三角形中的最值问题
- 格式:doc
- 大小:2.27 MB
- 文档页数:9
高中数学。
三角形中的最值、范围问题。
练习题(含答案)解三角形问题是高考高频考点。
主要利用三角形的内角和定理、正弦定理、余弦定理、三角形面积公式等知识解题。
在解题过程中,需要灵活利用三角形的边角关系进行“边转角”“角转边”。
另外,要注意a+c。
ac。
a+c三者的关系。
高考中经常将三角变换与解三角形知识综合起来命题。
如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到。
而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式。
正弦定理的主要作用是方程和分式中的边角互化。
其原则为关于边,或是角的正弦值是否具备齐次的特征。
如果齐次则可直接进行边化角或是角化边,否则不可行。
例如:(1)sinA+sinB-sinAsinB=sinC。
可化为a+b-ab=c;(2)bcosC+ccosB=a 可化为sinBcosC+sinCcosB=sinA(恒等式);(3) bcsinBsinC/2=asinA/2.余弦定理为a²=b²+c²-2bccosA。
变式为a=(b+c)-2bc(1+cosA)。
此公式在已知a,A的情况下,配合均值不等式可得到b+c和bc的最值。
在三角形中,任意两边之和大于第三边。
在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可。
在求最值时使用较少。
另外,在三角形中,边角以及角的三角函数值存在等价关系。
例如a>b则A>B,则sinA>sinB,cosAB 则cosAB则sinA>sinB仅在一个三角形内有效。
解三角形中处理不等关系的几种方法包括:(1)转变为一个变量的函数;(2)利用均值不等式求得最值。
例如,已知四边形面积为S1、S2、S3、S4,则S1+S2+S3+S4的最大值为多少?答案】1) $\frac{b}{a}=\frac{\sqrt{3}+1}{2}$;2) $a+b+c$ 的最大值为 $2\sqrt{3}+\sqrt{6}$。
专题25 解三角形中的最值、范围问题近几年高考对解三角形问题考查,大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式.与平面几何相结合的问题,要注重几何图形的特点的利用.由于新教材将正弦定理、余弦定理列入平面向量的应用,与平面向量相结合的命题将会出现.另外,“结构不良问题”作为实验,给予考生充分的选择空间,充分考查学生对数学本质的理解,引导中学数学在数学概念与数学方法的教学中,重视培养数学核心素养,克服“机械刷题”现象.同时,也增大了解题的难度.【重点知识回眸】(一) 余弦定理变形应用:变式()()2221cos a b c bc A =+-+在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的最值(二)三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:sin sin cos cos a b A B A B A B >⇔>⇔>⇒<其中由cos cos A B A B >⇔<利用的是余弦函数单调性,而sin sin A B A B >⇔>仅在一个三角形内有效.(三)解三角形中处理不等关系的几种方法 1.三角形中的最值、范围问题的解题策略和步骤(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值) (2)利用均值不等式求得最值 (3)①定基本量:根据题意或几何图形厘清三角形中边、角的关系,利用正、余弦定理求出相关的边、角或边角关系,并选择相关的边、角作为基本量,确定基本量的范围.②构建函数:根据正、余弦定理或三角恒等变换将待求范围的变量用关于基本量的函数解析式表示.③求最值:利用基本不等式或函数的单调性等求最值. 2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解,已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.【典型考题解析】热点一 三角形角(函数值)相关的最值(范围)问题【典例1】(2021·山西·祁县中学高三阶段练习(理))在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若sin a c B =,则tan A 的最大值为( ) A .1 B .32C .43D .54【答案】C【分析】先由正弦定理化简得111tan tan C B+=,结合基本不等式求得tan tan 4B C ≥,再由正切和角公式求解即可.【详解】在ABC 中,sin a c B =,所以sin sin sin A C B =,又()sin sin A B C =+,整理得:sin cos cos sin sin sin B C B C B C +=,又sin sin 0B C ≠,得到111tan tan C B+=,因为角A 、B 、C 为锐角,故tan A 、tan B 、tan C 均为正数, 故112tan tan B C≥整理得tan tan 4B C ≥,当且仅当tan tan 2B C ==时等号成立,此时tan tan tan tan 1tan tan()11tan tan 1tan tan 1tan tan B C B CA B C B C B C B C+⋅=-+=-=-=---⋅,当tan tan B C 取最小值时,1tan tan B C 取最大值,11tan tan B C-取最小值,故111tan tan B C-⋅的最大值为43,即当tan tan 2B C ==时,tan A 的最大值为43.故选:C .【典例2】(2021·河南·高三开学考试(文))ABC 的内角,,A B C 的对边分别为,,a b c ,若sin tan sin sin A A B C =,则cos A 的最小值为________. 【答案】23【分析】先根据题目条件和正弦定理得到2cos a A bc=,结合cos A 的余弦定理表达式,得到,,a b c 的关系,利用此关系求cos A 的最小值.【详解】由条件可知,2sin cos sin sin A A B C=,由正弦定理得2cos a A bc =,由余弦定理得,2222cos 2b c a a A bc bc +-==,化简可得2223a b c =+.所以222222223cos 2333b c b c b c bc A bc bc bc ++-+==≥=,当且仅当b c =时取得等号,cos A 取得最小值23. 故答案为:23【典例3】(2020·浙江·高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 30b A a =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围. 【答案】(I )3B π=;(II )3132⎤+⎥⎝⎦ 【解析】 【分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B 的大小;(II )方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A 的三角函数式,然后由三角形为锐角三角形确定角A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围. 【详解】 (I )[方法一]:余弦定理由2sin 3b A a =,得222233sin 4a a A b ==⎝⎭,即22231cos 4a A b -=.结合余弦定222cos 2b c a A bc +-=,∴2222223124b c a a bc b ⎛⎫+--= ⎪⎝⎭,即224442222222242223b c b c a b c b a c a a c ----++=, 即444222222220a b c a c a b b c +++--=, 即44422222222222a b c a c a b b c a c +++--=,即()()22222a c b ac +-=,∵ABC 为锐角三角形,∴2220a c b +->, ∴222a c b ac +-=,所以2221cos 22a c b B ac +-==,又B 为ABC 的一个内角,故3B π=.[方法二]【最优解】:正弦定理边化角由2sin 3b A a =,结合正弦定理可得:32sin sin 3,sin B A A B =∴=ABC 为锐角三角形,故3B π=.(II )[方法一]:余弦定理基本不等式 因为3B π=,并利用余弦定理整理得222b a c ac =+-,即223()ac a c b =+-.结合22a c ac +⎛⎫≤ ⎪⎝⎭,得2a c b +≤. 由临界状态(不妨取2A π=)可知3a cb+= 而ABC 为锐角三角形,所以3a cb+> 由余弦定理得2222221cos cos cos 222b c a a b c A B C bc ab+-+-++=++, 222b a c ac =+-,代入化简得1cos cos cos 12a c A B C b +⎛⎫++=+⎪⎝⎭ 故cos cos cos A B C ++的取值范围是3132⎤+⎥⎝⎦.[方法二]【最优解】:恒等变换三角函数性质 结合(1)的结论有: 12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭131cos cos 22A A A =-+311cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则3sin 6A π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,1313sin 622A π⎤+⎛⎫++∈⎥ ⎪⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是3132⎤+⎥⎝⎦.【整体点评】(I )的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得222a c b ac +-=,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II )的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解. 【总结提升】求角(函数值)的最值(范围)问题一般先将边转化为角表示,再根据三角恒等变换及三角形内角和定理转化为一个角的一个三角函数表示,然后求解. 热点二 三角形边(周长)相关的最值(范围)【典例4】(2018·北京·高考真题(文))若ABC 2223)a c b +-,且∠C 为钝角,则∠B =_________;ca的取值范围是_________. 【答案】 60 (2,)+∞ 【解析】 【分析】根据题干结合三角形面积公式及余弦定理可得tan 3B =3B π∠=;再利用()sin sin C A B =+,将问题转化为求函数()f A 的取值范围问题. 【详解】)22231sin 2ABC S a c b ac B ∆=+-=, 22223a c b ac +-∴=cos 3B =sin 3,cos 3B B B π∴∠=,则231sin cos sin sin 311322sin sin sin tan 2A A Ac C a A A A A π⎛⎫⎛⎫---⋅ ⎪ ⎪⎝⎭⎝⎭====+, C ∴∠为钝角,,036B A ππ∠=∴<∠<,)31tan ,3,tan A A ⎛∴∈∈+∞ ⎝⎭,故()2,ca∈+∞.故答案为3π,()2,+∞. 【典例5】(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________. 31##3-【解析】 【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++, 在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-++-===-+++++++ ()44233211m m ≥=-+⋅+, 当且仅当311m m +=+即31m =时,等号成立, 所以当ACAB取最小值时,31m =. 31.【典例6】(2018·江苏·高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【答案】9 【解析】 【详解】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1ac a c a c =++=,因此11444(4)()5529,c a c a a c a c a c a c a c+=++=++≥+⋅当且仅当23c a ==时取等号,则4a c +的最小值为9.【典例7】(2020·全国·高考真题(理))ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C . (1)求A ;(2)若BC =3,求ABC 周长的最大值. 【答案】(1)23π;(2)33+ 【解析】 【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果. 【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=. (2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:3AC AB +≤AC AB =时取等号),ABC ∴周长323L AC AB BC =++≤+ABC ∴周长的最大值为33+[方法二]:正弦化角(通性通法) 设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知23sin sin sin a b cA B C===23(sin sin )b c B C +=+23sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦233α=≤当且仅当0α=,即6B C π==时,等号成立.此时ABC 周长的最大值为33+ [方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c .令13sin ,20,223b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin 3b c θθ+==23236πθ⎛⎫+≤ ⎪⎝⎭6C π=时,max ()23b c +=所以ABC 周长的最大值为323+ 【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值. 方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题.【典例8】(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c+的最小值. 【答案】(1)π6;(2)425. 【解析】 【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B=++化成()cos sin A B B +=,再结合π02B <<,即可求出; (2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c +化成2224cos 5cos B B +-,然后利用基本不等式即可解出. (1) 因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B B A B B B ===++,即()1sin cos cos sin sin cos cos 2B A B A B A BC =-=+=-=, 而π02B <<,所以π6B =;(2)由(1)知,sin cos 0B C =->,所以πππ,022C B <<<<, 而πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭,所以π2C B =+,即有π22A B =-. 所以222222222sin sin cos 21cos sin cos a b A B B Bc C B+++-==()2222222cos11cos 24cos 5285425cos cos B BB BB-+-==+-≥=. 当且仅当22cos B =222a b c +的最小值为425.【规律方法】求边(周长)的最值(范围)问题一般通过三角中的正、余弦定理将边转化为角的三角函数值,再结合角的范围求解,有时也可将角转化为边,利用均值不等式或函数最值求解. 热点三 求三角形面积的最值(范围)【典例9】(2023·山西大同·高三阶段练习)在ABC 中,角,,A B C 的对边分别为,,a b c ,且2cos 2b A a c =+,且2b =,则ABC 面积的最大值为___________. 3133【分析】利用余弦定理进行角化边后,结合基本不等式,三角形面积公式求解.【详解】由余弦定理,2cos 2b A a c =+可化为222222b c a b a c bc +-⋅=+,整理可得2224c a ac b ++==,由余弦定理2221cos 22a cb B ac +-==-,又(0,)B π∈,故23B π=,根据基本不等式22423a c ac ac ac ac =++≥+=,23a c ==取得等号,故133sin 243ABC S ac B ac ==≤,即ABC 面积的最大值为33. 故答案为:33. 【典例10】(2022·全国·高三专题练习)已知A ,B ,C 分别是椭圆22143x y +=上的三个动点,则ABC 面积最大值为_____________. 【答案】92##4.5【分析】作变换'2'3x x y y =⎧⎪⎨=⎪⎩之后椭圆变为圆,方程为224x y '+'=,A B C '''是圆的内接三角形,圆的内接三角形面积最大时为等边三角形,则ABC A B C S bS a'''=,求出A B C S ''',代入即可得出答案. 【详解】作变换'2''3x x y y y =⎧⎪⎨==⎪⎩之后椭圆变为圆,方程为224x y '+'=, A B C '''是圆的内接三角形,设A B C '''的半径为R ,设,,A B C '''所对应边长为,,a b c ''',所以 211sin 2sin 2sin sin 2sin sin sin 22A B C Sa b C R A R B C R A B C ''''''''''==⋅⋅⋅=⋅⋅'' 32sin sin sin 23A B C R ++⎛⎫≤ ⎝''⎪⎭',当且仅当3A B C π===时取等, 因为sin y x =在()0,π上为凸函数,则sin sin sin sin 33A B C A B C ''''+'+≤'++,3332222sin sin sin 3322sin 2sin 3334A B C A B C A B C SR R R R π'''++++⎛⎫'⎛⎫⎛⎫=≤==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭''''',当且仅当3A B C π===时取等, 所以圆的内接三角形面积最大时为等边三角形,因此2333343344A B C S R '''==⨯=,又因为ABC A B C S b S a '''=, ∴393322ABC A B C b SS a'''==⨯=. 故答案为:92.【典例11】(2019·全国·高考真题(理))ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【答案】(1) 3B π=;(2)33(). 【解析】 【分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABCSac B =⋅,又根据正弦定理和1c =得到ABCS 关于C 的函数,由于ABC 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABCS C 的值域.【详解】 (1)根据题意sin sin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sinsin 2A CB +=. 0<B π<,02AC π+<<因为故2A C B +=或者2A C B π++=,而根据题意A B C π++=,故2A CB π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)因为ABC 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=, 故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =, 由三角形面积公式有:222sin()111sin 33sin sin sin 222sin sin ABCC a A Sac B c B c B c C Cπ-=⋅=⋅=⋅22sincos cos sin 3321231333(sin cos )sin 3tan 38tan C CC C C ππππ--= 又因3,tan 62C C ππ<<>331338tan C << 33ABCS <<. 故ABCS的取值范围是33(【典例12】(2021·河北省曲阳县第一高级中学高三阶段练习)在ABC 中,内角,,A B C 的对边分别是,,a b c ,)sin 3cos b C a b C =-.(1)求角B 的大小;(2)若点D 满足=a AD cDC ,且||23BD =ABC 面积的最小值. 【答案】(1)π3B = (2)43【分析】(1)由正弦定理把边化为角,再结合三角恒等变换即可求解;(2)由题意得||||=a DC c AD ,进而利用三角面积可转化1sin ||21||sin 2⋅⋅⋅∠===⋅⋅⋅∠△△BCD ABD BC BD DBC DC S BC S AB AD AB BD ABD ,从而有sin sin ∠=∠DBC ABD ,再由面积公式与基本不等式求解即可(1)因为()sin 3cos b C a b C =-,所以()sin sin 3sin sin cos B C A B C =-. 因为sin sin()sin cos cos sin A B C B C B C =+=+,所以sin sin 3(sin cos cos sin sin cos )3cos sin =+-=B C B C B C B C B C . 因为sin 0C ≠, 所以tan 3B =. 又因为0πB <<, 所以π3B =.(2)因为=a AD cDC , 所以点D 在线段AC 上,且||||=a DC c AD . 因为1sin ||21||sin 2⋅⋅⋅∠===⋅⋅⋅∠△△BCDABDBC BD DBC DC S BC S AB AD AB BD ABD , 所以sin sin ∠=∠DBC ABD , 即BD 为ABC ∠的角平分线. 由(1)得π3B =, 所以π6ABD CBD ∠=∠=. 由ABC ABD BCD S S S =+△△△,得1π1π1πsin sin sin 232626ac a BD c BD =⋅+⋅,即2()4=+≥ac a c ac ,得16≥ac ,当且仅当a c =时,等号成立,11sin 16sin 432323=≥⨯=△ABC S ac ππ.故ABC 面积的最小值为43. 【规律方法】求三角形面积的最值(范围)的两种思路(1)将三角形面积表示为边或角的函数,再根据条件求范围.(2)若已知三角形的一个内角(不妨设为A),及其对边,则可根据余弦定理,利用基本不等式求bc 的最值从而求出三角形面积的最值.【精选精练】一、单选题1.(2022·上海市松江一中高三阶段练习)在ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边,B 是A 、C 的等差中项,则a c +与2b 的大小关系是( )A .2a c b +>B .2a c b +<C .2a c b +≥D .2a c b +≤【答案】D【分析】根据等差中项的性质及内角和的性质求出B ,再由余弦定理及基本不等式计算可得.【详解】解:依题意,在ABC 中B 是A 、C 的等差中项,所以2A+C =B , 又A C B π++=,所以3B π=,由余弦定理2222cos b a c ac B =+-()22222233a c ac a c ac ac a c ac =+-=++-=+-,又22a c ac +⎛⎫≤ ⎪⎝⎭,当且仅当a c =时取等号,所以2332a c ac +⎛⎫-≥- ⎪⎝⎭,所以()()()222213324a c a c ac a c a c +⎛⎫+-≥+-=+ ⎪⎝⎭,即()2214b ac ≥+,即()224b a c ≥+,所以2a c b +≤; 故选:D2.(2022·贵州贵阳·高三开学考试(理))已知ABC 的内角,,A B C 对应的边分别是,,a b c , 内角A 的角平分线交边BC 于D 点, 且 4=AD .若(2)cos cos 0b c A a C ++=, 则ABC 面积的最小值是( ) A .16 B .3C .64 D .643【答案】B【分析】利用正弦定理及诱导公式可得23A π=,然后利用三角形面积公式及基本不等式即得. 【详解】∵(2)cos cos 0b c A a C ++=, ∴2sin cos sin cos sin cos 0B A C A A C ++=, 即()2sin cos sin 2sin cos sin 0B A C A B A B ++=+=, 又()0,B π∈,sin 0B >,∴2cos 10A +=,即1cos 2A =-,又()0,A π∈,∴23A π=, 由题可知ABCABDACDS SS=+,4=AD ,所以1211sin4sin 4sin 232323bc c b πππ=⨯+⨯,即()4bc b c =+, 又()48bc b c bc =+≥,即64bc ≥, 当且仅当b c =取等号,所以1213sin 641632322ABCSbc π=≥⨯⨯=. 