生化处理污水工艺对比
- 格式:docx
- 大小:19.29 KB
- 文档页数:13
选择生活污水处理工艺时,要根据实际因地制宜。
生活污水具有可生化性较好的特点,所以生化处理一直是生活污水处理工艺的最佳选择,生活污水处理的核心是生化部分,所以常说什么处理工艺其实就是指这部分。
常见生活污水处理工艺包括:氧化沟工艺、AO工艺、SBR工艺、曝气生物滤池、MBR工艺、这篇文章主要介绍这五种生活污水处理常见工艺之间性能特点的比较。
一、五种工艺简单介绍1.氧化沟技术:是活性污泥法演变而来,广泛用于大中型城市污水处理厂,具有处理水量大,BOD负荷低的特点。
运行能耗较高,占地面积大。
2.AO工艺:厌氧—好氧处理工艺,具有处理流程简单,操作方便,培养的微生物浓度较高,出水稳定的特点。
3.SBR工艺:又叫序批式活性污泥法,操作过程分五个阶段:进水、反应、沉淀、滗水、闲置。
在处理生活污水时具有控制灵活,可以分时分段操作。
4.曝气生物滤池:在曝气池中添加填料,具有活性污泥法特点的生物膜法。
占地面积少总体投资省,在处理生活污水时有处理水质较高,工艺流程较短的特点。
5.MBR工艺:是膜分离技术与活性污泥法有机结合的新型处理技术,在处理生活污水时具有生化效率进一步提高,出水水质稳定的特点。
二、五种工艺之间的比较生活污水来源广泛,在处理时要遵循因地制宜的进行工艺选择是很重要也很科学的方法,结合实际综合考虑,包括投资费用、运行费用、占地面积、出水水质、后期管理等等。
1.各工艺在生活污水处理的具体运用近两年AO、曝气生物滤池、MBR工艺应用广泛,之前氧化沟技术应用较多。
2.占地面积与总池容氧化沟与SBR工艺占地面积较大,AO、曝气生物滤池工艺占地面积较小,其中MBR工艺占地面积最小,为普通工艺占地面积的60%3.投资费用相比较而言,氧化沟、SBR投资费用最低、AO较低,MBR工艺由于膜造价较高,所以设备整体价格也提高了。
曝气生物滤池造价比普通工艺高出25%。
4.运行成本及管理SBR自动化程度要求较高,氧化沟自动化程度较低,曝气生物滤池较难实现自动化,需人工操作。
污水的生化处理工艺
污水的生化处理工艺主要包括生物膜反应器、曝气法、好氧/厌氧处理法等。
1. 生物膜反应器(MBBR)
生物膜反应器是一种基于移动床生物反应器和生物过滤器的组合系统。
它利用生物膜将废水中的有机物质降解成二氧化碳和水。
该工艺的优点是处理效率高、反应器设计灵活、占地面积小等。
2. 曝气法
曝气法是利用氧气和微生物将有机物氧化成二氧化碳和水的方法。
在曝气池中通过注入高压氧气来增加水的氧含量,进而促进微生物分解有机物所利用的生物膜的生长和微生物的代谢活动。
该工艺的缺点是能耗高、占地面积大。
3. 好氧/厌氧处理法
好氧/厌氧处理法是通过好氧阶段和厌氧阶段的交替来处理污水。
在好氧条件下,微生物通过对氧气的利用将污水中的有机物分解成二氧化碳和水,而在厌氧条件下,微生物缩合有机物,进而将有机物完全氧化成水和二氧化碳。
该工艺的优点是处理效率高,但是需要多阶段反应器,这就要求系统的设计和管理较为复杂。
二级处理污水生化处理介绍及工艺图污水处理是指将污水中的有害物质经过一系列的物理、化学和生物处理过程,使其达到国家排放标准,保护环境和人类健康的过程。
其中,生化处理是一种常见的污水处理方法,通过利用微生物的代谢能力,将有机物质转化为无机物质,从而达到净化水质的目的。
一、生化处理的原理生化处理是利用生物膜或者悬浮生物群落中的微生物,通过吸附、降解、转化等作用,将污水中的有机物质和氮、磷等无机物质转化为无害的物质。
生化处理通常分为一级处理和二级处理,其中二级处理是在一级处理的基础上进一步净化污水。
二、二级处理污水生化处理工艺图二级处理的污水生化处理工艺图如下:1. 水解酸化池:该池主要是将有机物质在酸性条件下进行水解,产生易生物降解的有机物质,为后续的生物降解提供有机负荷。
2. 好氧生物处理池:该池是将水解酸化池中产生的有机物质进一步降解,通过好氧微生物的代谢作用,有机物质被氧化分解为二氧化碳和水。
同时,好氧生物处理池中的微生物还能氧化氨氮为硝酸盐,实现氮的去除。
3. 除磷池:该池是为了去除污水中的磷元素,通过添加化学药剂或者利用生物吸附的方式,将污水中的磷元素转化为不溶性的磷盐沉淀物,从而实现磷的去除。
4. 沉淀池:该池主要是利用重力沉淀的原理,将污水中的悬浮物质和沉淀物质沉淀到池底,从而实现固体的分离和去除。
5. 消毒池:该池是为了杀灭残留在污水中的病原微生物,通常使用氯或者紫外线等方法进行消毒处理,确保出水的卫生安全。
三、二级处理污水生化处理的优势1. 净化效果好:二级处理通过生物降解和物理分离的方式,能够有效地去除污水中的有机物质、氮、磷等污染物,使出水达到国家排放标准,保护环境和人类健康。
2. 投资成本低:相比其他污水处理方法,生化处理工艺的投资成本较低,适用于中小型城市和乡村地区的污水处理。
3. 运行维护方便:生化处理工艺相对简单,操作维护较为方便,不需要大量的化学药剂和设备。
4. 能量消耗低:生化处理工艺中的微生物代谢过程不需要额外能量供应,能够有效地节约能源。
污水处理各段工艺去除率标题:污水处理各段工艺去除率引言概述:污水处理是保护环境、维护人类健康的重要工作,而不同的污水处理工艺在去除污染物方面的效果也有所不同。
本文将重点探讨污水处理各段工艺的去除率,匡助读者更好地了解污水处理过程中各个环节的效果。
一、预处理工艺去除率1.1 筛网过滤:筛网过滤是预处理工艺的一种常见方法,通过筛网将较大的杂物拦截下来,去除率通常在80%以上。
1.2 沉砂池:沉砂池通过重力沉降去除污水中的沙、泥等颗粒物,去除率可达90%以上。
1.3 调节池:调节池主要用于调节污水的流量和水质,对悬浮物和有机物的去除率普通在60%摆布。
