2019学年高二数学下学期期末考试试题 理 人教新目标版(1)
- 格式:doc
- 大小:243.62 KB
- 文档页数:6
学习资料专题2019学年度第二学期期末考试高二理数一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合要求的,请你将符合要求的项的序号填在括号内)1. 设是虚数单位,复数为纯虚数,则实数的值为()A. B. C. D.【答案】A【解析】为纯虚数,所以,故选A.2. 下列说法中正确的是()①相关系数用来衡量两个变量之间线性关系的强弱,越接近于,相关性越弱;②回归直线一定经过样本点的中心;③随机误差满足,其方差的大小用来衡量预报的精确度;④相关指数用来刻画回归的效果,越小,说明模型的拟合效果越好.A. ①②B. ③④C. ①④D. ②③【答案】D【解析】【分析】运用相关系数、回归直线方程等知识对各个选项逐一进行分析即可【详解】①相关系数用来衡量两个变量之间线性关系的强弱,越接近于,相关性越强,故错误②回归直线一定经过样本点的中心,故正确③随机误差满足,其方差的大小用来衡量预报的精确度,故正确④相关指数用来刻画回归的效果,越大,说明模型的拟合效果越好,故错误综上,说法正确的是②③故选【点睛】本题主要考查的是命题真假的判断,运用相关知识来进行判断,属于基础题3. 某校为了解高三学生学习的心理状态,采用系统抽样方法从800人中抽取40人参加某种测试,为此将他们随机编号为1,2,…,800,分组后在第一组采用简单随机抽样的方法抽到的号码为18,抽到的40人中,编号落在区间[1,200]的人做试卷A,编号落在[201,560]的人做试卷B,其余的人做试卷C,则做试卷C的人数为()A. 10B. 12C. 18D. 28【答案】B【解析】,由题意可得抽到的号码构成以为首项,以为公差的等差数列,且此等差数列的通项公式为,落入区间的人做问卷,由,即,解得,再由为正整数可得,做问卷的人数为,故选B.4. 某程序框图如图所示,则该程序运行后输出的值是()学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...A. 0B. -1C. -2D. -8【答案】B【解析】根据流程图可得:第1次循环:;第2次循环:;第3次循环:;第4次循环:;此时程序跳出循环,输出 .本题选择B选项.5. 在正方体中,过对角线的一个平面交于,交于得四边形,则下列结论正确的是()A. 四边形一定为菱形B. 四边形在底面内的投影不一定是正方形C. 四边形所在平面不可能垂直于平面D. 四边形不可能为梯形【答案】D【解析】对于A,当与两条棱上的交点都是中点时,四边形为菱形,故A错误;对于B, 四边形在底面内的投影一定是正方形,故B错误;对于C, 当两条棱上的交点是中点时,四边形垂直于平面,故C错误;对于D,四边形一定为平行四边形,故D正确.故选:D6. 已知随机变量满足,,且,若,则()A. ,且B. ,且C. ,且D. ,且【答案】B【解析】分析:求出,,从而,由,得到,,从而,进而得到. 详解:随机变量满足,,,,,,解得,,,,,,故选B.点睛:本题主要考查离散型随机变量的分布列、期望公式与方差公式的应用以及作差法比较大小,意在考查学生综合运用所学知识解决问题的能力,计算能力,属于中档题.7. 某空间几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【答案】B【解析】试题分析:由三视图可知,该几何体是一个四棱锥挖掉半个圆锥所得,所以体积为.考点:三视图.8. 有一个偶数组成的数阵排列如下:2 4 8 14 22 32 …6 10 16 24 34 … …12 18 26 36 … … …20 28 38 … … … …30 40 … … … … …42 …… … … … …… … … … … … …则第20行第4列的数为()A. 546B. 540C. 592D. 598【答案】A【解析】分析:观察数字的分布情况,可知从右上角到左下角的一列数成公差为2的等差数列,想求第20行第4列的数,只需求得23行第一个数再减去即可,进而归纳每一行第一个数的规律即可得出结论.详解:顺着图中直线的方向,从上到下依次成公差为2的等差数列,要想求第20行第4列的数,只需求得23行第一个数再减去即可.观察可知第1行的第1个数为:;第2行第1个数为:;第3行第1个数为:.……第23行第1个数为:.所以第20行第4列的数为.故选A.点睛:此题考查归纳推理,解题的关键是通过观察得出数字的排列规律,是中档题.9. 已知一袋中有标有号码的卡片各一张,每次从中取出一张,记下号码后放回,当三种号码的卡片全部取出时即停止,则恰好取次卡片时停止的概率为()A. B. C. D.【答案】B【解析】分析:由题意结合排列组合知识和古典概型计算公式整理计算即可求得最终结果.详解:根据题意可知,取5次卡片可能出现的情况有种;由于第5次停止抽取,所以前四次抽卡片中有且只有两种编号,所以总的可能有种;所以恰好第5次停止取卡片的概率为.本题选择B选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.10. 已知单位圆有一条长为的弦,动点在圆内,则使得的概率为()A. B. C. D.【答案】A【解析】建立直角坐标系,则,设点坐标为,则,故,则使得的概率为,故选A.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.11. 已知是椭圆和双曲线的公共焦点,是它们的一个公共点,且,则椭圆和双曲线的离心率乘积的最小值为()A. B. C. 1 D.【答案】B【解析】设椭圆的长半轴长为,双曲线的实半轴常为,故选B.12. 已知定义在R上的函数f(x)的导函数为,(为自然对数的底数),且当时, ,则 ()A. f(1)<f(0)B. f(2)>e f(0)C. f(3)>e3f(0)D. f(4)<e4f(0)【答案】C【解析】【分析】构造新函数,求导后结合题意判断其单调性,然后比较大小【详解】令,,时,,则,在上单调递减即,,,,故选【点睛】本题主要考查了利用导数研究函数的单调性以及导数的运算,构造新函数有一定难度,然后运用导数判断其单调性,接着进行赋值来求函数值的大小,有一定难度二、填空题(本大题共4小题,每小题5分,共20分)13. 从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)【答案】16【解析】分析:首先想到所选的人中没有女生,有多少种选法,再者需要确定从6人中任选3人总共有多少种选法,之后应用减法运算,求得结果.详解:根据题意,没有女生入选有种选法,从6名学生中任意选3人有种选法,故至少有1位女生入选,则不同的选法共有种,故答案是16.点睛:该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选3人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有1名女生和有两名女生分别有多少种选法,之后用加法运算求解.14. 已知离散型随机变量服从正态分布,且,则__________.【答案】【解析】∵随机变量X服从正态分布,∴μ=2,得对称轴是x=2.∵,∴P(2<ξ<3)==0.468,∴P(1<ξ<3)=0.468=.故答案为:.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.15. 已知展开式中只有第4项的二项式系数最大,则展开式中常数项为_______.【答案】61【解析】分析:根据题设可列出关于的不等式,求出,代入可求展开式中常数项为.详解:的展开式中,只有第4项的二项式系数最大,即最大,,解得,又,则展开式中常数项为.点睛:在二项展开式中,有时存在一些特殊的项,如常数项、有理项、系数最大的项等等,这些特殊项的求解主要是利用二项展开式的通项公式.16. 已知函数,存在,则的最大值为____.【答案】【解析】试题分析:由题意得,,因为存在,,所以,所以令,所以,所以函数在上单调递增,在上单调递减,所以时,函数取得最大值,所以的最大值为.考点:分段函数的性质及利用导数求解函数的最值.【方法点晴】本题主要考查了分段函数的图象与性质、利用导数研究函数的单调性与极值、最值,着重考查了学生分析、解答问题的能力,同时考查了转化与化归的思想方法的应用,属于中档试题,本题的解答中,先确定的范围,构造新函数,求解新函数的单调性及其极值、最值,即可求解结论的最大值.三、解答题(本大题共6个小题,共70分)17. 2019年6月14日,第二十一届世界杯足球赛将在俄罗斯拉开帷幕.为了了解喜爱足球运动是否与性别有关,某体育台随机抽取100名观众进行统计,得到如下列联表.(1)将列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关?(2)在不喜爱足球运动的观众中,按性别分别用分层抽样的方式抽取6人,再从这6人中随机抽取2人参加一台访谈节目,求这2人至少有一位男性的概率.【答案】(1) 在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关. (2)【解析】分析:读懂题意,补充列联表,代入公式求出的值,对照表格,得出结论;(2)根据古典概型的特点,采用列举法求出概率。
—————————— 新学期 新成绩 新目标 新方向 ——————————2019学年高二数学下学期期末考试试题 理一、选择题(每小题5分,共60分。
每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.设集合P ={3,log 2a },Q ={a ,b },若{}1PQ =,则P Q =( )A .{3,1}B .{3,2,1}C .{3, 2}D .{3,0,1,2}2.定义运算⎪⎪⎪⎪⎪⎪a bc d =ad -bc ,若复数z 满足⎪⎪⎪⎪⎪⎪i z -1z =-2,则z =( )A .1-iB .1+iC .-1+iD .-1-i 3.在等差数列{}n a 中,若2a =4,4a =2,则6a =( )A .-1 B. 1 C. 0 D. 6 4.右图是计算11113531+++⋯+值的程序框图,则图中①②处应填的 语句分别是( )A. 2n n =+, 16i >B. 2n n =+, 16i ≥C. 1n n =+, 16i >D. 1n n =+, 16i ≥5.已知函数()f x 与()xg x a =(0a >且1a ≠)的图象关于直线y x = 对称,则“()f x 是增函数”的一个充分不必要条件是( ).A 102a << .B 01a << .C 23a << .D 1a >6.等比数列的前n 项和,前2n 项和,前3n 项和分别为,,A B C ,则( )A .ABC += B .2B AC = C .3A B C B +-=D .22()A B A B C +=+7.设实数x ,y 满足约束条件⎪⎩⎪⎨⎧-≥≥+-≤-,1,032,02x y x y x 则y x z -=||的取值范围是( )A .]3,23[-B .]3,1[-C .]0,23[-D .]0,1[-8.将3本相同的小说,2本相同的诗集全分给4名同学,每名同学至少1本,则不同的分法(第10题图)有( )A .24种B .28种C .32种D .36种 9.设(){},|0,01A x y x m y =<<<<, s 为()e 1n+的展开式的第一项(e 为自然对数的底数),m =若任取(),a b A ∈,则满足1ab >的概率是( )A .2eB .1eC .e 1e -D .e 2e -10.一个圆锥被过其顶点的一个平面截去了较少的一部分几何体,余下的几何体的三视图如下图,则余下部分的几何体的体积为( ) A.169πB. 1693π+C. 893π+D. 163π+11.已知抛物线22(0)y px p =>的焦点为F ,过F 的直线交抛物线于,A B 两点(A 在x 轴上方),延长BO 交抛物线的准线于点C ,若3AF BF =,||3AC =,则抛物线的方程为( ) A .2y x = B .22y x = C .23y x = D .24y x =12.已知0ω>,函数()cos24cos 3f x a x x a ωω=-+,若对任意给定的[1,1]a ∈-,总存在1212,[0,]()2x x x x π∈≠,使得12()()0f x f x ==,则ω的最小值为( )A .2B .4C .5D .6第Ⅱ卷(非选择题 共90分)二、填空题(每题5分,共20分。