故选:B.3.(2022·河南·郑州四中高三阶段练习(理))在等腰ABC 中,AB =AC ,若AC 边上的中线BD 的长为3,则ABC 的面积的最大值是( ) A .6 B .12C .18D .24【答案】A【分析】利用余弦定理得到边长的关系式,然后结合勾股定理和基本不等式即可求得ABC 面积的最大值. 【详解】设2AB AC m ==,2BC n =,由于ADB CDB π∠=-∠,在ABD △和BCD △中应用余弦定理可得:2222949466m m m n m m+-+-=-,整理可得:2292m n =-,结合勾股定理可得ABC 的面积:22222111()2434222S BC AC BC n m n n n =⨯-=⨯⨯-=- 222243(43)62n n n n +-=-≤⨯=,当且仅当22n =时等号成立. 则ABC 面积的最大值为6. 故选:A.4.(2023·全国·高三专题练习)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒ ,∠ABC 的平分线交AC 于点D ,且BD =1,则4a c + 的最小值为( ) A .8 B .9 C .10 D .7【答案】B【分析】根据三角形面积可得到111a c +=,将4a c +变为11(4)()a c a c++,展开后利用基本不等式,即可求得答案.【详解】由题意得111sin120sin 60sin60222ac a c =+ ,即ac a c =+ ,得111a c+=,得 114(4)()a c a c a c +=++45c a a c =++≥425459c aa c⋅+=+=, 当且仅当4c aa c=,即23c a ==时,取等号, 故选:B . 二、多选题5.(2020·全国·高三专题练习)如图,ABC 的内角,,A B C 所对的边分别为),,3cos cos 2sin a b c a C c A b B +=,且3CAB π∠=.若D 是ABC 外一点,1,3DC AD ==,则下列说法中正确的是( )A .ABC 的内角3B π= B .ABC 的内角3C π=C .四边形ABCD 533 D .四边形ABCD 面积无最大值 【答案】AB【分析】根据正弦定理进行边化角求角B ,从而判断选项A ,B 正确;把四边形ABCD 的面积表示成ADC ∠的三角函数,从而根据三角函数求最值 【详解】因为()3cos cos 2sin a C c A b B +=,所以由正弦定理,得()23sin cos sin cos 2sin A C C A B +=,所以()23sin 2sin A C B +=,又因为A B C π++=,所以()sin sin A C B +=,所以23sin 2sin B B = 因为sin 0,B ≠所以3sin 2B =, 又因为3CAB π∠=,所以20,3B π⎛⎫∈ ⎪⎝⎭, 所以3B π=,所以3C A B ππ=--=,因此A ,B 正确;四边形ABCD 面积等于231sin 42ABC ACDS SAC AD DC ADC +=+⋅⋅∠()22312cos sin 42AD DC AD DC ADC AD DC ADC =⨯+-⋅⋅∠+⋅⋅∠ ()31916cos 3sin 42ADC ADC =⨯+-⋅∠+⨯∠ 533sin 23ADC π⎛⎫=+∠- ⎪⎝⎭, 所以当32ADC ππ∠-=即sin 13ADC π⎛⎫∠-= ⎪⎝⎭时,ABCACDSS+取最大值5332+, 所以四边形ABCD 面积的最大值为5332+, 因此C ,D 错误 故选:AB6.(2022·云南·高三阶段练习)如图,在长方体1111ABCD A B C D -中,4AB AD ==,13AA =,点M 满足12A M MA =,点P 在底面ABCD 的边界及其内部运动,且满足4AMP π∠≤,则下列结论正确的是( )A .点P 所在区域面积为4πB .线段1PC 17C .有且仅有一个点P 使得1MP PC ⊥D .四面体11P A CD -的体积取值范围为[6,8]【答案】AD【分析】A 选项,由1MA AP ==时,MP 与底面ABCD 的所成角4πθ=求解判断; B 选项,若PC 取最小值时,则线段1PC 长度最小,由A ,P ,C 三点共线求解判断; C 选项,由点P 与点F 重合,由点P 与点E 重合,利用余弦定理求解判断;,D 选项,由点P 位于AE 上时,此时点P 到平面11A CD 的距离最大,当P与点F 重合时,此时点P 到平面11A CD 的距离最小求解判断. 【详解】如图所示:A 选项,当1MA AP ==时,MP 与底面ABCD 的所成角4πθ=,故点P 所在区域为以A 为圆心,1为半径的圆在正方形ABCD 内部部分(包含边界弧长),即圆的14,面积为211144π⨯=π,A 正确;B 选项,当PC 取最小值时,线段1PC 长度最小,由三角形两边之和大于第三边可知:当A ,P ,C 三点共线时,PC 取得最小值,即min ||421PC =-,则221min (421)34282PC =-+=-,B 错误; C 选项,不妨点P 与点F 重合,此时2221134PC FB BC C C =++=,由余弦定理得:1cos MFC ∠=22211123436022234MF C F C M MF C F +-+-==⋅⨯⨯,则12MFC π∠=,同理可得:12MEC π∠=,故多于一个点P 使得1MP PC ⊥,C 错误;D 选项,当点P 位于AE 上时,此时点P 到平面11A CD 的距离最大,最大距离341255AH ⨯==,此时四面体11P A CD -的体积为11111124583325A CD S AH ⋅=⨯⨯⨯⨯=△,当P 与点F 重合时,此时点P 到平面11A CD 的距离最小,最小距离为FK ,因为BFK BAH ∽△△,所以34FK AH =,所以最小体积为3864⨯=,故四面体11P A CD -的体积取值范围为[]6,8 ,D 正确, 故选:AD . 三、填空题7.(2022·贵州遵义·高三开学考试(文))在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin sin 2B Cb a B +=,2a =△ABC 周长的最大值为________.【答案】32【分析】根据正弦定理,结合三角恒等变换可得3A π=,再根据余弦定理与基本不等式求解周长最大值即可.【详解】由正弦定理,sin sin 2B C b a B +=即sin sin sin sin 22A B A B π⎛⎫-= ⎪⎝⎭,又sin 0B ≠,故sin sin 22A A π⎛⎫-= ⎪⎝⎭,即cossin 2AA =. 由二倍角公式有cos2sin cos 222A A A =,因为0,22A π⎛⎫∈ ⎪⎝⎭,故cos 02A ≠,所以1sin 22A =,所以26A π=,即3A π=.由余弦定理22222cos 3b c bc π=+-,结合基本不等式有()()2222332b c b c bc b c +⎛⎫=+-≥+-⨯ ⎪⎝⎭,即()2124b c +≤,()28b c +≤,故22b c +≤,当且仅当2b c ==时取等号. 故△ABC 周长的最大值为a b c ++的最大值为22232+=. 故答案为:328.(2021·江西南昌·高三阶段练习)已知ABC 的内角,,A B C 所对应的边分别为,,a b c ,且满足2224,4c c a b ==+, 则ABC 的面积取得最大值时,cos C =______.【答案】33434-【分析】根据余弦定理结合同角三角函数的关系可得sin C ,进而表达出ABCS ,结合基本不等式求解ABCS的最值,进而求得cos C 即可.【详解】由余弦定理,()222222243cos 222a b a b a b c b C ab ab a+-++-===-,又()0,C π∈,故2222349sin 1cos 122b a b C C a a -⎛⎫=-=--=⎪⎝⎭,故 2222114949sin 2224ABCa b b a b Sab C ab a --===. 又222416a b c +==,故()2222416496425564254420ABCb b b b b b b S----===222564258405b b +-≤=,当且仅当22256425b b =-,即425b =时取等号. 此时2322721642525a =-⨯=,即4175a =. 故ABC 的面积取得最大值时,42333345cos 23441725b C a ⨯=-=-=-⨯. 故答案为:33434-【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方9.(2021·河南·高三开学考试(理))ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若sin tan sin sin A A B C =,则sin A 的最大值为________,此时cos B =________. 【答案】5366【分析】由已知条件结合正余弦定理可得2223b c a +=,再利用余弦定理结合基本不等式可求出cos A 的最小值,从而可求出sin A 的最大值,则可求出cos2B ,再利用二倍角公式可求出cos B . 【详解】由条件可知,2sin cos sin sin AA B C=,由正弦定理得2cos a A bc =,由余弦定理得,2222cos 2b c a a A bc bc+-==,则2223a b c =+. 所以222222223cos 2333b c b c b c bc A bc bc bc ++-+==≥=, 当且仅当b c =时取得等号,cos A 取得最小值23. 因为()0,A π∈, 所以25sin 1cos 3A A =-≤,当且仅当b c =时取得等号, 故sin A 的最大值为53. 此时B C =,所以2cos2cos()cos 3B A A π=-=-=-,所以222cos 13B -=-,因为角B 为锐角, 所以6cos 6B =. 故答案为:53,66 10.(2022·全国·高三专题练习)ABC 的外接圆半径为1,角A B C ,,的对边分别为a b c ,,,若cos cos 3a B b A +=0CA CB ⋅<,则C ∠=________;32a b +的最大值为_________【答案】23π27 【分析】由余弦定理求得c ,由向量数量积可得C 为锐角,再由正弦定理结合外接圆半径可求得C ,用正弦定理把32a b +表示为A 的三角函数,利用两角和与差的正弦公式变形化函数为一个角的一个三角函数形式,然后利用正弦函数性质得最大值.【详解】222222cos cos 322a c b c b a a B b A a b c ac cb+-+-+=⋅+⋅==,又22sin c R C ==,所以3sin 2C =, 0CA CB ⋅<,所以C 是钝角,所以23C π=, 由2sin sin a bA B==得2sin a A =,2sin b B =, 326sin 4sin 6sin 4sin()3a b A B A A π+=+=+-316sin 4(cos sin )4sin 23cos 22A A A A A =+-=+2327(sin cos )77A A =+, 设2cos 7ϕ=,3sin 7ϕ=(ϕ为锐角),则3227sin()a b A ϕ+=+,由23C π=得03A π<<,31sin 27ϕ=>,ϕ为锐角,则62ππϕ<<, 所以2A πϕ=-时,32a b +取得最大值27.故答案为:23π;27. 四、解答题11.(2022·湖北·襄阳五中高三阶段练习)在ABC 中,4tan ,3CAB D ∠=为BC 上一点,32=AD(1)若D 为BC 的中点,32BC =ABC 的面积;(2)若45DAB ∠=︒,求ABC 的面积的最小值. 【答案】(1)9 (2)92【分析】(1)根据中线向量公式可得,b c 关系,结合余弦定理可求452bc =,从而可求面积. (2)根据不同三角形的面积关系可得34355b c bc +=,利用基本不等式可求bc 的最小值,从而可求面积的最小值. (1)因为D 为BC 的中点,所以()12AD AB AC =+, ()222124AD AB AC AB AC ∴=++⋅. 记角,,A B C 的对边分别为,,a b c , 因为4tan 3A =,故A 为锐角,所以43sin ,cos 55CAB CAB ∠∠==, 则221318245c b bc ⎛⎫=++⋅ ⎪⎝⎭. 又由余弦定理得:2231825c b bc =+-⋅两式联立解得:452bc =,所以11454sin 92225ABCS bc CAB ∠==⨯⨯=. (2)445,tan 3DAB A ∠==,()41113tan tan ,sin 475213CAD CAB DAB CAD ∠∠∠∠-∴=-===+, 1132sin 32sin 22ABCCAD BADSSSb CADc DAB ∠∠=+=⋅+⋅ 1sin 2bc CAB ∠=, 即34355b c bc +=, 即34345323,5554b c bc b c bc +=≥⋅≥(当且仅当153,22b c ==时取得最小值)所以114549sin 22452ABCSbc CAB ∠=≥⨯⨯=.12.(2022·广东广州·高三开学考试)在ABC 中,设角A ,B ,C 所对的边分别为a ,b ,c ,且满足()2a b b c +=.(1)求证:2C B =; (2)求4cos a bb B+的最小值. 【答案】(1)证明见解析 (2)43【分析】(1)由已知及余弦定理可推出2cos b a b C =-,利用正弦定理边化角结合两角和差的正弦公式化简可得()sin sin B C B =-,即可证明结论; (2)利用(1)的结论将4cos a b b B +边化角,结合三角恒等变换可得43=4cos cos cos a b B b B B++,由基本不等式可求得答案. (1)证明:在ABC 中,由已知及余弦定理,得()2222cos a b b c a b ab C +==+-,即2cos b a b C =-,由正弦定理,得sin sin 2sin cos B A B C =-,又()πA B C =-+, 故()sin sin 2sin cos sin cos cos sin 2sin cos B B C B C B C B C B C =+-=+-cos sin sin cos B C B C =-()sin C B =-.∵()0sin sin B C B <=-,∴0πC B C <-<<, ∵()πB C B C +-=<,∴B C B =-,故2C B =. (2)由(1)2C B =得()30,πB C B +=∈,∴π0,3B ⎛⎫∈ ⎪⎝⎭,1cos ,12B ⎛⎫∈ ⎪⎝⎭,由(1)()12cos a b C =+,2C B =得()2522cos 1452cos 52cos 2cos cos cos cos B a b C B b B B B B+-+++===334cos 24cos 43cos cos B B B B =+≥⋅=, 当且仅当ππ0,63B ⎛⎫=∈ ⎪⎝⎭时等号成立, 所以当π6B =时,4cos a bb B+的最小值为43.13.(2022·广东·高三开学考试)已知锐角ABC 中,角A 、B 、C 所对边为a 、b 、c ,tan tan 33B C ++=(1)求角A ;(2)若4a =,求b c +的取值范围. 【答案】(1)π3A = (2)(43,8⎤⎦【分析】(1)利用两角和的正切公式及诱导公式计算可得;(2)利用正弦定理将边化角,再转化为关于B 的三角函数,根据B 的取值范围及正弦函数的性质计算可得. (1)解:因为tan tan 33tan tan B C B C++=,所以tan tan 33tan tan B C B C ++=,所以tan tan 3(tan tan 1)B C B C +=-,从而tan tan 31tan tan B CB C +=--, 即tan()3B C +=-,所以tan 3A =,因为(0,π)A ∈,所以π3A =. (2)解:因为4a =,π3A =,由正弦定理,有83sin sin sin 3b c a B C A ===所以83sin 3b B =,83832π833143sin sin cos sin 4cos sin 3333223c C B B B B B ⎛⎫⎛⎫==-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以π43sin 4cos 8sin 6b c B B B ⎛⎫+=+=+ ⎪⎝⎭,又因为ABC 为锐角三角形,所以π022ππ032B B ⎧<<⎪⎪⎨⎪<-<⎪⎩,即ππ62B <<,所以ππ2π363B <+<,所以3πsin 126B ⎛⎫<+≤ ⎪⎝⎭,从而b c +的取值范围为(43,8⎤⎦. 14.(2022·河南·高三开学考试(文))已知,,a b c 分别为ABC 的内角,,A B C 所对的边,且()()sin sin sin sin a c b A C B c B +--+=(1)求角A 的大小;(2)若23a =ABC 面积的最大值.【答案】(1)3π; (2)33.【分析】(1)由正弦定理化角为边,再利用余弦定理及特殊角的三角函数即得;(2)由余弦定理表示出,a b 关系,再由基本不等式得出ab 的最大值,从而可得面积最大值;或利用正弦定理边角互化,然后利用三角恒等变换及三角函数的性质即得. (1)在ABC 中,由题意及正弦定理得()()a c b a c b bc +--+=, 整理得222b c a bc +-=,由余弦定理得2221cos 222b c a bc A bc bc +-===, 因为0A π<<, 所以3A π=;(2)方法一:由(1)知,3A π=,又23a =,所以22122b c bc bc bc bc =+--=,所以12bc ,当且仅当23b c ==时,等号成立, 所以()max 113sin 1233222ABC Sbc A ==⨯⨯=; 方法二:由(1)知,3A π=,又23a =,所以由正弦定理,知234sin sin sin sin3a b c A B C π====, 所以4sin ,4sin b B c C ==, 所以13sin 8sin sin 43sin sin 22ABCSbc A B C B C ==⨯=, 又因为23B C π+=, 所以23143sin sin 43sin sin 43sin cos sin 322B C B B B B B π⎛⎫⎛⎫=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭31cos223sin222B B ⎛⎫-=+= ⎪ ⎪⎝⎭23sin 236B π⎛⎫-+ ⎪⎝⎭,因为23B C π+=,所以270,23666B B ππππ<<-<-<,所以当262B ππ-=,即3B π=时,ABC 的面积取得最大值,最大值为33.15.(2022·上海·模拟预测)在如图所示的五边形中,620AD BC AB ===,,O 为AB 中点,曲线CMD 上任一点到O 距离相等,角120DAB ABC ∠=∠=︒,P ,Q 关于OM 对称;(1)若点P 与点C 重合,求POB ∠的大小; (2)求五边形MQABP 面积S 的最大值, 【答案】(1)33arcsin 14(2)2874【分析】(1)利用余弦定理求出OC ,再利用正弦定理即可得出答案; (2)根据题意可得,QOMPOMAOQBOPS SSS==,则()2AOQQOMMQABP S SS=+五边形,设QOM POM α∠=∠=,则2AOQ BOP πα∠=∠=-,根据三角形的面积公式结合三角函数的性质即可得出答案.(1)解:若点P 与点C 重合,连接OC ,10,6,120OB BC BP ABC ===∠=︒,在OBP 中,2222cos 1003660196OC OB BP OB BP OBP =+-⋅∠=++=, 所以14OC =, 因为sin sin BC OCPOB OBP=∠∠,所以36sin 332sin 1414BC OBPPOB OC ⨯⋅∠∠===, 所以33arcsin14POB ∠=;(2)解:连接,,,QA PB OQ OP ,因为曲线CMD 上任一点到O 距离相等, 所以14OP OQ OM OC ====, 因为P ,Q 关于OM 对称, 所以,QOMPOMAOQBOPSSSS==,设QOM POM α∠=∠=,则2AOQ BOP πα∠=∠=-,则()2AOQQOMMQABP S SS=+五边形112sin sin 222OQ OA OQ OM παα⎡⎤⎛⎫=⋅⋅-+⋅ ⎪⎢⎥⎝⎭⎣⎦196sin 140cos αα=+()2874sin αϕ=+,其中5tan 7ϕ=, 当()sin 1αϕ+=时,MQABP S 五边形取得最大值2874, 所以五边形MQABP 面积S 的最大值为2874.16.(2022·广东·广州市真光中学高三开学考试)在平面四边形ABCD 中,30CBD ∠=,4BC =,23BD = (1)若ABD △为等边三角形,求ACD △的面积. (2)若60BAD ∠=,求AC 的最大值. 【答案】(1)3 (2)232+【分析】(1)利用余弦定理求出CD 的长,结合勾股定理可知90BDC ∠=,进而可求得ADC ∠的大小,利用三角形的面积公式可求得ACD △的面积;(2)设()0120ADB αα∠=<<,利用正弦定理可得出AD ,利用余弦定理可得出2AC 关于α的表达式,利用三角恒等变换结合正弦型函数的基本性质可求得AC 的最大值. (1)解:在BCD △中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅⋅∠. 即231612242342CD =+-⨯⨯⨯=,所以2CD =, 所以222BD CD BC +=,因此90BDC ∠=,因为ABD △为等边三角形,所以60ADB ∠=,23AD BD ==,所以150ADC ∠=.所以111sin 2323222ACD S AD CD ADC =⋅⋅⋅∠=⨯⨯⨯=△.(2)解:设()0120ADB αα∠=<<,则120ABD α∠=-, 在ABD △中,由正弦定理得sin sin AD BDABD BAD=∠∠,即()23sin60sin 120AD α=-,所以()4sin 120AD α=-. 在ACD △中,由余弦定理,得2222cos AC AD CD AD CD ADC =+-⋅⋅∠, ()()()224sin 120424sin 1202cos 90AC ααα⎡⎤=-+-⨯-⨯⨯+⎣⎦ 231314cos sin 16cos sin sin 483sin2162222αααααα⎡⎤⎛⎫⎛⎫=++++=+⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 0120α<<,则02240α<<,故当290α=时,即当45α=时,2AC 取到最大值8316+,即AC 的最大值为232+.17.(2023·河北·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4b =,在 ①()(sin sin )(sin sin )b c B C A C a +-=-,②cos2()3cos 1A C B ++= 两个条件中任选一个完成以下问题: (1)求B ;(2)若D 在AC 上,且BD AC ⊥,求BD 的最大值. 【答案】(1)π3B = (2)23【分析】(1)选①,利用正弦定理得到222a c b ac +-=,再利用余弦定理求出π3B =;选②:利用诱导公式和二倍角公式得到1cos 2B =,从而求出π3B =;(2)法一:利用余弦定理得到2216a c ac =+-,利用基本不等式求出16ac ≤,求出面积的最大值,从而求出BD 的最大值;法二:利用正弦定理ABC 外接圆的直径,进而利用正弦定理表示面积,利用三角函数的有界性求出面积最大值,进而求出BD 的最大值. (1)若选①,由正弦定理得,()()()b c b c a c a +-=- 即222b c a ac -=-,即222a c b ac +-= ∴2221cos 222a cb ac B ac ac +-===, ∵(0,π)B ∈,∴π3B =, 若选②,∵cos 2()3cos cos 2(π)3cos cos 23cos 1A C B B B B B ++=-+=+=, ∴22cos 13cos 1B B -+=,即22cos 3cos 20B B +-=, 即cos 2B =-(舍)或1cos 2B =, ∵(0,π)B ∈,∴π3B =, (2)∵BD AC ⊥,BD 为AC 边上的高,当面积最大时,高取得最大值 法一:由余弦定理得,22222162cos b a c ac B a c ac ==+-=+-, 由重要不等式得162ac ac ac ≥-=, 当且仅当a c =时取等, 所以1sin 432ABC S ac B =≤△ 所以AC 边上的高的最大值为432312b = 法二:由正弦定理得ABC 外接圆的直径为832sin 3b R B ==, 利用正弦定理表示面积得:118383sin sin sin sin 2233ABC S ac B A C B ==⋅△ 1838332π1632πsin sin sin sin 2332333A A A A ⎛⎫⎛⎫=⋅⋅⋅-=- ⎪ ⎪⎝⎭⎝⎭。