二、生化处理工艺去除率2.1 活性污泥法:活性污泥法是一种常见的生化处理工艺,通过微生物降解有机物,去除率可达90%以上。
2.2 厌氧消化:厌氧消化是一种高效的处理工艺,通过厌氧菌降解有机物,去除率在85%以上。
2.3 好氧消化:好氧消化是利用好氧条件下的微生物降解有机物,去除率可达80%以上。
三、深度处理工艺去除率3.1 植物净化:植物净化是一种绿色环保的深度处理工艺,通过植物的吸收和生长去除污染物,去除率在70%摆布。
3.2 膜分离:膜分离是一种高效的深度处理工艺,通过膜的选择性截留去除污染物,去除率可达95%以上。
3.3 化学沉淀:化学沉淀是一种常见的深度处理工艺,通过添加化学药剂将污染物沉淀下来,去除率在90%以上。
四、消毒工艺去除率4.1 氯气消毒:氯气消毒是一种常用的消毒方法,对细菌、病毒等有较好的杀灭效果,去除率可达99%以上。
4.2 紫外线消毒:紫外线消毒是一种无化学物质参预的消毒方法,对细菌、病毒等有高效的灭活效果,去除率在99%以上。
4.3 臭氧消毒:臭氧消毒是一种高效的消毒方法,臭氧对细菌、病毒的氧化能力强,去除率可达99.9%以上。
五、综合处理工艺去除率5.1 A2O工艺:A2O工艺是一种综合处理工艺,结合了生化反应和沉淀过程,去除率可达90%以上。
污水处理厂主要工艺汇总及特点介绍污水处理是保护环境和人民健康的重要任务之一。
随着城市化进程的加快,污水排放量的增加成为了一个严峻的问题。
污水处理厂作为处理和净化污水的重要设施,其工艺在污水处理中起着至关重要的作用。
本文将就污水处理厂的主要工艺进行汇总,并介绍其特点。
1.初级处理工艺初级处理是污水处理过程中最基本也是最关键的一步。
其目的是去除废水中的可悬浮物和悬浮物,以及部分溶解有机物。
常见的初级处理工艺包括格栅除渣和沉砂池。
(1)格栅除渣格栅除渣是将废水通过格栅,去除其中的大颗粒杂质和固体废物的工艺。
格栅除渣具有简单、易操作的特点,能有效阻挡废水中直径较大的固体杂质,防止堵塞后续处理设备,提高后续工艺效率。
(2)沉砂池沉砂池是利用沉砂原理将废水中的悬浮物和颗粒物沉淀到池底的工艺。
沉砂池适用于去除直径较大的颗粒物,具有操作简便、处理效果稳定等特点。
然而,沉砂池并不能完全去除废水中的微小颗粒物和溶解性有机物,通常需要与其他处理工艺配合使用。
2.生化处理工艺生化处理是污水处理中的核心环节。
其通过利用微生物将废水中的有机物和氨氮等进行降解和转化,达到净化水质的目的。
常见的生化处理工艺包括活性污泥法和人工湿地法。
(1)活性污泥法活性污泥法是利用生物膜上吸附的好氧菌和厌氧菌将废水中的有机废物进行氧化分解的工艺。
该工艺具有处理效率高、运行稳定等优点,能够将废水中的有机物、氨氮等进行有效降解,产生较好的处理效果。
然而,活性污泥法的运行成本相对较高,需要配备专业的操作人员,且存在对温度和负荷波动较为敏感的问题。
(2)人工湿地法人工湿地法是利用湿地植被和微生物的共同作用,通过降解和转化来处理废水的工艺。
人工湿地法具有结构简单、成本低廉等优点,能够较好地去除废水中的有机物、氨氮等。
此外,人工湿地还具有良好的生态效益,能够提高水体的净化效果,并提供适宜的生态环境。
但是,人工湿地法的处理效率相对较低,需要较大的土地面积,适用范围有限。
污水处理工艺流程之生化处理好氧与厌氧处理在污水处理工艺中,生化处理是一种常见且有效的处理方法。
生化处理将有机物质在微生物的作用下转化为无机物质,达到净化水质的目的。
在生化处理中,又包括了好氧处理和厌氧处理两种不同的工艺流程。
1. 好氧处理好氧处理是指在富氧条件下进行生物降解的过程。
工艺流程如下:(1)进水调节:首先需要对进水进行调节,包括调节 pH 值、温度等。
(2)初级处理:通过格栅、沉砂池等设备将较大的悬浮物和沉淀物去除,进一步净化水质。
(3)曝气池:将初级处理后的污水引入曝气池,通过机械曝气或其他方式向污水中注入空气,提供氧气供微生物进行生物降解反应。
在曝气池中,微生物利用有机物进行生长和繁殖,降解污水中的有机物质。
(4)二沉池:曝气池处理后的污水进入二沉池,通过净水板或斜板等装置将浮性悬浮物和生物絮凝物与水进行分离,产生污泥。
(5)污泥处理:从二沉池中获得的污泥,经过浓缩、脱水等处理措施,得到污泥饼或污泥液体,进一步处理。
2. 厌氧处理厌氧处理是指在无氧或缺氧条件下进行生物降解的过程。
工艺流程如下:(1)进水调节:同样需要对进水进行调节,以适应厌氧处理的环境要求。
(2)厌氧池:将进入的污水引入厌氧池,通过提供适宜的温度、容器内部的混合等条件,为厌氧微生物提供合适的生存环境。
在厌氧池中,厌氧微生物通过厌氧降解有机物质,产生甲烷等有价值的产物。
(3)沉淀池:经过厌氧处理的污水进入沉淀池,通过沉淀和分离,将产生的污泥与水进行分离,进一步净化水质。
(4)厌氧消化池:从沉淀池中获得的污泥,进一步经过厌氧消化池的处理,将污泥中的有机物质进行分解,释放出可再生的有机产物。
综上所述,生化处理中的好氧处理和厌氧处理是常见的工艺流程。
好氧处理适用于需要大量氧气供应的环境,能够有效地降解有机物质;而厌氧处理则适用于无氧或缺氧环境下的处理,能够产生有价值的产物。
无论是好氧处理还是厌氧处理,都需要合理调节进水的水质和控制处理过程中的条件,以保证处理效果的达到。
卡鲁塞尔氧化沟工艺是一种常见的污水处理技术,广泛应用于国内外的污水处理厂。
本文将对卡鲁塞尔氧化沟工艺在国内外的应用情况进行比较分析。
一、卡鲁塞尔氧化沟工艺概述卡鲁塞尔氧化沟工艺是一种生化处理工艺,主要用于污水处理厂对污水进行处理和净化。
该工艺通过设备和设施,将污水中的有机物质和污染物进行分解和降解,最终实现对污水的净化处理。
二、国内卡鲁塞尔氧化沟工艺技术现状国内污水处理领域经过多年的发展,卡鲁塞尔氧化沟工艺在国内得到了广泛的应用。
主要表现在以下几个方面:1. 技术设备更新换代,提高了处理效率。