2019学年下学期期末考试高二数学试题注:本试卷满分150分,考试时间120分钟一选择题:(每题5分,共12题,共60分) 1.下列各函数中,与x y =表示同一函数的是( )A.xx y 2= B.2x y = C.2)(x y = D.33x y =2.设集合{}212=12A x x B x x A B ⎧⎫=-<<≤⋃=⎨⎬⎩⎭,,则( ) A. {}12x x -≤< B. 112x x ⎧⎫-<≤⎨⎬⎩⎭C. {}2x x <D. {}12x x ≤<3. 已知命题2:,210,p x R x ∀∈+>则( ) A .2:,210p x R x ⌝∃∈+≤ B .2:,210p x R x ⌝∀∈+≤C .2:,210p x R x ⌝∃∈+<D .2:,210p x R x ⌝∀∈+<4.已知集合A ={}22(,)1x y x y +=,{}(,)B x y y x ==,则AB 的真子集个数为( )A .0B .1C .2D .35设0.5222,0.5,log 0.5a b c ===,则,,a b c 的大小关系为A .c a b >>B .c b a >>C .a b c >>D .b a c >> 6.已知p:20x x -<,那么命题p 的一个必要不充分条件是( )A.0<x<1B.-1<x<1C.1223x <<D.122x <<7. 3.(2015·慈溪联考)函数y =x 2lg x -2x +2的图像( ) A .关于x 轴对称 B .关于原点对称 C .关于直线y =x 对称 D .关于y 轴对称8. 10、已知函数,则“是奇函数”是“”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9. 函数y =x ln|x ||x |的图像可能是( )10.若命题“∃x 0∈R ,x 20+(a -1)x 0+1<0”是真命题,则实数a 的取值范围是( )A .[-1,3]B .(-1,3)C .(-∞,-1]∪[3,+∞)D .(-∞,-1)∪(3,+∞)11已知函数f (x )=⎩⎪⎨⎪⎧a -x ,x ≥2,12x-1,x <2满足对任意的实数x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2)B .(-∞,138]C .(-∞,2]D .[138,2)12. 设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是( )A .(0,1] B.⎝ ⎛⎭⎪⎫0,12 C .(0,2] D .[0,1)第II 卷(非选择题 共90分)二、填空题(每题5分、共4题,共20分)13.已知全集U=R ,集合A={x|x+2<0},B={x|x-5<0},那么集合(C )U A B ⋂等于 . 14. 已知函数f (x )是定义在(-∞,+∞)上的奇函数,若对于任意的实数x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2 015)+f (2 016)的值为________.15.函数()()ln 1f x x =++的定义域为 . 16.定义一种集合运算A B ⊗={x|()x A B ∈⋃,且()x A B ∉⋂},设M={x||x|<2},N={x|2430x x -+<},则M N ⊗用区间表示为 . 三、解答题(共6题,其中17题10分,18-22每题12分,计70分)17. (本题满分10分)设函数.(1)求f(-1),f(0) ,f(2) ,f(4)的值; (2)求不等式的解集.18. (本题满分12分)已知集合A ={x |x 2-5x +6=0},B ={x |mx +1=0},且A ∪B =A ,求实数m 的值组成的集合.19. (本题满分12分)已知函数f (x )=log 4(ax 2+2x +3). (1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,请说明理由.20. (本小题满分12分)已知函数f (x )=4x 2-kx -8.(1)若函数y =f (x )在区间[2,10]上单调,求实数k 的取值范围; (2)若y =f (x )在区间(-∞,2]上有最小值-12,求实数k 的值21. (本题满分12分) 已知命题p: 曲线y=2(23)x m x +-+1与x 轴没有交点;命题q:函数f(x)=(52)xm --是减函数.若p 或q 为真命题,p 且q 为假命题,则实数m 的取值范围.22.(12分)已知函数f (x )对任意实数x ,y 恒有f (x +y )=f (x )+f (y ),当x >0时,f (x )<0,且f (1)=-2. (1)判断f (x )的奇偶性;(2)求f (x )在区间[-3,3]上的最大值; (3)解关于x 的不等式f (ax 2)-2f (x )<f (ax )+4.高二理科数学参考答案一、DAAD CBBB BDBD二、13. {x ︱-2≤x <5} 14. -1 15.(-1,2) 16.(-2,1]∪[2,3) 三、17.解:(1)f(-1)=2;f(0)=1f(2)=1/2;f(4)=1(2) [-1,16]18. 解 A ={x |x 2-5x +6=0}={2,3}, ∵A ∪B =A ,∴B ⊆A .①当m =0时,B =∅,B ⊆A ,故m =0; ②当m ≠0时,由mx +1=0,得x =-1m.∵B ⊆A ,∴-1m =2或-1m =3,得m =-12或m =-13.∴实数m 的值组成的集合为{0,-12,-13}.19. 解 (1)因为f (1)=1,所以log 4(a +5)=1, 因此a +5=4,a =-1, 这时f (x )=log 4(-x 2+2x +3). 由-x 2+2x +3>0得-1<x <3, 函数f (x )的定义域为(-1,3). 令g (x )=-x 2+2x +3,则g (x )在(-1,1)上递增,在(1,3)上递减. 又y =log 4x 在(0,+∞)上递增, 所以f (x )的单调递增区间是(-1,1), 递减区间是(1,3).(2)假设存在实数a ,使f (x )的最小值为0, 则h (x )=ax 2+2x +3应有最小值1,即⎩⎪⎨⎪⎧a >0,3a -1a=1,解得a =12.故存在实数a =12使f (x )的最小值为0.20.(解:易得函数f (x )=4x 2-kx -8的图像的对称轴为x =k8.(1)若y =f (x )在区间[2,10]上单调递增,则k8≤2,解得k ≤16;若y =f (x )在区间[2,10]上单调递减,则k8≥10,解得k ≥80.所以实数k 的取值范围为(-∞,16]∪[80,+∞). (2)当k8≤2,即k ≤16时,f (x )min =f ⎝ ⎛⎭⎪⎫k 8=-12,解得k =8或k =-8,符合题意;当k8>2,即k >16时,f (x )min =f (2)=-12, 解得k =10,不符合题意. 所以实数k 的值为8或-8. 21.p:1/2<m<5/2 q:m<2∵p ∧q 为真,p ∨q 为假 ∴p 、q 一真一假(1)p 真q 假时,2≤m<5/2或(2) p 假q 真时,m ≤1/2 故m ∈(-∞,1/2]∪[2,5/2).............12分22.解 (1)取x =y =0,则f (0+0)=2f (0), ∴f (0)=0.取y =-x ,则f (x -x )=f (x )+f (-x ), ∴f (-x )=-f (x )对任意x ∈R 恒成立, ∴函数f (x )为奇函数.(2)任取x 1,x 2∈(-∞,+∞)且x 1<x 2, 则x 2-x 1>0.∴f (x 2)+f (-x 1)=f (x 2-x 1)<0, ∴f (x 2)<-f (-x 1).又∵f (x )为奇函数,∴f (x 1)>f (x 2). ∴f (x )在(-∞,+∞)上是减函数. ∴对任意x ∈[-3,3],恒有f (x )≤f (-3). ∵f (3)=f (2+1)=f (2)+f (1)=3f (1)=-2×3=-6, ∴f (-3)=-f (3)=6,∴f (x )在[-3,3]上的最大值为6. (3)∵f (x )为奇函数,∴整理原不等式得f (ax 2)+f (-2x )<f (ax )+f (-2), 进一步可得f (ax 2-2x )<f (ax -2).∵f (x )在(-∞,+∞)上是减函数,∴ax 2-2x >ax -2, 即(ax -2)(x -1)>0.∴当a =0时,x ∈(-∞,1); 当a =2时,x ∈{x |x ≠1且x ∈R }; 当a <0时,x ∈{x |2a<x <1};当0<a <2时,x ∈{x |x >2a或x <1};当a >2时,x ∈{x |x <2a或x >1}.综上所述,当a =0时,x ∈(-∞,1); 当a =2时,x ∈{x |x ≠1且x ∈R }; 当a <0时,x ∈{x |2a<x <1};当0<a <2时,x ∈{x |x >2a或x <1};当a >2时,x ∈{x |x <2a或x >1}.。
2019学年度第二学期期末教学质量检测高二理科数学第Ⅰ卷(选择题 共60分)一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知复数z 满足(34)25i z -=,则z =( )A .34i -+B .34i --C .34i +D .34i -2.有一段“三段论”推理是这样的:对于可导函数()f x ,如果0'()0f x =,那么0x x =是函数()f x 的极值点,因为函数3()f x x =在0x =处的导数值'(0)0f =,所以,0x =是函数3()f x x =的极值点.以上推理中( ) A .大前提错误 B .小前提错误 C .推理形式错误 D .结论正确 3.在回归分析中,2R 的值越大,说明残差平方和( )A .越小B .越大C .可能大也可能小D .以上都不对 4.用火柴棒摆“金鱼”,如图所示,按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为( )A .62n -B .82n -C .62n +D .82n + 5.如果函数()y f x =的图象如图所示,那么导函数'()y f x =的图象可能是( )A .B .C .D .6.某产品的广告费用x 万元与销售额y 万元的统计数据如下表:根据以上数据可得回归直线方程y bx a =+,其中9.4b =,据此模型预报广告费用为6万元时,销售额为65.5万元,则a ,m 的值为( )A .9.4a =,52m =B .9.2a =,54m =C .9.1a =,54m =D .9.1a =,53m = 7.利用数学归纳法证明不等式1111()2321n f n +++⋅⋅⋅+<-*(2,)n n N ≥∈的过程,由n k =到1n k =+时,左边增加了( )A .1项B .k 项C .21k -项D .2k 项8.如图,用K ,1A ,2A 三类不同的元件连接成一个系统.当K 正常工作且1A ,2A 至少有一个正常工作时,系统正常工作.已知K ,1A ,2A 正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( )A .0.960B .0.864C .0.720D .0.576 9.设复数(1)(,)z x yi x y R =-+∈,若1z ≤,则y x ≥的概率为( ) A .3142π+ B .112π+ C .112π- D .1142π- 10.设函数()y f x =的定义域为{|0}x x >,若对于给定的正数K ,定义函数,()()(),()k K f x Kf x f x f x K≤⎧=⎨>⎩,则当函数1()f x x =,1K =时,定积分214()k f x dx ⎰的值为( )A .2ln 22+B .2ln 21-C .2ln 2D .2ln 21+11.已知等差数列{}n a 的第8项是二项式41x y x ⎛⎫++ ⎪⎝⎭展开式的常数项,则91113a a -=( )A .23B .2C .4D .6 12.已知函数()f x 的定义域为R ,'()f x 为()f x 的导函数,且'()()2xf x f x xe -+=,若(0)1f =,则函数'()()f x f x的取值范围为( )A .[1,0]-B .[2,0]-C .[0,1]D .[0,2]第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分) 13.已知随机变量服从正态分布2(2,)XN σ,若()0.32P X a <=,则(4)P a X a ≤<-等于 .14.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答)15.63(2x x ⎛⎫+⎪⎝⎭的展开式中2x 的系数是 . 16.已知()y f x =是奇函数,当(0,2)x ∈时,()ln f x x ax =-,(12a >),当(2,0)x ∈-时,()f x 的最小值为1,则a 的值等于 .