动点问题最值三角形性质专练
- 格式:docx
- 大小:191.54 KB
- 文档页数:7
初中数学动点问题及练习题附参考答案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。
2023-2024学年人教版数学八年级上册第十二章全等三角形微专题——动点问题1一、单选题1.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2B.3C.4D.52.如图,已知Rt△ABC,∠C=90°,点D在AC上,CD=3,BD平分∠ABC,点P是AB 上一个动点,则下列结论正确的是()A.PD>3B.PD≥3C.PD≤3D.PD=33.如图,在△ABC中,∠A=90°,BD平分∠ABC交AC于点D,AD=3,若P是BC上的动点,则线段DP的最小值是()A.3B.2.4C.4D.54.如图所示,在△ABC中,∠ABC=68°,BD平分∠ABC,P为线段BD上一动点,Q为边AB上一动点,当AP+PQ的值最小时,∠APB的度数是()A.118°B.125°C.136°D.124°5.如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC→CD→DA向终点A运动,设点P的运动时间为t秒,当以A、B、P为顶点的三角形和△DCE全等时,t的值为( )A.1B.7C.1或2D.1或76.如图,在△ABC中,∠ACB>90°,△ABC的面积为18,AB=9,BD平分∠ABC,E,F分别是BD,BC上的动点,则CE+EF的最小值为( )A.4B.6C.7D.97.如图,四边形ABCD中,∠A=90°,AD=5,连接BD,BD⊥CD,垂足是D且∠ADB=∠C,点P是边BC上的一动点,则DP的最小值是()A.2B.3C.4D.5二、填空题10.如图,在正方形ABCD中,∠A=∠B=∠C=∠D=90°,动点动点Q以3cm/s的速度从点B止移动.设移动的时间为t(与△PAB全等.12.如图,CA⊥AB,垂足为点B,一动点E从A点出发,以随着E点运动而运动,且始终保持三角形与点A、B、C组成的三角形全等.13.如图,OP平分∠AOB,PC⊥OA值为.14.如图,∠ACB=90°,AC=/秒的速度沿射线AC运动,点Q秒时,△ABC与以点P,Q,C为顶点的三角形全等.三、解答题15.在平面直角坐标系中,A(−5,0),B(0,5).点C为x轴正半轴上一动点,过点A作AD⊥BC交y轴于点E.(1)如图①,若C(4,0),求点E的坐标;(2)如图②,若点C在x轴正半轴上运动,且OC<5.其它条件不变,连接DO,求证:DO 平分∠ADC.16.已知:△ABC中,AC=CB,∠ACB=90°,D 为直线BC上一动点,连接AD,在直线AC右侧作AE⊥AD,且AE=AD.(1)如图,当点D在线段BC上时,过点E 作EH⊥AC于H,连接DE,求证:EH=AC;(2)如图,当点D在线段BC的延长线上时,连接BE交CA的延长线于点M.求证:BM=EM.17.如图,△ABC的两条高AD与BE交于点O,AD=BD,AC=6.(1)求BO的长;(2)F是射线BC上一点,且CF=AO,动点P从点O出发,沿线段OB以每秒1个单位长度的速度向终点B运动,同时动点Q从点A出发,沿射线AC以每秒4个单位长度的速度运动,当点P到达点B时,P,Q两点同时停止运动,设运动时间为t秒,当△AOP与△FCQ 全等时,求t的值.18.定理:三角形任意两边之和大于第三边.(1)如图1,线段AD,BC交于点E,连接AB,CD,判断AD+BC与AB+CD的大小关系,并说明理由;(2)如图2,OC平分∠AOB,P为OC上任意一点,在OA,OB上截取OE=OF,连接PE,PF.求证:PE=PF;(3)如图3,在△ABC中,AB>AC,P为角平分线AD上异于端点的一动点,求证:PB−PC>BD−CD.19.如图,在△ABC中,D为AB的中点,AB=AC=10cm,BC=8cm,动点P从点B出发,沿BC方向以每秒3cm的速度向点C运动;同时动点Q从点C出发,沿CA方向以每秒3 cm的速度向点A运动,运动时间是t秒.(1)在运动过程中,当点C位于线段PQ的垂直平分线上时,求出t的值;(2)在运动过程中,是否存在某一时刻t,使△BPD和△CQP全等,若存在,求出t的值.若不存在,请说明理由.20.在△ABC中,AC=BC,∠ACB=90°,D是射线BA上一动点,连接CD,以CD为边作∠DCE=45°,CE在CD右侧,CE与过点A且垂直于AB的直线交于点E,连接DE.(1)当CD,CE都在AC的左侧时,如图①,线段BD,AE,DE之间的数量关系是_________;(2)当CD,CE在AC的两侧时,如图②,线段BD,AE,DE之间有怎样的数量关系?写出你的猜想,并给予证明;(3)当CD,CE都在AC的右侧时,如图③,线段BD,AE,DE之间有怎样的数量关系?直接写出你的猜想,不必证明.参考答案:1.B【分析】根据垂线段最短得出当PQ⊥OM时,PQ的值最小,根据角平分线性质得出PQ=PA,求出即可.【详解】解:当PQ⊥OM时,PQ的值最小,∵OP平分∠MON,PA⊥ON,PA=3,∴PQ=PA=3,故选:B.【点睛】本题考查了角平分线性质,垂线段最短的应用,解题的关键是能得出使PQ最小时Q 的位置.2.B【分析】连接DP,根据角平分线的性质及垂线段最短解答即可.【详解】解:连接DP,如图所示:∵∠C=90°,BD平分∠ABC,∴当DP⊥AB时,DP=CD=3那么当DP不垂直AB时,DP>CD=3,∵垂线段最短,∴PD≥3,故选:B.【点睛】本题考查的是角平分线的性质及垂线段最短,熟知角的平分线上的点到角的两边的距离相等是解题的关键.3.A【分析】由垂线段最短可知当DP⊥BC时,DP最短,根据角平分线的性质即可得出结论.【详解】解:当DP⊥BC时,DP的值最小,∵BD平分∠ABC,∠A=90°,∵BD平分∠ABC,∠ABC=∠ABC ∴∠ABD=∠CBD=12∵BP=BP,∴△PBQ≌△PBE(SAS),∵∠AEB=90°,∠CBD=34°∴∠APB=∠AEB+∠CBD=∵BD平分∠ABC,PE⊥AB,EF⊥∴PE=EF,∴CP=CE+PE=CE+EF的最小值.即CE+EF的最小值为4,故选:A.【点睛】本题考查了轴对称-最短路线问题,关键是将CE+EF的最小值为转化为CP,题目具有一定的代表性,是一道比较好的题目.7.D【分析】根据等角的余角相等求出∠ABD=∠CBD,再根据垂线段最短可知DP⊥BC时DP最小,然后根据角平分线上的点到角的两边距离相等可得DP=AD.【详解】解:∵BD⊥CD,∠A=90°.∴∠ABD+∠ADB=90°,∠CBD+∠C=90°,∴∠ABD=∠CBD,由垂线段最短得,DP⊥BC时DP最小,此时,DP=AD=5.故选:D.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质并判断出DP最小时的位置是解题的关键.8.D【分析】当△EAP与△PBQ全等时,有两种情况:①当EA=PB,AP=BQ时,△APE≅△BQP②当AP=BP,AE=BQ时,△AEP≅△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.【详解】当△EAP与△PBQ全等时,有两种情况:①当EA=PB,AP=BQ时,△APE≅△BQP,∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,∴点P和点Q的运动时间为:4÷2=2s,∴v的值为:4÷2=2cm/s;②当AP=BP,AE=BQ时,△AEP≅△BQP,∵AB=10cm,AE=6cm,∵BD平分∠ABC,∴∠N′BM=∠NBM,在△MBN′与△MBN中,{BN′=BN∠N′BM=∠NBM,BM=BM×AB×CN′,此时S△ABC=12×4×CN′,可得6=12可得CN′=3,∴CM+MN的最小值为3,故答案为:3.∵AB=AD,∠ABP=∴BP=AQ,∵AQ=AB−BQ=8−3t,BP=t,∴8−3t=t,∴t=2s,当点Q在边AD时,不能构成△QAD,当点Q在边CD上时,如图2,AB+AD+DQ=3t,BP=t,∴DQ=3t−16.要使△PAB和△QAD全等,只能是△PAB≌△QAD,∴BP=DQ,∴t=3t−16,∴t=8s,故答案为:2s或8s.【点睛】此题主要考查了正方形的性质,全等三角形的性质解本题的关键是分类讨论,用方程的思想解决问题.11.5【分析】由平行线的性质可得∠EBF=∠A,由ASA证明△BEF≌△AED,得到AD=BF,最后由BF+CD=AD+CD=AC即可得到答案.【详解】解:∵BF∥AC,∴∠EBF=∠A,∵E为AB中点,∴BE=AE,在△BEF和△AED中,{∠EBF=∠ABE=AE∠BEF=∠AED,∴△BEF≌△AED(ASA),∴AD=BF,∴BF+CD=AD+CD=AC=5,故答案为:5.【点睛】本题主要考查了平行线的性质、三角形全等的判定与性质,熟练掌握平行线的性质、三角形全等的判定与性质是解题的关键.12.0或2或6或8【分析】首先分两种情况:当E在线段AB上和当E在BN上,然后再分成两种情况AC=BE和AB=EB,分别进行计算,即可得出结果.【详解】解:①当E在线段AB上,AC=BE时,△ACB≌△BED,∵AC=4cm,∴BE=4cm,∴AE=AB−BE=4cm,∴点E的运动时间为4÷2=2(秒);②当E在BN上,AC=BE时,△ACB≌△BED,∵AC=4cm,∴BE=4cm,∴AE=AB+BE=12cm,∴点E的运动时间为12÷2=6(秒);③当E在线段AB上,AB=EB时,△ACB≌△BDE,这时E在A点未动,因此时间为0秒;④当E在BN上,AB=EB时,△ACB≌△BDE,∵AB=8cm,∴BE=8cm,∴AE=AB+BE=16cm,∴点E的运动时间为16÷2=8(秒),综上所述,当点E经过0秒或2秒或6秒或8秒时,由点D、E、B组成的三角形与点A、B、C 组成的三角形全等,故答案为:0或2或6或8.【点睛】本题考查了全等三角形的性质,解题的关键是注意分类讨论思想的运用.13.3【分析】过P作PE⊥OB交OB于E,当D于E重合时,PD=PE最小,即可求解.【详解】解:如图,过P作PE⊥OB交OB于E,∴当D于E重合时,PD=PE最小,∵OP平分∠AOB,PC⊥OA,∴PE=PC=3,∴PD的最小值为3,故答案:3.【点睛】本题考查了角平分线的性质定理,垂线段定理,掌握定理是解题的关键.14.1或3或4【分析】设点P运动时间为t秒,根据已知条件分△ABC≌△PQC,△ABC≌△QPC,两种情况,根据AC=PC=4和BC=PC=2列方程求出t值即可.