国内污水处理厂逐渐引进和更新了卡鲁塞尔氧化沟工艺的设备和设施,提高了处理效率和净化效果。
2. 运营管理水平提升,保障了工艺稳定运行。
国内污水处理厂运营管理水平不断提升,确保了卡鲁塞尔氧化沟工艺的稳定运行和效果保障。
3. 技术改进创新,满足了不同水质要求。
国内污水处理领域对卡鲁塞尔氧化沟工艺进行了技术改进和创新,以适应不同水质特点和处理要求。
三、国外卡鲁塞尔氧化沟工艺技术现状国外污水处理领域发达国家在卡鲁塞尔氧化沟工艺方面也取得了显著成就。
主要表现在以下几个方面:1. 技术装备更新换代,实现了智能化和自动化。
国外发达国家污水处理领域的企业逐渐引进并应用了智能化和自动化的卡鲁塞尔氧化沟工艺设备,提高了处理效率和净化效果。
2. 运营管理水平提升,保障了工艺稳定运行。
国外污水处理领域的运营管理水平也不断提升,保障了卡鲁塞尔氧化沟工艺的稳定运行和效果保障。
3. 技术改进创新,满足了不同水质要求。
国外污水处理领域也对卡鲁塞尔氧化沟工艺进行了技术改进和创新,以适应不同水质特点和处理要求。
四、国内外技术对比分析通过对国内外卡鲁塞尔氧化沟工艺技术现状的比较,可以得出以下结论:1. 国内外污水处理领域均注重了技术设备的更新换代和管理水平的提升,保障了卡鲁塞尔氧化沟工艺的稳定运行和处理效果。
2. 国内外污水处理领域对卡鲁塞尔氧化沟工艺均进行了技术改进和创新,以满足不同水质特点和处理要求。
一丶污水处理工艺选择概述污水处理工艺的选择是根据污水进水水质、出水标准、污水处理厂规模、排放水体的环境容量,以及当前的经济条件、管理水平、自然条件、环境特点等因素综合分析研究后确定的。
各种工艺有其各自的特点及适用条件,应结合当地的实际情况、项目的具体特点而定。
污水处理厂工艺选择原则如下:①工艺性能先进性:工艺先进而且成熟,流程简单,对水质适应性强,出水达标率高,污泥生成量少且易于处理、处置;②高效节能经济性:耗电量小,运行费用低,投资省,占地少;③运行管理适用性:运行管理方便,设备可靠,易于维护;④文明生产安全性:重视环境,控制噪声,防治臭气,创造文明生产条件。
根据水质分析的结果,本工程进水水质浓度偏高,BOD5/CODcr=0.2、BOD5/TN=2.1、BOD5/TP=20,需要使用强化脱氮除磷工艺根据对各项污染物去除率的要求,表明污水处理厂需釆用强化生物处理工艺,但生物处理工艺在满足常规去除CODcr和BOD5以及SS的同时,必须具备除磷脱氮的功能。
通过对国内外釆用脱氮除磷工艺的污水厂设计参数和运行经验,釆用适宜的除磷脱氮污水生物处理工艺,对表中污染物的去除是能够得到保证的。
本工程进水的TP浓度较高,根据国内外污水处理厂的运行经验,高浓度的TP完全依赖于生物除磷是有风险的。
为保证污水稳定的达标排放,本工程增设化学辅助除磷设施,与生物除磷相结合以强化除磷效果,达到污水排放标准。
本工程进水中的SS浓度较高(以无机颗粒为主),如果不进行预处理,其对后续的生化处理系统影响非常大,所以应采取适当的预处理措施以降低进水中的悬浮物浓度。
根据以上分析,本工程污水处理工艺必须考虑加强除磷脱氮的工艺。
根据水质条件分析,本项目污水较适合使用生物脱氮除磷工艺。
目前国内应用的二级污水处理工艺主要包括A2/O、MBR与MBBR等,本报告将对这几种处理工艺进行介绍,并进一步比选出本工程的推荐工艺。
1. A2/O工艺概述A2/O是根据微生物的特性而研究的最典型也最原始的除磷脱氮工艺。
污水处理工艺选择思路➢A2/O工艺传统A2/O法是目前普遍采用的同时脱氮除磷的工艺,它是在传统活性污泥法的基础上增加一个缺氧段和一个厌氧段。
污水首先进入厌氧池与回流污泥混合,在兼性厌氧发酵菌的作用下,废水中易生物降解的大分子有机物转化为VFAs这一类小分子有机物。
聚磷菌可吸收这些小分子有机物,并以聚β羟基丁酸(PHB)的形式贮存在体内,其所需要的能量来自聚磷链的分解。
随后,废水进入缺氧区,反硝化菌利用废水中的有机基质对随回流混合液而带来的NO3-进行反硝化。
废水进入好氧池时,废水中有机物的浓度较低,聚磷菌主要是通过分解体内的PHB而获得能量,供细菌增殖,同时将周围环境中的溶解性磷吸收到体内,并以聚磷链的形式贮存起来,经沉淀以剩余污泥的形式排出系统。
好氧区的有机物浓度较低,这有利于好氧区中自养硝化菌的生长,从而达到较好的硝化效果。
➢A/O工艺A/O法是缺氧/好氧(Anoxic/Oxic)工艺或厌氧/好氧(Anaero—bic/Oxic)工艺的简称,通常是在常规的好氧活性污泥法处理系统前,增加一段缺氧生物处理过程或厌氧生物处理过程。
在缺氧池中,回流污泥中的反硝化菌利用原污水中的有机物作为碳源,将回流混合液中的大量硝态氮(NO X--N)还原成N2,而达到脱氮目的。
然后再在后续的好氧池中进行有机物的生物氧化、有机氮的氨化和氨氮的硝化等生化反应,氧化分解污水中的BOD5,同时进行硝化或吸收磷。
A/O工艺具有以下主要优点:①效率高,该工艺对废水中的有机物、氨氮等均有较高的去除率。
②流程简单,基建费用可大大节省,好氧池不需外加碳源,降低了运行费用。
③容积负荷高。
④耐冲击负荷能力强。
⑤一次性投资较小。
➢CASS工艺CASS工艺是SBR工艺的一种变形,池体内用隔墙隔出生物选择区、兼性区和主反应区,每个区的容积比为1:5:30。
CASS工艺入口处设一生物选择器,并进行污泥回流,保证了活性污泥不断的在选择器中经历了一个高絮体负荷阶段,从而有利于絮凝性细菌的生长并提高污泥的活性,使其快速的去除废水中的溶解性易降解基质,进一步有效的抑制丝状菌的生长和繁殖。
常见污水处理工艺原理、优缺点及处理效率对比一、A/O工艺1、基本原理A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。
A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。