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.复数213(10)5z a i a =+-+,22(25)1z a i a=+--,若12z z +是实数,求实数a 的值. 18.某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(1)求一续保人本年度的保费高于基本保费的概率;(2)已知一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率.19.在数列{}n a ,{}n b 中,12a =,14b =,且n a ,n b ,1n a +成等差数列,n b ,1n a +,1n b +成等比数列(*n N ∈).(1)求2a ,3a ,4a 及2b ,3b ,4b ;(2)根据计算结果,猜想{}n a ,{}n b 的通项公式,并用数学归纳法证明.20.学校为了对教师教学水平和教师管理水平进行评价,从该校学生中选出300人进行统计.其中对教师教学水平给出好评的学生人数为总数的60%,对教师管理水平给出好评的学生人数为总数的75%,其中对教师教学水平和教师管理水平都给出好评的有120人.(1)填写教师教学水平和教师管理水平评价的22⨯列联表:请问是否可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关? (2)若将频率视为概率,有4人参与了此次评价,设对教师教学水平和教师管理水平全好评的人数为随机变量X . ①求对教师教学水平和教师管理水平全好评的人数X 的分布列(概率用组合数算式表示); ②求X 的数学期望和方差.(()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)21.已知函数()ln f x x x =,2()2g x x ax =-+-(e 为自然对数的底数,a R ∈). (1)判断曲线()y f x =在点(1,(1))f 处的切线与曲线()y g x =的公共点个数;(2)当1,x e e ⎡⎤∈⎢⎥⎣⎦时,若函数()()y f x g x =-有两个零点,求a 的取值范围.请考生在22~23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.已知点P 的直角坐标为33,2⎛⎫-- ⎪⎝⎭,曲线C 的极坐标方程为5ρ=,直线l 过点P 且与曲线C 相交于A ,B 两点.(1)求曲线C 的直角坐标方程;(2)若8AB =,求直线l 的直角坐标方程. [选修4-5:不等式选讲]23.已知函数2()f x ax x a =+-的定义域为[1,1]-. (1)若(0)(1)f f =,解不等式3()14f x ax -<+; (2)若1a ≤,求证:5()4f x ≤.2017-2018学年度期末试题高二数学理科答案一、选择题1-5: CAACA 6-10: CDBDD 11、12:CB 二、填空题13. 0.36 14. 660 15. 243 16. 1 三、解答题 17.解:2123(10)5z z a i a +=+-+2(25)1a i a++-- 232[(10)(25)]51a a i a a ⎛⎫=++-+- ⎪+-⎝⎭213(215)(1)(5)a a a i a a -=++--+.∵12z z +是实数, ∴22150a a +-=,解得5a =-或3a =,由于50a +≠, ∴5a ≠-,故3a =.18.解:(1)设A 表示事件:“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故()0.20.20.10.050.55P A =+++=.(2)设B 表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故()0.10.050.15P B =+=. 又()()P AB P B =,故()()0.153(|)()()0.5511P AB P B P B A P A P A ====.因此所求概率为311. 19.解:(1)由已知条件得12n n n b a a +=+,211n n n a b b ++=,由此算出26a =,312a =,420a =,29b =,316b =,425b =.(2)由(1)的计算可以猜想(1)n a n n =+,2(1)n b n =+,下面用数学归纳法证明:①当1n =时,由已知12a =,14b =可得结论成立.②假设当n k =(2k ≥且*k N ∈)时猜想成立,即(1)k a k k =+,2(1)k b k =+.那么,当1n k =+时,2122(1)(1)k k k a b a k k k +=-=+-+232(1)(2)k k k k =++=++,2222112(1)(2)(2)(1)k k k a k k b k b k ++++===++, 因此当1n k =+时,结论也成立.由①和②和对一切*n N ∈,都有(1)n a n n =+,2(1)n b n =+成立.20.解:(1)由题意可得关于教师教学水平和教师管理水平评价的22⨯列联表:2K 的观测发传真2300(1201560105)180********k ⨯⨯-⨯=⨯⨯⨯16.66710.828≈>,所以可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关. (2)①对教师教学水平和教师管理水平全好评的概率为25,且X 的取值可以是0,1,2,3,4, 其中43(0)5P X ⎛⎫== ⎪⎝⎭;31423(1)55P X C ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭; 222423(2)55P X C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭;313423(3)55P X C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭;44423(4)55P X C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, X 的分布列为:②由于24,5XB ⎛⎫⎪⎝⎭, 则28()455E X =⨯=,2224()415525D X ⎛⎫=⨯⨯-=⎪⎝⎭. 21.解:(1)'()ln 1f x x =+,所以切线斜率'(1)1k f ==. 又(1)0f =,∴曲线在点(1,0)处的切线方程为1y x =-,由221y x ax y x ⎧=-+-⎨=-⎩得2(1)10x a x +-+=. 由22(1)423(1)(3)a a a a a ∆=--=--=+-, 可得当0∆>时,即1a <-或3a >时,有两个公共点; 当0∆=时,即1a =-或3a =时,有一个公共点; 当0∆<时,即13a -<<时,没有公共点. (2)2()()2ln y f x g x x ax x x =-=-++, 由0y =,得2ln a x x x=++, 令2()ln h x x x x =++,则2(1)(2)'()x x h x x -+=. 当1,x e e⎡⎤∈⎢⎥⎣⎦时,由'()0h x =,得1x =. 所以()h x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递减,在[]1,e 上单调递增, 因此min ()(1)3h x h ==. 由1121h e e e ⎛⎫=+- ⎪⎝⎭,2()1h e e e =++, 比较可知1()h h e e ⎛⎫> ⎪⎝⎭,所以,结合函数图象可得,当231a e e<≤++时,函数()()y f x g x =-有两个零点. 22.解:(1)由5ρ=,可得225ρ=,得2225x y +=, 即曲线C 的直角坐标方程为2225x y +=.(2)设直线l 的参数方程为3cos 3sin 2x t y t αα=-+⎧⎪⎨=-+⎪⎩(t 为参数), 将参数方程①代入圆的方程2225x y +=, 得2412(2cos sin )550t t αα-+-=,∴216[9(2cos sin )55]0αα∆=++>,上述方程有两个相异的实数根,设为1t ,2t ,∴128AB t t =-==, 化简有23cos 4sin cos 0ααα+=, 解得cos 0α=或3tan 4α=-, 从而可得直线l 的直角坐标方程为30x +=或34150x y ++=. 23.解:(1)(0)(1)f f =,即1a a a -=+-,则1a =-, ∴2()1f x x x =-++, ∴不等式化为234x x x -+<-+, ①当10x -≤<时,不等式化为234x x x -<-+,∴0x <<; ②当01x ≤≤时,不等式化为234x x x -+<-+, ∴102x ≤<.综上,原不等式的解集为122x x ⎧⎫⎪⎪-<<⎨⎬⎪⎪⎩⎭.(2)证明:由已知[1,1]x ∈-,∴1x ≤.又1a ≤,则22()(1)(1)f x a x x a x x =-+≤-+2211x x x x ≤-+=-+2155244x ⎛⎫=--+≤ ⎪⎝⎭.。
2019期末联考 高二(理科)数学(全卷满分:150分 考试用时:120分钟)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各式的运算结果为纯虚数的是( )A.2(1)i i +B. 2(1)i i -C. 2(1)i +D. (1)i i +2.已知某随机变量X 的分布如下(p ,q ∈R )且X 的数学期望1()2E X =,那么X 的方差()D X 等于( )A.2 B.4C.12D. 13.若1021001210(2)x a a x a x a x -=++++,则12310a a a a ++++=( )A. 1B. -1C. 1023D. -10234.下列求导运算正确的是( )A.(cos )sin x x '=B. 3(3)3log x x e'=C. 1(lg )ln10x x '=D. 2(cos )2sin x x x x '=-5.已知(2,0)M -,(2,0)N ,4PM PN -= ,则动点P 的轨迹是( )A. 一条射线B. 双曲线C. 双曲线左支D. 双曲线右支6.已知m ,n ∈R ,则“0m n ⋅<”是“方程221x y m n+=表示双曲线”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件7.由曲线2y x =,y =围成的封闭图形的面积为( )A.16B. 1C.23D.138.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则(/)P B A =( )A.18B.14C.25D.129.在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则P =( ) A.23B.12C.49D. 2910.设双曲线22221(0,0)x y a b a b-=>>的离心率是3,则其渐近线的方程为( )A. 0x ±=B. 0y ±=C. 80x y ±=D. 80x y ±=11.图1是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到14次的考试成绩依次记为A 1,A 2,…,A 14,图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A. 7B. 8C. 9D. 1012.已知命题p :[]1,2x ∀∈,使得0x e a -≥,若p ⌝是假命题,则实数a 的取值范围为( )A. 2(,]e -∞ B. (,]e -∞ C.[,)e +∞ D. 2[,)e +∞二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡题中横线上.13.设随机变量X ~2(2,)N σ,且(4)0.2P X ≥=,则(04)P X <<=______14.设x ,y 满足约束条件3310x y x y y +≤⎧⎪-≥⎨⎪≥⎩,则z x y =+的最大值为_____15.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如表),由最小二乘法求得回归方0.6754.9y x ∧=+现发现表中有一个数据模糊看不清,请你推断出该数据的值为______ 16.观察下列式子:213122+<,221151233++<,222111712344+++< ,…,根据以上式子可以猜想:2221111232013++++<______.