遥感卫星影像的数据处理方法
- 格式:doc
- 大小:19.00 KB
- 文档页数:2
北京揽宇方圆信息技术有限公司常用的遥感卫星影像数据处理方法1、常用遥感图像处理软件⏹ENVI:美国Exelis Visual Information Solutions公司的旗舰产品⏹PCI GEOMATICA:加拿大PCI公司旗下的四个主要产品系列之一⏹EDRAS imagine2、白色的光可以分解为系列单色的可见光;三种原色:红、绿、蓝;三种补色:黄、品、青黄=红+绿品=红+蓝青=绿+蓝任何一种颜色都可以用3原色或者3补色来组合3、常用的波段组合特点红绿蓝321真彩色:可见光组成,符合人眼对自然物体的观察习惯。
对于水体和人工地物表现突出。
432假彩色:城市地区,植被种类。
543假彩色:增强对植被的识别743假彩色:增强对植被的识别,以及矿物、岩石类别的区分。
4、共15个主功能模块,其中一般的遥感数字图像处理经常用到的是Viewer、Import、DataPrep、Interpreter、Classifier、Modeler等。
5、功能模块介绍:①该模块主要实现图形图像的显示,是人机对话的关键。
②数据输入输出模块,主要实现外部数据的导入、外部数据与ERDAS支持数据的转换及ERDAS内部数据的导出。
③数据预处理模块,主要实现图像拼接、校正、投影变换、分幅裁剪、重采样等功能。
④专题制图模块,主要实现专题地图的制作。
⑤启动图像解译模块,主要实现图像增强、傅里叶变换、地形分析及地理信息系统分析等功能。
⑥图像库管理模块,实现入库图像的统一管理,可方便地进行图像的存档与恢复。
⑦图像分类模块,实现监督分类、非监督分类及专家分类等功能。
⑧空间建模模块,主要是通过一组可以自行编制的指令集来实现地理信息和图像处理的操作功能。
⑨矢量功能模块,主要包括内置矢量模块及扩展矢量模块,该模块是基于ESRI的数据模型开发的,所以它直接支持coverage、shapfile、vector layer等格式数据。
⑩雷达图像处理模块,主要针对雷达影像进行图像处理、图像校正等操作。
使用卫星遥感数据进行测绘的数据处理方法导言:随着现代测绘技术的不断发展,卫星遥感数据成为了测绘领域中不可或缺的重要数据源。
卫星遥感数据能够提供高分辨率、大范围的地理信息,帮助测绘工作更加精准、高效。
然而,卫星遥感数据常常需要经过一系列的数据处理方法,以提取有效的地理信息。
本文将介绍一些常用的卫星遥感数据处理方法,以助于更好地利用卫星遥感数据进行测绘。
一、数据预处理1. 图像预处理卫星遥感数据通常经过传感器、通道、大气等多种因素的影响,需要进行图像预处理以去除噪声、纠正图像偏移、增强图像对比度等。
常用的图像预处理方法包括平滑滤波、直方图均衡化、大气校正等。
2. 高程数据处理卫星遥感数据中常包含高程信息,如数字高程模型(DEM)数据。
为了得到地形的准确表达,需要对DEM数据进行降噪、插值、拟合等处理。
常见的方法包括小波降噪、三角网剖分插值等。
二、特征提取1. 目标提取卫星遥感数据可以用于提取地物目标,如道路、建筑、植被等。
常见的目标提取方法包括阈值分割、特征分类、形态学处理等。
这些方法可以帮助测绘工作者有效地在遥感图像中提取出感兴趣的地物目标,并进行后续的测绘工作。
2. 变化检测卫星遥感数据可以用于检测地理环境的变化,如土地利用变化、海岸线变化等。
常用的变化检测方法包括监督分类、无监督分类、基于图像差异的方法等。
通过变化检测,可以了解地理环境的演变情况,为后续的测绘工作提供更准确的数据支持。
三、精度评定与校正1. 精度评定在进行测绘工作时,需要对卫星遥感数据的精度进行评定。
常见的精度评定方法包括地物提取精度评定、高程数据精度评定等。
通过精度评定,可以客观地评价卫星遥感数据的可靠性,为后续的测绘工作提供参考依据。
2. 数据校正卫星遥感数据在获取过程中可能存在校正问题,如几何校正、辐射校正等。