三角形最值问题对同学们的运算以及逻辑推理能力有较高的要求.此类问题通常侧重于考查正余弦定理、三角函数的定义、三角函数的单调性、基本不等式等.本文结合一道三角形最值问题,谈一谈解答此类问题的常用措施.例题:已知在ΔABC 中,点D 在边BC 上,BD =2CD ,AD =BD ,求tan A cos 2B 的最大值.一、利用基本不等式我们知道,若a 、b >0,则a +b ≥2ab ,该式称为基本不等式.而运用基本不等式求最值,往往要确保:(1)两个数均为正数;(2)两数的和或积为定值;(3)当且仅当a =b 时取等号.在解答三角形最值问题时,要先灵活运用正余弦定理进行边角互化,把目标式化为只含边或角的式子;然后运用一些配凑技巧,如凑系数、添项、去常数项、平方等,配凑出两式的和或积,并使其中之一为定值,即可运用基本不等式求得最值.解法1.如图1所示,过点D 作DE ⊥AB ,垂足为E ,过点C 作CF ⊥AB ,垂足为F ,由AD =BD ,DE ⊥AB 可得E 为AB 的中点.因为BD =2CD ,AD =BD ,所以DE ∥CF ,所以AE =BE =2EF ,所以F 为AE 的中点.可得BE =2AF ,即AF =12BE .所以DE CF =BD BC =23,所以CF =32DE .在RtΔACF 中,tan A =CF AF =3DE BE.在RtΔBDE 中,DE 2+BE 2=BD 2,所以BD 2≥2DE ⋅BE ,而cos B =BE BD ,所以tan A cos 2B =3DE BE ⋅(BE BD)2=3DE ⋅BE BD 2≤3DE ⋅BE 2DE ⋅BE =32,当且仅当DE =BE ,即B =45°时不等式取等号,故tan A cos 2B 的最大值为32.先添加辅助线,根据等腰三角形三线合一的性质和平行线的性质,建立各边之间的比例关系,从而求得tan A 、cos B 的表达式,得出tan A cos 2B =3DE ⋅BEBD 2.而在RtΔBDE 中,DE 2+BE 2=BD 2,由基本不等式可得BD 2≥2DE ⋅BE ,通过约分即可求得目标式的最值.二、利用三角函数的性质三角函数具有有界性和单调性,而这两种性质是求三角函数最值的重要依据.在解答三角形最值问题时,可先根据正余弦定理将边角关系化为关于角的关系式,并用角的三角函数式表示出目标式,将问题转化为三角函数最值问题;然后利用三角函数中的诱导公式、二倍角公式、辅助角公式等进行恒等变形,将目标式化为只含有一种三角函数名称的式子,进而利用三角函数的有界性和单调性求最值.解法2.设ΔABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,CD =m (m >0),则AD =BD =2m ,因为∠ADB 与∠ADC 互为邻补角,所以cos∠ADB =-cos∠ADC .在ΔABD 中,由余弦定理得c 2=4m 2+4m 2-2×2m ×2m cos∠ADB ,化简得c 2=8m 2-8m 2cos∠ADB ,即c 2=8m 2+8m 2cos∠ADC ①;在ΔACD 中,由余弦定理得b 2=4m 2+m 2-2×2m ×m cos∠ADC ,化简得b 2=5m 2-4m 2cos∠ADC ,所以2b 2=10m 2-8m 2cos∠ADC ②.将①+②得c 2+2b 2=18m 2,又因为a =3m ,所以c 2+2b 2=2a 2.在ΔABC 中,由余弦定理得cos B =a 2+c 2-b 22ac=a 2+c 2-(a 2-12c 2)2ac =3c4a,由正弦定理可得cos B =3c 4a =3sin C 4sin A,所以4sin A cos B =3sin C =3sin(A +B )=3sin A cos B +3cos A sin B ,整理得sin A cos B =3cos A sin B ,所以tan A =3tan B .所以tan A cos 2B =3tan B cos 2B =3sin B cos B =32sin2B ≤32,思路探寻图149当sin2B =1,即B =45°时,tan A cos 2B 取最大值32.我们先根据余弦定理求得tan A 、cos B 的表达式,得出tan A cos 2B 的表达式,并根据tan B =sin Bcos B以及二倍角公式sin2B =2sin B cos B ,将目标式化为只含有正弦函数的式子,即可运用正弦函数的有界性求得目标式的最值.解法3.因为BD =2CD ,AD =BD ,所以AD =2CD .因为AD =BD ,所以∠BAD =∠B ,所以∠DAC =∠A -BAD =∠A -∠B .在ΔACD 中,由正弦定理得AD sin C =CDsin∠DAC,即2CD sin(A +B )=CDsin(A -B ),所以2sin(A -B )=sin(A +B ),可得2sin A cos B -2cos A sin B =sin A cos B +cos A sin B ,整理得sin A cos B =3cos A sin B ,所以tan A =3tan B .以下同解法2,具体过程略.该解法主要运用了正弦定理,根据角之间的关系进行三角恒等变换,得到tan A =3tan B ,再根据正弦函数的有界性求得最值.我们还也可以根据正切函数的定义和勾股定理,在RtΔBDE 中,求得tan B =DE BE =CF3AF,在RtΔACF 中,求得tan A =CF AF ,从而得出tan B =13tan A ,再根据正弦函数的有界性求得最值.利用三角函数的性质求解三角形最值问题,关键是将目标式化为关于角的三角函数式,并将其化简为只含有一种三角函数名称的式子,就能根据三角函数的有界性和单调性顺利求得最值.三、构建坐标系运用坐标法求解三角形最值问题,需先根据三角形的特征,建立合适的平面直角坐标系:可以三角形的一条底边为坐标轴,以一个顶点或底边的中点为原点;也可以三角形底边为x 轴,底边的中垂线为y 轴来建立坐标系.在建立坐标系后,求得各个点的坐标,再运用两点间的距离公式、直线的斜率公式和方程、三角函数的定义来求得角、边长以及目标式,最后运用函数的性质、三角函数的性质、基本不等式求最值.解法4.如图2所示,以D 为原点,DC 为x 轴,建立平面直角坐标系xDy ,设CD =m (m >0),∠ADB =θ,则点C (m ,0),B (-2m ,0),A (-2m cos θ,2m sin θ),所以tan B =k AB =2m sin θ-2m cos θ+2m =sin θ1-cos θ,tan C =-k AC =2m sin θ2m cos θ+m =2sin θ2cos θ+1.可得cos 2B =11+tan 2B=1-cos θ2,tan A =-tan(B +C )=tan B +tan Ctan B tan C -1=(sin θ1-cos θ+2sin θ2cos θ+1)÷(sin θ1-cos θ⋅2sin θ2cos θ+1-1)=3sin θ1-cos θ.所以tan A cos 2B =3sin θ1-cos θ⋅1-cos θ2=32sin θ≤32,当sin θ=1,即θ=90°时,AD ⊥BC ,不等式取等号,故tan A cos 2B 的最大值为32.为了便于求得各点的坐标,以D 为原点,DC 为x 轴,建立平面直角坐标系xDy ,并设∠ADB =θ,用θ表示出cos 2B 、tan A 以及tan A cos 2B ,即可利用正弦函数的有界性求得最值.解法5.因为AD =BD ,过O 作DO ⊥AB ,以O 为原点,AB 为x 轴,OD 为y 轴建立如图3所示的平面直角坐标系xOy .设CD =m (m >0),易知AD =BD =2m ,所以点C (-m cos B ,3m sin B ),A (-2m cos B ,0),可得tan A =k AC =3m sin Bm cos B=3tan B .所以tan A cos 2B =3tan B cos 2B=3sin B cos B =32sin2B ≤32,当sin2B =1,即B =45°时,tan A cos 2B 取最大值32.根据等腰三角形三线合一的性质,过点O 作DO ⊥AB ,以O 为原点,AB 为x 轴,OD 为y 轴建立平面直角坐标系xOy ,即可快速求得D 、C 的坐标.再用角B 的三角函数表示出tan A cos 2B ,便可根据正弦函数的有界性求得问题的答案.求解三角形最值问题的思路较多,无论运用哪种思路解题,都需灵活运用正余弦定理进行边角互化,求得目标式,然后根据目标式的结构特征,选用合适的方法求最值.(作者单位:山东省牟平第一中学)图3思路探寻图250。
完整版)解三角形中的最值问题解三角形中的最值问题1.在三角形ABC中,已知角A,B,C所对边长分别为a,b,c,且a²+b²=2c²,求cosC的最小值。
解析:由余弦定理知cosC=(a²+b²-c²)/(2ab),代入已知条件得cosC≥-1/2.因此cosC的最小值为-1/2.2.在三角形ABC中,已知角B=60°,AC=3,求AB+2BC的最大值。
解析:根据余弦定理,AB²=AC²+BC²-2AC·BCcosB,代入已知条件得AB²=9+BC²-6BC·1/2,即AB²=BC²-3BC+9.由于AB+2BC=AB+BC+BC,因此可将其转化为求AB+BC的最大值。
设x=BC,则AB²=x²-3x+9,求导得x=3/2时,AB+BC取得最大值,即AB+2BC的最大值为9/2.3.在三角形ABC中,已知角A,B,C的对边分别为a,b,c,且a≥b,sinA+3cosA=2sinB。
(1)求角C的大小;(2)求(a+b)/c的最大值。
解析:(1)由sinA+3cosA=2sinB得2sin(A+π/3)=2sinBsinA/3,因此sin(A+π/3)=sinB/3.由于a≥b,因此A≥B,所以A+π/3=B/3,即A=π/3-B/3.由正弦定理得c/sinC=2b/sinB,代入已知条件得c=2b(sinA+3cosA)/sinB=6b/√3=2√3b,因此角C的大小为π/3.2)由正弦定理得(a+b)/c=sinA+sinB/sinC,代入已知条件得(a+b)/c=2sinB/sinC,即sinC=2sinB(a+b)/c。
由于sinC≤1,因此(a+b)/c≤1/2.当且仅当A=π/2时,(a+b)/c取得最大值1/2.4.在三角形ABC中,已知内角A,B,C的对边分别为a,b,c,且a=___。
三角形中的最值问题初二
三角形是数学中最常见的图形之一,学生们最熟悉的就是三角形
中最值的概念和求解过程。
从基本角度来说,三角形是由三条相交的直线组成的,在三角形中,由三条直线的交点构成的三个顶点叫做三角形的顶点。
任意一个
三角形中,每一个顶点都有最大,最小,平均值。
三角形中的最大值,即“三角形角最大值”,以其角度测量而言,是三条边中找到的最大角度。
三角形的最小值,即“三角形角最小值”,是三条边的最小角度。
最终,三角形的平均值,即“三角形角
平均值”,是三条边的角度的平均值。
在求解三角形中的最值时,可以使用平面的角的平行定理,这个
定理是说,在一个平面上,任意两个平行线之间,其公倾角位于零到180之间。
也可以使用对边定理,即任意两个相等的边垂直于第三条边之间的锐角,其角度是等于其两侧垂直边的邻边之和的一半。
除了角度和锐角定理外,在三角形中的最值问题,还有一些常见
的方法,比如“三角形不等式”,可以使用三角形不等式来计算三角
形面积;另一种方法是“勾股定理”,可以使用勾股定理来求出三角形中每一个角的度数。
以上就是三角形中最值概念的介绍以及求最值的一些方法。
期望这篇文章能够为初学者把握三角形中最值概念以及求解提供有益的参考。
微专题4三角形中的范围(最值)问题真题感悟(2018·江苏卷)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,BD是∠ABC的平分线,交AC于点D,且BD=1,则4a+c的最小值为________.解析因为∠ABC=120°,∠ABC的平分线交AC于点D,所以∠ABD=∠CBD=60°.由三角形的面积公式可得12ac sin 120°=12a×1×sin 60°+12c×1×sin 60°,化简得ac=a+c,又a>0,c>0,所以1a +1c=1,则4a+c=(4a+c)·⎝⎛⎭⎪⎫1a+1c=5+ca+4ac≥5+2ca·4ac=9,当且仅当c=2a即a=32,c=3时取等号,故4a+c的最小值为9.答案9考点整合1.设△ABC的三边为a,b,c,对应的三个角分别为A,B,C.解三角形的主要依据是:(1)角与角关系:A+B+C=π;(2)边与边关系:a+b>c,b+c>a,c+a>b,a-b<c,b-c<a,c-a<b;(3)边与角关系:正弦定理、余弦定理.它们的变形形式有a=2R sin A,sin Asin B=ab,sin A>sin B⇔a>b⇔A>B等.2.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点:(1)角的变换;(2)三角形边、角关系定理及面积公式、正弦定理、余弦定理.3.利用算术平均数与几何平均数定理求函数的最大值、最小值.(1)已知x,y是正数,如果积xy是定值P,那么当且仅当x=y时,和x+y有最小值2P ;(2)已知x ,y 是正数,如果和x +y 是定值S ,那么当且仅当x =y 时,积xy 有最大值14S 2.应用此结论求最值要注意三个条件: ①各项或各因式均为正; ②和或积为定值;③各项或各因式都能取相等的值. 必要时要作适当的变形,以满足上述条件.4.利用基本不等式求解与其他知识点的综合题时,列出有关量的函数关系式或方程寻找和与积的结构形式,是用基本不等式求解或转化的关键.热点一 三角形面积的最值问题【例1】 (2019·苏北四市调研)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0. (1)求A ;(2)若a =2,求△ABC 面积的最大值.解 (1)由a cos C +3a sin C -b -c =0及正弦定理得 sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以sin B =sin(A +C ) =sin A cos C +cos A sin C ,所以3sin A sin C -cos A sin C -sin C =0. 易知sin C ≠0,所以3sin A -cos A =1, 所以sin ⎝ ⎛⎭⎪⎫A -π6=12.又0<A <π,-π6<A -π6<5π6, 所以A -π6=π6,所以A =π3.(2)法一 由(1)得B +C =2π3,所以C =2π3-B ⎝⎛⎭⎪⎫0<B <2π3,由正弦定理得a sin A =b sin B =c sin C =2sin π3=43, 所以b =43sin B ,c =43sin C . 所以S △ABC =12bc sin A =12×43sin B ×43sin C ·sin π3=433sin B ·sin C=433·sin B ·sin ⎝ ⎛⎭⎪⎫2π3-B =433⎝ ⎛⎭⎪⎫32sin B cos B +12sin 2B =sin 2B -33cos 2B +33=233sin ⎝ ⎛⎭⎪⎫2B -π6+33. 易知-π6<2B -π6<7π6,故当2B -π6=π2,即B =π3时,S △ABC 取得最大值,最大值为233+33= 3. 法二 由(1)知A =π3,又a =2, 由余弦定理得22=b 2+c 2-2bc cos π3,即b 2+c 2-bc =4,所以bc +4=b 2+c 2≥2bc ,所以bc ≤4, 当且仅当b =c =2时,等号成立.所以S △ABC =12bc sin A =12×32bc ≤34×4=3, 即当b =c =2时,S △ABC 取得最大值,最大值为 3. 探究提高 求解三角形中的最值问题常用如下方法:(1)将要求的量转化为某一角的三角函数,借助于三角函数的值域求最值.(2)将要求的量转化为边的形式,借助于基本不等式求最值.【训练1】 已知点O 是△ABC 的内心,∠BAC =60°,BC =1,则△BOC 面积的最大值为________.解析 因为O 是△ABC 的内心,∠BAC =60°,所以∠BOC =180°-180°-60°2=120°,由余弦定理可得BC 2=OC 2+OB 2-2OC ·OB ·cos 120°,即OC 2+OB 2=1-OC ·OB .又OC 2+OB 2≥2OC ·OB (当且仅当OC =OB 时,等号成立),所以OC ·OB ≤13,所以S △BOC =12OC ·OB ·sin 120°≤312(当且仅当OB =OC 时等号成立),则△BOC 面积的最大值为312. 答案 312热点二 与边长相关的最值(范围)问题【例2】 在锐角三角形ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若满足(a -b )(sin A +sin B )=(c -b )sin C ,且a =3,则b 2+c 2的取值范围是________. 解析 因为(a -b )(sin A +sin B )=(c -b )sin C ,所以由正弦定理可得(a -b )(a +b )=(c -b )c ,可化为b 2+c 2-a 2=bc ,所以由余弦定理可得cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈⎝ ⎛⎭⎪⎫0,π2,所以A =π3,又因为a =3,所以由正弦定理可得b sin B =c sin ⎝ ⎛⎭⎪⎫2π3-B =332=2,即b =2sin B ,c =2 sin ⎝ ⎛⎭⎪⎫2π3-B ,所以b 2+c 2=(2sin B )2+⎣⎢⎡⎦⎥⎤2sin ⎝ ⎛⎭⎪⎫2π3-B 2=3+2sin 2B +3sin 2B =4+2sin ⎝ ⎛⎭⎪⎫2B -π6.由B ∈⎝ ⎛⎭⎪⎫0,π2,2π3-B ∈⎝ ⎛⎭⎪⎫0,π2知B ∈⎝ ⎛⎭⎪⎫π6,π2,所以2B -π6∈⎝ ⎛⎭⎪⎫π6,5π6,所以sin ⎝ ⎛⎭⎪⎫2B -π6∈⎝ ⎛⎦⎥⎤12,1,所以4+2sin ⎝ ⎛⎭⎪⎫2B -π6∈(5,6],即b 2+c 2∈(5,6].答案 (5,6]探究提高 解三角形与三角函数的综合题,要优先考虑角的范围和角之间的关系;对最值或范围问题,可以转化为三角函数的值域来求解.【训练2】 (2018·北京卷)若△ABC 的面积为34(a 2+c 2-b 2),且C 为钝角,则B =________;ca 的取值范围是________.解析 由余弦定理得cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B . 又∵S =34(a 2+c 2-b 2),∴12ac sin B =34×2ac cos B , ∴tan B =3,又B ∈(0,π),∴B =π3. 又∵C 为钝角,∴C =2π3-A >π2,∴0<A <π6. 由正弦定理得ca =sin ⎝ ⎛⎭⎪⎫2π3-A sin A =32cos A +12sin A sin A =12+32·1tan A . ∵0<tan A <33,∴1tan A >3, ∴c a >12+32×3=2,即ca >2. ∴ca 的取值范围是(2,+∞). 答案 π3 (2,+∞)热点三 与角度相关的最值(范围)问题【例3】 (2019·南京、盐城高三模拟)在△ABC 中,若sin C =2cos A cos B ,则cos 2A +cos 2B 的最大值为________.解析 在△ABC 中,利用cos C =-cos(A +B )易证cos 2A +cos 2B +cos 2C + 2cos A cos B ·cos C =1,所以cos 2A +cos 2B =1-1+cos 2C 2-sin C cos C =12-12(sin 2C +cos 2C )=12-22sin ⎝ ⎛⎭⎪⎫2C +π4≤1+22,当sin⎝ ⎛⎭⎪⎫2C +π4=-1即C =58π时取“=”.故答案为2+12.答案2+12探究提高 本题主要考查三角恒等变换和三角函数的图象和性质,意在考查学生对这些知识的理解能力与掌握水平,解题的关键是三角恒等变换.【训练3】 若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.解析 ∵sin A +2sin B =2sin C ,∴由正弦定理可得a +2b =2c ,即c =a +2b 2, ∴cos C =a 2+b 2-c 22ab =a 2+b 2-⎝⎛⎭⎪⎫a +2b 222ab=3a 2+2b 2-22ab 8ab ≥26ab -22ab 8ab =6-24,当且仅当3a 2=2b 2即a b =23时等号成立.∴cos C 的最小值为6-24. 答案6-24【新题感悟】 (2019·南京高三模拟)已知在△ABC 中,a ,b ,c 分别为三个内角A ,B ,C 的对边,若tan A =2tan B ,则b +ca 的最大值为________. 解析 由tan A =2tan B 得,sin A cos A =2sin Bcos B,所以sin A cos B =2sin B cos A ,即a a 2+c 2-b 22ac =2b b 2+c 2-a 22bc ,整理可得3b 2+c 2=3a 2,所以⎝ ⎛⎭⎪⎫b a 2+⎝⎛⎭⎪⎫c 3a 2=1,令b a =cos θ,c 3a =sin θ,则b +c a =cos θ+3sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π6≤2,当θ=π3时等号成立.一、填空题1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为________.解析 cos C =a 2+b 2-c 22ab ≥a 2+b 2-c 2a 2+b 2=2c 2-c 22c 2=12(当且仅当a =b 时“=”成立). 答案 122.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若a =3,A =π3,则b +c 的最大值为________.解析 ∵a 2=b 2+c 2-2bc cos A ,∴3=b 2+c 2-2bc ·cos π3,即b 2+c 2-bc =3, ∴(b +c )2=b 2+c 2+2bc =3+3bc ≤3+3×⎝ ⎛⎭⎪⎫b +c 22(当且仅当b =c 时“=”成立), ∴14(b +c )2≤3即b +c ≤2 3. 答案 2 33.在△ABC 中,M 是BC 的中点,BM =2,AM =AB -AC ,则△ABC 的面积的最大值为________.解析 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .在△ABM 中,由余弦定理得cos B =c 2+4-(c -b )24c ,在△ABC 中,由余弦定理得cos B =c 2+16-b 28c ,所以c 2+4-(c -b )24c =c 2+16-b 28c ,即b 2+c 2=4bc -8,所以cos ∠BAC =b 2+c 2-162bc =2bc -12bc =2-12bc ,所以sin ∠BAC =1-⎝ ⎛⎭⎪⎫2-12bc 2,所以S △ABC = 12bc sin ∠BAC =12-3(bc -8)2+48,所以当bc =8时,S △ABC 取得最大值2 3.4.(2019·如皋高三联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若1tan A ,2tan C ,1tan B 成等差数列,则cos C 的最小值为________.解析 ∵1tan A ,2tan C ,1tan B 成等差数列,∴1tan A +1tan B =4tan C ,即cos A sin A +cos Bsin B =4cos C sin C ,可得sin B cos A +sin A cos B sin A sin B =sin C sin A sin B =4cos C sin C , ∴cos C =sin 2C4sin A sin B ,则a 2+b 2-c 22ab =c 24ab ,化简得2(a 2+b 2)=3c 2,故cos C =a 2+b 2-c 22ab =a 2+b 26ab ≥2ab 6ab =13(当且仅当a =b 时等号成立). 答案 135.(2019·盐城高三期末)已知△ABC 的周长为6,且BC ,CA ,AB 的长成等比数列,则BA →·BC→的取值范围是________. 解析 设BC ,CA ,AB 所对应的边长分别为a ,b ,c ,因为BC ,CA ,AB 的长成等比数列,所以b =ac ≤a +c 2=6-b2(当且仅当a =c 时等号成立),从而0<b ≤2,所以BA →·BC →=ac cos B =a 2+c 2-b 22=(6-b )2-3b 22=-(b +3)2+27,又|a-c |<b ,∴(a -c )2<b 2,即(a +c )2-4ac <b 2,即b 2+3b -9>0,解得35-32<b ≤2,故2≤BA →·BC →<27-952.答案 ⎣⎢⎡⎭⎪⎫2,27-9526.若一个钝角三角形的三内角成等差数列,且最大边长与最小边长之比为m ,则实数m 的取值范围是________.解析 依题意可设三内角为60°-α,60°,60°+α.由该三角形为钝角三角形可得30°<α<60°,由正弦定理得m =sin (60°+α)sin (60°-α)=3+tan α3-tan α=-1+233-tan α,由30°<α<60°,得33<tan α<3,所以0<3-tan α<233,所以13-tan α>32,所以m =-1+233-tan α>2. 答案 (2,+∞)7.(2019·苏州期中)设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若A ,B ,C 依次成等差数列且a 2+c 2=kb 2,则实数k 的取值范围是________. 解析 ∵A ,B ,C 依次成等差数列,∴2B =A +C ,又A +B +C =π,∴B =π3,∴a 2+c 2-b 2=2ac cos B =ac ≤a 2+c 22(当且仅当a =c 时等号成立),∴a 2+c 22-b 2≤0,即kb22-b 2≤0,∴k ≤2,又a 2+c 2-b 2=2ac cos B >0,且a 2+c 2=kb 2,∴kb 2-b 2>0,∴k >1,∴1<k ≤2. 