三、解答题:本大题共6小题,共70分.解答时应写出文字说明,证明过程或演算步骤.17.(12分)已知二次函数2()2f x ax ax b =+-,其图象过点(2, -4),且(1)3f '=-.(1)求a ,b 的值;(2)设函数()ln ()h x x x f x =+,求曲线h (x )在x =1处的切线方程.18.(12分)某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败. (1)求图中a 的值; (2)根据已知条件完成下表,并判断能否有85%的把握认为“晋级成功”与性别有关?(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X ,求X 的分布列与数学期望E (X ).(参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中d c b a n +++=)19.(12分)如图,设P 是圆2225x y +=上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且45MD PD =. (1)当P 在圆上运动时,求点M 的轨迹C 的方程 (2)求过点(3,0),且斜率为45的直线被C 所截线段的长度20.(12分)已知函数2()ln f x x a x =+. (1)当2a =-时,求函数()f x 的单调区间和极值; (2)若2()()g x f x x=+在[1,+∞)上是单调增函数,求实数a 的取值范围.21.(12分)已知圆C :221(1)4x y -+=,一动圆与直线12x =-相切且与圆C 外切. (1)求动圆圆心P 的轨迹T 的方程;(2)若经过定点Q (6,0)的直线l 与曲线T 相交于A 、B 两点,M 是线段AB 的中点,过M 作x 轴的平行线与曲线T 相交于点N ,试问是否存在直线l ,使得NA NB ⊥,若存在,求出直线l 的方程,若不存在,说明理由.选考题(10分)请考生在22,23题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑。
2017~2018学年度孝感市重点高中协作体期末考试高二数学(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设命题p :0x R ,021x ,则p 为()A .0x R ,021x B .0x R ,021x C .x R ,21xD.xR ,21x2.复数22()1i i 的共轭复数为()A .1322i B .322i C .1322i D .322i 3.已知a ,b 是两个向量,则“0a b ”是“0a”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.用反证法证明命题“若2a ,则方程210xax 至少有一个实根”时,应假设()A .方程210x ax 没有实根B .方程210x ax 至多有一个实根C .方程210x ax 至多有两个实根D .方程210xax 恰好有两个实根5.已知命题p 是命题“若acbc ,则a b ”的否命题;命题q :若复数22(1)(2)x xx i是实数,则实数1x ,则下列命题中为真命题的是()A .p q B.()p q C .()p q D .()()p q 6.已知数列{}n a 满足12a ,11nnna a a ,则2019a ()A .-1B .0C .1D .27.在正方体1111ABCD A B C D 中,点E ,F 分别是AB ,1CC 的中点,则下列说法正确的是()A .1A E BF B.1A F 与BD 所成角为60C .1A E平面ADF D.1A F 与平面ABCD 所成角的余弦值为138.若函数2()(2)xf x x axe 在R 上单调递增,则a 的取值范围是()A .(,2)(2,) B .(,2][2,)C .(2,2)D .[2,2]9.证明等式2222(1)(21)1236n n n n *()n N 时,某学生的证明过程如下(1)当1n 时,212316,等式成立;(2)假设*()n k kN 时,等式成立,即2222(1)(21)1236k k k k ,则当1n k 时,22222123(1)k k 2(1)(21)(1)6k k k k (1)[(21)6(1)]6k k k k 2(1)(276)6k kk (1)[(1)1][2(1)1]6k k k ,所以当1n k 时,等式也成立,故原式成立. 那么上述证明()A .过程全都正确B .当1n 时验证不正确C .归纳假设不正确D.从nk 到1nk 的推理不正确10.某品牌小汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/时)的函数解析式为31118(0120)8100010yx x x .若要使该汽车行驶200千米时的油耗最低,则汽车匀速行驶的速度应为()A .60千米/时 B.80千米/时 C .90千米/时 D .100千米/时11.直线23y x 与曲线2194x x y的公共点的个数为()A .1B .2 C.3 D.412.函数22()xxf x ee,()2cos 2g x x ax ,若[0,)x ,()()f x g x ,则a 的取值范围为()A .(,0) B .(,1) C.(,0] D .(,1]第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.设空间向量(1,2,)AB n ,(2,,4)CD m ,且//AB CD ,则m n.14.复数z 满足(23)18z i i ,则z .15.若曲线(0)yax a与直线xa ,0y所围成的封闭图形的面积为6,则a.16.过抛物线22(0)ypx p 的焦点F 作直线l 与该抛物线交于两点,过其中一交点A 向准线作垂线,垂足为'A ,若'AA F 是面积为43的等边三角形,则p.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知复数2()z aai a R ,若2z ,且z 在复平面内对应的点位于第四象限.(1)求复数z ;(2)若22mm mz 是纯虚数,求实数m 的值.18.已知函数321()(,)3f x x axbx a b R 在3x 处取得极大值为9.(1)求a ,b 的值;(2)求函数()f x 在区间[3,3]上的最值.19.如图,在三棱锥S ABC 中,平面SAB平面ABC ,SA SB ,AB AC ,2AB AC SA ,D 为AB 的中点.(1)证明:SB 平面SAC ;(2)求二面角DSC A 的余弦值.20.已知椭圆C :22221(0)x y a b ab的离心率23ea ,该椭圆中心到直线1x y ab的距离为324e .(1)求椭圆C 的方程;(2)是否存在过点(0,2)M 的直线l ,使直线l 与椭圆C 交于A ,B 两点,且以AB 为直径的圆过定点(1,0)N ?若存在,求出所有符合条件的直线方程;若不存在,请说明理由.21.已知函数2()ln(1)ln 2(0)f x ax xax a .(1)若函数()f x 的图象在1x 处的切线方程为230mx y ,求a ,m 的值;(2)若(1,2)a,01[,1]2x ,使20()(1)0f x m a 成立,求m 的取值范围. (二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,曲线C :2260xyx,直线1l :30xy,直线2l :30xy ,以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系.(1)写出曲线C 的参数方程以及直线1l ,2l 的极坐标方程;(2)若直线1l 与曲线C 分别交于O ,A 两点,直线2l 与曲线C 分别交于O ,B 两点,求AOB的面积.23.[选修4-5:不等式选讲] 设函数()2f x x a a .(1)若不等式()1f x 的解集为{|24}x x ,求a 的值;(2)在(1)的条件下,若不等式2()4f x kk恒成立,求k 的取值范围.2017~2018学年度孝感市重点高中协作体期末考试高二数学参考答案(理科)一、选择题1-5: DBBAD 6-10: ACDAC 11、12:BC二、填空题13. -2 14. 5 15. 3 16. 2 三、解答题17.解:(1)因为2z ,所以422aa,所以21a .又因为z 在复平面内对应的点位于第四象限,所以1a ,即1z i .(2)由(1)得1z i ,所以22zi ,所以2222mm mzmm mi .因为22mm mz 是纯虚数,所以220m m m,所以1m .18.解:(1)2'()2f x xax b ,依题意得'(3)0(3)9f f ,即9609939a b a b ,解得13a b.经检验成立. (2)由(1)得321()33f x x xx ,∴2'()23(3)(1)f x xx x x .令'()0f x ,得3x 或1x ;令'()0f x ,得31x .∴()f x 的单调递增区间是(1,)和(,3),()f x 的单调递减区间是(3,1),∴()(3)9f x f 极大值,5()(1)3f x f 极小值,又(3)9f ,∴函数()f x 在区间[3,3]上的最大值为9,最小值为53. 19.(1)证明:因为平面SAB 平面ABC ,平面SAB 平面ABCAB ,且ABAC ,所以AC 平面SAB ,所以SBAC .又因为SASB ,2ABSA ,所以222AB SASB ,即SBSA .因为AC SA A ,且,AC SA 平面SAC ,所以SB 平面SAC .(2)解:如图,建立空间直角坐标系Axyz ,令4AB,则(0,)A ,(2,0,0)D ,(0,4,0)C ,(2,0,2)S ,(4,0,0)B .易得(2,0,2)SB ,(0,0,2)DS ,(2,4,0)DC .设(,,)nx y z 为平面DCS 的一个法向量,则20240n DS zn DCx y ,取2x ,则1y ,0z ,所以(2,1,0)n.又因为(2,0,2)SB 为平面SAC 的一个法向量,所以410cos ,5522SB n.所以二面角D SC A 的余弦值为105.20.解:(1)直线1xy ab的一般方程为0bx ay ab,依题意得222222332322443c eaa ab a eababc,解得312ab c,所以椭圆C的方程为2213xy.(2)当直线l 的斜率不存在时,直线l 即为y 轴,此时A ,B 为椭圆C 的短轴端点,以AB 为直径的圆经过点(1,0)N .当直线l 的斜率存在时,设其斜率为k ,由22233y kx xy,得22(13)1290k x kx.所以22(12)36(13)0k k ,得21k.设11(,)A x y ,22(,)B x y ,则1221221213913k x x k x x k,①而2121212(2)(2)y y kx kx k x x 122()4k x x .因为以AB 为直径的圆过定点(1,0)N ,所以AN BN ,则0NA NB,即1212(1)(1)0x x y y . 所以21212(1)(21)()50kx x kx x .②将①式代入②式整理解得716k .综上可知,存在直线l:0x或l :726yx ,使得以AB 为直径的圆经过点(1,0)N .21.解:222()2'()211aax xaa f x x aax ax ,(1)'(1)21af a a ,(1)ln(1)1ln 2f a a ,由3(1)ln(1)1ln 22'(1)212m f a a a m f aa ,得11ln(1)ln 2012a a .令11()ln(1)ln 212n a a a ,2'()0(1)a n a a ,所以函数()n a 在(0,)上单调递增,又(1)0n ,所以13a m .(2)令221()22aa g a aa,因为当(1,2)a 时,函数()g a 在(1,2)a 上单调递增,所以1()(2)2g a g ,于是函数()f x 在1[,1]2上一定单调递增.所以()f x 在1[,1]2上的最大值为(1)ln(1)1ln 2f a a .于是问题等价于:(1,2)a ,不等式2ln(1)1ln 2(1)0a am a恒成立.记2()ln(1)1ln 2(1)h a a a m a (12)a ,则1'()12(212)11a h a ma ma m a a .当0m时,因为1101a ,20ma ,所以'()0h a ,则()h a 在区间(1,2)上单调递减,此时,()(1)0h a h ,不合题意.故必有0m .若1212m m,由212'()()12ma m h a aa m可知()h a 在区间12(1,min 2,)2m m上单调递减,在此区间上,有()(1)0h a h ,与()0h a 恒成立矛盾.故1212m m,这时'()0h a ,()h a 在(1,2)上单调递增,恒有()(1)0h a h ,满足题设要求.所以1212mm m,即14m. 所以m 的取值范围为1[,)4. 22.解:(1)依题意,曲线C :22(3)9x y,故曲线C 的参数方程是33cos 3sinx y(为参数),因为直线1l :30xy,直线2l :30x y,故1l ,2l 的极坐标方程为1l :()6R ,2l :()3R .(2)易知曲线C 的极坐标方程为6cos,把6代入6cos ,得133,所以(33,)6A .把3代入6cos,得23,所以(3,)3B .所以121sin 2AOBSAOB193333sin()3364.23.解:(1)因为21x a a ,所以12x a a ,所以2112a x a a ,所以113a x a .因为不等式()1f x 的解集为{|24}x x,所以12134a a,解得1a .(2)由(1)得()12f x x .要使不等式2()4f x kk 恒成立,只需2min ()4f x k k,所以224kk,即220k k .所以k 的取值范围是[1,2].。