为了获得更准确的地理信息,需要进行相应的数据校正工作。
常见的数据校正方法包括基于地面控制点的几何校正、大气校正等。
卫星遥感数据处理方法综述与比较卫星遥感是一种通过卫星获取地球表面信息的技术。
遥感数据处理方法是将获取的原始数据转化为有用的信息的过程。
本文将对常见的卫星遥感数据处理方法进行综述与比较。
一、数据预处理数据预处理是数据处理的第一步,包括数据获取、数据校正和数据栅格化。
数据获取是指从卫星获取遥感数据的过程,可以通过直接下载、申请或购买数据。
数据校正是为了消除数据中的系统误差,例如大气校正、几何校正等。
数据栅格化是将遥感数据转化为栅格数据格式,如像元(pixel)或网格(grid)。
二、数据分类与特征提取数据分类是将遥感图像中的像元分为不同类别的过程,通常使用像元级分类和对象级分类。
像元级分类是将每一个像元分为具体的类别,例如水体、植被、建筑等;对象级分类是将连续的像元组合成一个对象,例如湖泊、森林、城市等。
特征提取是在分类之前对数据进行特征提取,常用的特征包括光谱特征、纹理特征、形状特征等。
三、数据融合数据融合是将不同传感器或不同波段的遥感数据进行融合,以提高数据的空间分辨率、光谱分辨率和时间分辨率。
常见的数据融合方法包括图像融合、数据融合和特征融合。
图像融合是将多幅图像融合为一幅图像,常用的方法有PCA、Brovey变换等;数据融合是将不同波段的遥感数据进行融合,例如多光谱和高光谱数据的融合;特征融合是将不同特征的遥感数据融合,以提取更多的信息。
四、数据压缩与存储遥感数据通常具有较大的体积,因此需要进行数据压缩与存储。
数据压缩可以减小数据量并提高数据传输速度,常见的压缩方法包括无损压缩和有损压缩。
无损压缩是保留原始数据的全部信息,例如Huffman编码、LZW编码等;有损压缩是通过舍弃部分数据来减小数据量,例如JPEG、JPEG2000等。
数据存储是将压缩后的数据存储到硬盘或其他存储介质中,常见的格式有TIFF、JPEG、GeoTIFF等。
五、数据处理与分析数据处理与分析是对遥感数据进行进一步的处理和分析,以提取目标信息。
卫星遥感技术的数据处理与解译教程卫星遥感技术是一种通过卫星传感器获取地球表面信息的技术手段。
随着遥感卫星的发展和技术的进步,遥感数据的获取和处理已成为地学研究和资源管理中不可或缺的工具。
在这篇文章中,我们将向您介绍卫星遥感技术的数据处理与解译方法,帮助您快速掌握基本操作和技巧。
一、遥感数据处理的步骤1. 数据获取与选择首先,我们需要获取适合研究的遥感数据。
常见的卫星遥感数据包括Landsat、Sentinel、MODIS等系列数据。
根据具体研究需求,可以选择不同波段、分辨率和时间段的数据。
2. 数据预处理在使用遥感数据进行研究之前,我们需要对原始数据进行预处理。
这包括大气校正、辐射校正和几何校正等步骤,以确保数据的准确性和可比性。
3. 影像增强为了提取地物信息和进行可视化分析,我们可以对遥感影像进行增强处理。
常见的增强方法包括直方图均衡化、滤波和波段合成等。
4. 分类与分类精度评价遥感数据的分类是指将影像中的像素分配到不同的地物类别中。
常见的分类方法包括监督分类和无监督分类。
分类的结果需要进行分类精度评价,以验证分类准确性和可信度。
5. 特定应用的数据解译根据具体的应用需求,我们可以通过遥感数据解译获取所需的地物信息。
例如,利用NDVI(归一化植被指数)可以提取植被分布信息,利用NDWI(归一化水体指数)可以提取水体分布信息。
6. 数据分析与建模在获取地物信息之后,我们可以进行数据分析和建模,以深入研究地球表面的动态变化和环境响应。
常见的分析方法包括变化检测、时间序列分析和空间模型构建等。
二、常用的遥感数据处理软件1. ENVI(Environment for Visualizing Images)ENVI是一款功能强大的遥感数据处理软件,具有丰富的图像增强、数据分类和解译功能。