答案 (1,2]8.(2019·苏北三市模拟)已知△ABC 三个内角A ,B ,C 所对的边分别为a ,b ,c ,且C =π3,c =2,当AC →·AB→取得最大值时,b a的值为________. 解析 由正弦定理得c sin C =b sin B ,所以b =2sin Bsin C =2sin ⎝ ⎛⎭⎪⎫π3+A sin π3,AC →·AB →=bc cos A=2sin ⎝ ⎛⎭⎪⎫π3+A sin π3×2×cos A =833sin ⎝ ⎛⎭⎪⎫π3+A cos A =233(sin 2A +3cos 2A )+2=433sin ⎝ ⎛⎭⎪⎫2A +π3+2,所以当2A +π3=π2,即A =π12时,AC →·AB →取最大值,此时B =π-A -C =7π12,从而b a =sin B sin A =sin 7π12sin π12=cos π12sin π12=1tan π12=1tan ⎝ ⎛⎭⎪⎫π3-π4=1+tan π3tan π4tan π3-tan π4=3+13-1=2+3,所以当AC →·AB→取得最大值时,b a的值为2+ 3.答案 2+ 3 二、解答题9.(2019·江苏三校联考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a 2-c 2=2b ,且sin A cos C =3cos A sin C . (1)求b 的值;(2)若B =π4,S 为△ABC 的面积,求S +82cos A cos C 的取值范围. 解 (1)由正弦定理、余弦定理知sin A cos C =3cos A sin C 可等价变形为a ·a 2+b 2-c 22ab =3c ·b 2+c 2-a 22bc,化简得a 2-c 2=b22.因为a 2-c 2=2b ,所以b 22=2b ,所以b =4或b =0(舍去).(2)由正弦定理b sin B =c sin C 得c =b sin C sin B ,故S =12bc sin A =12×4×4sin π4sin A sin C =82sin A sin C ,所以S +82cos A cos C =82cos(A -C ) =82cos ⎣⎢⎡⎦⎥⎤A -⎝ ⎛⎭⎪⎫3π4-A =82cos ⎝ ⎛⎭⎪⎫2A -3π4.在△ABC 中,由⎩⎪⎨⎪⎧0<A <3π4,A >3π4-A ,得A ∈⎝ ⎛⎭⎪⎫3π8,3π4.所以2A -3π4∈⎝ ⎛⎭⎪⎫0,3π4,所以cos ⎝ ⎛⎭⎪⎫2A -3π4∈⎝ ⎛⎭⎪⎫-22,1,所以S +82cos A cos C ∈(-8,82).10.已知函数f (x )=3sin ωx ·cos ωx -cos 2ωx (ω>0)的最小正周期为2π3.(1)求ω的值;(2)在△ABC 中,sin B ,sin A ,sin C 成等比数列,求此时f (A )的值域.解 (1)f (x )=32sin 2ωx -12(cos 2ωx +1)=sin ⎝ ⎛⎭⎪⎫2ωx -π6-12, 因为函数f (x )的最小正周期为T =2π2ω=2π3,所以ω=32.(2)由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫3x -π6-12, 易得f (A )=sin ⎝ ⎛⎭⎪⎫3A -π6-12. 因为sin B ,sin A ,sin C 成等比数列,所以sin 2A =sin B sin C ,所以a 2=bc ,所以cos A =b 2+c 2-a 22bc =b 2+c 2-bc 2bc≥2bc -bc 2bc =12(当且仅当b =c 时取等号). 因为0<A <π,所以0<A ≤π3,所以-π6<3A -π6≤5π6, 所以-12<sin ⎝ ⎛⎭⎪⎫3A -π6≤1, 所以-1<sin ⎝ ⎛⎭⎪⎫3A -π6-12≤12, 所以f (A )的值域为⎝ ⎛⎦⎥⎤-1,12. 11.(2019·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A +C 2=b sin A .(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.解 (1)由题设及正弦定理得sin A sin A +C 2=sin B sin A .因为sin A ≠0,所以sin A +C 2=sin B .由A +B +C =180°,可得sin A +C 2=cos B 2,故cos B 2=2sin B 2cos B 2.因为cos B 2≠0,所以sin B 2=12,又0°<B 2<90°,所以B 2=30°,所以B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a .又由(1)知A +C =120°,故由正弦定理得a =c sin A sin C =sin (120°-C )sin C =32tan C +12. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°. 结合A +C =120°,得30°<C <90°,所以12<a <2,从而38<S △ABC <32.因此,△ABC 面积的取值范围是⎝ ⎛⎭⎪⎫38,32.。
三角形中的最值或范围问题在解三角形时,往往会遇到求边、角、周长、面积等问题的最值或范围,我们只需综合运用正余弦定理、三角恒等变换、面积公式,结合基本不等式与三角函数等知识求解即可.一、角的范围或最值[解析]:因为2b ac =,又由余弦定理知2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=,所以03B π<≤,又7sin cos )44412B B B B ππππ+=+<+<且,)4B π+∈,即sin cos B B +的取值范围是.[解析]:由BA BC ⋅=,得1cos sin 2ca B ac B =,即cos B B =, 又22cos sin 1B B +=,所以3cos 4B =. 221cos 21cos 2sin sin 22A C A C --+=+=1cos[()()]2A C A C -++-+1cos[()()]2A C A C -+--=cos()cos()1A C A C +-+=cos cos()1B A C -+=3cos()14A C -+.因为0A B π<<-,0C B π<<-,所以B A C B ππ-<-<-, 所以当A C =时,max cos()1A C -=,当A C B π-=-或A C B π-=-时,min 3cos()cos 4A CB -=-=-,所以737cos()11644A C <-+≤, 即22sin sin A C +的取值范围是77(,]164.点评:求角的范围问题一般是转化为利用三角函数的范围来求.二、边的范围或最值【例2】:在锐角△ABC 中,A=2B ,则cb的取值范围是 .[解析]:由0222A B C A B πππ<=<<=--<且0,得64B ππ<<,所以2sin sin 3sin 2cos cos 2sin 4cos 1sin sin sin c C B B B B B B b B B B+====-,又23cos (,)22B ∈所以24cos 1(1,2)cB b=-∈. 【变式】:在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,且BC 边上的高为a 63,则cb bc + 的最大值是( )A.8B. 6C.23D.4[解析]:由已知得,在△ABC 中,A bc a a sin 216321=⋅, 即A bc a sin 322=,又由余弦定理得A bc c b a cos 2222-+=,即222cos 2c b A bc a +=+,所以4)6sin(4cos 2sin 32cos 2sin 3222≤+=+=+=+=+πA A A bc A bc A bc bc c b c b b c . 故选D.点评:把边的问题转化为角的问题,化多元为一元,体现了解题的通性通法.下面这道高考题只需运用正弦定理即可,能想到方法就很简单,想不到就太难了,不愧是高考题!【好题欣赏】:(2015·新课标I )在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .[解析]: 如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合于E 点时,AB 最长,在BCE ∆中,75B C ∠=∠=,30E ∠=,2BC =, 由正弦定理可得o osin 30sin 75BC BE=,解得BE =6+2; 平移AD ,当D 与C 重合时,AB 最短,此时在BCF ∆中,75B BFC ∠=∠=,30FCB ∠=, 由正弦定理知o osin 30sin 75BF BC=,解得62BF =-, 所以AB 的取值范围为(62,6+2)-.三、周长的范围或最值【例3】: 已知a,b,c 分别为△ABC 三个内角A,B,C 的对边,cos 3sin 0a C a C b c +--=. (1)求A 的大小;(2)若a =7,求△ABC 的周长的取值范围.[解析]:(1)由已知及正弦定理得:C B C A C A sin sin sin sin 3cos sin +=+, 即C C A C A C A sin )sin(sin sin 3cos sin ++=-,化简得,1cos sin 3=-A A ,所以21)6sin(=-πA ,所以66ππ=-A ,解得3π=A ;(2)由已知:0b >,0c >,7b c a +>=,由余弦定理22222231492cos()3()()()344b c bc b c bc b c b c b c π=+-=+-≥+-+=+ 当且仅当b =c =7时等号成立,∴2()449b c +≤⨯,又∵b +c >7,∴7<b +c ≤14, 从而△ABC 的周长的取值范围是(14,21].【变式】: 在△ABC 中,角A,B,C 的对边分别为a,b,c ,且cos cos 2cos a C c A b B +=. (1)求B 的大小.(2)若b=5,求△ABC 周长的取值范围.[解析]:(1)因为cos cos 2cos a C c A b B +=,由正弦定理得sin cos sin cos 2sin cos A C C A B B +=,所以sin()2sin cos A C B B +=,于是1cos ,23B B π==.(2)由正弦定理10sin sin sin 3a b c A B C ===, 所以101010210sin 5sin 5sin()sin 510sin()363333a b c A C A A A ππ++=++=+-+=++又由02A π<<得2663A πππ<+<, 所以510sin()(10,15]6a b c A π++=++∈.点评:例4是运用余弦定理结合基本不等式求周长的范围,而变式是运用正弦定理结合三角函数求周长的范围,各有千秋,好好体会.四、面积的范围与最值【例4】:在△ABC 中,22223a b c ab +=+,若△ABC 的外接圆半径为322,则△ABC 的面积的最大值为 .[解析]:由22223a b c ab +=+及余弦定理得2221cos 23a b c C ab +-==,所以22sin 3C =,又由于2sin 4c R C ==,所以2222cos c a b ab C =+-,即2221623ab a b ab +=+≥,所以12ab ≤,又由于12sin 4223S ab C ab ==≤, 故当且仅当23a b ==时,ABC 的面积取最大值42.【变式】: 如图,在等腰直角三角形OPQ 中,∠POQ =90°,22=OP ,点M 在线段PQ 上. (1)若5OM =,求PM 的长;(2)若点N 在线段MQ 上,且∠MON =30°,问:当∠POM 取何值时, △OMN 的面积最小?并求出面积的最小值.[分析]:第(2)题求△OMN 的面积最小值,前面的要求也很明确:以∠POM 为自变量,因此,本题主要是如何将△OMN 的面积表示为∠POM 的函数关系式,进而利用函数最值求解.其中,利用正弦定理将OM 和ON 的长表示为∠POM 的函数是关键.[解析]:(1)在OMP ∆中,45OPM ∠=︒,OM =OP =, 由余弦定理得,2222cos 45OM OP MP OP MP =+-⨯⨯⨯︒, 得2430MP MP -+=, 解得1MP =或3MP =. (2)设POM α∠=,060α︒≤≤︒, 在OMP ∆中,由正弦定理,得sin sin OM OPOPM OMP=∠∠,所以()sin 45sin 45OP OM α︒=︒+, 同理()sin 45sin 75OP ON α︒=︒+故1sin 2OMNS OM ON MON ∆=⨯⨯⨯∠()()221sin 454sin 45sin 75OP αα︒=⨯︒+︒+ ()()1sin 45sin 4530αα=︒+︒++︒=⎣⎦====因为060α︒≤≤︒,30230150α︒≤+︒≤︒,所以当30α=︒时,()sin 230α+︒的最大值为1,此时OMN ∆的面积取到最小值. 即30POM ∠=︒时,△OMN 的面积的最小值为8-点评:面积问题是边长与角问题的综合,在例5中,知道角的具体值,就考虑边的变化,利用余弦定理结合基本不等式来求,而在变式中,不知道角的具体值,就考虑角的变化,利用三角函数范围求解.巩固训练:[解析]:设,,AB c AC b BC a ===,由余弦定理的推论222cos 2a c b B ac+-=,所以2223a c ac b +-==, 因为由正弦定理得2233sin sin sin ====BbC c A a ,所以C c sin 2=,A a sin 2=, 所以)sin 2(sin 2sin 22sin 22A C A R C R a c +=⨯+=+⎪⎭⎫ ⎝⎛-+=)32sin(2sin 2C C π ()α+=+=C C C sin 72)cos 3sin 2(272≤,(其中23tan =α), 另解:本题也可以用换元法设2c a m +=,代入上式得227530a am m -+-=,因为28430m =-≥,故m ≤当m =,此时a c ==符合题意,因此最大值为.[解析]:(1)由余弦定理知:2221cos 22b c a A bc +-==,∴3A π∠=; (2)由正弦定理得:2sin sin sin b c aB C A====,∴2sin b B =,2sin c C =, ∴22224(sin sin )b c B C +=+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---=-+-=B B C B 322cos 22cos 24)2cos 12cos 1(2π⎪⎭⎫⎝⎛---=B B 234cos 22cos 24π)62sin(242sin 32cos 4π-+=+-=B B B ,又∵203B π<<0,∴72666B πππ-<-<,∴12sin(2)26B π-<-≤, ∴2236b c <+≤.3.己知在锐角三角形中,角A ,B ,C 所对的边分别为a ,b ,c ,且222tan abC a b c =+-,(1)求角C 大小;(2)当c=1时,求ab 的取值范围.[解析]:(1)由已知及余弦定理,得sin 1,sin ,cos 2cos 2C ab C C ab C ==因为C 为锐角,所以 30=C , (2)由正弦定理,得121sin sin sin 2a b c A B C ====, 2sin ,2sin 2sin(30).a A b B A ∴===+︒4sin sin 4sin sin()6ab A B A A π==+2314sin (sin cos )23sin 2sin cos 22A A A A A A =+=+3sin 23cos2A A =+-32sin(2)3A π=+- 由090,015090A A ︒<<︒⎧⎨︒<︒-<︒⎩得6090.A ︒<<︒60260120,A ∴︒<-︒<︒3sin(2)123A π<-≤ 2332ab ∴<≤+.4.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,且2sin (2)sin (2)sin a A b c B c b C =+++. (Ⅰ)求角A ;(Ⅱ)若a=2,求△ABC 周长的取值范围.[解析]:(1)由正弦定理sin sin sin a b cA B C==可将2sin (2)sin (2)sin a A b c B c b C =+++变形为22(2)(2)a b c b c b c =+++, 整理可得222a b c bc =++,222b c a bc ∴+-=-,2221cos 222b c a bc A bc bc +--∴===-,0180A <<,∴120A =;(2) 由正弦定理得334sin sin ==C c B b , ∴[])60sin(sin 334)sin (sin 334B B C B c b -+=+=+ )sin 60cos cos 60sin (sin 334B B B -+= )60sin(334cos 23sin 21334+=⎪⎪⎭⎫ ⎝⎛+=B B B ,∵ 120=A ,∴() 60,0∈B ,∴() 120,6060∈+B ,∴⎥⎦⎤ ⎝⎛∈+1,23)60sin( B ,∴⎥⎦⎤ ⎝⎛∈+334,2)60sin(334B ,即⎥⎦⎤ ⎝⎛∈+334,2c b , ∴周长⎥⎦⎤⎝⎛+∈++3342,4c b a[解析]:由2a =且 (2)(sin sin )()sin b A B c b C +-=-, 即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-,∴222b c a bc +-=,故2221cos 22b c a A bc +-==,∴060A ∠=, ∴224b c bc +-=,224b c bc bc =+-≥,∴1sin 2ABC S bc A ∆=≤故答案为3.6. 在一个六角形体育馆的一角MAN 内,用长为a 的围栏设置一个运动器材存储区域(如图所示),已知0120A ∠=,B 是墙角线AM 上的一点,C 是墙角线AN 上的一点. (1)若BC=a=20,求存储区域面积的最大值;(2)若AB+AC=10,在折线MBCN 内选一点D,使BD+DC=20,求四边形存储区域DBAC 的最大面积.[解析]:(1)设AB x =,AC y =,0,0x y >>. 由22200202cos12022cos120x y xy xy xy =+-≥-,得22020202022cos1204sin 60xy ≤=-, ∴22020002000112020cos 60201003sin1202sin 60cos 60224sin 604sin 604tan 60S xy =≤⨯⨯===即四边形DBAC 面积的最大值为10033,当且仅当x y =时取到. (2)由20=+DC DB ,知点D 在以B,C 为焦点的椭圆上,∵32523101021=⨯⨯⨯=∆ABC S , ∴要使四边形DBAC 面积最大,只需△DBC 的面积最大,此时点D 到BC 的距离最大,即D 为椭圆短轴顶点,由310=BC ,得短半轴长5=b ,()325531021max =⨯⨯=∆BCD S ,因此,四边形ACDB 的面积的最大值为350.7.已知3()3f x x x m =-+,在区间[0,2]上任取三个数a,b,c,均存在以()()(),,f a f b f c 为边长的三角形,则m 的取值范围是( )出函数在区间[0,2]上的最小值与最大值,从而可得不等式,即可求解.[解析]:由0)1)(1(333)('2=-+=-=x x x x f 得到1,121-==x x (舍去), ∵函数的定义域为[0,2],∴函数在(0,1)上0)('<x f ,在(1,2)上0)('>x f , ∴函数)(x f 在区间(0,1)单调递减,在区间(1,2)单调递增, 则,)0(,2)2()(,2)1()(max min m f m f x f m f x f =+==-== 由题意知,02)1(>-=m f ①;)2()1()1(f f f >+,即m m +>+-224②;由①②得6>m 为所求,故选B.。
解三角形中的最值(范围)问题1. 锐角三角形ABC 满足2B=A+C ,设最大边与最小边之比为m ,求m 的取值范围. 分析:不妨令则因为所以所以2. 锐角三角形ABC 的面积为S ,角C 既不是最大角,也不是最小角.若,求的取值范围.分析:又所以所以又在锐角三角形ABC 中,角C 既不是最大角,也不是最小角所以所以,即k 的取值范围.60B ︒=090A B C ︒<≤≤<sin sin()1sin sin 2tan 2c C A B ma A A A +====+3060A ︒︒<≤tan 3A <≤12m ≤<22()4c a b S k --=k 222222cos (1cos )442c a b ab ab ab C ab C S k k k --+--===1sin 2S ab C =1cos sin CC k -=1cos tan sin 2C C k C -==42C ππ<<1tan 12C <<3. 三角形ABC 满足B 是锐角,且,则的取值范围是_______. 分析:由正弦定理得 所以又所以又B 是锐角所以4. 锐角三角形ABC 满足,求的取值范围.分析:由正弦定理得所以所以又所以又所以所以28sin sin sin A C B =a cb +28ac b=a c b +===2222cos 8b a c ac B ac =+-=22cos 484a c B ac ++=()22a c b+∈)(sin sin )(sin sin )c b c C B a A B =+-=-22a b +()()()b c c b a a b +-=-222a b c ab +-=1cos 2C =0C π<<3C π=4sin sin sin a b c A B C ===4sin ,4sin a A b B ==22222241cos(2)21cos 2316(sin sin )16[sin sin ()]16[]168cos(2)3223A A a b A B A A A πππ---+=+=+-=+=-+又所以 所以所以5. 三角形ABC 满足BC 边上的高为,则的最大值是_____. 分析:又所以所以所以 又所以 的最大值是46. 三角形ABC 满足点D 在边BC 上,且,若,则的取值范围是______.分析: 62A ππ<<242333A πππ+∈(,)12)[1,)32A π+∈--cos(22(20,24]a b +∈6a c b b c+21122S BC h a =⋅==22c b b c b c bc ++=21sin 212S bc A a ==222sin 2cos a A b c bc A ==+-222cos 4sin()6b c A A A bcπ+=+=+0A π<<c b b c +2DC BD =::3::1AB AD AC k =k。
与三角形有关的范围最值问题模型1 已知三角形的一角及其对边如图,已知ABC ∆的三个内角为A ,B ,C ,及其对应边分别为,,a b c ,且60,2A a ==(即已知三角形的一角及其对边),则根据三角形的边角关系就可得到以下三个隐含的解题条件: ①23B C A ππ+=-=②正弦定理:2432sinB sinC sin sin 60b c a R A ︒=====R 为ABC ∆外接圆的半径)(实现了边角的相互转化)③余弦定理:2222cos a b c bc A =+-,即224b c bc =+-(可看作,b c 的方程) 变形:24()3b c bc =+-以上三个隐含的解题条件深刻揭示了解三角形中“已知一角及其对边”的本质:角的关系(内角和定理)、边角的关系(正余弦定理).掌握这个本质就可解决多种不同类型的问题,进而得到解决此类问题的系统方法. 例如,在上述条件下可求: (1)B C +;(2)ABC ∆外接圆的半径;(3)sin sin B C +的取值范围(拓展到求1212sin sin (0)t B t C t t +≠的最值); 类似还有:sin sin ,cos cos ,cos cos B C B C B C +(4)b c +的取值范围(拓展到求(0)b c λμλμ+≠的最值); (5)bc 的取值范围(6)ABC ∆周长的最大值(即求a b c ++的最大值); (7)ABC ∆面积的最大值 (8)22b c +已知三角形的一角及对边,求三角形面积、周长等的最值①已知条件为三角形的一边和对角,可以借助正弦定理,转化为角,求三角函数最值 (口诀:正弦定理化角,三角函数求最值) 基本步骤:(1)利用正弦定理化边为角,并将式子中的角都化为唯一角 (2)将所求式子化简为)sin(ϕω+=x A y 的形式或二次函数型(3)确定此唯一角的取值范围(利用三个内角都在0到π之间)注:如果ABC ∆是锐角三角形,则需要满足 20π<<A ,20π<<B ,20π<<C(4)根据角的范围求最值(范围)②问题涉及三角形的一边和对角,可以借助余弦定理,转化为边,利用基本不等式求值。
专题5解三角形中的最值与范围问题一、三角形中的最值范围问题处理方法1、利用基本不等式或常用不等式求最值:化角为边余弦定理公式里有“平方和”和“积”这样的整体,一般可先由余弦定理得到等式,再由基本不等式求最值或范围,但是要注意“一正二定三相等”,尤其是取得最值的条件。
2、转为三角函数求最值:化边为角如果所求整体结构不对称,或者角度有更细致的要求,用余弦定理和基本不等式难以解决,这时候可以转化为角的关系,消元后使得式子里只有一个角,变为三角函数最值问题进行解决。
要注意三角形隐含角的范围、三角形两边之和大于第三边。