——————————新学期新成绩新目标新方向——————————2019学年度下学期高二年级数学学科(理)期末考试试题一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合M={-1,1},N={x|x2-x<6},则下列结论正确的是( )A.N⊆M B.M∩N=C.M⊆N D.M∩N=R2.函数f(x)=x+3+log2(6-x)的定义域是( )A.(6,+∞) B.(-3,6)C.(-3,+∞) D.[-3,6)3.sin1,cos1,tan1的大小关系是( )A.sin1<cos1<tan1 B.tan1<sin1<cos1C.cos1<tan1<sin1 D.cos1<sin1<tan14.下列函数中,定义域是R且为增函数的是( )A..y=e-x B.y=x3C.y=ln x D.y=|x|5.集合A={x|x-2<0},B={x|x<a},若A∩B=A,则实数a的取值范围是( ) A.(-∞,-2] B.[-2,+∞)C.(-∞,2] D.[2,+∞)6.设等比数列{a n}中,前n项和为S n,已知S3=8,S6=7,则a7+a8+a9等于( )A.18B.-18C.578D.5587.执行如图所示的程序框图,输出的s值为( )A .2B .32 C .53 D .858.如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在[30,35),[35,40),[40,45]的上网人数呈现递减的等差数列分布,则年龄在[35,40)的网民出现频率为( )A .0.04B .0.06C .0.2D .0.39.甲、乙、丙、丁四位同学各自对A 、B 两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r 与残差的平方和m 如下表:) A .甲 B .乙 C .丙 D .丁10.已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A .若α⊥γ,α⊥β,则γ∥βB .若m ∥n ,m ⊂α,n ⊂β,则α∥βC .若m ∥n ,m ⊥α,n ⊥β,则α∥βD .若m ∥n ,m ∥α,则n ∥α11.如图是函数f (x )=A sin(ωx +φ)(A >0,ω>0,x ∈R )在区间⎣⎢⎡⎦⎥⎤-π6,5π6上的图象,为了得到y =sin x (x ∈R )的图象,只需将函数f (x )的图象上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变B .向右平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变D .向右平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变12.已知正棱锥S -ABC 的底面边长为4,高为3,在正棱锥内任取一点P ,使得V P -ABC <12V S-ABC的概率是( )A.34 B .78 C .12 D .14二.填空题:本大题共4小题,每小题5分。
2019学年度下学期期末考试高二数学(理)试卷一、选择题(在每小题给出的四个选项中,只有一个正确.每小题5分,共60分)1.1.设全集U={1,3,5,7},集合M={1,|a-5|},M U,M={5,7},则实数a的值为 ( )A. 2或-8B. -8或-2C. -2或8D. 2或8【答案】D【解析】分析:利用全集,由,列方程可求的值.详解:由,且,又集合,实数的值为或,故选D.点睛:本题考查补集的定义与应用,属于简单题. 研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系.2.2.已知命题,则命题的否定为 ( )A. B.C. D.【答案】D【解析】分析:根据全称命题的否定是特称命题即可得结果.详解:因为全称命题的否定是特称命题,所以命题的否定为,故选D.点睛:本题主要考查全称命题的否定,属于简单题.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.3.3.函数,则的定义域为 ( )A. B. C. D.【答案】B【解析】试题分析:由题意知,,∴的定义域是,故:且,解得或,故选B.考点:对数的运算性质.4.4.已知幂函数的图象关于y轴对称,且在上是减函数,则()A. -B. 1或2C. 1D. 2【答案】C【解析】分析:由为偶数,且,即可得结果.详解:幂函数的图象关于轴对称,且在上是减函数,为偶数,且,解得,故选C.点睛:本题考查幂函数的定义、幂函数性质及其应用,意在考查综合利用所学知识解决问题的能力.5.5.方程至少有一个负实根的充要条件是()A.B.C.D. 或【答案】C【解析】试题分析:①时,显然方程没有等于零的根.若方程有两异号实根,则;若方程有两个负的实根,则必有.②若时,可得也适合题意.综上知,若方程至少有一个负实根,则.反之,若,则方程至少有一个负的实根,因此,关于的方程至少有一负的实根的充要条件是.故答案为:C考点:充要条件,一元二次方程根的分布6.6.已知定义域为R的函数满足:对任意实数有,且,若,则= ( )A. 2B. 4C.D.【答案】B【解析】分析:令,可求得,再令,可求得,再对均赋值,即可求得.详解:,令,得,又,再令,得,,令,得,故选B.点睛:本题考查利用赋值法求函数值,正确赋值是解题的关键,属于中档题.7.7.已知A=B={1,2,3,4,5},从集合A到B的映射满足:①;②的象有且只有2个,求适合条件的映射的个数为 ( )A. 10B. 20C. 30D. 40【答案】D【解析】分析:将元素按从小到大的顺序排列,然后按照元素在中的象有且只有两个进行讨论.详解:将元素按从小到大的顺序排列,因恰有两个象,将元素分成两组,从小到大排列,有一组;一组;一组;一组,中选两个元素作象,共有种选法,中每组第一个对应集合中的较小者,适合条件的映射共有个,故选D.点睛:本题考查映射问题并不常见,解决此类问题要注意:()分清象与原象的概念;()明确对应关系.8.8.函数的大致图象为()A. B. C. D.【答案】B【解析】分析:利用函数的解析式,判断大于时函数值的符号,以及小于时函数值的符号,对比选项排除即可.详解:当时,函数,排除选项;当时,函数,排除选项,故选B.点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.9.9.函数是定义在R上的奇函数,函数的图象与函数的图象关于直线对称,则的值为()A. 2B. 1C. 0D. 不能确定【答案】A【解析】试题分析:∵函数是定义在上的奇函数,∴,令代入可得,函数关于对称,由函数的图象与函数的图象关于直线对称,函数关于对称从而有,故选A.考点:奇偶函数图象的对称性.【思路点睛】利用奇函数的定义可把已知转化为,从而可得函数关于对称,函数的图象与函数的图象关于直线对称,则关于对称,代入即可求出结果.10.10.若函数在区间内单调递增,则a的取值范围是()A. B. C. D.【答案】B【解析】设由,可得,函数在上单调递增,在上单调递减,当时,函数在上单调递减,不合题意,当时,函数在上单调递增,函数,在区间内单调递增,,,a 的取值范围是,故选B.11.11.对于三次函数,给出定义:设是函数的导数,是的导数,若方程有实数解,则称点为函数的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数,则( )A. 2016B. 2017C. 2018D. 2019【答案】C【解析】分析:对已知函数求两次导数可得图象关于点对称,即,利用倒序相加法即可得到结论.详解:函数,函数的导数,,由得,解得,而,故函数关于点对称,,故设,则,两式相加得,则,故选C.点睛:本题主要考查初等函数的求导公式,正确理解“拐点”并利用“拐点”求出函数的对称中心是解决本题的关键,求和的过程中使用了倒序相加法,属于难题.12.12.已知函数,函数有四个不同的零点,且满足:,则的取值范围是()A. B. C. D.【答案】D【解析】分析:结合函数图象可得,,可化为,换元后利用单调性求解即可.详解:作出的解析式如图所示:根据二次函数的对称性知,且,,,因为所以当时,函数等号成立,又因为在递减,在递增,所以,所以的取值范围是,故选D.点睛:本题考查函数的图象与性质,函数的零点以及数形结合思想的应用,属于难题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.二、填空题(本大题共4小题,每小题5分,满分20分)13.13.已知条件:;条件:,若是的必要不充分条件,则实数的取值范围是________________【答案】【解析】分析:条件化为,化为,由是的必要不充分条件,根据包含关系列不等式求解即可. 详解:条件,化为,解得,,解得,若是的必要不充分条件,则是的充分不必要条件,,解得,则实数的取值范围是,故答案为.点睛:本题主要考查绝对值不等式的解法、一元二次不等式的解法以及充分条件与必要条件的定义,意在考查综合运用所学知识解决问题的能力,属于简单题.14.14.已知函数,对任意,都有,则____________【答案】-20【解析】分析:令,知,,从而可得,进而可得结果.详解:令,知,,,,,,故答案为.点睛:本题主要考查赋值法求函数的解析式,令,求出的值,从而求出函数解析式,是解题的关键,属于中档题.15.15.已知函数,则函数的值域为__________【答案】【解析】【分析】化为,时,,时,,从而可得结果.【详解】,当时,,当时,,函数,则函数的值域为,故答案为.【点睛】本题考查函数的值域,属于中档题. 求函数值域的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法:常用代数或三角代换法,用换元法求值域时需认真分析换元参数的范围变化;③不等式法:借助于基本不等式求函数的值域,用不等式法求值域时,要注意基本不等式的使用条件“一正、二定、三相等”;④单调性法:首先确定函数的定义域,然后准确地找出其单调区间,最后再根据其单调性求凼数的值域,⑤图象法:画出函数图象,根据图象的最高和最低点求最值.16.16.设是定义在R上的奇函数,在上单调递减,且,给出下列四个结论:①;②是以2为周期的函数;③在上单调递减;④为奇函数.其中正确命题序号为____________________【答案】①②④【解析】分析:①由,用赋值法求解即可;②由奇函数和,可得;③可得函数关于对称,可得在上单调递增;④结合②,可得为奇函数.详解:①函数是定义在上的奇函数,,又,,正确.②奇函数和,,,函数的周期是,正确.③是奇函数,,,即函数关于对称,因为在上单调递减,所以在上单调递增,不正确.④是奇函数, 函数的周期是,所以,所以是奇函数,正确, 故答案为①②④.点睛:本题主要通过对多个命题真假的判断,主要综合考查函数的单调性、函数的奇偶性、函数的图象与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.三、解答题(共70分)17.17.已知集合P=,函数的定义域为Q.(Ⅰ)若P Q,求实数的范围;(Ⅱ)若方程在内有解,求实数的范围.【答案】(1) (2)【解析】分析:(1)只需即可;(2)在有解,即求,的范围就是函数的值域,求出函数值域即可.