在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。
2、A/O内循环生物脱氮工艺特点根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:(1)效率高。
该工艺对废水中的有机物,氨氮等均有较高的去除效果。
当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。
(2) 流程简单,投资省,操作费用低。
该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。
尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。
(3) 缺氧反硝化过程对污染物具有较高的降解效率。
如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。
7、MSBR(改良型SBR)MSBR 是80 年代后期发展起来的技术,目前其中的专利技术归美国芝加哥附近的Apua AEROBIC SYSTEM .Inc 所有。
MSBR 是连续进水、连续出水的反映器,其实质是A/A/O 系统后接SBR,因此具有A/A/O 的生物脱氮除磷功能和SBR 的一体化、流程简洁、控制灵活等优点。
MSBR系统原理图见图5.1.3.3-6。
现将MSBR 系统的运营原理简介如下:污水进入厌氧池,回流活性污泥在这里进行充足放磷,然后污水进入缺氧池进行反硝化。
反硝化后的污水进入好氧池,有机物在这里被好氧分解、活性污泥充足吸磷后再进入起沉淀作用的SBR 池,澄清后的污水被排放,此时另一边的SBR 在1.5Q 回流量的条件下进行反硝化、硝化,或起静置预作用。
活力污泥一方面进入浓缩区进行浓缩,上清液直接进入好氧池,而浓缩污泥则进入缺氧池,一方面可以进行反硝化,另一方面为先消耗掉回流浓缩污泥中的溶解氧和硝酸盐,为随后的厌氧释磷提供更为有利的条件。
在好氧池与缺氧池之间有1.5Q 的回流量,以便进行反硝化。
图5.1.3.3-6 MSBR 工艺流程图由其工作原理可以看出,MSBR 是具有同时进行生物除磷及生物脱氮的污水解决工艺。
采用MSBR 工艺时需注意以下几个问题:(1)设备的运用率较低,这是SBR 工艺的通病,MSBR 工艺虽经多次改善,设备的运用率仍仅有74%。
(2)污水厂成功业绩欠缺,特别是大型污水厂采用MSBR 工艺的更少,国内投入运营的MSBR 工艺的污水厂较少。
(3)MSBR 工艺中污泥浓缩池,工艺计算中规定在30min 内将污泥浓度提高近3 倍(例如从2.4g/L 浓缩到7g/L),由于浓缩池底部布置欠妥,污泥堆积无法避免,因此池内MLSS 浓度无法平衡。
(4)进入好氧池有4Q,其中1.5Q 回流至缺氧池,1.5Q 通过SBR 池回流至污泥浓缩池,1.0Q 通过SBR 池沉淀排出,因此好氧池内流向较紊乱,如何控制1.0Q 从沉淀段排出是有问题的。
脱氮工艺分为物理法、化学法还有生物法。
物理化学方法主要有氯气氧化法、磷镁沉淀法、离子交换法和空气吹脱法等,但是由于这些方法建设或运行费用均较高,一般应用于工业用途,不适用于大型的城市污水处理厂。
对于城市污水厂一般均采用生物脱氮工艺。
生物脱氮工艺根据利用碳源的不同又可以分为前置反硝化脱氮和后置反硝化脱氮。
前置反硝化是优先利用进水中碳源同(如果进水碳源不足的情况下也可外加碳源)回流的硝化液混合,反硝化菌在在缺氧的状态下进行脱氮作用,达到降低出水总氮的目的。
后置反硝化是指在污水硝化完成并进行泥水分离后,采用额外投加的碳源与水中硝酸盐氮在反硝化菌的作用下进行脱氮作用。
后置反硝化工艺近年来应用比较多,具有代表性的工艺就是深床反硝化滤池和活性沙滤池。
深床反硝化滤池以STS水环纯公司的Denite和F.B. Leopold(现已被ITT收购)的elimi-NITE两种滤池应用最多;活性沙滤池以Parkson公司的DynaSand及Paques/US Filter 的Astrasand活性砂升流式滤池为代表。
这两类反硝化滤池均能通过投加碳源的方式进行反硝化脱氮,并且同时达到去除SS的目的。
后置反硝化滤池一般应用在前面二级处理段没有设置反硝化功能的提标或者出水TN要求极高的需要深度脱氮(在硝化完全的污水厂通过反硝化滤池出水TN可以降到3mg/L以下)的污水厂中。
前置反硝化工艺一般指在二级生化处理段设置了缺氧区或者缺氧时段的活性污泥法工艺,目前应用比较普遍的诸如AO、A2O、设置了独立缺氧区的卡鲁塞尔氧化沟工艺和SBR中的CASS工艺等均具有良好的反硝化能力。
本厂目前采用的生化处理工艺即为A2O工艺,生化处理前段设置了独立的缺氧区,已经具备的反硝化能力,应充分利用。
因此本厂反硝化工艺不推荐后置反硝化工艺。
但是,本厂进水BOD较低,而进水TN浓度一般在60mg/L,始终保持在一个较高水平。
在缺氧池内投加碳源是本厂反硝化高效进行进而保证出水TN 达标的必要手段。
污水处理工艺流程详解生化处理与好氧处理污水处理工艺流程详解:生化处理与好氧处理污水处理工艺是指对污水进行净化和处理的过程,以实现对污水的排放标准和环境保护的要求。
其中,生化处理和好氧处理是两种常用的污水处理工艺方法。
本文将详细介绍这两种处理方法的工艺流程以及其原理与应用。
一、生化处理生化处理是指利用生物菌群对有机物进行分解和转化的处理方法,其主要目的是通过微生物的作用将污水中的有机物降解,从而实现对污水中有机负荷的去除。
生化处理的工艺流程一般包括预处理、生物处理和二次沉淀等步骤。
1. 预处理:这一步主要是对进入生化处理系统的原污水进行预处理,包括初沉池、格栅、除砂池等设施的运用,用于去除大颗粒、可沉积杂质和沉砂等物质。