二、边化角与角化边的变换原则在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三三个自由角)时,要用到三角形的内角和定理.【分析】设220CDBD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解. 【详解】[方法一]:余弦定理 设220CDBD m ==>, 则在ABD △中,2222cos 42AB BD AD BD AD ADB m m =+⋅∠=++,在ACD 中,22222cos 444AC CD AD CD AD ADC m m =+−⋅∠=+−, 所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++−++−===−+++++++44≥=−当且仅当311m m +=+即1m =−时,等号成立,所以当ACAB取最小值时,1m =−.1.[方法二]:建系法令 BD=t ,以D 为原点,OC 为x 轴,建立平面直角坐标系. 则C (2t,0),A (1,B (-t,0)()()()2222222134441244324131111t AC t t AB t t t t t t BD −+−+∴===−≥−++++++++==当且仅当即时等号成立。
解三角形中的最值问题解三角形中的最值问题有两种解题思路:1. 转化为三角函数求最值问题,有两个转化方法:(1)利用正弦定理将边转化为角的正弦值,A R a sin 2=,B R b sin 2=,C R c sin 2=.(2)利用三角形内角和和诱导公式进行角的转化,C B A sin )sin(=+,C B A cos )cos(-=+,C B A tan )tan(-=+. 最终转化为一个角的三角函数形式,求其最值.2. 转化为利用均值不等式(ab b a 222≥+)求最值问题,主要与余弦定理或其推论相结合,求三角形面积的最大值,或某一个内角余弦值的最小值.一.转化为三角函数求最值问题.例1.(2016年北京卷理科15题)在ABC ∆中,ac b c a 2222+=+.(1)求B 的大小;(2)求C A cos cos 2+的最大值.解:(1)ac b c a 2222=-+,则由余弦定理得:22222cos 222==-+=ac ac ac b c a B ,4π=B , (2))4cos(cos 2)cos(cos 2cos cos 2π+-=+-=+A A B A A C AA A A A A sin 22cos 22sin 22cos 22cos 2+=+-= 1)4sin(≤+=πA 当24ππ=+A 时,C A cos cos 2+取最大值,为1.例2.(2011年全国卷理科16题)在ABC ∆中, 60=B ,3=AC ,则BC AB 2+的最大值为 . 解:设3==AC b ,AB c =,BC a =, 由正弦定理得:2233sin sin sin ====C c B b A a , 则A a sin 2=,C c sin 2=,所以A B A A C a c BC AB sin 4)sin(2sin 4sin 222++=+=+=+AA A A A A A cos 3sin 5sin 4cos 3sin sin 4)60sin(2+=++=++= 72)sin(72≤+=ϕA ;(其中53tan =ϕ), 当1)sin(=+ϕA 时,BC AB 2+取最大值,为72.例3.(2018年北京卷文科14题)若ABC ∆的面积为)(43222b c a -+,且C 为钝角,则=B ;ac 的取值范围是 .解:由余弦定理得B ac b c a cos 2222=-+, 所以B ac B ac S cos 243sin 21⨯==,则3tan =B ,所以3π=B , 由正弦定理得:AA A A A C A A C a c tan 12321sin cos 23sin 21sin )sin(sin sin +=+=+==, 由于C 为钝角,3π=B ,所以⎪⎭⎫ ⎝⎛∈6,0πA ,⎪⎪⎭⎫ ⎝⎛∈33,0tan A , ()+∞∈,3tan 1A ,所以()+∞∈,2a c . 二.转化为利用均值不等式求最值问题.例4.(2013年全国二卷理科17题)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知B c C b a sin cos +=.(1)求B ;(2)若2=b ,求ABC ∆面积的最大值.解:(1)由C B A c b a sin :sin :sin ::=得B C C B A sin sin cos sin sin +=,则B C C B C B C B C B sin sin cos sin sin cos cos sin )sin(+=+=+, 所以B C C B sin sin sin cos =,因为0sin ≠C ,所以B B sin cos =, 1tan =B ,所以4π=B ,(2)由余弦定理得:B ac c a b cos 2222-+=,即ac ac c a )22(2422-≥-+=,所以224224+=-≤ac , 当且仅当c a =时,等号成立, 故1242sin 21+≤==ac B ac S , 所以ABC ∆面积的最大值为12+.例5.(2016年山东理科16题)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知AB B A B A cos tan cos tan )tan (tan 2+=+. (1)证明:c b a 2=+;(2)求C cos 的最小值.(1)证明:BA B A B B A A cos cos sin sin )cos sin cos sin (2+=+, B A B A B A C B A B A B A B A B A cos cos sin sin cos cos sin 2cos cos )sin(2cos cos sin cos cos sin 2+==+=+所以B A C sin sin sin 2+=,则b a c +=2.(2)由余弦定理得:abb a b a abc b a C 222cos 222222⎪⎭⎫ ⎝⎛+-+=-+= 21221243221)(4322=-⨯≥-+=ab ab ab ab ab b a ,当且仅当b a =时,等号成立,所以C cos 的最小值为21. 小结:解三角形中的最值问题或者转化为三角函数求最值,或者利用不等式求最值.。
三角形中的最值、范围问题一、知识与方法1、正弦定理可将边用角的正弦值表示:2sin sin sin a b cR A B C===, 2sin a R A =,2sin b R B =,2sin c R C =2、在三角形ABC ∆中,若 222c a b =+,则C 为直角;若 222c a b >+,则C 为钝角;若 222c a b <+, 则C 为锐角;3、在锐角三角形中,已知角C ,求B 的范围,可由下列限制条件求出:02022B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩ 4、三角形有关最值和范围求解(1)利用余弦定理和基本不等式进行解答; (2)利用正弦定理和三角函数值域进行解答; 例如:已知角C ,求解 sin sin m A n B +的范围 :解题方法:()()sin sin =sin +sin sin +sin m A n B m A n A C m A n A C π+--=+,再利用三角函数和差角公式和辅助角公式进行化简,求出三角函数的值域;注意:若三角形为锐角三角形,已知角C ,则需满足02022B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,从而进一步限制B 的范围.(3)利用三角形三边关系进行解答; 若为锐角三角形,则222222222c a b b a c a b c ⎧<+⎪<+⎨⎪<+⎩,若为钝角三角形,如角C 为钝角,则222c a b a b c ⎧>+⎨+>⎩二、题型训练题型一 利用余弦定理和基本不等式求面积与周长最值问题例1.(2021•丙卷模拟)在ABC ∆中角A ,B ,C 的对边分别为a ,b ,c ,若()(sin sin )sin ()a b A B C b c -+=+,2b c +=,则ABC ∆的面积的最大值为( )A .14B C .12D 【解答】解:因为()(sin sin )sin ()a b A B C b c -+=+, 由正弦定理得()()()a b a b c b c -+=+, 所以222a b bc c -=+,由余弦定理得2221cos 22b c a A bc +-==-,由A 为三角形内角得23A π=, 因为2b c +=, 所以2()12b c bc +=,所以113sin 1222ABC S bc A ∆=⨯⨯=1b c ==时取等号, 故选:B . 方法点拨:本题考查正弦定理的边角互化、余弦定理和基本不等式求最值,熟练利用正余弦定理和基本不等式是解题的关键. 巩固训练:1.(2021•河南模拟)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,2cos cos cos a A b C c B =+,当ABC ∆的外接圆半径2R =时,ABC ∆面积的最大值为( )A B .C .D .【解答】解:2cos cos cos a A b C c B =+,∴由正弦定理可得2sin cos sin cos sin cos A A B C C B =+,即2sin cos sin()sin A A B C A =+=,(0,)A π∈, 1cos 2A ∴=,即3A π=,由余弦定理,2221222b c bc bc bc =+-⨯⨯-, 则12bc ,(当且仅当b c =时等号成立),ABC ∴∆的面积11sin 1222S bc A=⨯=b c =时,等号成立, 故选:C .2.在ABC ∆中,A ,B ,C 的对边分别为a ,b ,c ,若1(sin )cos sin cos 2b C A A C -=,且a =ABC ∆面积的最大值为( )A .B .C .D .【解答】解:已知等式整理得:1cos sin cos cos sin sin()sin 2b A A C A C A C B =+=+=,即2sin cos b B A=,由正弦定理sin sin a b A B =2cos A =,即sin tan cos AA A==60A ∴=︒,由余弦定理得:2222cos a b c bc A =+-,即22122b c bc bc bc bc =+--=,则1sin 332ABC S bc A ∆=,即ABC ∆面积的最大值为故选:B .3.(2021春•鼓楼区校级期末)在ABC ∆中,1cos 2a c Bb =+.(1)若7a b +=,ABC ∆的面积为c ; (2)若4c =,求ABC ∆周长的最大值. 【解答】解:(1)由正弦定理知,sin sin sin a b cA B C==, 1cos2a c Bb =+,∴1sin sin cos sin 2A C B B =+,即1sin()sin cos sin 2B C C B B +=+,1sin cos cos sin sin cos sin 2B C B C C B B ∴+=+,∴1sin cos sin 2B C B =,sin 0B ≠,∴1cos 2C =, (0,)C π∈,∴3C π=,11sin 22S ab C ab ===12ab ∴=,由余弦定理知,22222cos ()3493613c a b ab A a b ab =+-=+-=-=,∴c =(2)由余弦定理知,2222cos c a b ab A =+-,2222()()16()3()344a b a b a b ab a b ++∴=+-+-⋅=, 8a b ∴+,当且仅当4a b ==时,取等,ABC ∴∆周长的最大值为4812+=.4.(2021•一模拟)已知ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,且()(sin sin )sin ()0a c A C B a b -+--=.(1)求C ;(2)若ABC S ∆=,2c =,求ABC ∆周长的最小值.【解答】解:(1)ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且()(sin sin )()sin 0a c A C b a B -++-=.利用正弦定理得:()()()0a c a c b a b -++-=,整理得:2220a c b ab -+-=,即2221cos 22a b c C ab +-==,由于0C π<<, 所以:3C π=.(2)因为11sin sin 223ABC S ab C ab π∆====,所以解得8ab =,所以周长22a b c ab c +++=,当且仅当a b ==所以ABC ∆周长的最小值为2.5.(2021•永州模拟)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c (sin )b A A =. (1)求B ;(2)若3b =,求ABC ∆周长最大时,ABC ∆的面积.【解答】解:(1)(sin )b A A =,∴sin (sin )C B A A =,∴)sin sin cos A B B A B A +=+,∴cos cos sin sin cos A B B A B A B A =+,∴sin B B =,∴tan B ,0B π<<,∴3B π=.(2)222cos 2a c b B ac+-=, 据(1)可得3B π=,∴222122a c b ac +-=,222b ac ac ∴=+-,29()3a c ac ∴=+-,∴222()9()3()24a c a c a c +++-=, 当且仅当3a c ==时等号成立,即当3a c ==时,a c +取得最大值,即周长取得最大值,此时133sin 23ABC S π∆=⨯⨯⨯=6.(2021•巴中模拟)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c.已知sin sin(),3b A a B b π=+=. (1)求ABC ∆的外接圆直径; (2)求ABC ∆周长的取值范围. 【解答】解:(1)sin sin()3b A a B π=+,∴由正弦定理,可得sin sin sin sin()3B A A B π=+,(0,)A π∈,sin 0A >,∴sin sin()3B B π=+,化简可得,1sin 2B B =,∴tan B =,(0,)B π∈,∴3B π=,由正弦定理可得,ABC ∆的外接圆直径21sin bR B ===. (2)由(1)可知,3B π=,由余弦定理可得,222b a c ac =+-, 222221()3()3()()24a cb ac ac a c a c +∴=+-+-=+, 当且仅当a c =时,等号成立,b , 2()3ac ∴+,即3a c +,又a cb +>=,∴3a c <+,∴332a b c++,ABC ∴∆的取值范围为.题型二 利用正弦定理和三角函数值域求三角形角度有关的最值、范围问题 例2.在△ABC 中,a 2+c 2=b 2+ac .(Ⅰ)求∠B 的大小; (Ⅱ)求cos A +cos C 的最大值.【解答】解:(Ⅰ)∵在△ABC 中,a 2+c 2=b 2+ac .∴a 2+c 2﹣b 2=ac .∴cos B ===,∴B =(Ⅱ)由(I )得:C =﹣A ,∴cos A +cos C =cos A +cos (﹣A )=cos A ﹣cos A +sin A=cos A +sin A =sin (A +). ∵A ∈(0,), ∴A +∈(,π),故当A +=时,sin (A +)取最大值1,即cos A +cos C 的最大值为1.方法点拨:本题考查了余弦定理、三角形内角和、三角函数和差角公式、辅助角公式以及三角函数值域,熟练掌握余弦定理、三角函数辅助角公式、三角函数值域求解的方法是解题的关键. 巩固训练:1.(2021•沈阳四模)在①2cos cos c b Ba A-=,②2cos 2a C c b +=,③1sin cos sin 2cos 2a A C c A A +=这三个条件中任选一个,补充在下面问题中,并解答该问题.问题:锐角ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且______. (1)求A ;(2)求cos cos B C +的取值范围. 【解答】解:(1)选① 因为2cos cos c b Ba A -=, 所以2sin sin cos sin cos C B BA A-=, 所以2sin cos sin cos sin cos C A B A A B -=,整理得2sin cos sin cos sin cos sin()sin C A B A A B A B C =+=+=. 因为sin 0C ≠,所以1cos 2A =. 因为(0,)2A π∈,所以3A π=.选②因为2cos 2a C c b +=,所以2sin cos sin 2sin 2sin()A C C B A C +==+, 所以2sin cos sin 2sin cos 2cos sin A C C A C A C +=+, 整理得sin 2cos sin C A C =. 因为sin 0C ≠,所以1cos 2A =. 因为(0,)2A π∈,所以3A π=.选③因为1sin cos sin 2cos 2a A C c A A +,所以sin sin cos sin sin cos cos A A C C A A B A +=,所以sin (sin cos sin cos )cos A A C C A B A +=,整理得sin sin cos A B B A =.因为sin 0B ≠,所以sin A A =.因为(0,)2A π∈,所以tan 3A A π=.(2)因为3A π=,所以1cos cos cos cos()cos sin()26B C B B A B B B π+=-+=+=+.因为2(0,),(0,)232B C B πππ∈=-∈,所以(,)62B ππ∈,所以2(,)633B πππ+∈,所以sin()6B π+∈,故cos cos B C +∈.2.(2021•下城区校级模拟)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin sin b B a A c A -=.(1)求证:2B A =;(2)若ABC ∆是锐角三角形,求sin sin AC的取值范围. 【解答】解:(1)由sin sin sin b B a A c A -=得22b a ac -=, 由余弦定理2222cos b a c ac B =+-, 代入22b a ac -=得22cos ac c ac B =-, 则2cos a c a B =-,由正弦定理得sin sin 2sin cos A C A B =-,所以sin sin()2sin cos A A B A B =+-,得sin sin()A B A =-, 由220b a ac -=>知b a >,故B A >, 所以A B A =-或()A B A π+-=(舍去) 所以2B A ⋯=,(2)3C A π=-,由0,02,03222A A A ππππ<<<<<-<得64A ππ<<,sin sin sin sin sin sin3sin(2)sin cos2cos sin 2A A A AC A A A A A A A===++,32sin 11(,1)3sin 4sin 34sin 2A A A A ==∈--.题型三 利用正弦定理和三角函数值域求三角形边长有关的最值、范围问题例3.(2021•汕头三模)在①22(sin sin )sin 3sin sin B C A B C +=+,②22cos c a B b =+,③cos cos 2cos 0b C c B a A +-=这三个条件中任选一个,补充到下面问题中,并解答问题.在ABC ∆中,内角A ,B ,C 的对边长分别为a ,b ,c ,且____.(1)求角A 的大小;(2)若ABC ∆是锐角三角形,且2b =,求边长c 的取值范围. 【解答】解:(1)选条件①.因为22(sin sin )sin 3sin sin B C A B C +=+, 所以222sin sin sin sin sin B C A B C +-=, 根据正弦定理得,222b c a bc +-=, 由余弦定理得,1cos 2A =, 因为A 是ABC ∆的内角, 所以3A π=选条件②,因为1cos 2c a B b =+,由余弦定理222122a c b c a b ac +-=⨯+,整理得222b c a bc +-=, 由余弦定理得,1cos 2A =, 因为A 是ABC ∆的内角, 所以3A π=.选条件③,因为cos cos 2cos 0b C c B a A +-=, sin cos sin cos 2sin cos 0B C C B A A ∴+-=.sin()2sin cos B C A A ∴+=,即sin 2sin cos A A A =因为0A π<<,sin 0A ≠.∴1cos 2A =, ∴3A π=;(2)因为3A π=,ABC ∆为锐角三角形,所以022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<<在ABC ∆中,2sin sin c C B=,所以212sin()sin )322sin sin B B B c B B π-+===,即1c . 由62B ππ<<可得,tan B >,所以10tan B<<,所以14c <<. 方法点拨:本题第一问考查正余弦定理的变形及应用,第二问边长范围问题考查正弦定理的边角互化,结合锐角三角形角度的范围和三角函数值域求解出角度的范围.巩固训练:1.在锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且220c a ab --=. (1)求证:2C A =;(2)若2a =,求c 的取值范围.【解答】解:(1)证明:因为220c a ab --=, 结合余弦定理,得2222cos c a b ab C =+-, 所以22cos ab b ab C =-,即2cos a b a C =-,由正弦定理,得sin sin 2sin cos sin()2sin cos A B A C A C A C =-=+- sin cos sin cos sin()C A A C C A =-=-,因为ABC ∆为锐角三角形, 所以A C A =-,即2C A =; (2)由(1)2C A =, 由正弦定理,得sin sin a cA C=,所以2cos 4cos c a A A ==,由题意,得02032022A A A ππππ⎧<<⎪⎪⎪<-<⎨⎪⎪<<⎪⎩,解得64A ππ<<,所以4cos c A =∈.2.(2021春•慈溪市期末)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知向量m 、n 满足:(2,6)m a =,(,2sin )n b B =,且//m n . (Ⅰ)求角A ;(Ⅱ)若ABC ∆是锐角三角形,且2a =,求b c +的取值范围. 【解答】解:(Ⅰ)因为//mn ,所以2a Bb =,2sin a B=, 由正弦定理得:2sin sin A B B =, 因为sin 0B≠, 所以sin A , 所以3A π=或23π. (Ⅱ)因为2a =,所以由正弦定理得sin sin sin a b c A B C ====,得:b B ,c C =,所以21sin )sin()]sin ]4sin()326b c B C B B B B B B ππ++=+-=++=+,因为ABC ∆是锐角三角形, 所以02B π<<,且2032B ππ<-<,可得62B ππ<<, 所以2363B πππ<+<sin()16B π<+,所以4b c <+.3.(2021春•青山湖区校级期中)在ABC ∆中,3B π=,AC ,则2AB BC +的最大值为( )A.B.C .3 D .4【解答】解:因为3B π=,AC由正弦定理得2sin sin sin a c bA C B===,所以2sin a A =,22sin 2sin()3c C A π==-,由则222sin()4sin 5sin )3AB BC A A A A A πϕ+=-++=+,其中ϕ为辅助角,根据正弦函数的性质得)A ϕ+的最大值 故选:B .4.(2021•B 卷模拟)在锐角ABC ∆中,a ,b ,c 分别为内角A ,B ,C 的对边,且有2b =. 在下列条件中选择一个条件完成该题目:①cos (cos )cos 0C B B A +-=;②2sin (2)sin (2)sin a A b c B c b C =-+-. (1)求A 的大小; (2)求2a c +的取值范围.【解答】解:(1)若选择①,因为cos (cos )cos 0C B B A +-=, 所以cos()cos cos cos 0A B B A B A -++=,即cos cos sin sin cos cos cos 0A B A B B A B A -++=,所以sin sin cos A B B A =, 因为sin 0B ≠,可得sin A A =,所以tan A =,可得3A π=;若选择②,因为2sin (2)sin (2)sin a A b c B c b C =-+-. 所以222222a b bc c bc =-+-,所以222bc b c a =+-,可得2221cos 22b c a A bc +-==,可得3A π=.(2)设ABC ∆外接圆半径为R ,则有22sin sin b R B B==, 可得222122(2sin sin )sin )sin())sin )1sin sin sin 2a c R A C C A B B B B B B +=+==+=+=,因为ABC ∆为锐角三角形,可得022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,可得62B ππ<<,所以sin B 在(6π,)2π单调递增,cos B 在(6π,)2π(6π,)2π单调递减,所以21a c +∈,4).5.