【详解】解:∵AC=2BC=4,∴BC=2,设点P运动时间为t秒,∵∠ACB=∠PCQ=90°,PQ=AB,∴当△ABC≌△PQC时,AC=PC=4,∴|4−2t|=4,解得:t=0(舍)或t=4;当△ABC≌△QPC时,BC=PC=2,∴|4−2t|=2,解得:t=1或t=3;综上:1秒或3秒或4秒时,△ABC与以点P,Q,C为顶点的三角形全等,故答案为:1或3或4.【点睛】本题考查直角三角形全等的判定,关键是找到所有符合题意的情况.15.(1)点E 的坐标为(0,4);(2)见解析【分析】(1)可证明△AOE≌△BOC(ASA),从而得出OE =OC ,进而求得;(2)过O 作OM ⊥DA 于M ,ON ⊥DC 于N ,根据△AOE≌△BOC ,得S ΔAOE =S ΔBOC ,从而得出OM =ON ,进而得证.【详解】(1)解:如图,∵AD ⊥BC ,AO ⊥BO ,∴∠AOE =∠BDE =∠BOC =90°,∴∠OAE +∠ACD =90°,∠OBC +∠ACD =90°,∴∠OAE =∠OBC ,∵A (−5,0),B (0,5),∴OA =OB =5.在△AOE 和△BOC 中,{∠OAE =∠OBC OA =OB ∠AOE =∠BOC,∴△AOE≌△BOC(ASA),∴OE =OC ,∴点C 坐标为(4,0),∴OE =OC =4,∴E (0,4);(2)证明:如图,过O作OM⊥DA于M,ON⊥DC于由(1)知,△AOE≌△BOC,∴SΔAOE=SΔBOC,AE=BC,∴1 2×AE×OM=12×BC×ON,∴OM=ON,{∠AHE =∠C ∠AEH =∠DAC AE =DA,∴△AEH≌△DAC(AAS),∴EH =AC .(2)如图,作EF ⊥CM 交CM 的延长线于点F ,∵∠F =90°,∠ACD =180°−∠ACB =90°,∠DAE =90°,∴∠F =∠ACD =∠MCB ,∵∠FAE +∠CAD =90°,∠CDA +∠CAD =90°,∴∠FAE =∠CDA ,在△FAE 和△CDA 中,{∠F =∠ACD ∠FAE =∠CDA AE =DA,∴△FAE≌△CDA(AAS),∴EF =AC ,∵AC =CB ,∴EF =AC =BC ,在△BMC 和△EMF 中,{∠MCB =∠F ∠BMC =∠EMF BC =EF,∴△BMC≌△EMF(AAS),∵BM =EM .【点睛】此题考查了同角的余角相等、全等三角形的判定与性质等知识,难度较大,正确地作出辅助线是解题的关键.17.(1)6∵∠BOD=∠ACD,∴∠AOP=∠ACF,∵AO=CF,∴当OP=CQ时,△AOP≌△FCQ∵∠BOD=∠ACD,∴∠AOP=∠FCQ,∵AO=CF,∴当OP=CQ时,△AOP≌∴t=4t−6,∵AD是∠BAC的角平分线,∴∠EAP=∠CAP,在△APE和△APC中,{AE=AC(3)过点C作CF⊥CE,交AB于点F,如图,先证明△CBF≌△CAE,得到BF=AE,CF=CE,然后证明△DCE≌△DCF解题即可;【详解】(1)过点C作CF⊥CE,交AB延长线于点F,如图.∴∠ECF=∠ACB=90°.∴∠FCB=∠ECA.∵AE⊥AB,∴∠EAB=90°.∵∠CBA=∠CAB=45°,∴∠CBF=∠CAE=135°.∵BC=AC,∴△CBF≌△CAE(ASA).∴BF=AE,CF=CE.∵∠DCE=45°,∠ECF=90°,∴∠DCE=∠DCF=45°.∵CD=CD,∴△DCE≌△DCF(SAS).∴DE=DF.∵BD+BF=DF,∴BD+AE=DE.故答案为:BD+AE=DE.(2)图②的猜想:BD−AE=DE.证明:过点C作CF⊥CE,交AB于点F,如图②.∴∠ECF=∠ACB=90°.∴∠CBF=∠CAE.∵AE⊥AB,∴∠EAB=90°.∵∠CBA=∠CAB=45°,∴∠CBF=∠CAE=45°.∵BC=AC,∴△CBF≌△CAE(ASA).∴BF=AE,CF=CE.∵∠DCE=45°,∠ECF=90°,∴∠DCE=∠DCF=45°.∵CD=CD,∴△DCE≌△DCF(SAS).∴DE=DF.∵BD−BF=DF,∴BD−AE=DE.(3)过点C作CF⊥CE,交AB于点F,如图∴∠ECF=∠ACB=90°.∴∠FCB=∠ECA.∵AE⊥AB,∴∠EAB=90°.∵∠CBA=∠CAB=45°,∴∠CBF=∠CAE=45°.∵BC=AC,∴△CBF≌△CAE(ASA).∴BF=AE,CF=CE.∵∠DCE=45°,∠ECF=90°,∴∠DCE=∠DCF=45°.∵CD=CD,∴△DCE≌△DCF(SAS).∴DE=DF.∵BD−BF=DF,∴BD−AE=DE.故答案为:BD−AE=DE.【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定和性质是解题的关键.。
1/31专题03立体几何中的动点和最值问题题型一立体几何中的动点问题1.如图,在棱长为2的正方体1111ABCD A B C D -中,M 为棱11A D 的中点,下列说法正确的是()A .直线AC ⊥直线BMB .过点的C 的平面MB α⊥,则平面α截正方体所得的截面周长为325+C .若线段BM 上有一动点Q ,则Q 到直线1AA 255D .动点P 在侧面11BCC B 及其边界上运动,且AP BM ⊥,则AP 与平面11BCC B 成角正切的取值范围是255[]52【解答】解:对于A ,AC BD ⊥ ,1AC BB ⊥,1BD BB B = ,BD 、1BB ⊂平面11BB D D ,AC ∴⊥平面11BB D D ,BM⋂ 平面11BB D D ,∴直线AC 与直线BM 不垂直,故A 错误;对于B ,如图1,取1BB ,AB 的中点E 、F ,连接CE 、EF 、CF .因为BN CE ⊥,1EF A B ⊥,由三垂线定理得BM CE ⊥,BM EF ⊥,所以BM ⊥平面CEF ,所以α截正方体所得的截面为CEF ∆141411252+++=+B 错误;对于C ,如图过BM 构造平面与1AA 平行,2/31AH 即Q 到直线1AA 的距离的最小值,255AH =,故C 正确;对于D ,如图3,取1CC 的中点Q ,因为1BM AB ⊥,1BM B Q ⊥,所以BM ⊥平面1AB Q ,故P 点轨迹为1B Q .在正方形11BCC B 中,当P 与Q 重合时,BP 最大,当1BP B Q ⊥时,BP 最小.所以4[,5]5BP ∈因为AB ⊥平面11BCC B ,所以APB ∠为AP 与平面11BCC B 所成角,255tan [,]52AB APB BP ∠=∈则AP 与平面11BCC B 成角正切的取值范围是255[,]52,故D 正确.故选:CD .2.如图,在正方体1111ABCD A B C D -中,F 是棱11A D 上的动点,下列说法正确的是()A .对任意动点F ,在平面11ADD A 内不存在与平面CBF 平行的直线B .对任意动点F ,在平面ABCD 内存在与平面CBF 垂直的直线3/31C .当点F 从1A 运动到1D 的过程中,二面角F BC A --的大小不变D .当点F 从1A 运动到1D 的过程中,点D 到平面CBF 的距离逐渐变大【解答】解:对任意动点F ,在平面11ADD A 内只要与AD 平行的直线,即可与平面CBF 平行,所以A 不正确;对任意动点F ,在平面ABCD 内存在与平面CBF 垂直的直线,不正确;因为二面角F BC A --的大小不变是锐角,所以B 不正确;当点F 从1A 运动到1D 的过程中,二面角F BC A --的大小不变,由二面角的定义可知,命题是真命题,正确;当点F 从1A 运动到1D 的过程中,点D 到平面CBF 的距离逐渐变大,不正确;因为A BCF V -是定值,三角形BCF 的面积是定值,所以点D 到平面CBF 的距离不变,所以D 不正确;故选:C .3.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且22EF =,则下列结论中正确的有()A .当E 点运动时,1A C AE ⊥总成立B .当E 向1D 运动时,二面角A EF B --逐渐变小C .二面角E AB C --的最小值为45︒D .三棱锥A BEF -的体积为定值【解答】解:对于A ,易证11B D ⊥平面11A C C ,所以111A C B D ⊥,同理可证11A C AD ⊥,从而1A C ⊥平面11AB D ,所以1A C AE ⊥恒成立,A 正确;对于B ,平面EFB 即平面11BDD B ,而平面EFA 即平面11AB D ,所以当E 向1D 运动时,二面角A EF B --的大小不变,B 错误;对于C ,当点E 从11B D 的中点向点1D 运动时,平面ABE 逐渐向底面ABCD 靠拢,4/31这个过程中,二面角越来越小,所以二面角E AB C --的最小值为45︒,C 正确;对于D ,因为1221224BEF S ∆=⨯⨯=,点A 到平面11BDD B 的距离为22,所以体积为122134212⨯⨯=,即体积为定值,D 正确.故选:ACD .4.如图,在棱长为6的正方体1111ABCD A B C D -中,E 为棱1DD 上一点,且2DE =,F 为棱11C D 的中点,点G 是线段1BC 上的动点,则()A .无论点G 在线段1BC 上如何移动,都有异面直线1A G ,1B D 的夹角为2πB .三棱锥A GAE -的体积为108C .直线AE 与BF 所成角的余弦值1015D .直线1AG 与平面1BDC 所成最大角的余弦值为13【解答】解:在正方体1111ABCD A B C D -中,易证1DB ⊥面11A BC ,又1A G ⊂平面11A BC ,所以11A G B D ⊥,所以异面直线1A G ,1B D 的夹角为2π,则A 正确;1116663632A GAE G A AE V V --⨯==⨯⨯=三棱锥三棱锥,则B 错误;在棱1CC 上取点N ,使2CN =,连结BN ,NE ,FN (如图),则易知FBN ∠为直线AE 与BF 所成角或其补角,可得10BN =,5FN =,9FB =,5/31则222(210)958410cos 1529210310FBN +-∠===⨯⨯,则直线AE 与BF 所成角的余弦值为41015,则C 正确;由题意知三棱锥11A BDC -为棱长为62的正四面体,作1A O ⊥平面1BDC ,O 为垂足,则O 为正1BDC ∆的中心,且1A GO 为直线1A G 与平面1BDC 所成角,所以211211cos 1AO OG AGO AG AG ∠==-,当点G 移动到1BC 的中点时,1A G 最短,如图,此时1cos A GO ∠最小,1A GO ∠最大,此时1161cos 336OG AGO AG ∠===,则D 正确.