通过ENVI,用户可以方便地进行遥感数据的处理和分析。
2. ArcGIS(Arc Geographic Information System)ArcGIS是一款广泛使用的地理信息系统软件,同样提供了丰富的遥感数据处理和空间分析功能。
测绘技术中的遥感数据处理方法与分析技巧遥感技术作为测绘技术的一种重要手段,已经在地理信息系统(GIS)和地理空间信息科学(GIScience)等领域得到广泛应用。
遥感数据处理方法和分析技巧的应用不仅可以提供高质量的地理空间数据,还能支持地理空间分析和决策制定。
本文将介绍一些常见的遥感数据处理方法和分析技巧,并探讨它们在测绘技术中的应用。
一、遥感数据处理方法1. 遥感数据获取与预处理遥感数据获取包括卫星、航空和无人机遥感数据的收集与获取。
该过程中需要考虑分辨率、波段、时序等因素,并进行数据预处理,包括辐射定标、几何校正等,以确保数据的准确性和一致性。
2. 影像增强与融合影像增强是指通过调整图像的对比度、亮度、锐度等来提高遥感影像的图像质量。
常用的方法包括直方图均衡化、线性和非线性滤波等。
影像融合是将来自多个传感器的遥感影像融合为一幅影像,以提供更全面、更准确的信息。
融合方法包括像元级融合、特征级融合和决策级融合等。
3. 特征提取与分类特征提取是从遥感影像中提取出与目标有关的信息。
常用的特征包括纹理、形状、颜色等。
特征提取可以通过人工、半自动和自动的方法来实现。
分类是将遥感影像分为不同的类别,常用的分类方法包括最大似然分类、支持向量机分类和决策树分类等。
二、遥感数据分析技巧1. 地物变化检测与监测地物变化检测是指通过对多时相的遥感影像进行比较和分析,来检测地表上的变化。
常用的方法包括改变向量分析、差异图像法和变化向量分析等。
地物变化监测是指通过连续监测遥感影像的变化,来了解和研究地表的变化趋势和规律。
常用的方法包括时间序列分析和时空模型等。
2. 地表覆盖分类与制图地表覆盖分类是将遥感影像中的地物进行分类,并进一步制作地表覆盖图。
该过程中需要选择适当的分类方法,并参考地面真实数据进行验证和校正,以提高分类的准确性。
地表覆盖制图是将分类结果转化为地图,常用的方法包括像素级合成和对象级合成等。
3. 地形表面建模与分析地形表面建模是指通过遥感数据生成数字高程模型(DEM)和三维地形模型。
遥感卫星数据处理与分析的常用方法与技巧引言:遥感技术是一种通过获取地球表面信息的非接触式手段,被广泛应用于农业、资源环境管理、城市规划等领域。
而遥感卫星数据处理和分析是利用遥感数据来提取和分析有用信息的重要环节。
本文将探讨遥感卫星数据处理与分析的常用方法与技巧,以帮助读者更好地应用和理解这一科技。
一、遥感卫星数据处理1. 数据获取首先要获取到遥感卫星数据,常见的途径有:从遥感卫星数据网站下载、购买有关数据、利用遥感卫星数据开放接口等。
在选择数据源时,应根据研究目标和需求来确定,同时要了解数据的时间、分辨率、波段等信息。
2. 数据预处理遥感卫星数据由于各种因素的影响可能存在噪声、云状物等问题,需要进行预处理。
常见的预处理步骤包括:辐射校正、大气校正、几何校正、云检测等。
这些步骤的目的是减少数据中的干扰因素,保证后续分析的准确性。
3. 数据融合数据融合是指将来自不同源的遥感数据融合成一幅图像,以便更好地获取信息。
数据融合可以通过图像融合算法来实现,如:像元级融合、特征级融合等。
数据融合后的图像能够同时具备多种波段和分辨率的信息,有助于更全面地分析研究对象。
二、遥感卫星数据分析1. 监测地表变化遥感卫星数据可以帮助我们监测和分析地表的变化情况。
通过对同一地区不同时期的遥感影像进行对比,可以观察到土地利用、植被覆盖、水域变化等的变化趋势。
这对于环境保护、土地利用规划等具有重要意义。
2. 提取地表信息利用遥感卫星数据,可以提取出许多有用的地表信息。
例如,通过光谱分析技术,可以提取出植被指数,进而评估植被的生长状态;通过纹理分析技术,可以提取出地表纹理以进行地貌分析。