(2021•肥城市模拟)已知锐角ABC ∆的外接圆半径为1,内角A ,B ,C 的对边分别为a ,b ,c ,ABC ∆的面积为S2224)S c b =+-.(1)求C ; (2)求bca的取值范围. 【解答】解:(1)2224)S c b =+-,∴222)4a b c S +-=,∴1cos 4sin 2C ab C =⨯sin C C =,cos 0C ∴≠,tan C又(0,)C π∈∴3C π=,(2)ABC ∆的外接圆半径为1,∴2sin cC=, 又正弦定理sin sin sin a b cA B C==, 2sin a A ∴=,2sin b B =,∴21sin()sin)3322sin sin2tanA A Abca A A Aπ-+======+,又因为ABC∆是锐角三角形,∴22ABππ⎧<<⎪⎪⎨⎪<<⎪⎩,即2232AAπππ⎧<<⎪⎪⎨⎪<-<⎪⎩,∴62Aππ<<,∴tan A>,1tan A<<,32tan A<<∴bca<<6.(2021春•庐阳区校级期末)在ABC∆中,内角A,B,C所对的边分别为a,b,c,(1cos)cosa b C c B++=.(1)求角C的大小;(2)若c=,求ABC∆周长的取值范围.【解答】解:(1)因为(1cos)cosa b C c B++=,所以由正弦定理得sin sin(1cos)sin cosA B C C B++=,又sin()sin()sinB C A Aπ+=-=,所以sin()sin sin cos sin cos0B C B B C C B+++-=,所以2sin cos sin0B C B+=,因为(0,)Bπ∈,所以sin0B≠,所以1cos2C=-,又(0,)Cπ∈,所以23Cπ=.(2)因为c=,23Cπ=,所以由正弦定理得2sin sin sin3b aB A===,则2sinb B=,2sina A=,故ABC∆的周长2sin2sin2sin2sin()3L B A B Bπ+=+-2sin2(sin cos cos sin)33B B Bππ=+-sin B B=+2sin()3B π=++,因为03B π<<,所以(33B ππ+∈,2)3π,sin()3B π+∈1],2sin()3B π+∈2+,故ABC ∆周长的取值范围为2.7.(2021春•淮安期末)从①(2)cos cos 0b c A a B -+=;②222b c a +-=;③(tan tan )2tan b A B c B +=这三个条件中选一个,补充到下面问题中,并完成解答.已知ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且____. (1)求角A 的大小;(2)若ABC ∆为锐角三角形,b =ABC ∆的周长的取值范围.【解答】解:(1)若选①,在ABC ∆中,由正弦定理得:sin cos 2sin cos sin cos 0B A C A A B -+=, 因为A B C π++=,A ,B ,(0,)C π∈, 所以sin 2sin cos 0C C A -=, 且sin 0C ≠, 因此1cos 2A =,(0,)A π∈, 可得3A π=;若选②,在ABC ∆中,由余弦定理得12cos sin 2bc A bc A ,所以sin A A , 因为sin 0A ≠,因此tan A =,且(0,)A π∈, 故3A π=;若选③,在ABC ∆中,2tan sin cos cos sin sin 1tan cos sin cos sin c A A B A B Cb B A B A B+=+==,且sin 0C ≠, 由正弦定理得:22sin sin sin cos sin c C Cb B A B==, 故1cos 2A =,可得3A π=;(2)因为ABC ∆为锐角三角形, 所以(0,)2B π∈,(0,)2C π∈,因此(,)62B ππ∈,sin sin c a C ==,可得c =3sin a B=, 所以ABC∆的周长为)31cos 333sin sin tan 2B B a c b B B B π+++++=+++,由于(,)62B ππ∈,可得(212B π∈,)4π,可得tan (22B∈,所以ABC ∆的周长取值范围为(3++.8.(2021•烟台模拟)在条件①222sin sin sin sin A B C B C --=,②1cos 2b a Cc =+,③(cos )cos cos 0C C A B +=中,任选一个补充在下面问题中并求解. 问题:在锐角ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,1c =,____. (1)求A ;(2)求ABC ∆面积的取值范围.【解答】解:(1)若选①222sin sin sin sin A B C B C --=,由正弦定理得222a b c --=,由余弦定理得222cos 2b c a A bc +-=, 由A 为三角形内角得6A π=;(2)14ABC S b ∆=,由正弦定理得51sin()cos sin 1622sin sin sin 2tan C C Cc Bb CC C C π-====,由题意得02506C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得32C ππ<<,所以tan Cb <ABC S ∆<<故ABC ∆面积的取值范围; (1)若选②1cos 2b a Cc =+,由正弦定理得1sin sin cos sin 2B AC C =+,所以1sin()sin cos sin 2A C A C C +=++,所以1sin cos sin cos sin cos sin 2A C C A A C C +=+,化简得1sin cos sin 2C A C =,因为sin 0C >, 所以1cos 2A =, 由A 为三角形内角得3A π=;(2)ABC S ∆,,由正弦定理得21sin()sin sin 1322sin sin sin 2C C Cc Bb CC C π-+====由题意得022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<,所以tan C , 故122b <<,ABC S ∆<<故ABC ∆面积的取值范围; (1)若选③(cos )cos cos 0C C A B +=,所以(cos )cos cos()0C C A A C -+=,化简得sin sin cos A C C A =, 因为sin 0C >,所以tan A =, 由A 为三角形内角得3A π=;(2)ABC S ∆,由正弦定理得21sin()sin sin 1322sin sin sin 2C C Cc Bb CC C π-+====由题意得022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<,所以tan C , 故122b <<,ABC S ∆<<故ABC ∆面积的取值范围.题型四 利用三角形三边关系求解范围问题例4.(2019•新课标Ⅲ)ABC ∆的内角A 、B 、C 的对边分别为a ,b ,c .已知sinsin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【解答】解:(1)sin sin 2A C a b A +=,即为sin cos sin 22B Ba ab A π-==, 可得sin cossin sin 2sin cos sin 222B B BA B A A ==, sin 0A >, cos2sin cos 222B B B ∴=, 若cos 02B=,可得(21)B k π=+,k Z ∈不成立, 1sin22B ∴=, 由0B π<<,可得3B π=;(2)若ABC ∆为锐角三角形,且1c =,由余弦定理可得1cos3b a π=,由三角形ABC 为锐角三角形,可得2211a a a +-+>且2211a a a +-+>, 解得122a <<,可得ABC ∆面积13sin 234S a π==∈.方法点拨:本题求解三角形面积的取值范围,由于一边和角度已知,可转化为求边长的范围,利用锐角三角形三边关系列出不等关系,从而求解出面积范围. 巩固训练:1.(2021•新高考Ⅱ)在ABC ∆中,角A ,B ,C 所对的边长为a ,b ,c ,1b a =+,2c a =+.(Ⅰ)若2sin 3sin C A =,求ABC ∆的面积;(Ⅱ)是否存在正整数a ,使得ABC ∆为钝角三角形?若存在,求出a 的值;若不存在,说明理由. 【解答】解:()2sin 3sin I C A =,∴根据正弦定理可得23c a =,1b a =+,2c a =+, 4a ∴=,5b =,6c =,在ABC ∆中,运用余弦定理可得2222224561cos 22458a b c C ab +-+-===⨯⨯,22sin cos 1C C +=,sin C ∴===∴11sin 4522ABC S ab C ∆==⨯⨯=()II c b a >>,ABC ∴∆为钝角三角形时,必角C 为钝角, 222222(1)(2)cos 022(1)a b c a a a C ab a a +-++-+==<+,2230a a ∴--<, 0a >, 03a ∴<<,三角形的任意两边之和大于第三边, a b c ∴+>,即12a a a ++>+,即1a >, 13a ∴<<,a 为正整数,2a ∴=.。
专题四 三角形中的最值(范围)问题三角形中最值(范围)问题的解题思路任何最值(范围)问题,其本质都是函数问题,三角形中的范围(最值)问题也不例外.三角形中的范围(最值)问题的解法主要有两种:一是用函数求解,二是利用基本不等式求解.一般求最值用基本不等式,求范围用函数.由于三角形中的最值(范围)问题一般是以角为自变量的三角函数问题,所以,除遵循函数问题的基本要求外,还有自己独特的解法.要建立所求量(式子)与已知角或边的关系,然后把角或边作为自变量,所求量(式子)的值作为函数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利用条件中的范围限制,以及三角形自身范围限制,要尽量把角或边的范围(也就是函数的定义域)找完善,避免结果的范围过大.考点一 三角形中与角或角的函数有关的最值(范围)【例题选讲】[例1](1)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且a >b >c ,a 2<b 2+c 2,则角A 的取值范围是( )A .⎝⎛⎭⎫π2,πB .⎝⎛⎭⎫π4,π2C .⎝⎛⎭⎫π3,π2D .⎝⎛⎭⎫0,π2 答案 C 解析 因为a 2<b 2+c 2,所以cos A =b 2+c 2-a 22bc>0,所以A 为锐角.又因为a >b >c ,所以A 为最大角,所以角A 的取值范围是⎝⎛⎭⎫π3,π2.(2)在△ABC 中,若AB =1,BC =2,则角C 的取值范围是( )A .⎝⎛⎦⎤0,π6B .⎝⎛⎭⎫0,π2C .⎝⎛⎭⎫π6,π2D .⎝⎛⎦⎤π6,π2 答案 A 解析 因为c =AB =1,a =BC =2,b =AC .根据两边之和大于第三边,两边之差小于第三边可知1<b <3,根据余弦定理cos C =12ab (a 2+b 2-c 2)=14b (4+b 2-1)=14b (3+b 2)=34b +b 4=14⎝ ⎛⎭⎪⎫3b -b 2+32≥32.所以0<C ≤π6.故选A . (3)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin2A ,则角A 的取值范围为( )A .⎝⎛⎦⎤0,π6B .⎝⎛⎦⎤0,π4C .⎣⎡⎦⎤π6,π4D .⎣⎡⎦⎤π6,π3 答案 B 解析 法一:在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin2A ,即2sin B cos A=22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b =2a ,所以A 为锐角,又sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. 法二:在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理,得b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc=12b 2+c 22bc ≥2 12b 2·c 22bc =22,当且仅当c =22b 时等号成立,所以A ∈⎝⎛⎦⎤0,π4. (4)(2014·江苏)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.答案 6-24解析 由sin A +2sin B =2sin C ,结合正弦定理得a +2b =2c .由余弦定理得cos C =a 2+b 2-c 22ab =a 2+b 2-(a +2b )242ab =34a 2+12b 2-2ab 22ab≥2 ⎝⎛⎭⎫34a 2⎝⎛⎭⎫12b 2-2ab 22ab =6-24,故6-24≤cos C <1,故cos C 的最小值为6-24. (5)设△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,已知a 2+2b 2=c 2,则tan C tan A =_____;tan B 的最大值为________.答案 -3 33 解析 由正弦定理可得tan C tan A =sin C sin A ·cos A cos C =c a ·cos A cos C ,再结合余弦定理可得tan C tan A =c a ·cos A cos C=c a ·b 2+c 2-a 22bc ·2ab a 2+b 2-c 2=b 2+c 2-a 2a 2+b 2-c 2.由a 2+2b 2=c 2,得tan C tan A =b 2+a 2+2b 2-a 2a 2+b 2-a 2-2b 2=-3.由已知条件及大边对大角可知0<A <π2<C <π,从而由A +B +C =π可知tan B =-tan(A +C )=-tan A +tan C 1-tan A tan C=-1+tan C tan A 1tan A -tan C =23-tan C+(-tan C ),因为π2<C <π,所以3-tan C +(-tan C )≥23-tan C×(-tan C )=23(当且仅当tan C =-3时取等号),从而tan B ≤223=33,即tan B 的最大值为33. (6)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若a =2b sin C ,则tan A +tan B +tan C 的最小值是( )A .4B .33C .8D .63解析:由a =2b sin C 得sin A =2sin B sin C ,∴sin(B +C )=sin B cos C +cos B sin C =2sin B sin C ,即tan B +tan C =2tan B tan C .又三角形中的三角恒等式tan A +tan B +tan C =tan A tan B tan C ,∴tan B tan C =tan A tan A -2,∴tan A tan B tan C =tan A ·tan A tan A -2,令tan A -2=t ,得tan A tan B tan C =(t +2)2t =t +4t +4≥8,当且仅当t =4t , 即t =2,tan A =4 时,取等号.【对点训练】1.在不等边三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中a 为最大边,如果sin 2(B +C )<sin 2B +sin 2C ,则角A 的取值范围为( )A .⎝⎛⎭⎫0,π2B .⎝⎛⎭⎫π4,π2C .⎝⎛⎭⎫π6,π3D .⎝⎛⎭⎫π3,π2 2.已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则角A 的取值范 围是( )A .⎝⎛⎦⎤π6,2π3B .⎣⎡⎦⎤π6,π4C .⎝⎛⎦⎤0,π6D .⎣⎡⎭⎫π6,π3 3.已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,满足cos A sin B sin C +cos B sin A sin C =2cos C sin A sin B ,则C 的最大值为________.4.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若b 2+c 2=2a 2,则cos A 的最小值为________.5.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos2A +cos2B =2cos2C ,则cos C 的最小值为( )A .32B .22C .12D .-126.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A =b sin A ,则sin A +sin C 的最大值为( ) A .2 B .98 C .1 D .787.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a cos B -b cos A =12c ,当tan(A -B )取最大值时, 角B 的值为________.8.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A +b sin B =c sin C -2a sin B ,则sin2A tan 2B 的最大值是__________.9.在△ABC 中,若sin C =2cos A cos B ,则cos 2A +cos 2B 的最大值为________.10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若3a cos C +b =0,则tan B 的最大值是________.11.(2016江苏)在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是________.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 为锐角三角形,且满足b 2-a 2=ac ,则1tan A-1tan B的取值范围是________. 13.在锐角三角形ABC 中,已知2sin 2A +sin 2B =2sin 2C ,则1tan A +1tan B +1tan C的最小值为________. 考点二 三角形中与边或周长有关的最值(范围)【例题选讲】[例2](1)已知△ABC 中,角A ,32B ,C 成等差数列,且△ABC 的面积为1+2,则AC 边的长的最小值是________.答案 2 解析 ∵A ,32B ,C 成等差数列,∴A +C =3B ,又A +B +C =π,∴B =π4.设角A ,B ,C 所对的边分别为a ,b ,c ,由S △ABC =12ac sin B =1+2得ac =2(2+2),由余弦定理及a 2+c 2≥2ac ,得b 2≥(2-2)ac ,即b 2≥(2-2)×2(2+2),∴b ≥2(当且仅当a =c 时等号成立),∴AC 边的长的最小值为2.(2)(2015·全国Ⅰ)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________. 答案 (6-2,6+2) 解析 通法:依题意作出四边形ABCD ,连结BD .令BD =x ,AB =y ,∠CDB =α,∠CBD =β.在△BCD 中,由正弦定理得2sin α=x sin 75.由题意可知,∠ADC =135°,则∠ADB=135°-α.在△ABD 中,由正弦定理得x sin 75°=y sin(135°-α).所以y sin(135°-α)=2sin α,即y =2sin(135°-α)sin α=2sin[90°-(α-45°)]sin α=2cos(α-45°)sin α=2(cos α+sin α)sin α.因为0°<β<75°,α+β+75°=180°,所以30°<α<105°,当α=90°时,易得y =2;当α≠90°时,y =2(cos α+sin α)sin α=2⎝⎛⎭⎫1tan α+1.又tan 30°=33,tan 105°=tan(60°+45°)=tan 60°+tan 45°1-tan 60°tan 45°=-2-3,结合正切函数的性质知,1tan α∈(3-2,3),且1tan α≠0,所以y =2⎝⎛⎭⎫1tan α+1∈(6-2,2)∪(2,6+2).综上所述:y ∈(6-2,6+2).提速方法:画出四边形ABCD ,延长CD ,BA ,探求出AB 的取值范围.如图所示,延长BA 与CD 相交于点E ,过点C 作CF ∥AD 交AB 于点F ,则BF <AB <BE .在等腰三角形CFB 中,∠FCB =30°,CF =BC =2,∴BF =22+22-2×2×2cos 30°=6-2.在等腰三角形ECB 中,∠CEB =30°,∠ECB =75°,BE =CE ,BC =2,BE sin 75°=2sin 30°,∴BE =212×6+24=6+2.∴6-2<AB <6+2.(3)在△ABC 中,若C =2B ,则c b的取值范围为________. 答案 (1,2) 解析 因为A +B +C =π,C =2B ,所以A =π-3B >0,所以0<B <π3,所以12<cos B <1.因为c b =sin C sin B =sin 2B sin B =2cos B ,所以1<2cos B <2,故1<c b<2. (4) (2018·北京)若△ABC 的面积为34(a 2+c 2-b 2),且∠C 为钝角,则∠B =__________;c a 的取值范围是__________.答案 60° (2,+∞) 解析 由已知得34(a 2+c 2-b 2)=12ac sin B ,所以3(a 2+c 2-b 2)2ac=sin B ,由余弦定理得3cos B =sin B ,所以tan B =3,所以B =60°,又C >90°,B =60°,所以A <30°,且A +C =120°,所以c a =sin C sin A =sin (120°-A )sin A =12+32tan A .又A <30°,所以0<tan A <33,即1tan A >3,所以c a >12+32=2. (5)在△ABC 中,角, , A B C 所对的边分别为, , a b c ,且满足sin sin()sin sin cos A B C B C A -=,则2ab c 的最大值为__________.答案 32解析 由sin sin()sin sin cos A B C B C A -=,得sin (sin cos cos sin )sin sin cos A B C B C B C A -=,由正弦定理可得cos cos cos ab C ac B bc A -=,由余弦定理可得22222222a b c a c b ab ac bc ab ac +-+--=2222b c a bc+-,化简得2223a b c +=,又因为22232c a b ab =+≥,当且仅当a b =时等号成立,可得232ab c ≤,所以2ab c 的最大值为32. (6)在△ABC 中,若C =60°,c =2,则a +b 的取值范围为________.答案 (2,4] 解析 由题意,得c =2.由余弦定理可得c 2=a 2+b 2-2ab cos C ,即4=a 2+b 2-ab =(a +b )2-3ab ≥14(a +b )2,得a +b ≤4.又由三角形的性质可得a +b >2,综上可得2<a +b ≤4. (7)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足b 2+c 2-a 2=bc ,AB →·BC →>0,a =32,则b +c 的取值范围是( )A .⎝⎛⎭⎫1,32B .⎝⎛⎭⎫32,32C .⎝⎛⎭⎫12,32D .⎝⎛⎦⎤12,32 答案 B 解析 在△ABC 中,b 2+c 2-a 2=bc ,由余弦定理可得cos A =b 2+c 2-a 22bc =bc 2bc =12,因为A 是△ABC 的内角,所以A =60°.因为a =32,所以由正弦定理得a sin A =b sin B =c sin C =c sin (120°-B )=1,所以b +c =sin B +sin(120°-B )=32sin B +32cos B =3sin(B +30°).因为AB →·BC →=|AB →|·|BC →|·cos(π-B )>0,所以cos B <0,B 为钝角,所以90°<B <120°,120°<B +30°<150°,故sin(B +30°)∈⎝⎛⎭⎫12,32,所以b +c =3sin(B +30°)∈⎝⎛⎭⎫32,32. (8) (2018·江苏)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________.答案 9 解析 因为∠ABC =120°,∠ABC 的平分线交AC 于点D ,所以∠ABD =∠CBD =60°,由三角形的面积公式可得12ac sin 120°=12a ×1×sin 60°+12c ×1×sin 60°,化简得ac =a +c ,又a >0,c >0,所以1a +1c =1,则4a +c =(4a +c )·⎝⎛⎭⎫1a +1c =5+c a +4a c≥5+2c a ·4a c=9,当且仅当c =2a 时取等号,故4a +c 的最小值为9.