故选:ACD .5.在棱长为1的正方体1111ABCD A B C D -中,M 是线段11A C 上一个动点,则下列结论正确的有()A .存在M 点使得异面直线BM 与AC 所成角为90︒B .存在M 点使得异面直线BM 与AC 所成角为45︒C .存在M 点使得二面角M BD C --的平面角为45︒D .当1114A M A C =时,平面BDM 截正方体所得的截面面积为98【解答】解:对于A ,连接11A C 、11B D ,交于1O ,连接BD ,取点M 为1O 时,连接1O B ,因为AC BD ⊥、1AC B B ⊥,所以AC ⊥平面11BB D D ,又因为1O B ⊂平面11BB D D ,所以1AC O B ⊥,所以A 对;对于B ,因为11//A C AC ,所以异面直线BM 与AC 所成角就是1BMC ∠,6/31因为160BMC ∠︒,所以B 错;对于C ,因为二面角M BD C --的平面角为MOC ∠,因为45MOC ∠>︒,所以C 错;对于D ,取OA 中点N ,连接MN ,过M 作11//EF B D ,交11A D 于E ,交11A B 于F ,连接ED 、FB ,22EF =,BD =324OM =,112329()22248EFBD S EF BD OM =⋅+⋅=⋅⋅.所以D 对.故选:AD.6.已知正方体1111ABCD A B C D -的棱长为4,EF 是棱AB 上的一条线段,且1EF =,点Q 是棱11A D 的中点,点P 是棱11C D 上的动点,则下面结论中正确的是()A .PQ 与EF 一定不垂直B .二面角P EF Q --C .PEF ∆的面积是D .点P 到平面QEF 的距离是常量【解答】解:对于A ,当P 与点1D 重合时,PQ EF ⊥,故选项A 错误;对于B ,由于点P 是棱11C D 上的动点,EF 是棱AB 上的一条线段,所以平面PEF 即平面11ABC D ,建立如图所示的空间直角坐标系,则(2Q ,0,4),(4A ,0,0),(4B ,4,0),所以(2,04),(0,4,0)QA AB =-=,平面QEF 即平面QAB ,设平面QAB 的法向量为(,,)n x y z = ,则00n QA n AB ⎧⋅=⎪⎨⋅=⎪⎩,即24040x z y -=⎧⎨=⎩,令1z =,则(2,0,1)n =,同理可求得平面11ABC D 的法向量为(1,0,1)m =,设二面角P EF Q --为θ,7/31所以||21310|cos ||cos ,|||||1025m n m n m n θ⋅+=<>===⨯,故2231010sin 11()1010cos θθ=-=-=,故选项B 正确;对于C ,由于AB ⊥平面11BB CC ,又1BC ⊂平面11BB CC ,所以1AB BC ⊥,所以1BC EF ⊥,所以1BC 是PEF ∆的高,所以1111422222PEF S EF BC ∆=⋅⋅=⨯⨯=,故选项C 正确;对于D ,由于11//C D EF ,且11C D ⊂/平面QEF ,EF ⊂平面QEF ,所以11//C D 平面QEF ,又点P 在11C D 上,所以点P 到平面QEF 的距离为常量,故选项D 正确.故选:BCD .7.在长方体1111ABCD A B C D -中,1226BC AB BB ===,点E 为棱BC 上靠近点C 的三等分点,点F 是长方形11ADD A 内一动点(含边界),且直线1B F ,EF 与平面11ADD A 所成角的大小相等,则()A .1//A F 平面11BCC B B .三棱锥1F BB E -的体积为4C .存在点F ,使得11//A F B ED .线段1A F 的长度的取值范围为5[2,258【解答】解: 平面11//ADD A 平面11BCC B ,1A F ⊂平面11ADD A ,1//A F ∴平面11BCC B ,故A 正确;8/311111343632F BB E A BB E V V --==⨯⨯⨯⨯=,故B 错误;连接1A F ,作//EG CD 交AD 于G ,连接FG ,11A B ⊥ 平面11ADD A ,11A FB ∴∠为1B F 与平面11ADD A 所成的角,EG ⊥ 平面11ADD A ,EFG ∴∠为EF 与平面11ADD A 所成角.直线1B F ,EF 与平面11ADD A 所成角的大小相等,11A FB EFG ∴∠=∠,则11111tan tan A B EGA FB EFG A F FG∠==∠=,又11A B EG = ,1A F FG ∴=,则点F 在1A G 的中垂线上,即点F 在线段HI 上运动,当点F 与点K 重合时,11//A F B E ,故C 正确;126BC BB == ,E 为棱BC 上靠近C 的三等分点,13AA ∴=,4AG =,则15A G =,11cos AG KG A GA A G HG∠==,1258HG A I ∴==,当点F 在点I 或点H 处时,线段1A F 的长度取得最大值,最大值为258,当点F 在点K 处时,线段1A F 的线段取得最小值,最小值为52,∴线段1A F 的长度的取值范围为5[2,25]8,故D 正确.故选:ACD .8.已知正方体1111ABCD A B C D -棱长为2,如图,M 为1CC 上的动点,AM ⊥平面α.下面说法正确的是()A .直线AB 与平面α所成角的正弦值范围为32[32B .点M 与点1C 重合时,平面α截正方体所得的截面,其面积越大,周长就越大9/31C .点M 为1CC 的中点时,若平面α经过点B ,则平面α截正方体所得截面图形是等腰梯形D .已知N 为1DD 中点,当AM MN +的和最小时,M 为1CC 的中点【解答】解:对于A 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点(2A ,0,0)、(2B ,2,0),设点(0M ,2,)(02)a a ,AM ⊥ 平面α,则AM为平面α的一个法向量,且(2,2,)AM a =- ,(0,2,0)AB =,||32|cos ,|[,]32||||AB AM AB AM AB AM ⋅<>==⋅,所以,直线AB 与平面α所成角的正弦值范围为32[32,A选项正确;对于B 选项,当M 与1CC 重合时,连接1A D 、BD 、1A B 、AC ,在正方体1111ABCD A B C D -中,1CC ⊥平面ABCD,BD ⊂ 平面ABCD ,1BD CC ∴⊥, 四边形ABCD 是正方形,则BD AC ⊥,1CC AC C = ,BD ∴⊥平面1ACC ,1AC ⊂ 平面1ACC ,1AC BD ∴⊥,同理可证11AC A D ⊥,10/311A D BD D = ,1AC ∴⊥平面1A BD ,易知△1A BD是边长为的等边三角形,其面积为1234A BD S =⨯=,周长为3=.设E 、F 、Q 、N 、G 、H 分别为棱11A D 、11A B 、1BB 、BC 、CD 、1DD 的中点,易知六边形EFQNGH的正六边形,且平面//EFQNGH 平面1A BD ,正六边形EFQNGH的周长为26=则△1A BD 的面积小于正六边形EFQNGH 的面积,它们的周长相等,B 选项错误;对于C 选项,设平面α交棱11A D 于点(E b ,0,2),点(0M ,2,1),(2,2,1)AM =-,AM ⊥ 平面α,DE ⊂平面α,AM DE ∴⊥,即220AM DE b ⋅=-+=,得1b =,(1E ∴,0,2),所以,点E 为棱11A D 的中点,同理可知,点F 为棱11A B 的中点,则(2F ,1,2),(1,1,0)EF = ,而(2,2,0)DB = ,∴12EF DB =,//EF DB ∴且EF DB ≠,由空间中两点间的距离公式可得DE ==,BF ==DE BF ∴=,所以,四边形BDEF 为等腰梯形,C 选项正确;对于D 选项,将矩形11ACC A 与矩形11CC D D 延展为一个平面,如下图所示:若AM MN +最短,则A 、M 、N 三点共线,11//CC DD ,∴2MC AC DN AD ===-1122MC CC =≠,11/31所以,点M 不是棱1CC 的中点,D选项错误.故选:AC .9.如图,在正四棱柱1111ABCD A B C D -中,3AB AD ==,14AA =,P 是侧面11BCC B 内的动点,且1AP BD ⊥,记AP 与平面11BCC B 所成的角为θ,则tan θ的最大值为()A .43B .53C .2D .259【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设(P a ,3,)c ,(03,04)a c ,则(3A ,0,0),(3B ,3,0),1(0D ,0,4),(3AP a =- ,3,)c ,1(3BD =- ,3-,4),平面11BCC B 的法向量(0n = ,1,0),1AP BD ⊥ ,∴13(3)940AP BD a c ⋅=---+= ,解得34c a =,∴(3AP a =- ,3,3)4a ,AP 与平面11BCC B 所成的角为θ,222||312sin ||||9484896(3)95()1625625AP n AP n a a a θ⋅∴==⋅-++-+ ,∴当4825a =时,sin θ34.此时25cos 1()3434θ=-=12/31tan θ∴53=.故选:B.10.在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+ ,其中[0λ∈,1],[0μ∈,1],则()A .