这些信息对于农作物监测、资源调查等方面非常有用。
3. 航迹识别通过遥感卫星数据,我们可以进行航迹识别,即追踪某一对象在地表的活动轨迹。
利用目标识别算法和时序遥感数据,可以对航迹进行提取和分析。
这对于交通管理、物流追踪等应用具有重要意义。
结论:遥感卫星数据的处理与分析是利用遥感数据进行科学研究和实际应用的关键环节。
遥感卫星影像处理与遥感数据应用遥感卫星影像处理与遥感数据应用是一项利用遥感技术获取和处理卫星影像数据,并应用这些数据进行地理信息分析、资源评估、环境监测等方面的研究与应用任务。
遥感卫星是指运行在地球轨道上的一种卫星,它搭载有遥感传感器,可以通过感应地球表面反射、辐射的电磁波,并将其转化为数字图像数据。
这些遥感卫星影像数据可以提供高分辨率、广覆盖率的地球表面信息,对于地理空间分析具有重要意义。
遥感卫星影像处理是指基于遥感卫星获取的数字图像数据,通过一系列的图像预处理、影像纠正、特征提取、分类分类等一系列操作,将原始影像数据转化为可用于地理信息系统分析的矢量或光栅数据。
这些数据可以被用于生成地形图、土地利用分类图、植被盖度研究等目的。
首先,遥感卫星影像处理的第一步是图像预处理。
图像预处理包括辐射校正、大气校正、几何校正等步骤,以确保获取到的影像数据具备一致性和可比性。
通过辐射校正,可以将原始影像数据从数值上可比较,并将其转换为反射率或亮度值。
大气校正则移除了大气对影像的影响,减少由于大气散射和吸收而引起的信息噪声。
几何校正则纠正影像中的位置、角度等几何失真,以保证影像数据准确地反映地球表面的特征。
其次,遥感卫星影像处理的下一步是影像纠正。
影像纠正是指通过对影像进行投影变换、边缘匹配、波段匹配等处理,使得图像在空间尺度和角度上比较准确地与地理实体匹配。
通过影像纠正,可以使影像数据受到形变、旋转、尺度变化等因素的影响较小,为后续的地理信息分析提供准确的基础。
第三,遥感卫星影像处理的关键步骤是特征提取。
特征提取是指从遥感卫星影像数据中提取出与地理实体相关的特征信息。
常见的特征包括植被指数、土地利用类型、水体信息等。
通过采用不同的光谱拓谱和纹理特征的计算方法,可以提取出不同类型地物的特征信息。
特征提取是遥感卫星影像处理的重要环节,为后续的分类和分析提供了基础。
最后,遥感卫星影像处理的最终目标是分类分析。
分类分析是利用遥感卫星影像数据,对地球表面的特征进行分割、分类和识别。
遥感影像处理具体操作步骤遥感影像处理是利用遥感技术获取的遥感影像数据进行分析和处理的过程。
下面是遥感影像处理的具体操作步骤:1. 数据预处理:- 影像获取:通过卫星、航空器或者无人机等获取遥感影像数据。
- 影像校正:对获取的遥感影像进行几何校正和辐射校正,以消除影像中的几何畸变和辐射差异。
- 影像配准:将多个遥感影像进行配准,使其在同一坐标系下对齐,以便进行后续的分析。
- 影像切割:根据需要,将遥感影像切割成小块,方便后续处理。
2. 影像增强:- 直方图均衡化:通过调整影像的像素灰度分布,增强影像的对照度和细节。
- 滤波处理:利用滤波算法对影像进行平滑或者锐化处理,以去除噪声或者增强细节。
- 波段合成:将多个波段的影像合成为一幅彩色影像,以显示不同特征或者信息。
3. 影像分类:- 监督分类:根据已知样本进行训练,利用分类算法将遥感影像中的像素分为不同的类别。
- 无监督分类:根据像素的相似性进行聚类,将遥感影像中的像素分为不同的类别,不需要事先提供训练样本。
4. 特征提取:- 纹理特征:通过计算影像中像素的纹理统计量,提取纹理特征,用于地物分类和识别。
- 形状特征:通过计算影像中像素的形状参数,如面积、周长、圆度等,提取形状特征,用于地物分类和识别。
- 光谱特征:利用遥感影像中不同波段的反射率或者辐射值,提取光谱特征,用于地物分类和识别。