详解:(1)P=,P Q,不等式在上有解,由得,而,(2)在有解,即求的值域,点睛:(1)是一个存在性的问题,此类题求参数一般转化为求最值,若是存在大于函数的值成立,一般令其大于函数的最小值;(2)也是一个存在性的问题,其与(1)不一样的地方是其为一个等式,故应求出解析式对应函数的值域,让该参数是该值域的一个元素即可保证存在性.18.18.如图,三棱柱中,侧棱平面,为等腰直角三角形,,且分别是的中点.(Ⅰ)求证:平面;(Ⅱ)求锐二面角的余弦值.【答案】(Ⅰ)见解析;(Ⅱ);【解析】试题分析:(Ⅰ)本题考查线面垂直的判定定理.可由勾股定理证明;另外平面即可;(Ⅱ)过程为作---证---算.根据二面角的定义找到角,注意不要忽略了证明的过程.试题解析:(Ⅰ)证明:由条件知平面,令,经计算得,即,又因为平面;(Ⅱ)过作,连结由已知得平面就是二面角的平面角经计算得,考点:1.线面垂直的判定定理;2.二面角;19.19.某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为、、三类工种,根据历史数据统计出三类工种的每赔付频率如下表(并以此估计赔付概率).(Ⅰ)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;(Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.【答案】(Ⅰ)见解析;(Ⅱ)元.【解析】试题分析:(I)设工种每份保单的保费,则需赔付时,收入为,根据概率分布可计算出保费的期望值为,令解得.同理可求得工种保费的期望值;(II)按照每个工种的人数计算出份数然后乘以(1)得到的期望值,即为总的利润.试题解析:(Ⅰ)设工种的每份保单保费为元,设保险公司每单的收益为随机变量,则的分布列为保险公司期望收益为根据规则解得元,设工种的每份保单保费为元,赔付金期望值为元,则保险公司期望利润为元,根据规则,解得元,设工种的每份保单保费为元,赔付金期望值为元,则保险公司期望利润为元,根据规则,解得元.(Ⅱ)购买类产品的份数为份,购买类产品的份数为份,购买类产品的份数为份,企业支付的总保费为元,保险公司在这宗交易中的期望利润为元.20.20.已知二次函数,设方程有两个实根(Ⅰ)如果,设函数的图象的对称轴为,求证:;(Ⅱ)如果,且的两实根相差为2,求实数的取值范围.【答案】(1)见解析(2)【解析】分析:(1)有转化为有两根:一根在与之间,另一根小于,利用一元二次方程的根分布可证;(2)先有,知两根同号,在分两根均为正和两根均为负两种情况的讨论,再利用两个之和与两根之积列不等式可求的取值范围.详解:(1)设,且,则由条件x1<2< x2<4得(2),又或综上:点睛:利用函数的零点求参数范围问题,通常有两种解法:一种是利用方程中根与系数的关系或利用函数思想结合图象求解;二种是构造两个函数分别作出图象,利用数形结合求解,此类题目也体现了函数与方程,数形结合的思想.21.21.已知函数的图象关于原点对称.(Ⅰ)求,的值;(Ⅱ)若函数在内存在零点,求实数的取值范围.【答案】(1),;(2)【解析】试题分析:(Ⅰ)题意说明函数是奇函数,因此有恒成立,由恒等式知识可得关于的方程组,从而可解得;(Ⅱ)把函数化简得,这样问题转化为方程在内有解,也即在内有解,只要作为函数,求出函数的值域即得.试题解析:(Ⅰ)函数的图象关于原点对称,所以,所以,所以,即,所以,解得,;(Ⅱ)由,由题设知在内有解,即方程在内有解.在内递增,得.所以当时,函数在内存在零点.22.22.(本小题满分12分)已知,函数.(I)当为何值时,取得最大值?证明你的结论;(II)设在上是单调函数,求的取值范围;(III)设,当时,恒成立,求的取值范围.【答案】(Ⅰ)答案见解析;(Ⅱ);(Ⅲ).【解析】试题分析:(I)求得f’(x)=[-x2+2(a-1)x+2a]e x,取得-x2+2(a-1)x+2a=0的根,即可得到数列的单调性,进而求解函数的最大值.(II)由(I)知,要使得在[-1,1]上单调函数,则:,即可求解a的取值范围;(III)由,分类参数得,构造新函数(x≥1),利用导数求得函数h(x)的单调性和最值,即得到a的取值范围.试题解析:(I)∵,,∴,由得,则,∴在和上单调递减,在上单调递增,又时,且在上单调递增,∴,∴有最大值,当时取最大值.(II)由(I)知:,或,或;(III)当x≥1时f(x)≤g(x),即(-x2+2ax)e x,,令,则,∴h(x)在上单调递增,∴x≥1时h(x)≥h(1)=1,,又a≥0所以a的取值范围是.点睛:本题主要考查导数在函数中的应用,不等式的恒成立问题求得,考查了转化与化归思想、逻辑推理能力与计算能力.导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,求解曲线在某点处的切线方程; (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数; (3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题; (4)考查数形结合思想的应用.。
2019学年度第二学期期末教学质量检测高二理科数学第Ⅰ卷(选择题共60分)一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.1.已知复数满足,则()A. B. C. D.【答案】C【解析】分析:根据复数的除法法则求解可得结果.详解:∵,∴.故选C.点睛:本题考查复数的除法运算,考查学生的运算能力,解题时根据法则求解即可,属于容易题.2.2.有一段“三段论”推理是这样的:对于可导函数,如果,那么是函数的极值点,因为函数在处的导数值,所以,是函数的极值点.以上推理中()A. 大前提错误B. 小前提错误C. 推理形式错误D. 结论正确【答案】A【解析】分析:根据极值定义得导数为零的点不一定为极值点,得大前提错误.详解:因为根据极值定义得导数为零的点不一定为极值点,所以如果f ' (x0)=0,那么x=x0不一定是函数f(x)的极值点,即大前提错误.选A.点睛:本题考查极值定义以及三段论概念,考查对概念理解与识别能力.3.3.在回归分析中,的值越大,说明残差平方和()A. 越小B. 越大C. 可能大也可能小D. 以上都不对【答案】A【解析】分析:根据的公式和性质,并结合残差平方和的意义可得结论.详解:用相关指数的值判断模型的拟合效果时,当的值越大时,模型的拟合效果越好,此时说明残差平方和越小;当的值越小时,模型的拟合效果越差,此时说明残差平方和越大.故选A.点睛:主要考查对回归分析的基本思想及其初步应用等知识的理解,解题的关键是熟知有关的概念和性质,并结合条件得到答案.4.4.用火柴棒摆“金鱼”,如图所示,按照上面的规律,第个“金鱼”图需要火柴棒的根数为()A. B. C. D.【答案】C【解析】由题意得,第1个“金鱼”需要火柴棒的根数为;第2个“金鱼”需要火柴棒的根数为;第3个“金鱼”需要火柴棒的根数为,构成首项为,公差为的等差数列,所以第个“金鱼”需要火柴棒的根数为,故选C.5.5.如果函数y=f(x)的图象如图所示,那么导函数y=f′(x)的图象可能是( )A. B. C. D.【答案】A【解析】试题分析:由原函数图像可知函数单调性先增后减再增再减,所以导数值先正后负再正再负,只有A正确考点:函数导数与单调性及函数图像6.6.某产品的广告费用万元与销售额万元的统计数据如下表:根据以上数据可得回归直线方程,其中,据此模型预报广告费用为6万元时,销售额为65.5万元,则,的值为()A. ,B. ,C. ,D. ,【答案】C【解析】分析:根据回归直线过样本中心和条件中给出的预测值得到关于,的方程组,解方程组可得所求.详解:由题意得,又回归方程为,由题意得,解得.故选C.点睛:线性回归方程过样本中心是一个重要的结论,利用此结论可求回归方程中的参数,也可求样本数据中的参数.根据回归方程进行预测时,得到的数值只是一个估计值,解题时要注意这一点.7.7.利用数学归纳法证明不等式的过程中,由变到时,左边增加了()A. 1项B. 项C. 项D. 项【答案】C【解析】分析:先表示出、,通过对比观察由变到时,项数增加了多少项.详解:因为,所以当,当,所以由变到时增加的项数为.点睛:本题考查数学归纳法的操作步骤,解决本题的关键是首先观察出分母连续的整数,当,,由此可得变化过程中左边增加了多少项,意在考查学生的基本分析、计算能力.8.8.如图,用、、三类不同的元件连接成一个系统.当正常工作且、至少有一个正常工作时,系统正常工作,已知、、正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为()A. 0.960B. 0.864C. 0.720D. 0.576【答案】B【解析】试题分析:系统正常工作当①正常工作,不能正常工作,②正常工作,不能正常工作,③正常工作,因此概率.考点:独立事件的概率.9.9.设复数,若,则的概率为()A. B. C. D.【答案】D【解析】若则,则的概率为:作出如图,则概率为直线上方与圆的公共部分的面积除以整个圆的面积,即:10.10.设函数的定义域为,若对于给定的正数,定义函数,则当函数,时,定积分的值为()A. B. C. D.【答案】D【解析】分析:根据的定义求出的表达式,然后根据定积分的运算法则可得结论.详解:由题意可得,当时,,即.所以.故选D.点睛:解答本题时注意两点:一是根据题意得到函数的解析式是解题的关键;二是求定积分时要合理的运用定积分的运算性质,可使得计算简单易行.11.11.已知等差数列的第项是二项式展开式的常数项,则()A. B. C. D.【答案】C【解析】试题分析:二项式展开中常数项肯定不含,所以为,所以原二项式展开中的常数项应该为,即,则,故本题的正确选项为C.考点:二项式定理.12.12.已知函数的定义域为,为的导函数,且,若,则函数的取值范围为()A. B. C. D.【答案】B【解析】分析:根据题意求得函数的解析式,进而得到的解析式,然后根据函数的特征求得最值.详解:由,得,∴,设(为常数),∵,∴,∴,∴,∴,∴当x=0时,;当时,,故当时,,当时等号成立,此时;当时,,当时等号成立,此时.综上可得,即函数的取值范围为.故选B.点睛:解答本题时注意从所给出的条件出发,并结合导数的运算法则利用构造法求出函数的解析式;求最值时要结合函数解析式的特征,选择基本不等式求解,求解时注意应用不等式的条件,确保等号能成立.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.13.已知随机变量服从正态分布,若,则等于__________.【答案】0.36【解析】.14.14.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答)【答案】660【解析】【详解】第一类,先选女男,有种,这人选人作为队长和副队有种,故有种;第二类,先选女男,有种,这人选人作为队长和副队有种,故有种,根据分类计数原理共有种,故答案为.15.15.的展开式中的系数是__________.【答案】243【解析】分析:先得到二项式的展开式的通项,然后根据组合的方式可得到所求项的系数.详解:二项式展开式的通项为,∴展开式中的系数为.点睛:对于非二项式的问题,解题时可转化为二项式的问题处理,对于无法转化为二项式的问题,可根据组合的方式“凑”出所求的项或其系数,此时要注意考虑问题的全面性,防止漏掉部分情况.16.16.已知是奇函数,当时,,(),当时,的最小值为1,则的值等于__________.【答案】1【解析】试题分析:由于当时,的最小值为,且函数是奇函数,所以当时,有最大值为-1,从而由,所以有;故答案为:1.考点:1.函数的奇偶性;2.函数的导数与最值.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.17.复数,,若是实数,求实数的值.【答案】【解析】分析:由题意求得,进而得到的代数形式,然后根据是实数可求得实数的值.详解:.∵是实数,∴,解得或,∵,∴,∴.点睛:本题考查复数的有关概念,解题的关键是求出的代数形式,然后根据该复数的实部不为零虚部为零得到关于实数的方程可得所求,解题时不要忽视分母不为零的限制条件.18.18.某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(1)求一续保人本年度的保费高于基本保费的概率;(2)已知一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率.【答案】(1)0.55(2)【解析】分析:(1)将保费高于基本保费转化为一年内的出险次数,再根据表中的概率求解即可.(2)根据条件概率并结合表中的数据求解可得结论.详解:(1)设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于1,故.