当1λ=时,△1AB P 的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【解答】解:对于A ,当1λ=时,1BP BC BB μ=+ ,即1CP BB μ= ,所以1//CP BB ,故点P 在线段1CC 上,此时△1AB P 的周长为11AB B P AP ++,当点P 为1CC 的中点时,△1AB P,当点P 在点1C 处时,△1AB P的周长为1,故周长不为定值,故选项A 错误;13/31对于B ,当1μ=时,1BP BC BB λ=+ ,即1B P BC λ= ,所以1//B P BC,故点P 在线段11B C 上,因为11//B C 平面1A BC ,所以直线11B C 上的点到平面1A BC 的距离相等,又△1A BC 的面积为定值,所以三棱锥1P A BC -的体积为定值,故选项B正确;对于C ,当12λ=时,取线段BC ,11B C 的中点分别为M ,1M ,连结1M M ,因为112BP BC BB μ=+,即1MP BB μ= ,所以1//MP BB,则点P 在线段1M M 上,当点P 在1M 处时,1111A M B C ⊥,111A M B B ⊥,又1111B C B B B = ,所以11A M ⊥平面11BB C C ,又1BM ⊂平面11BB C C ,所以111A M BM ⊥,即1A P BP ⊥,同理,当点P 在M 处,1A P BP ⊥,故选项C 错误;14/31对于D ,当12μ=时,取1CC 的中点1D ,1BB 的中点D ,因为112BP BC BB λ=+ ,即DP BC λ= ,所以//DP BC,则点P 在线的1DD 上,当点P 在点1D 处时,取AC 的中点E ,连结1A E ,BE ,因为BE ⊥平面11ACC A ,又1AD ⊂平面11ACC A ,所以1AD BE ⊥,在正方形11ACC A 中,11AD A E ⊥,又1BE A E E = ,BE ,1A E ⊂平面1A BE ,故1AD ⊥平面1A BE ,又1A B ⊂平面1A BE ,所以11A B AD ⊥,在正方体形11ABB A 中,11A B AB ⊥,又11AD AB A = ,1AD ,1AB ⊂平面11AB D ,所以1A B ⊥平面11AB D ,因为过定点A 与定直线1A B 垂直的平面有且只有一个,故有且仅有一个点P ,使得1A B ⊥平面1AB P ,故选项D正确.故选:BD .15/3111.如图,已知四边形ABCD 为直角梯形,BDEF 为矩形,平面BDEF ⊥平面ABCD ,//AD BC ,90DAB ABC ∠=∠=︒,1AD AB ED ===,2BC =.(1)若点M 为EF 中点,求证:BM ⊥平面CDF ;(2)若点M 为线段EF 上一动点,求BD 与平面BCM所成角的取值范围.【解答】证明:(1) 平面BDEF ⊥平面ABCD ,平面BDEF ⋂平面ABCD BD =,BF ⊂面BDEF 且BF BD ⊥,BF ∴⊥面ABCD .建立空间直角坐标系B xyz -如图,则(0B ,0,0),(0A ,1,0),(2C ,0,0),(1D ,1,0),(0F ,0,1),(1E ,1,1),1(2M ,12,1).11(,,1)22BM = ,(1,1,0)CD =- ,(1,1,1)DF =-- ,故11022BM CD ⋅=-+= ,111022BM DF ⋅=--+= .CD BM ∴⊥,FD BM ⊥,又FD CD D = ,FD ,CD ⊂面FCD ,故BM ⊥面FCD ;解:(2)由(1)知,(1,1,0)FE = ,设(,,0)FM FE λλλ== ,则(M λ,λ,1),∴(,,1),(2,0,0),(1,1,0)BM BC BD λλ=== ,设平面BMC 的法向量为(,,)n x y z = ,由200n BC x n BM x y z λλ⎧⋅==⎪⎨⋅=++=⎪⎩,取1y =-,则z λ=,故平面BMC 的一个法向量为(0,1,)n λ=- .16/31设BD 与平面BCM 所成角为θ,∴||sin |cos ,|||||n BD n BD n BD θ⋅=<>==⋅ .∴当0λ=时取最大值22,当1λ=时取最小值12.故BD 与平面BCM 所成角的取值范围为[30︒,45]︒.12.如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别是棱AB ,BC 上的动点,且AE BF =.(1)求证:11A F C E ⊥;(2)当EF 取得最大值时,求二面角11E A C F --的余弦值.【解答】解:(1)证明:如图,建立空间直角坐标系D xyz -,设AE m =,(02)m ,则1(2A ,0,2),(2F m -,2,0),1(0C ,2,2),(2E ,m ,0),∴1(A F m =- ,2,2)-,1(2C E = ,2m -,2)-,∴1122440A F C E m m ⋅=-+-+= ,11A F C E ∴⊥.(2)由(1)得EF ==,17/3102m ,∴当0m =或2m =时,EF 取得最大值为2,当0m =时,点E 与点A 重合,即(2E ,0,0),点F 与点B 重合,即(2F ,2,0),∴11(2A C =- ,2,0),1(0EA = ,0,2),1(0FA = ,2-,2),设平面11A C E 的一个法向量为(n x = ,y ,)z ,则1122020n AC x y n EA z ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,取1x =,得(1n = ,1,0),设平面11A C F 的一个法向量(m a = ,b ,)c ,则111220220m A C a b m FA b c ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,取1a =,得(1m = ,1,1),设二面角11E A C F --的平面角为θ,则||cos ||||3m n m n θ⋅===⋅ ,∴二面角11E A C F --的余弦值为63.当2m =时,点E 与点B 重合,点F 与点C 重合,同理可得二面角11E A C F --综上,当EF 取得最大值时,二面角11E A C F --的余弦值为63.题型二立体几何中的最值问题13.在四面体ABCD 中,ABC ∆是边长为2的正三角形,60ADB ∠=︒,二面角D AB C --的大小为60︒,则下列说法正确的是()A .AB CD⊥18/31B .四面体ABCD 的体积V的最大值为2C .棱CDD .四面体ABCD 的外接球的表面积为529π【解答】解:对于A ,假设AB CD ⊥,设AB 的中点为E ,因为三角形ABC 为正三角形,则CE AB ⊥,又CE CD C = ,CE ,CD ⊂平面CDE ,故AB ⊥平面CDE ,又DE ⊂平面CDE ,故AB DE ⊥,而题中并不能得到AB DE ⊥,故假设不成立,所以AB 不垂直CD ,故选项A 错误;对于B ,要使的ABCD V 最大,只需高最大,故V的最大值为113332ABC S DF ∆⋅⋅=⨯=,故选项B 正确;对于C ,由选项B 中可知,此时CD 也最小,故CD=,故选项C 正确;对于D ,设ABD ∆的外心为M ,E 为AB的中点,MA MB MD ===设过M 与平面ABD 垂直的直线为MN ,过C 作CR ED ⊥于点R ,则外接球球心O 在MN 上,只需OA OC =,又32CR =,ER EM MR ===,设OM x =,由22OA OC =,可得22223()2x x +=+-,解得13x =,所以21413939R =+=,所以四面体ABCD 的外接球的表面积为213524499R πππ⋅=⋅=,故选项D 正确.故选:BCD .19/3114.已知长方体1111ABCD A B C D -的高12AA =,AC =,1AB x =,1AD y =,则当x y +最大时,二面角111A B D C --的余弦值为()A .155B .155-C .55D .55【解答】解: 长方体1111ABCD A B C D -的高12AA =,AC =,1AB x =,1AD y =,∴当x y +最大时,AB BC ==,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,则A ,0,0),1B ,2),1(0D ,0,2),1(0C,,2),1(0AB =,,2),1(AD =- 2),设平面11AB D 的法向量(n x = ,y ,)z ,则112020n AB z n AD z ⎧=+=⎪⎨=-+=⎪⎩ ,取1x =,得(1n = ,1-,平面111B D C 的法向量(0m = ,0,1),设二面角111A B D C --的平面角为α,结合图形得α为钝角,则||cos ||||m n m n α=-== .∴二面角111A B D C --的余弦值为5-.故选:B .20/3115.如图,在棱长为4的正方体1111ABCD A B C D -中,M 是棱1A A 上的动点,N 是棱BC 的中点.当平面1D MN 与底面ABCD 所成的锐二面角最小时,1A M =85.【解答】解:以D 为坐标原点建立空间直角坐标系如图所示,设MA k =,则1(0D ,0,4),(0C ,4,0),(2N ,3,0),(4M ,0,)k ,所以11(4,0,4),(2,4,4)D M k D N =-=- ,设平面1D MN 的法向量为(,,)n x y z = ,则有1100n D M n D N ⎧⋅=⎪⎨⋅=⎪⎩ ,即4(4)02420x k z x y z +-=⎧⎨+-=⎩,令8z =,则82x k =-,4y k =+,故(82,4,8)n k k =-+ ,平面ABCD 的一个法向量为(0,0,1)m = ,设平面1D MN 与底面ABCD 所成的锐二面角为α,则||cos ||||n m n m α⋅== ,21/31锐二面角α越小,则cos α越大,所以求2524144k k -+的最小值,令2212576()5241445()55f k k k k =-+=-+,所以当125k =时,α有最小值,此时11284455A M k =-=-=.故答案为:85.16.四棱锥P ABCD -的底面ABCD 是边长为a 的菱形,PA ⊥面ABCD ,120BAD ∠=︒,E ,F 分别是CD ,PC 的中点.(1)求证:平面AEF ⊥平面PAB ;(2)M 是PB 上的动点,EM 与平面PAB 所成的最大角为45︒,求二面角F AE D --的余弦值.【解答】解:(1)证明:底面ABCD 是边长为a 的菱形,120BAD ∠=︒,故60ADE ∠=︒,12DE a =,AD a =,由22222211132cos 6024224AE AD DE AD DE a a a a a =+-︒=+-= ,所以222AE DE AD +=,故Rt ADE ∆,AE ED ⊥,又//AB CD ,所以AE AB ⊥,22/31又PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以AE PA ⊥,又AB PA A = ,所以AE ⊥平面PAB ,又AE ⊂平面AEF ,故平面AEF ⊥平面PAB ;(2)连接AM ,则由(1)知,AE ⊥平面PAB ,则AME ∠为直线EM 与平面PAB 所成的角,在Rt AME ∆中,tan AEAME AM ∠=,当AM 最小时,即AM PB ⊥时,AME ∠取得最大值45︒,此时AE AM =,设PA x =,则由PA AB PB AM =得,2ax a =,解得x =,根据题意,以AB ,AE ,AP 分别为x ,y ,z 轴建立空间直角坐标系,则(B a ,0,0),(0E ,32,0),(2aC ,32,0),(0P ,0),33(,,)442a F,(0,,0)2AE =,(,442a AF = ,设平面AEF 的法向量为(,,)m x y z = ,由0204m AE a m AF x ⎧==⎪⎪⎨⎪=++=⎪⎩,得(m =-,又平面AED 的法向量为(0,0,1)n = ,由cos ,13m n <>== ,因为二面角F AE D --为钝角,所以二面角F AE D --的余弦值为1313-.23/3117.