5. 地物提取:- 目标检测:利用目标检测算法,自动提取遥感影像中的目标物体,如建造物、道路等。
- 变化检测:通过比较不同时间的遥感影像,检测地物的变化情况,如城市扩张、土地利用变化等。
6. 结果评估:- 精度评估:通过对照遥感影像处理结果与实地调查数据或者高分辨率影像进行对照,评估处理结果的准确性和精度。
- 一致性检验:对处理结果进行一致性检验,确保处理结果的逻辑和合理性。
以上是遥感影像处理的具体操作步骤。
不同的任务和目标可能需要不同的处理方法和算法,具体操作步骤可能会有所不同。
如何进行遥感影像处理遥感影像处理是一门涉及图像处理和地理信息科学的重要学科,它通过获取和分析卫星、航空相机等传感器获取的遥感影像数据,为地理研究和资源利用提供了强大的支持。
本文将为读者介绍如何进行遥感影像处理的基本流程和一些常用的工具和方法。
一、数据获取遥感影像处理的第一步是获取遥感影像数据。
目前,遥感影像多采用卫星数据,如Landsat、MODIS等数据。
这些数据可通过美国地质调查局(USGS)等机构的网站进行下载。
此外,一些商业高分辨率卫星如SPOT、QuickBird和WorldView也提供了遥感影像数据的购买或租赁服务。
二、数据预处理在进行遥感影像处理之前,通常需要对数据进行预处理,以消除噪声、校正影像几何偏差等。
首先,可以使用图像拼接技术将多幅遥感影像拼接成一幅大图。
其次,可以进行大气校正,即校正由大气因素引起的亮度差异。
最后,还可以进行影像几何校正,使得影像的地理坐标能够与实际地理坐标一致。
三、影像分类影像分类是遥感影像处理的重要环节之一,它将遥感影像像素分为不同的类别,以便进行地物识别、土地覆盖分析等应用。
常见的影像分类方法包括:无监督分类、监督分类和混合分类。
无监督分类是基于像素的统计特征进行分类,例如聚类算法。
监督分类则需要先人工标记一些训练样本,然后使用分类器进行分类,例如支持向量机(SVM)和随机森林(Random Forest)等。
混合分类是将无监督分类和监督分类结合起来,以充分利用两种方法的优势。
四、影像变化检测遥感影像变化检测是通过对多个时间点的遥感影像进行比较和分析,以探测和分析地表的变化情况。
这对于城市扩张、自然灾害监测等应用具有重要意义。
常用的影像变化检测方法包括像素级变化检测和目标级变化检测。
像素级变化检测通过对像素亮度和颜色等特征的比较来判断变化情况。
目标级变化检测则通过对预先提取的目标进行比较,例如建筑物、道路等。
五、影像融合影像融合是将多个来源或多个波段的遥感影像进行融合,以获得更高分辨率或更多的信息。
卫星遥感数据处理和分析卫星遥感数据处理和分析是利用遥感卫星获取的数据进行信息提取和分析的过程。
遥感技术的发展为我们获取地球表面信息提供了高效便捷的手段,而卫星遥感数据处理和分析则是将这些海量的数据进行加工和解读,以便更好地理解和利用地球表面的特征和变化。
一、卫星遥感数据处理卫星遥感数据处理的目的是将原始的遥感数据转化为可视化和可分析的形式。
在数据处理的过程中,我们可以采用以下步骤:1. 数据获取与预处理在进行卫星遥感数据处理前,我们首先需要获取相应的遥感数据。
这可以通过向国家或国际遥感卫星数据中心购买已有数据,或者依靠自身的卫星接收设备采集数据。
获取到的数据需要进行预处理,包括数据格式转换、校正和去除无效数据等工作,以确保后续处理的准确性和可靠性。
2. 图像解译与分类卫星遥感数据通常以图像的形式呈现,而图像解译和分类是将图像中的不同特征进行划分和分类的过程。
通过采用遥感图像解译算法和人工解译方法,我们可以将图像中的陆地、水域、森林、城市等不同区域进行分类,以便更好地理解和分析地表的空间分布特征。
3. 遥感数据融合为了获得更全面和准确的地表信息,我们可以将来自不同传感器、不同波段的遥感数据进行融合。
这样可以提高数据的空间和光谱分辨率,更好地揭示地表特征和变化。
遥感数据融合通常包括像元级融合和特征级融合两种方法。