2. 生物处理:生物处理是生化处理的核心环节,主要是通过将含有污染物的进水向生物体系输送,利用微生物降解有机物。
生物处理一般分为厌氧处理和好氧处理两个阶段。
a. 厌氧处理:在厌氧处理阶段,排水经过缺氧环境,微生物在无氧条件下降解有机物,生成一些有机酸和甲烷等产物。
b. 好氧处理:在好氧处理阶段,厌氧阶段处理后的水体进入好氧环境,氧气的参与使得有机物被微生物进一步分解,生成二氧化碳和水等无害物质。
同时,好氧阶段还能进一步去除氨氮等无机污染物。
3. 二次沉淀:生物处理后的水体经过二次沉淀,去除悬浮物质和沉殿物,以保证水质的清澈。
生化处理方法具有处理效果好、投资成本低等特点,在城市污水处理中得到广泛应用。
二、好氧处理好氧处理是指在含氧环境下利用微生物氧化有机物的溶解和稳定化,达到净化水体的过程。
好氧处理常见的方法有活性污泥法、接触氧化法、固定床曝气法等。
好氧处理的工艺流程一般包括进水处理、曝气池处理和沉淀处理等步骤。
1. 进水处理:进水处理主要目的是对进入好氧处理系统的原水进行预处理,去除大颗粒、可沉积杂质和沉砂等物质,以保证系统正常运行。
2. 曝气池处理:曝气池是好氧处理系统的核心环节,水体通过曝气设备加入氧气,微生物在氧气作用下进行大量氧化反应,使有机物得以降解和转化,达到水体净化的效果。
污水处理站生化系统处理工艺及原理一、引言污水处理是保护环境、维护生态平衡的重要环节。
生化系统是污水处理站中最常用的一种处理工艺,通过微生物的作用,将有机污染物转化为无机物,实现废水的净化。
本文将介绍生化系统的处理工艺及原理,以期能更好地了解污水处理的技术。
二、生化系统的处理工艺生化系统是通过微生物的作用来去除废水中的有机污染物。
主要分为传统的活性污泥法和新型的生物膜法。
(1)活性污泥法活性污泥法是将厌氧和好氧两个阶段的处理结合起来。
在厌氧条件下,厌氧菌将有机物转化为可生物降解物质。
而在好氧条件下,好氧菌则将其生物降解物质进一步分解为无害物质。
该方法处理效果好,但存在流程复杂、需用大量能源等问题。
(2)生物膜法生物膜法是将微生物附着于填料或膜上,以形成微生物膜进行废水处理。
它相比于活性污泥法,具有更高的处理效率和更小的占地面积。
同时,生物膜法对波动负荷的适应能力较强,对恶劣环境的适应性也较强。
因此,生物膜法在现代污水处理中得到了广泛应用。
三、生化系统的处理原理生化系统的处理原理主要通过微生物的作用来降解废水中的有机物。
微生物主要包括厌氧菌和好氧菌两种类型。
(1)厌氧菌作用厌氧菌作用是将废水中的碳源转化为有机酸、气体或有机溶解物等可生物降解物质。
厌氧菌在厌氧条件下生长繁殖,通过吸取废水中的有机物质,释放沼气和有机酸,实现废水的初步净化。
(2)好氧菌作用好氧菌作用是将厌氧菌转化后的有机溶解物进一步降解为无害物质。
好氧细菌能耗氧降解废水中的氮、磷等营养物,并产生二氧化碳、水等无害物质。
通过好氧菌的作用,废水能实现进一步净化。
四、生化系统的优缺点生化系统作为废水处理的常用工艺,具有一定的优点和缺点。
(1)优点生化系统处理工艺具有高效、经济、操作灵活等优点。
相较于物理化学处理工艺,生化系统能更彻底地降解有机物,达到更高的处理效果。
而且,生化系统可根据废水负荷的变化进行调整,对波动负荷能够适应性较强。
(2)缺点生化系统的主要缺点在于工艺复杂,操作难度较大。
对于溶解性难降解COD的去除,一般来说是工业废水处理的范畴,有生化处理和物理化学的处理方法。
生化处理的方式主要有尽量延长生化反应时间、增加厌氧处理工艺、进行主物驯化投加优势菌种等措施;物理化学的方法主要加药沉淀法、高级氧化法、吸附法、膜过滤和电化学法等。
对于本厂的具体情况,在生化处理已经发挥作用的前提下,二沉池出水COD仍然较高,采用单纯的生化方法很难使出水达到40mg/L以下,必须辅以物理化学方式。
能去除COD的膜过滤工艺一般指RO工艺,在污水领域中主要用于中水回用且有除盐需求的场合,运行费用较高。
电化学法有电解法(氧化或还原),电气浮法,电凝聚法和电渗析法等。
电化学法在某些特定的工业废水处理中有着较为广泛应用。
下面分别就加药沉淀法、高级氧化法和吸附法分别进行介绍。
1、加药沉淀法加药沉淀法是用易溶的化学药剂在废水中形成难溶的盐、氢氧化物或者络合物以达到去除有机物的LI的,另外通过药剂在水中形成的胶体可以达到凝聚吸附有机物的作用,最终通过沉淀作用以化学污泥的方式净化污水。
在TNT、RDX、阳离子染料废水、硫醇废水以及含酚、含覘废水的处理中常使用加药沉淀法。
加药沉淀工艺对原水的选择性较强,不同性质的污水处理效果大相径庭。
通过以往的一些实验和污水处理厂运行经验,在投加大量的药剂的悄况下,COD 能保持一定的去除效率,但是很低。
因此,本工程不宜采用。
2、高级氧化法高级氧化技术是20世纪80年代发展起来的处理废水中有毒有害高浓度污染物的新技术。
它的特点是通过反应把氧化性很强的羟基自由基(・OH)释放出来,将大多数有机污染物矿化或有效分解,棋至彻底地转化为无害的小分子无机物。
山于该工艺具有显著的优点,因此引起世界各国的重视,并相继开发了各种各样的处理工艺和设备,使高级氧化系统具有很强的生命力和竞争力,应用前景广阔。
根据所用氧化剂及催化条件的不同,高级氧化技术通常可分为六大类:化学氧化法;化学催化氧化法;湿式氧化法;超临界水氧化法;光化学氧化法和光化学催化氧化法;电化学氧化还原法。
生化处理污水工艺对比随着人口的增长、工业化进程的不断推进,污水处理已成为现代城市管理中不可回避的重要问题。
传统的化学方法虽然能够去除污水中的有机物、氮、磷、重金属等,但却存在着成本高、处理量小、二次污染等弊端。
为了解决这些问题,生化处理污水工艺逐渐受到了广泛的关注和应用。
那么,不同的生化处理污水工艺之间有哪些区别和优劣呢?下面我们来一探究竟。