如图,在直三棱柱111ABC A B C -中,底面三角形ABC 为直角三角形,其中AB AC ⊥,3AB =,4AC =,18CC =,M ,N 分别为1BB 和1AA 的中点.(1)求证:CN ⊥平面1C MN ;(2)当点P 在线段1C A 上移动时,求直线NP 与平面11BB C C所成角正弦的最大值.【解答】解:依题意可得AB ,AC ,1AA 两两垂直,故以A 为原点建立空间直角坐标系(如图),(0A ,0,0),(3B ,0,0),(0C ,4,0),1(0A ,0,8),1(3B ,0,8),1(0C ,4,8),(1)(3M ,0,4),(0N ,0,4),(3,0,0)MN =- ,(0,4,4)CN =- ,1(0,4,4)C N =-- ,∴0MN CN ⋅= ,10CN C N ⋅= ,CN MN ∴⊥,1CN C N ⊥,且1C N M N N = ,CN ∴⊥面1C MN .(2)设1AP AC λ= ,01λ,(0NP NA AP =+= ,0,4)(0λ-+,4,8)(0=,4λ,84)λ-,(3,4,0)BC =- ,1(0BB = ,0,8),24/31设面11BB C C 的法向量为(m x = ,y ,)z ,由134080m BC x y m BB z ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,可取(4m = ,3,0),则直线NP 与平面11BB C C所成角正弦值为||||||m NP m NP ⋅===当12λ=时,2145λλ-+取得最小值1的值最大为35.即直线NP 与平面11BB C C 所成角正弦的最大值为35.18.如图,矩形ABCD 所在的平面与半圆弧 CD所在的平面垂直,2AB =,22AD =,M 是 CD 上异于C ,D 的动点.(1)证明:平面AMD ⊥平面BMC ;(2)设BM 和平面ABCD 所成角为θ,求sin θ的最大值.【解答】(1)证明:由题意可知,平面CMD ⊥平面ABCD ,且平面CMD ⋂平面ABCD CD =,又BC CD ⊥,BC ⊂平面ABCD ,故BC ⊥平面CMD ,25/31又DM ⊂平面CMD ,所以BC DM ⊥,因为M 是 CD上异于C ,D 的动点,且CD 为直径,所以DM CM ⊥,又BC CM C = ,BC ,CM ⊂平面BMC ,所以DM ⊥平面BMC ,又DM ⊂平面AMD ,故平面AMD ⊥平面BMC ;(2)解:过点M 作MH CD ⊥,交CD 于点H ,连接HB ,MC ,由平面DMC ⊥平面ABCD ,且平面CMD ⋂平面ABCD CD =,所以MH ⊥平面ABCD ,则MBH ∠为MB 与平面ABCD 所成角,即MBH θ∠=,不妨设HC x =,(02)x <<,所以2DH x =-,则由射影定理可得,22(2)2MH x x x x =-=-,又222221(22HB x x =+=+,所以222122MB MH HB x =+=+,故22222122MH x x sin MB x θ-==+,令1192(,)222x y +=∈,故22112()()595122()441642y y y sin y y θ--==-+-=,当且仅当12x =时取等号,所以sin θ的最大值为22.19.已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,26/31D 为棱11A B 上的点,11BF A B ⊥.(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE所成的二面角的正弦值最小?【解答】(1)证明:连接AF ,E ,F 分别为直三棱柱111ABC A B C -的棱AC 和1CC 的中点,且2AB BC ==,1CF ∴=,BF =11BF A B ⊥ ,11//AB A B ,BF AB∴⊥3AF ∴=,AC ===,222AC AB BC ∴=+,即BA BC ⊥,故以B 为原点,BA ,BC ,1BB 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则(2A ,0,0),(0B ,0,0),(0C ,2,0),(1E ,1,0),(0F ,2,1),设1B D m =,则(D m ,0,2),∴(0BF = ,2,1),(1DE m =- ,1,2)-,∴0BF DE ⋅= ,即BF DE ⊥.(2)解:AB ⊥ 平面11BB C C ,∴平面11BB C C 的一个法向量为(1p = ,0,0),由(1)知,(1DE m =- ,1,2)-,(1EF =- ,1,1),设平面DEF 的法向量为(n x = ,y ,)z ,则00nDEn EF ⎧⋅=⎪⎨⋅=⎪⎩,即(1)200m x y z x y z -+-=⎧⎨-++=⎩,令3x =,则1y m =+,2z m =-,∴(3n = ,1m +,2)m -,27/31cos p ∴<,||||p n n p n ⋅>====⋅ ∴当12m =时,面11BB C C 与面DFE 所成的二面角的余弦值最大,此时正弦值最小,故当112B D =时,面11BB C C 与面DFE所成的二面角的正弦值最小.20.如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在平面垂直,M 是 CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD所成二面角的正弦值.【解答】解:(1)证明:在半圆中,DM MC ⊥,正方形ABCD 所在的平面与半圆弧 CD所在平面垂直,AD ∴⊥平面DCM ,则AD MC ⊥,AD DM D = ,MC ∴⊥平面ADM ,MC ⊂ 平面MBC ,∴平面AMD ⊥平面BMC .(2)ABC ∆ 的面积为定值,∴要使三棱锥M ABC -体积最大,则三棱锥的高最大,此时M 为圆弧的中点,28/31建立以O 为坐标原点,如图所示的空间直角坐标系如图正方形ABCD 的边长为2,(2A ∴,1-,0),(2B ,1,0),(0M ,0,1),则平面MCD 的法向量(1m = ,0,0),设平面MAB 的法向量为(n x = ,y ,)z 则(0AB = ,2,0),(2AM =- ,1,1),由20n AB y == ,20n AM x y z =-++= ,令1x =,则0y =,2z =,即(1n = ,0,2),则cos m <,||||m n n m n >== ,则面MAB 与面MCD所成二面角的正弦值sin 5α==.21.如图,在四棱锥P ABCD -中,四边形ABCD 为矩形,PD ⊥平面ABCD ,1PD CD ==,PA 与平面ABCD 所成角为30︒,M 为PB 上一点且CM PA ⊥.(1)证明:PA DM ⊥;(2)设平面PAD 与平面PBC 的交线为l ,在l 上取点N 使PN DA = ,Q 为线段PN 上一动点,求平面ACQ与平面PDC 所成二面角的余弦值的最大值.29/31【解答】解:(1)证明: 四边形ABCD 为矩形,AD CD ∴⊥,PD ⊥ 平面ABCD ,PD CD ∴⊥,AD PD D = ,AD ,PD ⊂平面PAD ,CD ∴⊥平面PAD ,PA ⊂ 平面PAD ,PA CD ∴⊥,CM PA ⊥ ,CM CD C = ,CM ,CD ⊂平面CMD ,PA ∴⊥平面CMD ,DM ⊂ 平面CMD ,PA DM ∴⊥.(2)PD ⊥ 平面ABCD ,PAD ∴∠为PA 与平面ABCD 所成角,PA 与平面ABCD 所成角为30︒,30PAD ∴∠=︒,1PD =,AD ∴=以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z轴,建立空间直角坐标系,AD = 1PD CD ==,PN DA =,PN ∴=令(0PQ λλ=,则(0D ,0,0),A 0,0),(0C ,1,0),(Q λ,0,1),(AC = 1,0),(CQ λ= ,1-,1),设(n x = ,y ,)z 是平面ACQ 的一个法向量,则00nAC y n CQ x y z λ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取1x =,得(1n =)λ,平面PDC 的一个法向量为(1m = ,0,0),cos ,||||m n m n m n ⋅∴<>==⋅,0λ ,∴当λ=cos ,m n <> 的最大值12,30/31∴平面ACQ 与平面PDC 所成二面角的余弦值的最大值为12.22.如图,四边形ABDE 为直角梯形,其中//AE BD ,AE AB ⊥,33AE BD ==,F 为腰DE 上的一个动点.ABC ∆为等腰直角三角形,2AB AC ==,平面ABDE ⊥平面ABC .(1)求证:AC BF ⊥;(2)当直线CF 与平面ABDE 所成角最大时,求平面FBC 与平面ABC所成锐二面角的余弦值.【解答】(1)证明:ABC ∆ 为等腰直角三角形,AB AC =,AC AB ∴⊥,又 平面ABDE ⊥平面ABC ,平面ABDE ⋂平面ABC AB =,AC ⊂平面ABC ,AC ∴⊥平面ABDE ,BF ⊂ 平面ABDE ,AC BF ∴⊥;(2)解:连接AF ,由(1)知AC ⊥平面ABDE ,直线CF 与平面ABDE 成角为CFA ∠,2tan AC CFA AF AF ∠==,∴当AF 最小时,CF 与平面ABDE 所成角最大,此时AF DE ⊥,过F 作FM AB ⊥于M ,过M 作MN BC ⊥于N ,连接NF ,则FNM ∠为二面角F BC A --的平面角,在AE 上取得H ,使1AH BD ==,连接DH ,则DH AE ⊥,在Rt DHE ∆中,由2EH =,2DH =,可得ED =,由1122ADE S AE DH DE AF ∆=⋅=⋅,可得322AE DH AF DE ⋅==,则322EF ===,32222DE ∴=-=,由1124FM-=,可得32FM=,由Rt BNM Rt BAC∆∆∽,得NM BMAC BC=,即12224NM⨯==,NF∴===cos19NMFNMFN∴∠===.31/31。