4. 数字高程模型(DEM)生成数字高程模型是一种反映地表海拔信息的数据模型,可以用于地形分析、洪水预警、城市规划等应用。
通过卫星遥感数据和地面控制点,我们可以生成数字高程模型,精确地反映地表的高程分布情况。
二、卫星遥感数据分析卫星遥感数据分析是基于处理后的遥感数据进行特征提取和变化监测的过程。
通过遥感数据分析,我们可以获取地表特征的空间分布和变化趋势,以支持环境监测、资源管理、灾害预警等应用。
1. 土地利用与覆盖变化卫星遥感数据可以提供土地利用与覆盖变化的信息,帮助我们了解土地的利用类型、面积和变化情况。
遥感卫星影像数据处理方法和步骤
北京揽宇方圆信息技术有限公司
一、遥感图像几何畸变来源
遥感图像的变形误差总的可分为内部误差和外部误差两类。
内部误差主要是由于传感器自身的性能、结构等因素造成;外部误差指的传感器以外的各因素所造成的,例如地球曲率、地形起伏、地球旋转等因素所引起的变形误差等
准备工作
1. 地形图的准备
原则上要求所用地形图的比例尺应大于遥感影像制图的比例尺。
对分辨率小于5m的影像制图,应采用1∶5万的地形图纠正;对于分辨率大于5m的影像制图,应采用1∶1万的地形图纠正
2.校正图像的准备
根据影像数据分析与预处理的结果,首先需确定是否为多景数据处理。
多景数据处理的原则为:时间相近的图像,可先镶嵌后再进行几何处理;获取时间差别较大的图像,应分别进行几何处理再镶嵌。
其次生成供选取控制点的图像。
可以对图像进行增强以改善目视效果,有利于地物点的确定。
也可以选择某一时相的TM彩色合成(743、543、741等)图像,作为供选取控制点的影像。
3纠正变换函数的建立
用以建立影像坐标和地面坐标(或地图)间的数学关系,即输入图像与输出图像间的坐标变换关系。
这种坐标变换关系,通常有两种互逆的表达式法
1.直接法方案从原始图像阵列出发,按行列的顺序依次对每个原始像素点位求其在地面坐标系(也是输出图像坐标系)中的正确位置:
X=Fx(x,y)
Y=Fy(x,y)
式中Fx、Fy为直接纠正变换函数。
按照原始图像的阵列,依次对每个象元(x,y)进行变换纠正,求得图像的位置(X,Y),同时把原图像(x,y)的灰度值送到新图像(X,Y)的位置上。
2.间接法方案从空白的输出图像阵列出发,亦按行列的顺序依次对每个输出象元点位反求其在原始图像坐标的位置。
x=Gx(X,Y)
y=Gy(X,Y)
式中Gx、Gy为间接纠正变换函数。
同时把上式所算得的原始图像点位上的亮度值取出填回到空白输出图像点阵中相应的象元点位上去.由于计算的(x,y)不一定刚好位于原始图像的某个象素中心上,必须经过灰度内插确定(x,y)的灰度值。
(三)、纠正后数字图像的边界范围经过纠正后的图像仍为数字图像,它与原始图像的形状和方向都不一致,所以纠正变换前,必须为计算机输出图像预留一定的存储空间和该空间边界的地图坐标定义值,即必须预先确定纠正后数字图像的边界范围。
其方法如下:
(四)、纠正后数字图像灰度值的重采样
以间接法纠正方案为例,假如输出图像阵列中的任意一个象元在原始图像中的投影点的坐标值为整数时,便可简单地将整数点位上原始图像上的灰度值直接取出,填入输出图像中。
但当投影点位的坐标不为整数时,则投影点的灰度值需根据周围阵列象元的灰度确定,这种方法就称为灰度值重采样。
所谓重采样,是相对于遥感信息获取时已进行过一次采样而言的
五)、多项式纠正法:
用多项式近似地描述纠正前后相应点的坐标关系,并(利用控制点的图像坐标和参考坐标系中的理论坐标,按最小二乘法原理求解出多项式中的系数,然后以此多项式对图像进行几何纠正
选择控制点时,应遵循以下原则:
①均匀分布:一般先在图像的四角和对角线交点处选择控制点,然后逐渐加密,保证均匀分布。
②特征明显:尽可能选在固定的地物交叉点上,无精确定位的标志情况下,利用半固定的地形地物交叉点(山顶、河流交叉处)。
③足够数量:控制点数量每景宜在25~35个左右,山区或丘陵区适当增加。
页)。