并近似后的电流环开环频率特性曲线和单位阶跃响应曲线根据设计过程和结果,建立如下图所示的未经过小参数环节合并并简化后电流环的动态结构图。
也可通过编制MARLAB程序进行仿真,程序如下:>> sys0=tf(1,[0.0002 1]);>> sys1=tf(1.25,[0.0002 1]);>> sys2=tf(4.8,[0.0001 1]);>> sys3=tf(0.125,[0.008 1]);>> w=17.78*tf([0.008 1],[0.008 0]);>> figure(1);>> margin(sys1*sys2*sys3*w);>> hold on>> grid on>> figure(2);>> closys1=sys0* sys2*sys3*w/(1+sys1*sys2*sys3*w);>> t=0:0.0001:0.008;>> step(closys1,t);>> grid on通过MATLAB仿真,获得如下图所示的未经过小参数环节合并近似后的电流环开环频率特性曲线和单位阶跃响应曲线:未经过小参数环节合并近似后的电流环开环频率特性曲线未经过小参数环节合并近似后的电流环单位阶跃响应曲线=4.57%5%,满足设计指标对阶跃响应曲线进行分析,如下图所示,可知电流超调量i要求。
比较经过经过小参数环节合并近似后的电流环单位阶跃响应曲线和未经过小参数环节合并近似后的电流环单位阶跃响应曲线可知,在满足近似条件的前提下,可以按小惯性环节的降阶处理方法,将小惯性环节合并成一个惯性环节,从而简化电流环,并且不影响结果。
3.转速环的动态校正过程和设计结果(1)确定时间常数电流环的等效时间常数2。
转速滤波时间常数。
转速环小时间常数近似处理:。
(2)选择转速调节器结构由转速稳态无静差由转速稳态无静差要求,转速调节器中必须包含积分环节;又根据动态要求,应该按典型Ⅱ型系统校正转速环,因此转速调节器应该选择PI调节器,其传递函数为:(3)选择调节器参数按跟随性和抗扰性能均分比较好的原则,又通过校核,发现取h=5时,转速超调量 =37.6%25%,不符合设计指标要求,故取h=10, 则转速调节器的超前时间常数为转速开环增益于是,转速调节器的比例系数为:(4)校验近似条件转速环的开环截止频率为1)近似条件一:现在,,满足近似条件。
2)近似条件二:现在,,满足近似条件。
(5)编制MATLAB曲线,绘制经过小参数环节合并近似后的转速环开环频率特性曲线和单位阶跃响应曲线根据设计过程和结果,建立如下图所示的经过小参数环节合并并简化后的转速环动态结构图。
也可通过编制MARLAB程序进行仿真,程序如下:>> n=50;>> sys1=tf(0.016,[0.0016 1]);>> sys2=tf(8,[0.02 0]);>> w=53.71*tf([0.016 1],[0.016 0]);>> figure(1);>> margin(sys1*sys2*w);>> hold on>> grid on>> figure(2);>> closys1=n* sys1*sys2*w/(1+sys1*sys2*w);>> t=0:0.001:0.06;>> step(closys1,t);>> grid on通过MATLAB仿真,获得如下图所示的经过小参数环节合并近似后的转速环开环频率特性曲线和单位阶跃响应曲线:经过小参数环节合并近似后的转速环开环频率特性曲线经过小参数环节合并近似后的转速环单位阶跃响应曲线对阶跃响应曲线进行分析,如下图所示,可知转速超调量=23.3%25%,过渡过程远小于0.5s,满足设计指标要求。
(6)未经过小参数环节合并近似后的转速环开环频率特性曲线和单位阶跃响应曲线MATLAB根据设计过程和结果,建立如下图所示的经过小参数环节合并并简化后的转速环动态结构图。
也可通过编制MARLAB程序进行仿真,程序如下:>> sys0=tf(1,[0.001 1]);>> sys1=tf(0.8,[0.0003/1666.67 1/1666.67 1]);>> sys2=tf(8,[0.02 0]);>> sys3=tf(0.02,[0.001 1]);>> w=53.71*tf([0.016 1],[0.016 0]);>> figure(1);>> margin(sys1*sys2*sys3*w);>> hold on>> grid on>> figure(2);>> closys1=sys0* sys1*sys2*w/(1+sys1*sys2*sys3*w);>> t=0:0.001:0.05;>> step(closys1,t);>> grid on通过MATLAB仿真,获得如下图所示的未经过小参数环节合并近似后的转速环开环频率特性曲线和单位阶跃响应曲线:未经过小参数环节合并近似后的转速环开环频率特性曲线未经过小参数环节合并近似后的转速环单位阶跃响应曲线对阶跃响应曲线进行分析,如下图所示,可知转速超调量=24.7%25%,满足设计指标要求。
比较经过经过小参数环节合并近似后的转速环单位阶跃响应曲线和未经过小参数环节合并近似后的转速环单位阶跃响应曲线可知,在满足近似条件的前提下,可以按小惯性环节的降阶处理方法,将小惯性环节合并成一个惯性环节,从而简化转速环,并且不影响结果。
4.建立转速电流双闭环直流调速系统的Simulink仿真模型,对上述分析设计结果进行仿真各个out端口处的阶跃响应曲线如下图所示:分析图可知,转速超调量和过渡时间均符合要求,如下图所示:将输出用示波器仿真,如下图所示:图中各示波器如下图所示:Scope(转速调节器输出)Scope1(电流调节器输出)Scope2(电流)Scope3(转速)由图发现仿真结果与理论结果有较大差别,原因可能在于图中的限幅元件。