动点最值问题通常涉及在给定条件下寻找动点的位置,以使得某个特定的函数或表达式达到最大值或最小值。
下面给出一个经典的动点最值问题例题:
例题:在直角坐标系中,点A的坐标为(0,4),点B的坐标为(4,0)。
动点P在线段AB上运动,求线段OP(O为坐标原点)长度的最小值。
解:线段AB的长度可以根据勾股定理求出,为4√2。
由于点P在线段AB上运动,因此线段OP的长度最小值为O到AB的距离。
为了找到这个距离,可以过O作AB的垂线,交AB于点C。
由于△AOB是等腰直角三角形,所以OC = AC = BC = 2√2。
因此,线段OP的最小值为2√2。
这个问题考察了动点最值问题的基本思路和方法,即通过寻找动点的位置来使得某个特定的函数或表达式达到最大值或最小值。
同时,这个问题也涉及到了几何、代数和三角函数等多个数学知识点,需要综合运用这些知识点来解决问题。
专题12三角形中的动点问题1.(2022春•和平区校级月考)如图1,7AB cm =,AC BD ⊥,BD AB ⊥,垂足分别为A 、B ,5AC cm =,点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时点Q 在射线BD 上运动,它们运动的时间为t 秒.(当点P 运动结束时,点Q 运动随之结束)(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段P Q 的位置关系,请分别说明理由;(2)如图2,若“AC AB ⊥,BD AB ⊥”改为“CAB DBA ∠=∠”,点Q 的运动速度为x /cm s ,其他条件不变,当点P 、Q 运动到何处时有ACP ∆与BPQ ∆全等,则x 的值为.(直接写出x 的值)2.(2022秋•潢川县校级期末)已知:如图,在梯形ABCD 中,12AB DC cm ==,15BC cm =,B C ∠=∠,点E 为边AB 上一点,且5AE cm =.点P 在线段BC 上以每秒3cm 的速度由点B 向点C 运动,同时点Q 在线段CD 上由点C 向点D 运动.设点P 运动时间为t 秒,请回答下列问题:(1)线段BP ,C P 的长可用含t 的式子分别表示为:B P =,CP =.(2)若某一时刻B P E ∆与CQP ∆全等,求此时t 的值和线段B P 的长3.(2022秋•洮北区校级月考)如图,已知正方形ABCD 中,边长为10cm ,点E 在AB 边上,6BE cm =.点P 在线段BC 上以4/cm 秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上以a 厘米/秒的速度由C 点向D 点运动,设运动的时间为t 秒.(1)B P =cm ,CP =cm .(用含t 的代数式表示)(2)若以E 、B 、P 为顶点的三角形和以P 、C 、Q 为顶点的三角形全等,求a 的值.4.(2020秋•新市区校级期末)如图,已知ABC ∆中,12AB AC ==厘米.9BC =厘米,点D 为AB 的中点.(1)如果点P 在BC 边上以3厘米/秒的速度由B 向C 点运动,同时点Q 在C A 边上由C 点向A 点运动.①若点Q 与点P 的运动速度相等,1秒钟时,B P D ∆与CQP ∆是否全等?请说明理由;②若点Q 与点P 的运动速度不相等,要使B P D ∆与CQP ∆全等,点Q 的运动速度应为多少?并说明理由;(2)若点Q 以②的运动速度从点C 出发点,P 以原来运动速度从点B 同时出发,都沿ABC ∆的三边按逆时针方向运动,当点P 与点Q 第一次相遇时,求它们运动的时间,并说明此时点P 与点Q 在ABC ∆的哪条边上.5.(2022春•华容县期中)如图,已知正方形ABCD 的边长为10cm ,点E 在AB 边上,6BE cm =.(1)如果点P 在线段BC 上以4/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,B P E ∆与CQP ∆是否全等.请说明理由.②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使B P E ∆与CQP ∆全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿正方形ABCD 四边运动,求经过多长时间点P 与点Q 第一次在正方形ABCD 边上的何处相遇?相遇点在何处?6.(2021秋•濮阳期中)如图,已知四边形ABCD 中,8AB BC cm ==,6CD cm =,B C ∠=∠,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速运动,点Q 运动的速度是每秒2cm ,点P 运动的速度是每秒a (2)cm a ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t 秒,(1)BQ =;B P =;(用含a 或t 的代数式表示)(2)运动过程中,连接P Q 、DQ ,BPQ ∆与CDQ ∆是否全等?若能,请求出相应的t 和a 的值;若不能,请说明理由.7.(2022秋•南召县期末)如图,在四边形ABCD 中,B C ∠=∠,20AB cm =,15BC cm =,E 为AB 的中点,若点P 在线段BC 上以5/cm s 的速度由点B 向点C 运动,同时,点Q 在线段CD 上由点C 向点D 运动.(1)若点Q 运动的速度是5/cm s ,经过1秒后,B P E ∆与CQP ∆是否全等,请说明理由;(2)若点Q 的运动速度与点P 的运动速度不相等,当B P E ∆与CQP ∆全等时,求出点Q 的运动速度.8.(2022秋•蒸湘区校级期末)如图,在ABC ∆中,2AB AC ==,40B ∠=︒,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 与AC 交于E .(1)当115BDA ∠=︒时,BAD ∠=︒,DEC ∠=︒;当点D 从B 向C 运动时,B D A ∠逐渐变(填”大”或”小”);(2)当2DC AB ==时,A B D ∆与D CE ∆是否全等?请说明理由:(3)在点D 的运动过程中,A D E ∆的形状可以是等腰三角形吗?若可以,请直接写出B D A ∠的度数;若不可以,请说明理由.9.(2022秋•浠水县校级期中)如图(1),14AB cm =,10AC cm =,AC AB ⊥,BD AB ⊥垂足分别为A 、B ,点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时点Q 在射线BD 上运动.它们运动的时间为()t s (当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当2t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段P Q 的位置关系,请分别说明理由;(2)如图(2),若“AC AB ⊥,BD AB ⊥”改为“CAB DBA ∠=∠”,点Q 的运动速度为x /cm s ,其它条件不变,当点P 、Q 运动到何处时有ACP ∆与BPQ ∆全等,求出相应的x 和t 的值.10.(2022秋•潍坊期中)如图,已知正方形ABCD 的边长为10cm ,点E 在AB 边上,6BE cm =.(1)如果点P 在线段BC 上以4/cm s 的速度由B 点向C 点运动,点Q 同时在线段CD 上由C 点向D 点运动,①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,B P E ∆与COP ∆是否全等?并说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,B P E ∆与CQP ∆全等?(2)若点?以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿正方形ABCD 四边运动,求经过多长时间点P 与点Q 第一次相遇?相遇点在何处?11.(2022秋•慈溪市月考)如图①,在Rt ABC ∆中,90C ∠=︒,9BC cm =,12AC cm =,15AB cm =,现有一动点P 从点A 出发,沿着三角形的边AB BC →运动,到点C 停止,速度为3/cm s ,设运动时间为t .(1)如图①,当t =时,APC ∆的面积等于ABC ∆面积的一半;(2)如图②,在DE F ∆中,90E ∠=︒,4DE cm =,5DF cm =,D A ∠=∠.在ABC ∆的边上,若另外有一动点Q ,与点P 同时从点A 出发,沿着边AC 运动,到点C 停止.在两点运动过程中的某一时刻,恰好使APQ ∆与D E F ∆全等,求点Q 的运动速度.12.(2022秋•安化县期末)如图,已知12AB cm =,CA AB ⊥于点A ,D B AB ⊥于点B ,且4AC cm =,点P 从点B 向点A 运动,每秒钟走1cm ,点Q 从点B 向点D 运动,每秒钟走2cm ,两点同时出发,运动几秒钟后,CPA ∆与PQB ∆全等?13.(2022秋•江宁区校级月考)如图,已知ABC ∆中,6AB AC cm ==,B C ∠=∠,4BC cm =,点D 为AB 的中点.(1)如果点P 在线段BC 上以/lcm s 的速度由点B 向点C 运动,同时,点Q 在线段C A 上由点C 向点A 运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,B P D ∆与CQP ∆是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使B P D ∆与CQP ∆全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC ∆三边运动,则经过多少时间后,点P 与点Q 第一次在ABC ∆的哪一边上相遇?14.(2022秋•日照期末)如图(1),4AB cm =,AC AB ⊥,BD AB ⊥,3AC BD cm ==.点P 在线段AB 上以1/cm s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为()t s .(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段P Q 的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC AB ⊥,BD AB ⊥”改为“60CAB DBA ∠=∠=︒”,其他条件不变.设点Q 的运动速度为x /cm s ,是否存在实数x ,使得ACP ∆与BPQ ∆全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.1115.(2022秋•东西湖区校级期末)如图,已知ABC ∆中,20AC CB cm ==,16AB cm =,点D 为AC 的中点.(1)如果点P 在线段AB 以6/cm s 的速度由A 点向B 点运动,同时,点Q 在线段BC 上由点B 向C 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1s 后,A P D ∆与BQP ∆是否全等?说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使A P D ∆与BQP ∆全等?(2)若点Q 以②中的运动速度从点B 出发,点P 以原来的运动速度从点A 同时出发,都逆时针沿ABC ∆三边运动,求经过多长时间点P 与点Q 第一次在ABC ∆的哪条边上相遇?。