一、好氧法好氧法是一种将进入池塘的水预先过滤掉大部分的砂和固体物质,然后向水池中注入大量的氧气,然后通过氧气与水中的微生物反应,使水环境良好的一种处理方法。
优点:操作简单,反应速度快,处理出水效果好,在去除COD、BOD5和氮、磷等方面都有一定的效果,具有很高的稳定性。
缺点:气体的注入量必须要恰好合适,否则会使反应速度降低,从而导致处理效果不佳。
同时,水池需要占用较大面积,因此造价相对较高。
二、厌氧法厌氧法是一种在没有氧气的情况下处理污水的方法。
这种方法主要是通过建造处理池,并注入少量有机化学污染物的环境中的微生物来转化在水中被污染的有机物质。
优点:没有需求氧气,且通过一系列的反应,污水能够被快速而彻底地处理掉。
同时,处理过程中没有二次污染,处理后出水达到环保标准,非常安全和健康。
缺点:处理过程中没有氧气,无法完全清除氮、磷等物质。
同时这种方法处理的适用范围相对较小,需要治理的污水来源相对集中。
三、生物膜法生物膜法是在一个具有一定厚度的生物膜的地面上,一种通过内部微生物活动来处理污水的方法。
优点:具有很高的降解效率,处理后出水水质相对稳定且无色、无味、无毒;同时减少了对生态环境的二次污染,经过长期运行后,其生物膜厚度稳定,无需更换。
缺点:需要较长的启动时间,第一次启动需要较长的时间和成本,然后难以确定处理后的出水水质具有可预测性,容易受到外部环境影响。
综上所述,不同的污水处理工艺各有优缺点,在实际的应用中需根据处理对象的特点、成本和所需的处理效果来选择适合的方法。
污水处理工艺介绍污水处理工艺是一种将污水中的有害物质通过一系列的工艺过程去除的技术。
随着城市化进程的加快和水资源短缺问题的加剧,污水处理工艺变得越来越重要。
本文将介绍几种常见的污水处理工艺。
1. 生化处理工艺生化处理工艺是一种利用微生物将有机物质转化为无机物质的工艺。
首先,将污水进入到好氧环节,通过通入氧气提供好氧环境,使污水中的有机物质被微生物氧化分解成无机物质。
然后,进入到厌氧环节,通过阻断供氧断开微生物化学链,在厌氧生物条件下,完成对污染物的进一步处理。
最后,通过沉淀,去除悬浮物和淀粉卵白质等有机物质。
2. 中水回用工艺中水回用工艺是一种将城市生活污水经处理后,回用于灌溉、工业、生活用水等领域的污水处理技术。
通过中水回用可以减缓城市用水紧张的情况,节约地下水资源。
而中水回用的初步处理则与生化处理差不多,污水经过生物分解后,去除大部分的有机物质。
最后,在膜工艺的作用下,去除中水中的细菌、病毒、微生物等杂质,达到回用要求。
3. 人工湿地处理工艺人工湿地处理工艺是一种创新的处理方式,它利用具有生态功能的湿地微生物,对污水中有机物质进行生物分解。
首先,将污水经过初步处理,沉淀去除污水中的大颗粒物质。
其次,通过湿地的缓冲作用,保护微生物的生长,促进生物分解。
此外,固体植物可吸收养分,植物通过根系的气力引起的微生物的附着,继而去除有机物质和氮磷等营养物质。
4. 稳定池处理工艺稳定池处理工艺是一种以自然微生物群体为基础的处理工艺。
其本质是在温和的环境下,利用微生物对有机污染物进行生化降解、化学转化,从而去除COD和BOD、氨氮等有害物质。
它可以分为好氧和厌氧两种,好氧稳定池生化反应均衡,能大幅度降解有机物、消除臭味,厌氧稳定池则不消耗能量、无需要补氧,能把有机物转化为了有机酸、酮和气体。
在实际的工程操作中,需要根据需要选用以上任意一种或多种工艺,对污水进行不同的治理,从而达到让污水净化达到国家规定的排放标准的目的。
几种常用生活污水处理工艺的比较一、概述生活污水处理工艺目前已相当成熟,其核心技术为活性污泥法和生物膜法,对活性污泥法(或生物膜法)的改进及发展形成了各种不同的生活污水处理工艺,传统的活性污泥法处理工艺在中小型生活污水处理已较少使用。
根据污水的水量、水质和出水要求及当地的实际情况,选用合理的污水处理工艺,对污水处理的正常运行、处理费用具有决定性的作用。
本文主要对生活污水几种常用的处理工艺作简单介绍,包括氧化沟、序批式活性污泥法(SBR)、生物接触氧化法、曝气生物滤池(BAF)、A—0 工艺、膜生物反应器(MBR)等.二、中小型生活污水处理工艺简介典型的生活污水处理完整工艺如下:污水——前处理——生化法——二沉池——消毒——出水I I------- 污泥处理系统-—前处理也称为预处理技术,常用的有格栅或格网、调节池、沉砂池、初沉池等.由于生活污水处理的核心是生化部分,因此我们称污水处理工艺是特指这部分,如接触氧化法、SBR法、A/O法等。
用生化法(包括厌氧和好氧)处理生活污水在目前是最经济、最适用的污水处理工艺,根据生活污水的水量、水质及现场的条件而选择不同的污水处理工艺对投资及运行成本具有决定性的影响。
下面就目前常用的生活污水处理工艺作一简介.1、氧化沟工艺氧化沟是活性污泥法的一种变形,其池体狭长,故称为氧化沟。
氧化沟有多种构造型式,典型的有:A:卡罗塞式;B:奥巴尔型;C:交替工作式氧化沟;D:曝气一沉淀一体化氧化沟氧化沟技术已广泛应用于大中型城市污水处理厂,其规模从每日几百立方米至几万立方米,工艺日趋完善,其构造型式也越来越多。
其主要特点是:进出水装置简单;污水的流态可看成是完全混合式,由于池体狭长, 又类似于推流式;BOD负荷低,处理水质良好;污泥产率低,排泥量少;污泥龄长,具有脱氮的功能。
设计要点:混合液悬浮固体浓度5000mg/l ;生物固体平均停留时间,去除BOD5时,取5〜8天,当要求硝化反应时取10〜30天;水力停留时间为20、24、36、48h,根据对处理水水质要求而定;BOD—SS负荷(Ns) 为 0.03~0。
污水处理生化工艺CASS和CAST工艺有什么不同?目前国内污水处理工程普遍采纳“活性污泥法”进行二级生化处理,而对循环式活性污泥法的缩写不加区分,CASS与CAST两者常常混用,下面就由我来详细进行分解和对比两种工艺特性相同和不同。