(9)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为________. 答案 12 解析 由正弦定理a sin A =b sin B ,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A .又在△ABC 中,sin B >0,∴sin A =3cos A ,即tan A =3.∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cos A =(b +c )2-3bc ≥(b +c )2-3⎝⎛⎭⎫b +c 22,则(b +c )2≤64,即b +c ≤8(当且仅当b =c =4时等号成立),∴△ABC 周长=a +b +c =4+b +c ≤12,即最大值为12.(10)在△ABC 中,∠ACB =60°,BC >1,AC =AB +12,当△ABC 的周长最短时,BC 的长是________. 答案 1+22 解析 设AC =b ,AB =c ,BC =a ,△ABC 的周长为l ,由b =c +12,得l =a +b +c =a +2c +12.又cos 60°=a 2+b 2-c 22ab =12,即ab =a 2+b 2-c 2,得a ⎝⎛⎭⎫c +12=a 2+⎝⎛⎭⎫c +122-c 2,即c =a 2-12a +14a -1.l =a +2c +12=a +2a 2-a +12a -1+12=3⎣⎡⎦⎤(a -1)2+43()a -1+12a -1+12=3⎣⎡⎦⎤(a -1)+12(a -1)+43+12≥3⎣⎢⎡⎦⎥⎤2(a -1)×12(a -1)+43+12,当且仅当a -1=12(a -1)时,△ABC 的周长最短,此时a =1+22,即BC 的长是1+22. 【对点训练】1.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =b cos C +c sin B ,且△ABC 的面积为1+2,则b 的最小值为( )A .2B .3C .2D .32.已知△ABC 中,AB +2AC =6,BC =4,D 为BC 的中点,则当AD 最小时,△ABC 的面积为________.3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B ,C 为钝角,则c b的取值范围是________. 4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若A =3B ,则a b的取值范围是( ) A .(0,3) B .(1,3) C .(0,1] D .(1,2]5.已知a ,b ,c 分别为△ABC 的内角A ,B ,C 所对的边,其面积满足S △ABC =14a 2,则c b的最大值为( ) A .2-1 B .2 C .2+1 D .2+26.在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________.7.在外接圆半径为12的△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C ,则b +c 的最大值是( )A .1B .12C .3D .328.在△ABC 中,B =60°,AC =3,则2a +c 的最大值为________.9.在△ABC 中,AB =2,C =π6,则3a +b 的最大值为( ) A .7 B .27 C .37 D .4710.在△ABC 中,A ,B ,C 的对边分别是a ,b ,c .若A =120°,a =1,则2b +3c 的最大值为( )A .3B .2213C .32D .35211.在△ABC 中,a ,b ,c 分别为三个内角A ,B ,C 的对边,且BC 边上的高为36a ,则c b +b c取得最大值时,内角A 的值为( )A .π2B .π6C .2π3D .π312.在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(a -b )(sin A +sin B )=(c -b )·sin C .若a =3,则b 2+c 2的取值范围是( )A .(5,6]B .(3,5)C .(3,6]D .[5,6]13.在△ABC 中,B =60°,AC =3,则△ABC 的周长的最大值为________.14.凸函数是一类重要的函数,其具有如下性质:若定义在(a ,b )上的函数f (x )是凸函数,则对任意的x i ∈(a ,b )(i =1,2,…,n ),必有f ⎝⎛⎭⎫x 1+x 2+…+x n n ≥f (x 1)+f (x 2)+…+f (x n )n 成立.已知y =sin x 是(0,π)上的凸函数,利用凸函数的性质,当△ABC 的外接圆半径为R 时,其周长的最大值为________.考点三 三角形中与面积有关的最值(范围)【例题选讲】[例3](1)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,tan A =43,a =4,则△ABC 的面积的最大值为( )A .4B .6C .8D .12答案 C 解析 因为tan A =43,所以sin A cos A =43.又sin 2A +cos 2A =1,所以cos 2A =925,解得cos A =35或cos A =-35(舍去),故sin A =45.又16=b 2+c 2-2bc ×35≥2bc -65bc ,所以bc ≤20,当且仅当b =c =25时取等号,故△ABC 的面积的最大值为12×20×45=8. (2)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若⎝⎛⎭⎫12b -sin C cos A =sin A cos C ,且a =23,则△ABC 面积的最大值为________.答案 33 解析 因为⎝⎛⎭⎫12b -sin C cos A =sin A cos C ,所以12b cos A -sin C cos A =sin A cos C ,所以12b cos A =sin(A +C ),所以12b cos A =sin B ,所以cos A 2=sin B b ,又sin B b =sin A a ,a =23,所以cos A 2=sin A 23,得tan A =3,又A ∈(0,π),则A =π3,由余弦定理得(23)2=b 2+c 2-2bc ·12=b 2+c 2-bc ≥2bc -bc =bc ,即bc ≤12,当且仅当b =c =23时取等号,从而△ABC 面积的最大值为12×12×32=33. (3)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足4S =a 2-(b -c )2,b +c =8,则S 的最大值为________.答案 8 解析 由题意得,4×12bc sin A =a 2-b 2-c 2+2bc ,又a 2=b 2+c 2-2bc cos A ,代入上式得,2bc sin A =-2bc cos A +2bc ,即sin A +cos A =1,2sin ⎝⎛⎭⎫A +π4=1,又0<A <π,∴π4<A +π4<5π4,∴A +π4=3π4,∴A =π2,S =12bc sin A =12bc ,又b +c =8≥2bc ,当且仅当b =c 时取“=”,∴bc ≤16,∴S 的最大值为8.(4)若△ABC 的三边长分别为a ,b ,c ,面积为S ,且S =c 2-(a -b )2,a +b =2,则△ABC 面积的最大值为________.答案 417解析 S =c 2-(a -b )2=c 2-a 2-b 2+2ab =2ab -(a 2+b 2-c 2),由余弦定理得a 2+b 2-c 2=2ab cos C ,∴c 2-(a -b )2=2ab (1-cos C ),即S =2ab (1-cos C ).∵S =12ab sin C ,∴sin C =4(1-cos C ).又∵sin 2C +cos 2C =1,∴17cos 2C -32cos C +15=0,解得cos C =1517或cos C =1(舍去),∴sin C =817,∴S =12ab sin C =417a (2-a )=-417(a -1)2+417.∵a +b =2,∴0<a <2,∴当a =1,b =1时,S max =417. (5)已知△ABC 的外接圆半径为R ,且满足2R (sin 2A -sin 2C )=(2a -b )·sin B ,则△ABC 面积的最大值为________.答案 2+12R 2 解析 由正弦定理得a 2-c 2=(2a -b )b ,即a 2+b 2-c 2=2ab .由余弦定理得cos C =a 2+b 2-c 22ab =2ab 2ab =22,∵C ∈(0,π),∴C =π4.∴S =12ab sin C =12×2R sin A ·2R sin B ·22=2R 2sin A sin B =2R 2sin A sin ⎝⎛⎭⎫3π4-A =2R 2sin A ⎝⎛⎭⎫22cos A +22sin A =R 2(sin A cos A +sin 2A )=R 2⎝⎛⎭⎫12sin 2A +1-cos 2A 2=R 2⎣⎡⎦⎤22sin ⎝⎛⎭⎫2A -π4+12,∵A ∈⎝⎛⎭⎫0,3π4,∴2A -π4∈⎝⎛⎭⎫-π4,5π4,∴sin ⎝⎛⎭⎫2A -π4∈⎝⎛⎦⎤-22,1,∴S ∈⎝ ⎛⎦⎥⎤0,2+12R 2,∴面积S 的最大值为2+12R 2. (6)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足b =c ,b a =1-cos B cos A.若点O 是△ABC 外一点,∠AOB =θ(0<θ<π),OA =2,OB =1,如图所示,则四边形OACB 面积的最大值是( )A .4+534B .8+534C .3D .4+52答案 B 解析 由b a =1-cos B cos A及正弦定理得sin B cos A =sin A -sin A cos B ,所以sin(A +B )=sin A ,所以sin C =sin A ,因为A ,C ∈(0,π),所以C =A ,又b =c ,所以A =B =C ,△ABC 为等边三角形.设△ABC的边长为k ,则k 2=12+22-2×1×2×cos θ=5-4cos θ,则S 四边形OACB =12×1×2sin θ+34k 2=sin θ+34(5-4cos θ)=2sin ⎝⎛⎭⎫θ-π3+534≤2+534=8+534,所以当θ-π3=π2,即θ=5π6时,四边形OACB 的面积取得最大值,且最大值为8+534. 【对点训练】1.(2014·全国Ⅰ)已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.2.在△ABC 中,若AB =2,AC 2+BC 2=8,则△ABC 面积的最大值为( )A .2B .2C .3D .33.在△ABC 中,AC →·AB →=|AC →-AB →|=3,则△ABC 的面积的最大值为( )A .21B .3214C .212D .321 4.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积S =a 2-(b -c )2,且b +c =8,则 S 的最大值为________.5.若AB =2,AC =2BC ,则S △ABC 的最大值为( )A .22B .32C .23D .32 6.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin A -sin B =13sin C ,3b =2a ,2≤a 2+ac ≤18, 设△ABC 的面积为S ,p =2a -S ,则p 的最大值是( )A .529B .729C . 2D .9287.在△ABC 中,设角A ,B ,C 对应的边分别为a ,b ,c ,记△ABC 的面积为S ,且4a 2=b 2+2c 2,则S a2的 最大值为________.专题四 三角形中的最值(范围)问题三角形中最值(范围)问题的解题思路任何最值(范围)问题,其本质都是函数问题,三角形中的范围(最值)问题也不例外.三角形中的范围(最值)问题的解法主要有两种:一是用函数求解,二是利用基本不等式求解.一般求最值用基本不等式,求范围用函数.由于三角形中的最值(范围)问题一般是以角为自变量的三角函数问题,所以,除遵循函数问题的基本要求外,还有自己独特的解法.要建立所求量(式子)与已知角或边的关系,然后把角或边作为自变量,所求量(式子)的值作为函数值,转化为函数关系,将原问题转化为求函数的值域问题.这里要利用条件中的范围限制,以及三角形自身范围限制,要尽量把角或边的范围(也就是函数的定义域)找完善,避免结果的范围过大.考点一 三角形中与角或角的函数有关的最值(范围)【例题选讲】[例1](1)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且a >b >c ,a 2<b 2+c 2,则角A 的取值范围是( )A .⎝⎛⎭⎫π2,πB .⎝⎛⎭⎫π4,π2C .⎝⎛⎭⎫π3,π2D .⎝⎛⎭⎫0,π2 答案 C 解析 因为a 2<b 2+c 2,所以cos A =b 2+c 2-a 22bc>0,所以A 为锐角.又因为a >b >c ,所以A 为最大角,所以角A 的取值范围是⎝⎛⎭⎫π3,π2.(2)在△ABC 中,若AB =1,BC =2,则角C 的取值范围是( )A .⎝⎛⎦⎤0,π6B .⎝⎛⎭⎫0,π2C .⎝⎛⎭⎫π6,π2D .⎝⎛⎦⎤π6,π2 答案 A 解析 因为c =AB =1,a =BC =2,b =AC .根据两边之和大于第三边,两边之差小于第三边可知1<b <3,根据余弦定理cos C =12ab (a 2+b 2-c 2)=14b (4+b 2-1)=14b (3+b 2)=34b +b 4=14⎝ ⎛⎭⎪⎫3b -b 2+32≥32.所以0<C ≤π6.故选A . (3)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin2A ,则角A 的取值范围为( )A .⎝⎛⎦⎤0,π6B .⎝⎛⎦⎤0,π4C .⎣⎡⎦⎤π6,π4D .⎣⎡⎦⎤π6,π3 答案 B 解析 法一:在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin2A ,即2sin B cos A=22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b =2a ,所以A 为锐角,又sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. 法二:在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理,得b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc=12b 2+c 22bc ≥2 12b 2·c 22bc =22,当且仅当c =22b 时等号成立,所以A ∈⎝⎛⎦⎤0,π4. (4)(2014·江苏)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________. 答案6-24 解析 由sin A +2sin B =2sin C ,结合正弦定理得a +2b =2c .由余弦定理得cos C =a 2+b 2-c 22ab=a 2+b 2-(a +2b )242ab =34a 2+12b 2-2ab22ab≥2⎝⎛⎭⎫34a 2⎝⎛⎭⎫12b 2-2ab 22ab=6-24,故6-24≤cos C <1,故cos C 的最小值为6-24. (5)设△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,已知a 2+2b 2=c 2,则tan Ctan A =_____;tan B 的最大值为________.答案 -333 解析 由正弦定理可得tan C tan A =sin C sin A ·cos A cos C =c a ·cos A cos C ,再结合余弦定理可得tan C tan A =c a ·cos A cos C=c a ·b 2+c 2-a 22bc ·2ab a 2+b 2-c 2=b 2+c 2-a 2a 2+b 2-c 2.由a 2+2b 2=c 2,得tan C tan A =b 2+a 2+2b 2-a 2a 2+b 2-a 2-2b 2=-3.由已知条件及大边对大角可知0<A <π2<C <π,从而由A +B +C =π可知tan B =-tan(A +C )=-tan A +tan C 1-tan A tan C =-1+tan Ctan A 1tan A -tan C =23-tan C +(-tan C ),因为π2<C <π,所以3-tan C +(-tan C )≥23-tan C×(-tan C )=23(当且仅当tan C =-3时取等号),从而tan B ≤223=33,即tan B 的最大值为33.(6)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若a =2b sin C ,则tan A +tan B +tan C 的最小值是( )A .4B .33C .8D .63解析:由a =2b sin C 得sin A =2sin B sin C ,∴sin(B +C )=sin B cos C +cos B sin C =2sin B sin C ,即tan B +tan C =2tan B tan C .又三角形中的三角恒等式tan A +tan B +tan C =tan A tan B tan C ,∴tan B tan C =tan Atan A -2,∴tan A tan B tan C =tan A ·tan A tan A -2,令tan A -2=t ,得tan A tan B tan C =(t +2)2t =t +4t +4≥8,当且仅当t =4t , 即t =2,tan A =4 时,取等号.【对点训练】1.在不等边三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中a 为最大边,如果sin 2(B +C )<sin 2B +sin 2C ,则角A 的取值范围为( )A .⎝⎛⎭⎫0,π2B .⎝⎛⎭⎫π4,π2C .⎝⎛⎭⎫π6,π3D .⎝⎛⎭⎫π3,π2 1.答案 D 解析 由题意得sin 2A <sin 2B +sin 2C ,再由正弦定理得a 2<b 2+c 2,即b 2+c 2-a 2>0.则cos A =b 2+c 2-a 22bc >0,∵0<A <π,∴0<A <π2.又a 为最大边,∴A >π3.因此得角A 的取值范围是⎝⎛⎭⎫π3,π2.2.已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则角A 的取值范 围是( )A .⎝⎛⎦⎤π6,2π3B .⎣⎡⎦⎤π6,π4C .⎝⎛⎦⎤0,π6D .⎣⎡⎭⎫π6,π3 2.答案 C 解析 在△ABC 中,由正弦定理化简已知的等式得sin A sin A sin B +sin B cos 2A =2sin A ,即 sin B (sin 2A +cos 2A )=2sin A ,所以sin B =2sin A ,由正弦定理得b =2a ,所以cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac=3a 2+c 24ac ≥23ac 4ac =32(当且仅当c 2=3a 2,即c =3a 时取等号),因为A 为△ABC 的内角,且y =cos x在(0,π)上是减函数,所以0<A ≤π6,故角A 的取值范围是⎝⎛⎦⎤0,π6. 3.已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,满足cos A sin B sin C +cos B sin A sin C =2cos C sin A sin B ,则C 的最大值为________.3.答案 π3 解析 由正弦定理,得bc cos A +ac cos B =2ab cos C ,由余弦定理,得bc ·b 2+c 2-a 22bc +ac ·c 2+a 2-b 22ac =2ab ·a 2+b 2-c 22ab ,∴a 2+b 2=2c 2,∴cos C =a 2+b 2-c 22ab =a2+b 2-12(a 2+b 2)2ab =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时,取等号.∵0<C <π,∴0<C ≤π3,∴C 的最大值为π3. 4.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若b 2+c 2=2a 2,则cos A 的最小值为________. 4.答案 12 解析 因为b 2+c 2=2a 2,则由余弦定理可知a 2=2bc cos A ,所以cos A =a 22bc =12×b 2+c 22bc ≥12×2bc 2bc=12(当且仅当b =c 时等号成立),即cos A 的最小值为12. 5.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos2A +cos2B =2cos2C ,则cos C 的最小值为( )A .32 B .22 C .12 D .-125.答案 C 解析 因为cos2A +cos2B =2cos2C ,所以1-2sin 2A +1-2sin 2B =2-4sin 2C ,得a 2+b 2=2c 2,cos C =a 2+b 2-c 22ab ≥a 2+b 22a 2+b 2=12,当且仅当a =b 时等号成立,故选C .6.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A =b sin A ,则sin A +sin C 的最大值为( )A .2B .98C .1D .786.答案 B 解析 ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sin B ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos2A =sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a cos B -b cos A =12c ,当tan(A -B )取最大值时,角B 的值为________.7.答案 π6 解析 由a cos B -b cos A =12c 及正弦定理,得sin A cos B -sin B cos A =12sin C =12sin(A +B )=12(sin A cos B +cos A sin B ),整理得sin A cos B =3cos A sin B ,即tan A =3tan B ,易得tan A >0,tan B >0.所以tan(A -B )=tan A -tan B 1+tan A tan B =2tan B 1+3tan 2B =21tan B +3tan B ≤223=33,当且仅当1tan B =3tan B ,即tan B =33时,tan(A -B )取得最大值,所以B =π6.8.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A +b sin B =c sin C -2a sin B ,则sin2A tan 2B 的最大值是__________.8.答案 3-22 解析 依题意得a 2+b 2-c 2=-2ab ,则2ab cos C =-2ab ,所以cos C =-22, 所以C =3π4,A =π4-B ,所以sin2A tan 2B =cos2B tan 2B =(1-tan 2B )tan 2B 1+tan 2B .令1+tan 2B =t ,其中t ∈(1,2),则有(1-tan 2B )tan 2B 1+tan 2B =(2-t )(t -1)t =-⎝⎛⎭⎫t +2t +3≤3-22,当且仅当t =2时取等号.故sin 2A tan 2B 的最大值是3-22.9.在△ABC 中,若sin C =2cos A cos B ,则cos 2A +cos 2B 的最大值为________. 9.答案2+12解析 解法1 因为sin C =2cos A cos B ,所以,sin(A +B )=2cos A cos B ,化简得tan A +tan B =2,cos 2A +cos 2B =cos 2A sin 2A +cos 2A +cos 2B sin 2B +cos 2B =1tan 2A +1+1tan 2B +1=tan 2A +tan 2B +2(tan A tan B )2+tan 2A +tan 2B +1=(tan A +tan B )2-2tan A tan B +2(tan A tan B )2+(tan A +tan B )2-2tan A tan B +1=6-2tan A tan B(tan A tan B )2-2tan A tan B +5.因为分母(tan A tan B )2-2tan A tan B +5>0,所以令6-2tan A tan B =t (t >0),则cos 2A +cos 2B =4t t 2-8t +32=4t +32t-8≤4232-8=2+12(当且仅当t =42时取等号). 解法2 由解法1得tan A +tan B =2,令tan A =1+t ,tan B =1-t ,则cos 2A +cos 2B =1tan 2A +1+1tan 2B +1=1t 2+2+2t +1t 2+2-2t =2(t 2+2)(t 2+2)2-4t 2,令d =t 2+2≥2,则cos 2A +cos 2B =2d d 2-4d +8=2d +8d-4≤228-4=2+12,当且仅当d =22时等号成立.