动点问题最小值典型练习一.解答题(共25小题)1.如图,正三角形ABC的边长为2,M是BC边上的中点,P是AC边上的一个动点,求PB+PM的最小值.2.如图,在▱ABCD中,E、F是对角线BD上的两个动点,且BE=DF.试猜想并证明AE 与CF的关系.3.在矩形ABCD中,P为AB上的动点,PE⊥AC于E,PF⊥BD于F,求证:PE+PF为定值.4.如图,△ABD、△BCD都是等边三角形,E、F分别是AD、CD上的两个动点,且满足DE=CF.求证:BE=BF.5.已知等边△ABC中,D是BC边上的动点,∠EDF=60°.求证:△BDE∽△CFD.6.如图,等边三角形ABC中,D是AB边上的动点,以CD为一边,向上作等边三角形EDC,连接AE.求证:(1)△ACE≌△BCD;(2)AE∥BC.7.如图,在锐角三角形ABC中,BC=4√2,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,试求CM+MN的最小值.8.如图,已知⊙O的半径为R,C、D是直径AB同侧圆周上的两点,AC的度数为96°,BD的度数为36°,动点P在AB上.求PC+PD的最小值.9.如图,在矩形ABCD中,B(16,12),E、F分别是OC、BC上的动点,EC+CF=8.当F运动到什么位置时,△AEF的面积最小,最小为多少?10.已知点A的坐标为(2,0),动点P在直线y=1/2 x−3上,求使△PAO为直角三角形的点P的坐标.11.如图,四边形ABCD中,AB∥CD,P为BC上一点,设∠CDP=α,∠CPD=β,当点P在BC上移动时,猜想α,β与∠B的关系,并说明理由.12.如图,已知正方形ABCD的边长是8,点E在BC边上,且CE=2,点P是对角线BD 上的一个动点,求PE+PC的最小值.13.如图,在菱形ABCD中,P是AB上的一个动点(不与A,B重合),连接DP交对角线AC于E,连接EB,求证:∠APD=∠EBC.14.正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM为多少时,四边形ABCN的面积最大?15.如图,平面直角坐标系中A(1,4),B(3,2),C、D为x轴上两动点,且CD=1,试求四边形ACDB周长最小时,C、D两点的坐标.16.如图,矩形ABCD,AB=3,BC=4,E、F是AB、BC边上的动点,以EF为轴翻折△BEF 得△B′EF,连接AB′,求AB′的最小值.17.如图,矩形ABCD中,AB=6,BC=8,P是边AD上的动点,PE⊥AC于点E,PF⊥BD 于点F,PE+PF的值是多少?18.如图,直角坐标系中,A(2,0),B(6,0),C在直线y=4上移动,试求出C点坐标使得∠ACB最大.19.如图:(1)分别求出直线和抛物线的解析式;(2)若M为抛物线第一象限的动点,求S△AMB的最值.20.如图:点A的坐标是(2,2),点P是x轴正半轴上的一个动点,若△AOP是等腰三角形,求P点的坐标.21.已知任意△ABC,D、E是AB、BC上的两个点,D是定点,E是动点.请问如何尺规操作才能使S△BED=S△ADC.22.如图,已知矩形ABCD,AB=2,AD=4,点P在BC上移动,△ABP和△PCD能相似吗?若能,求出点P的位置;若不能,请说明理由.23.如图,等边△ABC中,D是AB边上动点,作等边△EDC,连AE.(1)△DBC和△EAC全等吗?说说你的理由.(2)求证:AE∥BC.24.已知正方形ABCD的边长为2,点P、Q为AD、CD的中点,E、F为AB、BC边上的两个动点,求四边形PQFE周长的最小值.25.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线,若P,Q分别是AD和AC上的动点,求PC+PQ的最小值.。
人教版八年级数学上册数学动点问题专题练习(详细参考答案附后)1、在△ABC中,BC=12cm,AC=9,点P为一动点,沿着C→B→A→C的路径运动(返回C点时则停止运动),已经点P的运动速度为2cm/秒,试求:(1)AB的取值范围;(2)若∠C=90度,AB=15cm①当P点在CB上运动时,经过多长时间PC=AC;②经过多长时间后,点P与△ABC某一顶点的连线将把△ABC的周长分成相等的两部分.③当P从运动开始,几秒后点P与△ABC某一顶点的连线将这个△ABC分成面积相等的两部分;2、点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交AB 于点E,交CA的延长线于点F。
(1)如图(1),请观察AF与AE,它们相等吗?并证明你的猜想。
(2)如图(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB 的延长线上时,(1)中所得的结论还成立吗?请你在图(2)中完成图形,并给予证明。
3、如图,己知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点。
如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3)。
(1)用的代数式表示PC的长度;(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD 与△CQP全等?人教版八年级数学上册数学动点问题专题练习参考答案1、在△ABC中,BC=12cm,AC=9,点P为一动点,沿着C→B→A→C的路径运动(返回C点时则停止运动),已经点P的运动速度为2cm/秒,试求:(1)AB的取值范围;(2)若∠C=90度,AB=15cm①当P点在CB上运动时,经过多长时间PC=AC;②经过多长时间后,点P与△ABC某一顶点的连线将把△ABC的周长分成相等的两部分.③当P从运动开始,几秒后点P与△ABC某一顶点的连线将这个△ABC分成面积相等的两部分;解:(1)根据三角形三边之间的关系可知AB> BC -AC AB<AC+BC∴AB> 12 -9 AB<12+9即:3<AB<21(2)①∵PC=AC=9 t=v÷s=9÷2=4.5(秒)②△ABC的周长一半=(AB+ AC+BC)÷2=(15+9+12)÷2=36÷2=18(cm)当P从点C往点B运动至9cm处时,点P与点A的连线恰好将△ABC的周长分成相等的两部分。
人教版八年级上册数学三角形动点问题培优练习1、在等腰三角形ACB中,AC=BC=5,AB=8,D为底边AB上的一个动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E,F,则DE+DF=CE。
2、在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上的一个动点,连接PB、PQ,则△PBQ周长的最小值为12cm。
3、将边长为1的等边三角形OAP按图示方式,沿x轴正方向连续翻转2011次,点P依次落在点P1,P2,P3,P4,…,P2007的位置。
P1的坐标为(1,0),P3的坐标为(-1/2,-√3/2),P50的坐标为(-1/2,√3/2),P2011的坐标为(1,0)。
4、在等腰直角三角形ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE。
连接DE、DF、EF。
1)证明:△ADF≌△CEF。
2)证明:△DFE是等腰直角三角形。
5、在等边三角形ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每1个单位的速度沿A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处。
1)在爬行过程中,CD和BE始终相等。
2)证明:∠CQE=60°,若蜗牛沿着AB和CA的延长线爬行,EB与CD交于点Q。
3)若蜗牛沿着BC的延长线爬行,连接DE交AC于F,则爬行过程中,DF始终等于EF。
6、如图1,若△ABC和△ADE为等边三角形,M、N分别为EB、CD的中点,易证:CD=BE,△AMN是等边三角形。
1)当把△ADE绕A点旋转到图2的位置时,CD=BE仍然成立。
2)当△ADE绕A点旋转到图3的位置时,△XXX不再是等边三角形。
当AB=2AD时,△ADE与△ABC及△AMN的面积之比为1:3:4.7、在△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点。
全等三角形动点问题专练
班级:姓名:
1.已知:AB⊥BD, ED⊥BD, AC=CE, BC=DE。
(1)试猜想线段AC与CE的位置关系,并证明你的结论.
(2)若将CD沿CB方向平移至图2情形,其余条件不变, 结论AC1⊥C2E还成立吗?请说明理由。
(3)若将CD沿CB方向平移至图3情形,其余条件不变, 结论AC1⊥C2E还成立吗?请说明理由。
D
D
图1 图2 图3
1/ 4
2.如图所示,有一直角三角形△ABC,∠C=900,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AM上运动,问P点运动到AC上什么位置时,△ABC才能和△APQ全等?