首先,CASS工艺和CAST工艺同属“循环式活性污泥法”范畴,两者都是“序批式活性污泥法(SBR)”的改良变种工艺,它们起源于欧洲,自上个世纪90年月前后间续被引进国内,凭借其系统组成简洁、运行敏捷、自动化程度高等优点,迪奥水处理采纳CASS工艺和CAST 工艺的污水处理设备快速在污水处理行业中得到了广泛应用。
特殊是城镇污水处理厂应用很广。
CASS工艺和CAST工艺两者详细工艺设计时既有相同,也存在肯定的差异,造成了认知上的误区。
详细细节上确有区分,主要集中在生化池池型结构不同、是否连续进水及沉淀时是否进水等问题上。
一、CASS工艺CASS是连续进水周期循环曝气活性污泥技术(Cyclic Activated Sludge System)的简称。
它是在SBR 工艺的基础上,增加了生物选择器及污泥回流设施,并汲取、保留了ICEAS工艺的优点,连续进水,间歇排水。
它集曝气、沉淀功能于一体,进水曝气、沉淀、排水在同一池子内依次进行,周期循环,取消了常规活性污泥法的二沉池,并能实现程序化掌握,自动化程度高,又便利操作。
污水有机物CODCr去除率达80~85%,BOD5去除率达90~95%,且能实现良好的脱氮除磷效果。
二、CAST工艺CAST是间歇进水周期循环式活性污泥技术(Cyclic Activated System Technology)的简称。
整个工艺在一个反应器中完成,工艺按“进水—曝气”、“曝气—非曝气”挨次进行,属于序批式活性污泥工艺,它是在SBR 工艺的基础上,增加了生物选择器、兼氧反应器及污泥回流设施,并对运行时序进行了重新设计调整,它集曝气、沉淀功能于一体,进水、曝气、沉淀、排水在同一池子内依次进行,周期循环,同样取消了常规活性污泥法的二沉池,具有良好的脱氮除磷效果,从而大大提高了SBR工艺的牢靠性及处理效率。
一、生化处理工艺对比生化处理是污水处理的核心,主要方法有生物膜法和活性污泥法。
近年来使用较多的活性污泥处理工艺有氧化塘、氧化沟及在传统活性污泥工艺基础上发展起来的A2/0法、A-B法、SBR法及CAST 法等工艺,使用较多的生物膜法为曝气生物滤池工艺。
根据当地的自然条件、管理水平、污水水量水质及受纳水体水质,提出氧化沟、A2/0法和间歇式活性污泥法中CAST法三种污水处理方案进行比较。
1、氧化沟氧化沟是一种活性污泥处理系统,其曝气池呈封闭的沟渠型,所以它在水力流态上不同于传统的活性污泥法,它是一种首尾相连的循环流曝气沟渠,又称循环曝气池。
氧化沟污水处理工艺是在20世纪50年代由荷兰卫生工程研究所研制成功的。
自从1954年在荷兰的首次投入使用以来。
由于其出水水质好、运行稳定、管理方便等技术特点,已经在国内外广泛的应用于生活污水和工业污水的治理。
严格地说,传统的氧化沟不属于专门的生物除磷脱氮工艺。
但随着不断的发展,氧化沟技术已远远超出早期的实践范围,具有多种多样的工艺参数和功能选择,以及构筑物型式和操作方式。
可以认为氧化沟与其它工艺类别的差别不在于工艺概念和水质处理效果,而在于实现工艺概念的手段,即机械曝气设备及其布置方式所产生的特殊水力学流态、电子供体供给方式及其时空分布。
目前应用较为广泛的氧化沟类型包括:帕斯韦尔(Pasveer)氧化沟、卡鲁塞尔(Carrousel)氧化沟、奥尔伯(Orbal )氧化沟、T 型氧化沟(三沟式氧化沟)、DE型氧化沟和一体化氧化沟等。
这些氧化沟由于在结构和运行上存在差异,因此各具特点。
工艺的主要优点是:①流程简化,一般不需设初沉池。
②氧化沟具有推流特性,因此沿池长方向具有溶解氧梯度,分别形成好氧、缺氧和厌氧区。
通过合理设计和控制可使N和P得到较好地去除。
③在技术上具有净化程度高、运行稳定可靠、操作简单、运行管理方便、维修简单、投资少、能耗低等特点。
该工艺的缺点:占地面积大,对于BOD较低污水处理能力不足,部分池形池体结构较复杂,上下流速不均,沟底易沉积污泥,易发生污泥膨胀问题。
2.A7O法A2/O工艺即厌氧/缺氧/好氧活性污泥法,该工艺是在厌氧/好氧除磷工艺(A/0)中加一缺氧池,将好氧池流出的一部分混合液回流至缺氧池前端,以达到反硝化脱氮的目的。
A2/O工艺的可同步除磷脱氮。
除磷脱氮主要由两部分组成:一是除磷,污水中的聚磷菌在厌氧状态下释放出体内的磷,在好氧状况下又将其更多吸收,以剩余污泥的形式排出系统。
二是脱氮,由于兼氧脱氮菌的作用,利用水中B0D5作为有机碳源,将来自好氧池混合液中的硝酸盐及亚硝酸盐还原成氮气逸入大气,达到脱氮的目的。
A2/O法的主要优点:①厌氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其后好氧池的有机负荷;缺氧池反硝化反应产生的碱度可以补偿好氧池中进行硝化反应对碱度的需求,脱氮效果好;②好氧在缺氧池之后,可以使反硝化残留的有机污染物得到进一步去除,提高出水水质;③微生物在厌氧段释放磷,在好氧段富集磷,通过外排剩余污泥即可达到一定的生物除磷的目的;④耐冲击负荷,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击;⑤工艺过程中的各工序可根据水质、水量进行调整,运行灵活;⑥反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀,污泥沉降性好;⑦处理设备少,构造简单,工程造价低,便于操作和维护管理。
该工艺的缺点是:处理构筑物相对较多,占地面积相对较大。
3.CAST 法CAST工艺是循环式活性污泥法的简称。
在该工艺中,有机污染物的生物降解和泥水分离过程在一个反应器中完成,工艺按进水、曝气、静沉、排水、闲置”顺序进行,是SBR工艺的一种改进型。
它在SBR工艺基础上增加了生物选择区和污泥回流装置,起到脱氮的作用。
反应池末端设有滗水器,用于将沉淀后的上清液均匀排出。