解法3 因为sin C =2cos A cos B ,所以sin C =cos(A +B )+cos(A -B ),即cos(A -B )=sin C +cos C ,cos 2A +cos 2B =1+cos2A 2+1+cos2B 2=1+cos(A +B )cos(A -B )=1-cos C (sin C +cos C )=12-12(sin2C +cos2C )=12-22sin(2C +π4)≤12+22=2+12,当且仅当2C +π4=3π2,即C =5π8时取等号. 10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若3a cos C +b =0,则tan B 的最大值是________.10.答案 34解析 在△ABC 中,因为3a cos C +b =0,所以C 为钝角,由正弦定理得3sin A cos C +sin(A+C )=0,3sin A cos C +sin A cos C +cos A sin C =0,所以4sin A cos C =-cos A ·sin C ,即tan C =-4tan A .因为tan A >0,所以tan B =-tan(A +C )=-tan A +tan C 1-tan A tan C =tan A +tan C tan A tan C -1=-3tan A-4tan 2A -1=34tan A +1tan A≤324=34,当且仅当tan A =12时取等号,故tan B 的最大值是34. 11.(2016江苏)在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是________. 11.答案 8 解析 因为sin A =sin(B +C )=2sin B sin C ,所以tan B +tan C =2tan B tan C ,因此tan A tan B tan C=tan A +tan B +tan C =tan A +2tan B tan C ≥2 2 tan A tan B tan C ,所以tan A tan B tan C ≥8.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 为锐角三角形,且满足b 2-a 2=ac ,则1tan A-1tan B的取值范围是________. 12.答案 ⎝⎛⎭⎫1,233 解析 思路一,根据题意可知,本题可以从“解三角形和三角恒等变换”角度切入,又因已知锐角和边的关系,而所求为正切值,故把条件化为角的正弦和余弦来处理即可;思路二,本题所求为正切值,故可以构造直角三角形,用边的关系处理.解法1 原式可化为1tan A -1tan B =cos A sin A -cos B sin B =sin B cos A -cos B sin A sin A sin B =sin (B -A )sin A sin B .由b 2-a 2=ac 得,b 2=a 2+ac =a 2+c 2-2ac cos B ,即a =c -2a cos B ,也就是sin A =sin C -2sin A cos B ,即sin A =sin(A +B )-2sin A cos B =sin(B -A ),由于△ABC 为锐角三角形,所以有A =B -A ,即B =2A ,故1tan A -1tan B =1sin B ,在锐角三角形ABC 中易知,π3<B <π2,32<sin B <1,故1tan A -1tan B ∈⎝⎛⎭⎫1,233.解法2 根据题意,作CD ⊥AB ,垂足为点D ,画出示意图.因为b 2-a 2=AD 2-BD 2=(AD +BD )(AD -BD )=c (AD -BD )=ac ,所以AD -BD =a ,而AD +BD =c ,所以BD =c -a 2,则c >a ,即ca >1,在锐角三角形ABC 中有b 2+a 2>c 2,则a 2+a 2+ac >c 2,即⎝⎛⎭⎫c a 2-c a -2<0,解得-1<c a <2,因此,1<c a <2.而1tan A -1tan B =AD -BD CD=a a 2-⎝⎛⎭⎫c -a 22=11-14⎝⎛⎭⎫c a -12∈⎝⎛⎭⎫1,233.13.在锐角三角形ABC 中,已知2sin 2A +sin 2B =2sin 2C ,则1tan A +1tan B +1tan C 的最小值为________.13.答案132解析 解法1 因为2sin 2A +sin 2B =2sin 2C ,所以由正弦定理可得2a 2+b 2=2c 2,由余弦 定理及正弦定理可得cos C =a 2+b 2-c 22ab =b 24ab =b 4a =sin B4sin A ,又因为sin B =sin(A +C )=sin A cos C +cos A sin C ,所以cos C =sin A cos C +cos A sin C 4sin A =cos C 4+sin C4tan C,可得tan C =3tan A ,代入tan A +tan B +tan C=tan A tan B tan C 得tan B =4tan A 3tan 2A -1,所以1tan A +1tan B +1tan C =1tan A +3tan 2A -14tan A +13tan A =3tan A 4+1312tan A ,因为A ∈⎝⎛⎭⎫0,π2,所以tan A >0,所以3tan A 4+1312tan A ≥23tan A 4×1312tan A =132,当且仅当3tan A 4=1312tan A,即tan A =133时取“=”.所以1tan A +1tan B +1tan C 的最小值为132. 解法2 过点B 作BD ⊥AC 于D ,设AD =x ,DC =y ,BD =h ,则tan A =h x ,tan C =hy .同解法1可得tan C =3tan A ,tan B =4tan A 3tan 2A -1 则h y =3h x ,即x =3y ,tan B =4hx 3⎝⎛⎭⎫h x 2-1=4hx 3h 2-x 2,所以1tan A +1tan B +1tan C =x h +3h 2-x 24hx +y h =3y h +3h 2-9y 212hy +y h =13y 4h +h 4y ≥132.当且仅当13y 4h =h 4y ,即y =113h 时取“=”.所以1tan A +1tan B +1tan C 的最小值为132. 考点二 三角形中与边或周长有关的最值(范围) 【例题选讲】[例2](1)已知△ABC 中,角A ,32B ,C 成等差数列,且△ABC 的面积为1+2,则AC 边的长的最小值是________.答案 2 解析 ∵A ,32B ,C 成等差数列,∴A +C =3B ,又A +B +C =π,∴B =π4.设角A ,B ,C所对的边分别为a ,b ,c ,由S △ABC =12ac sin B =1+2得ac =2(2+2),由余弦定理及a 2+c 2≥2ac ,得b 2≥(2-2)ac ,即b 2≥(2-2)×2(2+2),∴b ≥2(当且仅当a =c 时等号成立),∴AC 边的长的最小值为2.(2)(2015·全国Ⅰ)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________. 答案 (6-2,6+2) 解析 通法:依题意作出四边形ABCD ,连结BD .令BD =x ,AB =y ,∠CDB =α,∠CBD =β.在△BCD 中,由正弦定理得2sin α=x sin 75.由题意可知,∠ADC =135°,则∠ADB=135°-α.在△ABD 中,由正弦定理得x sin 75°=y sin(135°-α).所以y sin(135°-α)=2sin α,即y =2sin(135°-α)sin α=2sin[90°-(α-45°)]sin α=2cos(α-45°)sin α=2(cos α+sin α)sin α.因为0°<β<75°,α+β+75°=180°,所以30°<α<105°,当α=90°时,易得y =2;当α≠90°时,y =2(cos α+sin α)sin α=2⎝⎛⎭⎫1tan α+1.又tan 30°=33,tan 105°=tan(60°+45°)=tan 60°+tan 45°1-tan 60°tan 45°=-2-3,结合正切函数的性质知,1tan α∈(3-2,3),且1tan α≠0,所以y =2⎝⎛⎭⎫1tan α+1∈(6-2,2)∪(2,6+2).综上所述:y ∈(6-2,6+2).提速方法:画出四边形ABCD ,延长CD ,BA ,探求出AB 的取值范围.如图所示,延长BA 与CD 相交于点E ,过点C 作CF ∥AD 交AB 于点F ,则BF <AB <BE .在等腰三角形CFB 中,∠FCB =30°,CF =BC =2,∴BF =22+22-2×2×2cos 30°=6-2.在等腰三角形ECB 中,∠CEB =30°,∠ECB =75°,BE =CE ,BC =2,BE sin 75°=2sin 30°,∴BE =212×6+24=6+2.∴6-2<AB <6+2.(3)在△ABC 中,若C =2B ,则cb的取值范围为________.答案 (1,2) 解析 因为A +B +C =π,C =2B ,所以A =π-3B >0,所以0<B <π3,所以12<cos B <1.因为c b =sin C sin B =sin 2B sin B =2cos B ,所以1<2cos B <2,故1<cb<2. (4) (2018·北京)若△ABC 的面积为34(a 2+c 2-b 2),且∠C 为钝角,则∠B =__________;ca的取值范围是__________.答案 60° (2,+∞) 解析 由已知得34(a 2+c 2-b 2)=12ac sin B ,所以3(a 2+c 2-b 2)2ac =sin B ,由余弦定理得3cos B =sin B ,所以tan B =3,所以B =60°,又C >90°,B =60°,所以A <30°,且A +C =120°,所以c a =sin C sin A =sin (120°-A )sin A =12+32tan A .又A <30°,所以0<tan A <33,即1tan A >3,所以c a >12+32=2.(5)在△ABC 中,角, , A B C 所对的边分别为, , a b c ,且满足sin sin()sin sin cos A B C B C A -=,则2abc 的最大值为__________. 答案32解析 由sin sin()sin sin cos A B C B C A -=,得sin (sin cos cos sin )sin sin cos A B C B C B C A -=,由正弦定理可得cos cos cos ab C ac B bc A -=,由余弦定理可得22222222a b c a c b ab ac bcab ac+-+--=2222b c a bc+-,化简得2223a b c +=,又因为22232c a b ab =+≥,当且仅当a b =时等号成立,可得232ab c ≤,所以2ab c的最大值为32.(6)在△ABC 中,若C =60°,c =2,则a +b 的取值范围为________.答案 (2,4] 解析 由题意,得c =2.由余弦定理可得c 2=a 2+b 2-2ab cos C ,即4=a 2+b 2-ab =(a +b )2-3ab ≥14(a +b )2,得a +b ≤4.又由三角形的性质可得a +b >2,综上可得2<a +b ≤4.(7)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足b 2+c 2-a 2=bc ,AB →·BC →>0,a =32,则b +c 的取值范围是( )A .⎝⎛⎭⎫1,32B .⎝⎛⎭⎫32,32 C .⎝⎛⎭⎫12,32 D .⎝⎛⎦⎤12,32 答案 B 解析 在△ABC中,b 2+c 2-a 2=bc ,由余弦定理可得cos A =b 2+c 2-a 22bc =bc 2bc =12,因为A是△ABC 的内角,所以A =60°.因为a =32,所以由正弦定理得a sin A =b sin B =c sin C =csin (120°-B )=1,所以b +c =sin B +sin(120°-B )=32sin B +32cos B =3sin(B +30°).因为AB →·BC →=|AB →|·|BC →|·cos(π-B )>0,所以cos B <0,B 为钝角,所以90°<B <120°,120°<B +30°<150°,故sin(B +30°)∈⎝⎛⎭⎫12,32,所以b +c=3sin(B +30°)∈⎝⎛⎭⎫32,32.(8) (2018·江苏)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________.答案 9 解析 因为∠ABC =120°,∠ABC 的平分线交AC 于点D ,所以∠ABD =∠CBD =60°,由三角形的面积公式可得12ac sin 120°=12a ×1×sin 60°+12c ×1×sin 60°,化简得ac =a +c ,又a >0,c >0,所以1a +1c =1,则4a +c =(4a +c )·⎝⎛⎭⎫1a +1c =5+c a +4ac ≥5+2c a ·4ac=9,当且仅当c =2a 时取等号,故4a +c 的最小值为9.(9)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为________.答案 12 解析 由正弦定理a sin A =bsin B,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A .又在△ABC 中,sin B >0,∴sin A =3cos A ,即tan A =3.∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cosA =(b +c )2-3bc ≥(b +c )2-3⎝⎛⎭⎫b +c 22,则(b +c )2≤64,即b +c ≤8(当且仅当b =c =4时等号成立),∴△ABC 周长=a +b +c =4+b +c ≤12,即最大值为12.(10)在△ABC 中,∠ACB =60°,BC >1,AC =AB +12,当△ABC 的周长最短时,BC 的长是________.答案 1+22 解析 设AC =b ,AB =c ,BC =a ,△ABC 的周长为l ,由b =c +12,得l =a +b +c =a +2c +12.又cos 60°=a 2+b 2-c 22ab=12,即ab =a 2+b 2-c 2,得a ⎝⎛⎭⎫c +12=a 2+⎝⎛⎭⎫c +122-c 2,即c =a 2-12a +14a -1.l =a +2c +12=a +2a 2-a +12a -1+12=3⎣⎡⎦⎤(a -1)2+43()a -1+12a -1+12=3⎣⎡⎦⎤(a -1)+12(a -1)+43+12。
第42课 三角形中的最值问题考点提要1.掌握三角形的概念与基本性质.2.能运用正弦定理、余弦定理建立目标函数,解决三角形中的最值问题.基础自测1.(1)△ABC 中,cos A A =,则A 的值为 30° 或90° ;(2)△ABC 中,当A=3π 时,cos 2cos 2B C A ++取得最大值 32. 2.在△ABC 中,m m m C B A 2:)1(:sin :sin :sin +=,则m 的取值范围是 21>m . 解 由m m m c b a C B A 2:)1(:::sin :sin :sin +==,令mk c k m b mk a 2,)1(,=+==,由b c a c b a >+>+,,得21>m . 3.锐角三角形ABC 中,若A=2B ,则B 的取值范围是 30º<B <45º .4.设R ,r 分别为直角三角形的外接圆半径和内切圆半径,则rR1. 5.在△ABC 中,内角A ,B ,C 所对边的边长分别是,,a b c ,若23b ac =,则B 的取值范围是 0°<B ≤120° .6.在△ABC 中,若A>B ,则下列不等式中,正确的为 ①②④ .①A sin >B sin ; ②A cos <B cos ; ③A 2sin >B 2sin ; ④A 2cos <B 2cos . 解 A>B ⇔a >b A R sin 2⇔>B R sin 2⇔A sin >B sin ,故①正确;A cos <B cos ⇔)2sin(A -π<)2sin(B -π⇔A>B ,故②正确(或由余弦函数在(0,)π上的单调性知②正确);由A 2cos <B 2cos ⇔212sin A -<212sin B -⇔A sin >B sin ⇔A>B ,故④正确.知识梳理1.直角△ABC 中,内角A ,B ,C 所对边的边长分别是,,a b c ,C=90°,若内切圆的半径为r ,则2a b c r +-=. 2.在三角形中,勾股定理、正弦定理、余弦定理是基础,起到工具性的作用.它们在处理三角形中的三角函数的求值、化简、证明、判定三角形的形状及解三角形等问题中有着广泛的应用.例题解析例1 已知直角三角形的周长为1,求其面积的最大值.点评例2 已知△ABC 中,1,2a b ==.(1)求最小内角的最大值; (2)若△ABC 是锐角三角形,求第三边c 的取值范围.解 (1)由三角形三边关系得第三边c 满足122112c,c ,c ,+>⎧⎪+>⎨⎪+>⎩解得13c <<,故最小内角为A .又22223131cos 24442b c a c A c bc c c +-+===+⨯=()≥(当且仅当c =,所以A ≤30°,即最小内角的最大值为30°.(2)因为△ABC 是锐角三角形,即A ,B ,C 三个角均为锐角,又因为a <b ,所以A <B ,故只需说明B ,C 为锐角即可.由B ,C 为锐角得0<cos 10<cos 1B ,C ,<⎧⎨<⎩ 即221401214014c ,c c ,⎧+-<<⎪⎪⎨+-⎪<<⎪⎩c <<.点评 在锐角三角形中研究问题的时候,一定要注意其三个角都为锐角这个条件.另外要注意变形的等价性,如“内角A 为锐角0<1cos A ⇔<”.例3 (2008江苏)求满足条件BC AC AB 2,2==的△ABC 的面积的最大值.解 设BC =x ,则AC.根据面积公式得ABC S ∆=1sin 2AB BC B ⨯= 根据余弦定理得2222242cos 24AB BC AC x x B AB BC x +-+-==⨯244x x-=,代入上式得ABC S ∆==由三角形三边关系有2,2,x x +>+>⎪⎩解得22x <<,故当212,x x ==时ABC S ∆= 点评例4 如图,已知∠A=30°,P ,Q 分别在∠A 的两边上,PQ=2.当P ,Q 处于什么位置时,△APQ 的面积最大并求出△APQ 的最大面积.点评 表示三角形的面积可采用两边及夹角的表示法,本题解法一运用了余弦定理和基本不等式,解法二运用了正弦定理和基本不等式建立目标函数.例5 已知△ABC 的周长为6,||,||,||BC CA AB u u u r u u u r u u u r成等比数列,求:(1)△ABC 的面积S 的最大值; (2)BC BA ⋅的取值范围.解 设||,||,||BC CA AB u u u r u u u r u u u r依次为a ,b ,c ,则a +b +c =6,b 2 =ac .由622a c bb ac +-==≤得02b <≤(当且仅当a =c 时,等号成立), 又由余弦定理得2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--===≥(当且仅当a =c 时,等号成立),故有03B π<≤,(1)22111sin sin 2sin 32223S ac B b B π==⋅⋅=≤,即max 3S =(当且仅当a =b =c 时,等号成立);(2)22)(2cos 22222b ac c a b c a B ac BC BA --+=-+==⋅222(6)3(3)272b b b --==-++. 02,218b BA BC <⋅<∴u u u r u u u rQ ≤≤.点评 本题运用均值定理进行放缩,再运用不等式的性质求解.(1)为不等式问题,(2)为函数问题.方法总结1.三角形中角的最值(范围)问题,一般运用余弦定理,通过求该角余弦的范围,根据余弦函数的单调性处理.要注意三角形三边关系和内角范围的隐含条件,尤其要注意锐角三角形的角的关系.2.三角形中边的最值(范围)问题,主要由有三角形三边关系决定.3.三角形中面积的最值(范围)问题,可以角为自变量,也可以边为自变量建立目标函数,要注意自变量的范围.练习42 三角形的最值问题班级 姓名 学号1.若直角三角形斜边的长m (定值),则它的周长的最大值是 m .2.在锐角△ABC 中,若2C B =,则ACAB解 B B B C AC AB sin 2sin sin sin ==B cos 2=,而46ππ<<B ,32<<ACAB .3.在△ABC 中,若1b ==,则A 的取值范围是 0º<B ≤45º .4.若2、3、x 分别是锐角三角形的三边长,则x 的取值范围是 )13,5( .5.若三角形两边之和为16 cm ,其夹角为60º周长的最小值是 24 .6.已知△ABC 中,A = 60°,BC = 4,则AB + AC 的最大值为___.7.钝角三角形的三边为2,1,++a a a ,其中最大角不超过120°,则a 的取值范围是332a <≤ . 解 由题意钝角三角形中,2+a 为最大边且最大角不超过120°,因此得2)1(+>++a a a ①,222)2()1(+<++a a a ②,222121cos 212a (a )(a )A a(a )++-+=-+≥ ③,由①得1>a ,②得31<<-a ,③得a ≤1-或a ≥23,故23≤3<a . 8.已知四边形ABCD 的对角线AC 与BD 相交于点O ,若S △AOB =9,S △COD =16,则四边形面积的最小值是 49 .9.(2006全国)用长度分别为2、3、4、5、6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为 610 cm 2. 解 由题意可围成以下几种三角形. 图(1)中,115cos sin 4,θθ==,415S =; 图(2)中,210210sin AD ,θ==,610S =; 图(3)中,13cos sin 22,θθ==,103S =.比较 上述几种情况可知,能够得到三角形的最大面积为610cm 2.点评 当周长一定时,三边越是接近,其面积越大.这是等周问题中的一个基本结论.可见,面积最大的三角形应该这样构成:2+5,3+4,6.10.在△ABC 中,已知223coscos 222C A a c b +=. (1)求证:a 、b 、c 成等差数列; (2)求角B 的取值范围.解11.如图,正方形ABCD 的边长为a ,E 、F 分别是边BC 、CD 上的动点,∠EAF=30°,求△AEF 面积的最小值.解 设△AEF 的面积为S ,∠BAE=θ(15º≤θ≤45º),则由∠EAF=30°得∠DAF=60θ-o. ∵正方形ABCD 的边长为a , ∴在Rt △BAE 中,cos cos AB aAE θθ==; 在Rt △DAF 中,cos(60)cos(60)AD aAF θθ==--o o ,∴1sin 2S AE AF EAF =⋅⋅∠ 21sin302cos cos(60)4cos cos(60)a a a θθθθ=⋅⋅⋅=--o o o22 22==22==22==2222sin(230)12sin(23030)13a a aθ==++⨯++o o o≤.12.(2008四川延考)在△ABC中,内角A,B,C对边的边长分别是,,a b c,已知2222a c b+=.(1)若4Bπ=,且A为钝角,求内角A与C的大小;(2)若2b=,求△ABC面积的最大值.解(1)由题设及正弦定理,有222sin sin2sin1A C B+==.故22sin cosC A=.因A为钝角,所以sin cosC A=-.由cos cos()4A Cππ=--,可得sin sin()4C Cπ=-,C=8π,A=58π.(2)由余弦定理及条件2221()2b a c=+,有22cos4a cBac+=,故cos B≥12.由于△ABC面积1sin2ac B=,又ac≤221()42a c+=,sin B当a c=时,两个不等式中等号同时成立,所以△ABC面积的最大值为1422⨯⨯=.备用题1.直角△ABC 的斜边AB=2,内切圆的半径为r ,则r 的最大值为 21- .2.在△ABC 中,已知sin 2A + sin 2B = 5sin 2C ,求证:3sin 5C ≤. 解 等式sin 2A + sin 2B = 5sin 2C 立即联想正弦定理,有a 2+b 2=5c 2. 而a 2+b 2=5c 2与余弦定理连起来也无可非议. ∵c 2= a 2+b 2-2ab cosC ,∴5c 2= c 2+2ab cosC ,∴4c 2=2ab cosC .于是可知cosC >0,C 为锐角,而5c 2= a 2+b 2≥2ab , 故4c 2=2ab cosC ≤5c 2cosC . ∴cosC ≥45,∴sinC ≤35. 点评 从外形的联想,到方法的选择,这样的直觉思维随时随地都会出现在解题过程中.3.已知△ABC 的内角满足)cos (cos sin sin sin C B A C B +=+. (1)求A ; (2)若△ABC 的面积为4,求△ABC 周长的最小值.4.如图,边长为a 的正△ABC 的中心为O ,过O 任意作直线交AB 、AC 于M 、N ,求2211ON OM +的最大值和最小值. 答案 最大值218a 、最小值215a.5.如图∠A = 90°,∠B = α,AH = h ,α,h 为常数,AH ⊥BC 于H ,∠AHE=∠AHD =x ,问当x 取何值时,△DEH 的面积最大并求出最大面积.。