(2)设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大于3,故.又,故,因此其保费比基本保费高出的概率为.点睛:求概率时,对于条件中含有“在……的条件下,求……发生的概率”的问题,一般为条件概率,求解时可根据条件概率的定义或利用古典概型概率求解.19.19.在数列,中,,,且,,成等差数列,,,成等比数列().(1)求,,及,,;(2)根据计算结果,猜想,的通项公式,并用数学归纳法证明.【答案】(1) ,,,,, (2) 猜想,,证明见解析【解析】分析:(1)根据条件中,,成等差数列,,,成等比数列及所给数据求解即可.(2)用数学归纳法证明.详解:(1)由已知条件得,,由此算出,,,,,.(2)由(1)的计算可以猜想,,下面用数学归纳法证明:①当时,由已知,可得结论成立.②假设当(且)时猜想成立,即,.则当时,,,因此当时,结论也成立.由①②知,对一切都有,成立.点睛:用数学归纳法证明问题时要严格按照数学归纳法的步骤书写,特别是对初始值的验证不可省略,有时可能要取两个(或两个以上)初始值进行验证,初始值的验证是归纳假设的基础;第二步的证明是递推的依据,证明时必须要用到归纳假设,否则就不是数学归纳法.20.20.学校为了对教师教学水平和教师管理水平进行评价,从该校学生中选出300人进行统计.其中对教师教学水平给出好评的学生人数为总数的,对教师管理水平给出好评的学生人数为总数的,其中对教师教学水平和教师管理水平都给出好评的有120人.(1)填写教师教学水平和教师管理水平评价的列联表:请问是否可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关?(2)若将频率视为概率,有4人参与了此次评价,设对教师教学水平和教师管理水平全好评的人数为随机变量.①求对教师教学水平和教师管理水平全好评的人数的分布列(概率用组合数算式表示);②求的数学期望和方差.(,其中)【答案】(1) 可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关. (2) ①见解析②,【解析】分析:(1)由题意得到列联表,根据列联表求得的值后,再根据临界值表可得结论.(2)①由条件得到的所有可能取值,再求出每个取值对应的概率,由此可得分布列.②由于,结合公式可得期望和方差.详解:(1)由题意可得关于教师教学水平和教师管理水平评价的列联表:由表中数据可得,所以可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关.(2)①对教师教学水平和教师管理水平全好评的概率为,且的取值可以是0,1,2,3,4,其中;;;;,所以的分布列为:②由于,则,.点睛:求离散型随机变量的均值与方差关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用均值、方差公式进行计算,对于二项分布的均值和方差可根据公式直接计算即可.21.21.已知函数,(为自然对数的底数,).(1)判断曲线在点处的切线与曲线的公共点个数;(2)当时,若函数有两个零点,求的取值范围.【答案】(1)见解析(2)【解析】分析:(1)根据导数的几何意义可得切线方程,然后根据切线方程与联立得到的方程组的解的个数可得结论.(2)由题意求得的解析式,然后通过分离参数,并结合函数的图象可得所求的范围.详解:(1)∵,∴,∴.又,∴曲线在点处的切线方程为.由得.故,所以当,即或时,切线与曲线有两个公共点;当,即或时,切线与曲线有一个公共点;当,即时,切线与曲线没有公共点.(2)由题意得,由,得,设,则.又,所以当时,单调递减;当时,单调递增.所以.又,,结合函数图象可得,当时,方程有两个不同的实数根,故当时,函数有两个零点.点睛:函数零点个数(方程根的个数、两函数图象公共点的个数)的判断方法:(1)结合零点存在性定理,利用函数的性质确定函数零点个数;(2)构造合适的函数,判断出函数的单调性,利用函数图象公共点的个数判断方程根的个数或函数零点个数.请考生在22~23两题中任选一题作答,如果多做,则按所做的第一题记分.22.22.在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.已知点的直角坐标为,曲线的极坐标方程为,直线过点且与曲线相交于,两点.(1)求曲线的直角坐标方程;(2)若,求直线的直角坐标方程.【答案】(1) (2) 直线的直角坐标方程为或【解析】分析:(1)根据极坐标和直角坐标间的转化公式可得所求.(2)根据题意设出直线的参数方程,代入圆的方程后得到关于参数的二次方程,根据根与系数的关系和弦长公式可求得倾斜角的三角函数值,进而可得直线的直角坐标方程.详解:(1)由,可得,得,∴曲线的直角坐标方程为.(2)由题意设直线的参数方程为(为参数),将参数方程①代入圆的方程,得,∵直线与圆交于,两点,∴.设,两点对应的参数分别为,,则,∴,化简有,解得或,∴直线的直角坐标方程为或.点睛:利用直线参数方程中参数的几何意义解题时,要注意使用的前提条件,只有当参数的系数的平方和为1时,参数的绝对值才表示直线上的动点到定点的距离.同时解题时要注意根据系数关系的运用,合理运用整体代换可使得运算简单.23.23.已知函数的定义域为.(1)若,解不等式;(2)若,求证:.【答案】(1) (2)见解析【解析】分析:(1)由可得,然后将不等式中的绝对值去掉后解不等式可得所求.(2)结合题意运用绝对值的三角不等式证明即可.详解:(1),即,则,∴,∴不等式化为.①当时,不等式化为,解得;②当时,不等式化为,解得.综上可得.∴原不等式的解集为.(2)证明:∵,∴.又,∴.点睛:含绝对值不等式的常用解法(1)基本性质法:当a>0时,|x|<a⇔-a<x<a,|x|>a⇔x<-a或x>a.(2)零点分区间法:含有两个或两个以上绝对值符号的不等式,可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.(3)几何法:利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解.(4)数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.。
2019学年度(下)高二期末考试数学试卷(理科)命题人:一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则=)(M C N U ( ) A .{}1,3 B .{}1,5 C .{}3,5 D .{}4,5 2.在极坐标系Ox 中,方程sin ρθ=表示的曲线是( )A .直线B .圆C .椭圆D .双曲线 3.命题“若3=++c b a ,则3222≥++c b a ”的否命题是( )A .若3≠++c b a ,则2223a b c ++<B .若3=++c b a ,则2223a b c ++<C .若3≠++c b a ,则3222≥++c b aD .若3222≥++c b a ,则3=++c b a 4.已知集合{}⎭⎬⎫⎩⎨⎧≤-=≤+≤-=02,3121x x xB x x A ,则B A 等于( )A .{}01<x x ≤-B .{}10≤≤x xC .{}20≤≤x xD .{}10≤x x < 5.已知命题p:∀x>0,ln(x+1)>0,命题q:若a>b,则a 2>b 2,下列命题为真命题的是 ( ) A .p∧q B .p∧q C .p∧q D .p∧q6.已知集合{}a x x A <=,{}21<≤=x x B ,且()R B C A R =⋃,则实数a 的取值范围是( ) A .1≤a B .1<a C .2≥a D .2>a7.设命题甲:关于x 的不等式0422>++ax x 对一切R x ∈恒成立,命题乙:对数函数x y a )24(log -=在),0(+∞上递减,那么甲是乙的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 8.下列命题中为真命题的是( ) A .若21,0≥+≠xx x 则 B .命题:若12=x ,则1=x 或1-=x 的逆否命题为:若1≠x 且1-≠x ,则21x ≠C .“1=a ”是“直线0=-ay x 与直线0=+ay x 互相垂直”的充要条件D .若命题012<+-∈∃x x x P ,R :,则012>+-∈∀⌝x x x P ,R : 9.若对任意正数x ,不等式211ax x≤+恒成立,则实数a 的最小值为( )10.在方程sin cos 2x y θθ=⎧⎨=⎩(θ为参数)所表示的曲线上的点是 ( )A .(2,7)B .)32,31( C .(1,0) D .)21,21(11.已知不等式x +2x +1<0的解集为{x |a <x <b },点A (a ,b )在直线mx +ny +1=0上,其中mn >0,则2m +1n 的最小值为( )A .4 2B .8C .9D .1212.已知a >0,b >-1,且a +b =1,则a 2+2a +b 2b +1的最小值为( )A .3+222BC D二.填空题:本大题共4小题,每小题5分,共20分.13.命题“2,2390x R x ax ∃∈-+<”为假命题,则实数a 的取值范围为 .14.在极坐标系中,圆2ρ=上的点到直线(cos )6ρθθ+=的距离的最小值是 . 15.设函数1()||||f x x x a a=++-(0)a >,若(3)5f <,则a 的取值范围是 .16.在直角坐标系xOy 中,曲线1C 的参数方程为sin x y αα⎧=⎪⎨=⎪⎩ (α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()4πρθ+=.设点P 在1C 上,点Q 在2C 上,则||PQ 取最小值时点P 的直角坐标为 .三.解答题:共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知命题p :关于x 的不等式1(01)x a a a >>≠, 的解集是{}|0x x < ,命题q :函数2lg()y ax x a =-+的定义域为R ,若p q ∨ 为真命题,p q ∧ 为假命题,求实数a 的取值范围.18.(本小题满分12分)已知直线l 的参数方程为1cos 1sin x t y t αα=-+⎧⎨=+⎩(t 为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos +=θρρ.(1)写出直线l 和曲线C 的直角坐标方程; (2)若4πα=,求直线l 的极坐标方程,以及直线l 与曲线C 的交点的极坐标.19.(本小题满分12分)已知函数()1f x x a x =++-. (1)若1a =,解不等式()4f x <;(2)若()20f x -≥恒成立,求实数a 的取值范围.20.(本小题满分12分)已知命题2:7100,:(1)(1)0p x x q x a x a -+≤--+-≤(其中0a > ). (1)若2a = ,命题“p 或q ”为假,求实数x 的取值范围; (2)已知p 是q 的充分不必要条件,求实数a 的取值范围.21.(本小题满分12分)在直角坐标系xOy 中,设倾斜角为α的直线l :⎩⎨⎧x =2+t cos α,y =3+t sin α(t 为参数)与曲线C :⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点M 的坐标;(2)若|PA |·|PB |=|OP |2,其中P (2,3),求直线l 的斜率.22(本小题满分12分)已知x ,y ,z 是正实数,且满足231x y z ++=. (1)求111x y z++的最小值; (2)求证:222114x y z ++≥银川一中2017/2018学年度(下)高二期末考试参考答案(理科)一. 选择题1 C2 B3 A4 D5 B6 C7 A8 B9 D 10 D 11 C 12 A 二.填空题13.[-14 1 15 15(,)2216 31(,)2212解析:a 2+2a +b 2b +1=a +2a +(b +1)2-2(b +1)+1b +1=a +2a +b +1-2+1b +1,又a +b =1,a >0,b +1>0,所以a +2a +b +1-2+1b +1=2a +1b +1=⎝ ⎛⎭⎪⎫2a +1b +1⎝ ⎛⎭⎪⎫a 2+b +12=32+b +1a +a 2(b +1)≥32+2b +1a ·a2(b +1)=3+222,当且仅当b +1a =a 2(b +1)即a =4-22,b =22-3时取等号,所以a 2+2a +b 2b +1的最小值为3+222. 三.解答题17. 