CAST的主要优点:①工艺流程简单,处理构筑物少(CAST反应池集曝气、沉淀于一体,省去二沉池和回流污泥泵房,整体结构简单,机械设备少,无需复杂的管路系统);②CAST反应池容积大,具有一定的调节水质水量的作用;③剩余污泥沉淀时间长,污泥量少,性质稳定;④具有完全混和式和推流式曝气池的优点,抗水质、水量冲击能力强,处理效果稳定;⑥采用组合式模块结构,有利于分期建设和扩建。
该工艺的缺点是:运营操作比较繁琐,对自动化程度及管理人员的素质要求均较高,并且所需池容较大。
三种工艺方法的对比如下:生物处理工艺对比表从污水处理的效果上看,上述三个方案都具有去除有机物以及生物脱氮除磷的能力,均能满足本项目污水处理的要求。
综合考虑工程造价、运营成本、管理人员素质、各工艺在实际工程中的应用情况以及施工过程的施工难度,确定采用方案二(A2/O法)作为二级生物处理工艺。
二、污泥处理工艺对比我国城镇污水处理厂污泥处理处置原则为实现污泥稳定化、减量化、无害化、资源化”。
以土地利用为最终处置目标,污泥处理的核心工艺技术主要有电渗透干化、堆肥、太阳能温室干化等。
1、堆肥堆肥通常是指通过高温好氧发酵,在好氧微生物的生物代谢作用下,使污泥中有机物转化成稳定的腐殖质的过程。
代谢过程中产生热量,可使堆料层温度升高至55 C以上,可有效杀灭病原菌、寄生虫卵和杂草种籽,并使水分蒸发。
堆肥过程主要由预处理、进料、一次发酵、二次发酵、发酵产物加工及造粒包装等工序组成。
脱水污泥堆肥前须进行适当的预处理,以调节适宜的含水率、碳氮比(C/N )等参数,并破碎成较小的颗粒。
污泥发酵反应系统是整个工艺的核心。
工艺类型分一步发酵工艺和二步发酵工艺。
一步发酵优点是工艺设备及操作简单,省去部分进出料设备,动力消耗较少;缺点是发酵仓造价略高,水分散发、发酵均匀性稍差。
二步发酵工艺优点是一次发酵仓数少,二次发酵加强翻堆效应,使堆料发酵更加均匀,水分散发较好;缺点是额外增加出料和进料设备。
堆肥可大副降低污泥含水率,并完成无害化目的。
但污泥堆肥厂厂区占地面积较大,机械设备较多,耗能大,滋生蚊蝇,恶臭气体产生量大且收集控制较困难,同时还需要添加大量的辅料。
2、电渗透+太阳能温室电渗透污泥干化系统是利用外加电场的作用,使污泥中微生物细胞内的水发生强制迁移,内能升高,冲破细胞膜散失出来形成游离水,从而提高污泥的脱水效率,达到干化的目的。
电渗透污泥干化系统适用于小泥量污泥分散干化处理的项目。
污水处理厂(站)经传统机械脱水设备脱水后污泥(含水率75%-85% 利用电渗透污泥干化系统处理后得以减量化(含水率60翌%)、稳定化,为后续污泥的最终处置创造有利条件。
电渗透污泥干化系统处理效果稳定;占地面积小;建设费用低;同时具有杀灭病原微生物等作用,非常适用于建设有地有限的污水处理厂(站)等污泥需进一步脱水干化处理以达到国家相应标准要求的情况。
该工艺的优点有:(1、工艺简单、全自动操作;(2)施工周期短;(3)运行成本低;(4)设备运行稳定,使用寿命长;(5)占地面积小,是目前所有工艺中占地面积最小的工艺;(6)工艺技术先进,是目前国际上最先进的污泥处理技术;(7)无需添加任何药剂,不产生二次污染。
太阳能温室污泥干化是指利用太阳能为主要能源对污水处理厂污泥进行干化和稳定化的污泥处理技术。
此技术以传统温室干燥技术为基础,结合现代自动化技术,应用于污泥处理领域。
此技术采用阳光温室,利用太阳能这种清洁能源作为污泥干化的主要能量来源,辅助其它加热方式,充分利用太阳能热量和空气非饱和程度,使污泥中水份蒸发,达到干化的目的。
太阳能温室干化系统主要由阳光温室、翻泥机、辅助加热设备、通风设备、检测设备和控制设备组成,通过检测干化间室内外温度、湿度、光照强度等参数,自动化控制翻泥设备、辅助加热设备和通风设备,加快污泥水份蒸发速度,使污泥干化过程可控,提高干化效率。
太阳能温室污泥干化与传统热能干化技术相比,有如下优点:(1)能耗小,运行管理费用低,操作维护简单、使用寿命长;(2)系统运行稳定安全,温度低,灰尘产生量小,不产生二噁英等有害气体;(3)系统透明程度高,环境协调性好;空间大,可同时解决污泥存储的需要;(4)利用太阳能作为主要热源,满足可持续发展的目的。
(5)太阳能温室污泥干化优势明显,适用于城镇污泥集中处理项目,可有效实现污泥稳定化、无害化。
污泥处理工艺对比论述:上述工艺在实际工程中均有广泛应用,但受各地的气温、日照等气候条件影响,处理效果有较大差异。
污泥处理方式对比表堆肥工艺需要投加辅料,受当地农业生产类型及其它因素制约若在农业发达地区,可同时处理大量农作物秸杆、木屑、锯末等农业废料,可减少农业垃圾处置量,而在大型城市或农业欠发达地区,则需要另外寻找替代辅料,成本较高且可操作性不大。
而当地特有的日照(全年日照时数可达2855〜2967小时)及温度条件(年平均气温9~1「C)尤其适用于电渗透+太阳能温室干化法作为最终处理工艺。
因此,推荐选用电渗透+太阳能温室干化法作为污水处理厂污泥处理核心工艺。
三、除臭工艺对比众所周知,在污水处理厂运行过程中,在局部区域(如预处理区、污泥处理区等)会产生臭味气体(主要为硫化氢、氨气)。
另外,生物处理的部分工艺段也会由于水解酸化及厌氧发酵等作用而产生一定量的臭味气体(主要为硫化氢、氨气以及部分挥发酸)。
这些臭味气体不仅会污染周围大气环境,而且会对现场的操作人员的健康造成一定危害。
因此,有必要设置一整套效果良好的除臭系统,对臭味气体进行集中收集处理。
目前,国内大多数污水处理厂中实际应用的除臭方法主要为活性炭吸附除臭、生物除臭及高能光量子除臭等类。
具体对比如下:除臭技术方法对比表综合对比各方法的除臭效率、使用寿命、运行维护费用,并考虑当地的实际条件、操作维护人员的技术水平以及各工艺在实际工程中的应用情况可知,高能光量子法除臭技术成熟可靠,运行维护费用较低,且无二次污染产生。
因此,本方案选定高能光量子法为污水处理厂的除臭工艺。