解:由关于x 的不等式1(01)xa a a >>≠,的解集是{}|0x x <得01a <<, (2)由函数2lg()y ax x a =-+ 的定义域为R 得20140a a >⎧⎨∆=-<⎩ 得12a >…………6 ; 因为p q ∨ 为真,p q ∧ 为假,所以p 真q 假或p 假q 真,故0112a ora a ≤≥⎧⎪⎨>⎪⎩ 或0112a a <<⎧⎪⎨≤⎪⎩ (8)解得1102a or a ≥<≤……………………………………….10 18、解:(Ⅰ)当2πα=时1x =- ,当2πα≠时sin 1(1)cos y x αα-=+ 由2cos +=θρρ得22)2cos (+=θρρ,得曲线C 的普通方程为222)2(+=+x y x ,化简得442+=x y …………6分(Ⅱ)若4πα=,得⎪⎪⎩⎪⎪⎨⎧+=+-=ty t x 221221,的普通方程为2+=x y ,………….6分 则直线l 的极坐标方程为2cos sin +=θρθρ,…………….8分 联立曲线C :2cos +=θρρ. 得1sin =θ,取2πθ=,得2=ρ,所以直线l 与曲线C 的交点为)2,2(π…12分19.解:(1)()11f x x x =++-当1x -≤时,由()24f x x =-<得2x >-,则21x -<-≤;当11x -<≤时,()24f x =<恒成立;当1x >时,由()24f x x =<得2x <,则12x <<.综上,不等式()4f x <的解集为{}|22x x -<< (6)(2)由绝对值不等式得()11f x x a x a =++-+≥,当且仅当()(1)0x a x +-≤时取等号,故()f x 的最小值为1a +.由题意得12a +≥,解得13a ora ≥≤-……………………….12 20. (1)(,1)(5,)-∞-+∞ (6)(2 ) 4a ≥ (12)21. (1)将曲线C 的参数方程化为普通方程是x 24+y 2=1.当α=π3时,设点M 对应的参数为t 0. 直线l 的方程为⎩⎪⎨⎪⎧x =2+12t ,y =3+32t(t 为参数),代入曲线C 的普通方程x 24+y 2=1,得13t 2+56t +48=0, 设直线l 上的点A ,B 对应参数分别为t 1,t 2.则t 0=t 1+t 22=-2813,所以点M 的坐标为⎝ ⎛⎭⎪⎫1213,-313 (6)(2)将⎩⎨⎧x =2+t cos α,y =3+t sin α代入曲线C 的普通方程x 24+y 2=1,得(cos 2α+4sin 2α)t 2+(83sin α+4cos α)t +12=0, 因为|PA |·|PB |=|t 1t 2|=12cos 2α+4sin 2α,|OP |2=7,所以12cos 2α+4sin 2α=7,得tan 2α=516.由于Δ=32cos α(23sin α-cos α)>0,故tan α=54.所以直线l 的斜率为54………………………….12 22.解:(1)∵x ,y ,z 是正实数,且满足x +2y +3z =1,∴1x +1y +1z =⎝ ⎛⎭⎪⎫1x +1y +1z (x +2y +3z )=6+2y x +3z x +x y +3z y +x z +2yz ≥6+22+23+26, 当且仅当2y x =x y 且3z x =x z 且3z y =2yz 时取等号. (6)(2)由柯西不等式可得1=(x +2y +3z )2≤(x 2+y 2+z 2)(12+22+32)=14(x 2+y 2+z 2), ∴x 2+y 2+z 2≥114,当且仅当x =y 2=z3,即x =114,y =17,z =314时取等号. 故x 2+y 2+z 2≥114 (12)。
2019学年第二学期高二年级数学期末模块测试卷(理科)一、单项选择(每题5分)1、已知x∈{2,3,7},y∈{―31,―24,4},则x·y可表示不同的值的个数是()A.1+1=2 B.1+1+1=3 C.2×3=6 D.3×3=92、下列两个变量之间的关系是相关关系()A .正方形的棱长与体积 B. 单位面积产量为常数时,土地面积与产量C.日照时间与水稻的亩产量D. 电压一定时,电流与电阻3、已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.682 6,则P(X>4)等于( )A.0.158 8 B.0.158 7 C.0.158 6 D.0.158 54、如果X是一个离散型随机变量,那么下列命题中,假命题是()A.X取每一个可能值的概率是非负实数B.X取所有可能值的概率之和为1C.X取某两个可能值的概率等于分别取其中每个值的概率之和D.在某个范围内取值的概率大于它取这个范围内各个值的概率之和5、袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,且取出的球不再放回,直到取出的球是白球为止时,所需要的取球次数为随机变量X,则X的可能值为()A.1,2,3,…,6 B.1,2,3,…,7C.1,2,3,…,11 D.1,2,3,……6、某中学从4名男生和3名女生中推荐4人参加社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A. 140种 B. 120种 C. 35种 D. 34种7、在的二项展开式中,x2的系数为()A. B. C. D.8、已知某人每天早晨乘坐的某一班次公共汽车的准时到站的概率为35,则他在3天乘车中,此班次公共汽车至少有2天准时到站的概率为( )A.36125 B.54125 C.81125 D.271259、用1、2、3、4、5五个数字可以组成多少个百位上不是3的无重复数字的四位数 ( )A.24个B.72个C.96个D.114个10、从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则(|)P B A= ( )A.18 B.14 C.25 D.1211、已知x 、y 的取值如下表所示:若y 与x 线性相关,且ˆ0.95yx a =+,则a =( )A 、2.2B 、2.9C 、2.8D 、2.612、若多项式1621601216(1)x a a x a x a x +=++++,则01216a a a a ++++=( )A .182 B .172 C .162 D .152二、填空题(每题5分)13、用数字1,2,3,4,5组成没有重复数字的三位数,其中偶数的个数是___ 14、随机变量X 的分布列是E(X)=7.5,则a =________15、已知随机变量x 服从正态分布N(μ,σ2),且P(μ-2σ<x≤μ+2σ)=0.9544,P(μ-σ<x≤μ+σ)=0.6826,若μ=4,σ=1,则P(5<x <6)=__________.16、52)1)(1(x x -+展开式中x 3的系数为_________.三、解答题(每题12分,22,23题任选一题,10分)17、某医院有两个技术骨干小组,甲组有6名男医生,4名女医生;乙组有2名男医生,3名女医生,现采用分层抽样的方法,从甲、乙两组中抽取3名医生进行医疗下乡服务. (1)求甲、乙两组中各抽取的人数; (2)求抽取的3人都是男医生的概率.18、某射手进行射击训练,假设每次射击击中目标的概率为53,且各次射击的结果互不影响. (1)求射手在3次射击中,至少有两次连续击中目标的概率; (2)求射手第3次击中目标时,恰好射击了4次的概率.19、袋中装着标有数字1,2,3的小球各2个,从袋中任取2个小球,每个小球被取出的可能性都相等. (Ⅰ)求取出的2个小球上的数字互不相同的概率;(Ⅱ)用X 表示取出的2个小球上的数字之和,求随机变量X 的概率分布与数学期望20、某大学高等数学老师这学期分别用A,B 两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图:(Ⅰ)依茎叶图判断哪个班的平均分高?(Ⅱ)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;(Ⅲ)学校规定:成绩不低于85分的为优秀,请填写下面的2⨯2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”(参考公式:22(),()()()()n ad bc K a b c d a c b d -=++++其中n a b c d =+++)21、一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:其中i =1,2,3,4,5,6,7.(1)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图. (2)求回归方程.(结果保留到小数点后两位)(参考公式:1221ˆni ii ni i x y nx ybx nx==-=-∑∑,ˆˆay bx =-) (3)预测进店人数为80人时,商品销售的件数.(结果保留整数)22、已知极坐标系的极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合.若直线l 的极坐标方程为23)4sin(=-πθρ.(1)把直线l 的极坐标方程化为直角坐标系方程;(2)已知P 为椭圆1916:22=+y x C 上一点,求P 到直线l 的距离的最大值.23、已知函数f (x )=|ax+1|+|2x ﹣1|(a∈R). (1)当a=1时,求不等式f (x )≥2的解集;(2)若f (x )≤2x 在x ∈[15,1]时恒成立,求a 的取值高二理科答案 一、单项选择1、D2、C3、B4、D5、B6、D7、C8、C9、C 10、B 11、D 12、C二、填空题13、24 14、0.1 0.4 15、0.1359 16、-15三、解答题17、解:(1)依题意每组抽取的比例为51153=, 所以从甲组中抽取了25110=⨯(人) 从乙组中抽取了1515=⨯(人) (2)抽取的3人都是男医生的概率为152151221026=∙=C C C C p18、(1)记“射手射击1次,击中目标”为事件A ,则在3次射击中至少有两次连续击中目标的概率1()()()P P A A A P A A A P A A A =⋅⋅+⋅⋅+⋅⋅33223333363555555555125=⨯⨯+⨯⨯+⨯⨯=(2)射手第3次击中目标时,恰好射击了4次的概率2223323162()555625p C =⨯⨯⨯=19、20、(Ⅰ)甲班高等数学成绩集中于60-90分之间,而乙班数学成绩集中于80-100分之间,所以乙班的平均分高.(Ⅱ)记成绩为86分的同学为,A B ,其他不低于80分的同学为,,,C D E F“从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学”的一切可能结果组成的基本事件有:()()()()()()()()()()()()()()(),,,,,,,,,,,,,,,A B A C A D A E A F B C B D B E B F C D C E C F D E D F E F 一共15个,“抽到至少有一个86分的同学”所组成的基本事件有:()()()()()()()()(),,,,,,,,,A B A C A D A E A F B C B D B E B F 共9个,故93155P == (Ⅲ)()22403101017 5.584 5.024********K ⨯⨯-⨯=≈>⨯⨯⨯,因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关.21、(1)散点图如图所示:(2)由散点图可知x i 与y i 具有线性相关关系,甲班 乙班 合计 优秀 310 13不优秀 1710 27合计 20204022、解:(1)直线l 的极坐标方程sin 4ρθπ⎛⎫-= ⎪⎝⎭则sin cos 22ρθρθ-=即sin cos 6ρθρθ-=,所以直线l 的直角坐标方程为60x y -+=;(2)P 为椭圆221169x y C +=:上一点,设(4cos 3sin )P αα,,其中[02)α∈π,,则P 到直线l 的距离d ,其中4cos 5ϕ=所以当cos()1αϕ+=时,d 23、(1)当a=1时,不等式f (x )≥2可化为|x+1|+|2x ﹣1|≥2①当x≥12时,不等式为3x≥2,解得x≥23,故x≥23; ②当﹣1≤x<12时,不等式为2﹣x≤2,解得x≤0,故﹣1≤x≤0;③当x <﹣1时,不等式为﹣3x≥2,解得x≤﹣23,故x <﹣1;综上原不等式的解集为(﹣∞,0]∪[23,+∞);(2)f (x )≤2x 在x∈[12,1]时恒成立时恒成立,当x∈[12,1]时,不等式可化为|ax+1|≤1,解得﹣2≤ax≤0,所以﹣2x ≤a≤0,因为x∈[12,1],所以﹣2x∈[﹣4,﹣2],所以a 的取值范围是[﹣2,0].。