3.在△ABC中,AB=AC,P是△ABC内任意一点,将AP绕点A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ,CP;
(1)如图1,试说明BQ=CP;(2)若将点P在△ABC外,如图2,其它条件不变,结论依然成立吗?试说明理由。
2/ 4。
2023年中考九年级数数学高频考点提升练习--三角形动点问题综合1.如图,在△ABC中,∠C=90°,CA=3厘米,CB=2厘米.动点P从点C出发,沿CB方向以1厘米/秒的速度向B运动,动点Q从点B同时出发,沿BC方向以1厘米/秒的速度向C运动.当点P到达点B时,P、Q两点同时停止运动,以CP为一边向上作正方形CPDE,过点Q作QF∥AB,交AC于点F.设点P的运动时间为t秒,正方形CPDE和梯形AFQB重合部分的面积为S平方厘米.(1)当t=秒时,点P于点Q重合;(2)当t=秒时,点D在QF上;(3)当点P在Q、B两点之间(不包括Q、B两点)时,求S与t之间的函数关系式.2.如图,在△ABC中,已知AB=AC=10cm,BC=16cm,AD△BC于D,点E、F分别从B、C两点同时出发,其中点E沿BC向终点C运动,速度为4cm/s;点F沿CA、AB向终点B运动,速度为5cm/s,设它们运动的时间为x(s).(1)求x为何值时,△EFC和△ACD相似;(2)是否存在某一时刻,使得△EFD被AD分得的两部分面积之比为3:5,若存在,求出x的值,若不存在,请说明理由;(3)若以EF为直径的圆与线段AC只有一个公共点,求出相应x的取值范围.3.如图,直线y=kx+b(k≠0)与坐标轴分别交于A、B两点,OA=8,OB=6.动点P从O点出发,沿路线O→A→B以每秒2个单位长度的速度运动,到达B点时运动停止.(1)则A点的坐标为,B两点的坐标为;(2)当点P在OA上,且BP平分△OBA时,则此时点P的坐标为;(3)设点P的运动时间为t秒(0≤t≤4),△BPA的面积为S,求S与t之间的函数关系式:并直接写出当S=8时点P的坐标.4.如图,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤10).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,ΔDEF为直角三角形?请说明理由.5.如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,PA为腰作等腰Rt△APD,过D作DE△x轴于E点,求OP−DE的值;(3)如图3,已知点F坐标为(−2,−2),当G在y轴的负半轴上沿负方向运动时,作Rt△FGH,始终保持△GFH=90△,FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0),当G点在y轴的负半轴上沿负方向运动时,以下两个结论:①m−n为定值;②m+n为定值,其中只有一个结论是正确的,请找出正确的结论,并求出其值. 6.如图(1)如图1,点E在四边形ABCD的边BC上,EA=ED,且△AED=△B=△C.判断AB、BC、CD三边的数量关系,并说明理由;(2)如图2,在Rt△ABC中,△C=90°,AC=6,BC=8,点D在线段BC上,CD =3,点E是AC边上一动点,将线段DE绕点D顺时针旋转90°得到线段DF,连接BF,当AE的值为多少时,线段BF有最小值?并求出线段BF的最小值.7.如图,在Rt△ABC中,△ACB=90°,AC=6cm,BC=8cm,点P从点A出发沿线段AB以每秒1cm的速度运动,同时点Q从点B出发沿折线B﹣C﹣A以每秒2cm的速度运动.其中一点停止则另一点也随之停止,设运动时间为t秒.(1)①直接写出t的取值范围:;②当点P运动到AB中点时,连结PQ,PC,BQ,求证:△CPQ△△ABQ;(2)当△BPQ是直角三角形时,求t的值.8.已知△ABC中,∠BAC=90∘,AB=AC,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边作△ADE,使∠DAE=90∘,AD=AE,连接CE.发现问题:如图1,当点D在边BC上时,(1)请写出BD和CE之间的位置关系为,并猜想BC和CE、CD之间的数量关系:.(2)如图2,当点D在边BC的延长线上且其他条件不变时,(1)中BD和CE之间的位置关系、BC和CE、CD之间的数量关系是否成立?若成立,请证明;若不成立,请写出新的数量关系,说明理由;(3)如图3,当点D在边CB的延长线上且其他条件不变时,若BC=6,CE= 2,求线段ED的长.9.如图,P、Q分别是边长4cm为的等边ΔABC的边AB,BC上的动点,点P从顶点A,点Q从顶点B同时出发,分别沿AB,BC边运动,点P到点B停止,点Q到点C停止.社运动时间为t秒,他们的速度都为1cm/s.(1)连接AQ,CP相交于M,在点P,Q的运动过程中∠CMQ的大小是否变化?若变化,说明理由;若不变,求出它的度数;(2)当t取何值时,ΔPBQ是直角三角形.10.如图所示,点B坐标为(6,0),点A坐标为(6,12),动点P从点O开始沿OB以每秒1个单位长度的速度向点B移动,动点Q从点B开始沿BA以每秒2个单位长度的速度向点A移动,如果P,Q分别从O,B同时出发,用t(秒)表示移动的时间(0<t≤6).(1)用含t的式子来表示BP=.AQ=.(2)当t为何值时,以点P、B、Q为顶点的三角形与△AOB相似?(3)若四边形OPQA的面积为y,试写出y与t的函数关系式,并求出t取何值时,四边形OPQA的面积最小?(4)在y轴上是否存在点E,使点P、Q在移动过程中,以B、E、Q、P为顶点的四边形的面积是一个常数?若存在请求出点E的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,等边△ABC的顶点A,B的坐标分别为(0,0),(6,0),点D是x轴上的一个动点,连接CD,将△ACD绕点C逆时针旋转60°得到△BCE,连接DE.(1)点C的坐标为,△CDE为三角形;(2)当点D在线段AB上运动时,四边形CDBE的周长是否存在最小值?若存在,求出四边形CDBE的周长最小值及此时点D的坐标;若不存在,请说明理由;(3)当△BDE是直角三角形时,请直接写出点D的坐标.12.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA 上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过秒后,点P与点Q第一次在△ABC的AC边上相遇?(在横线上直接写出答案,不必书写解题过程)13.如图,点A坐标是(0,0),点C坐标是(2,2),现有E、F两点分别从点D(0,2)和点B(2,0)向下和向右以每秒一个单位速度移动,Q为EF中点.设运动时间为t.(1)在运动过程中始终与线段EC相等的线段是;四边形CEAF面积=.(2)当t=1秒时,求线段CQ的长.(3)过点B作BP平行于CF交EC于点P.当t=▲ 时,线段AP最短,此时作直线EP与x轴交于点K,试证明,点K是线段AB的黄金分割点.14.如图1,已知△ABC是边长为3cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P,Q两点都停止运动,设点P的运动时间为t(s).(1)当运动时间为t秒时,则BQ的长为cm,BP的长为cm.(用含t的式子表示)(2)当t为何值时,△PBQ是直角三角形;(3)如图2,连接AQ,CP相交于点M,则点P,Q在运动的过程中,∠CMQ的大小会变化吗?若变化,请说明理由.若不变,请直接写出它的度数.15.旋转是一种重要的图形变换,当图形中有一组邻边相等时往往可以通过旋转解决问题.(1)尝试解决:如图①,在等腰Rt△ABC中,∠BAC=90°,AB=AC,点M 是BC上的一点,BM=1cm,CM=2cm,将△ABM绕点A旋转后得到△ACN,连接MN,则AM=cm.(2)类比探究:如图②,在“筝形”四边形ABCD中,AB=AD=a,CB= CD,AB⊥BC于点B,AD⊥CD于点D,点P、Q分别是AB、AD上的点,且∠PCB+∠QCD=∠PCQ,求△APQ的周长.(结果用a表示)(3)拓展应用:如图③,已知四边形ABCD,AD=CD,∠ADC=60°,∠ABC=75°,AB=2√2,BC=2,求四边形ABCD的面积.16.如图,在矩形ABCD中,AB=6cm,BC=8cm,动点P以2cm/s的速度从点A出发,沿AC向点C移动,同时动点Q以1cm/s的速度从点C出发,沿CB向点B移动,设P、Q两点移动ts(0<t<5)后,ΔCQP的面积为Scm2.(1)在P、Q两点移动的过程中,ΔCQP的面积能否等于3.6cm2?若能,求出此时t的值;若不能,请说明理由;(2)当运动时间为多少秒时,ΔCPQ与ΔCAB相似.答案解析部分1.【答案】(1)1(2)34(3)解:点P 与点Q 重合时,由(1)知t =1;当点D 在AB 上时,如下图所示:此时DP =CP =BQ =t ,∵∠DPB =∠ACB =90°,∠DBP =∠ABC ,∴△DBP ∽△ABC ,∴DP PB =CA CB =32,∴PB =23DP =23t ,∵CP +PB =CB ,∴t +23t =2, 解得t =65, ∴CE =65.∵QF ∥AB ,∴∠FQC =∠ABC ,又∠FCQ =∠ACB =90°,∴△FQC ∽△ABC ,∴CQ CB =CF CA ,即2−652=CF 3, ∴CF =65,∴t =65时,点E 与点F 重合;当点P 到达B 点时,此时t =2.当点P 在Q 、B 两点之间(不包括Q 、B 两点)时,其运动过程可分析如下:①当1<t≤65时,如下图所示,此时重合部分为梯形GDPQ.则PQ=CP+BQ−CB=2t−2,PD=t,由△FQC∽△ABC得:CF=32CQ=32×(2−t)=3−32t,∴EF=CF−CE=3−32t−t=3−52t,∵QF∥AB,∴∠A=∠EFG,又∠ACB=∠FEG=90°,∴△ABC∽△FGE,∴FE CA=EG CB,∴EG=23EF=23×(3−52t)=2−53t,∴DG=ED−EG=t−(2−53t)=83t−2,∴S梯形GDPQ=12(PQ+DG)⋅DP=12(2t−2+83t−2)⋅t=73t2−2t,∴S=73t2−2t;②当65<t<2时,如下图所示,此时重合部分为一个多边形.则CP=BQ=t,CQ=BP=2−t,易知△ABC∽△FQC∽△MBP∽△MND,可得CF=32CQ=32(2−t)=3−32t,MP=32BP=32(2−t)=3−32t,∴DM=DP−MP=t−(3−32t)=52t−3,∴DN=23DM=23×(52t−3)=53t−2,∴S=S正方形EDPC−S△CFQ−S△MDN=CP2−12CF⋅CQ−12DM⋅DN=t2−12(3−32t)⋅(2−t)−12(52t−3)⋅(53t−2)=−116t2+8t−6;综上,当点P在Q、B两点之间(不包括Q、B两点)时,S与t之间的函数关系式为:S={73t2−2t(1<t≤65)−116t2+8t−6(65<t<2).2.【答案】(1)解:如图1中,点F在AC上,点E在BD上时,①当CFCE=CDAC时,△CFE△△CDA,∴5t16−4t=810,∴t= 64 41,②当CFCE=ACCD时,即5t16−4t= 108,∴t=2,当点F在AB上,点E在CD上时,不存在△EFC和△ACD相似,综上所述,t= 6441s或2s时,△EFC和△ACD相似.(2)解:不存在.理由:如图2中,当点F在AC上,点E在BD上时,作FH△BC 于H,EF交AD于N.∵CF=5t.BE=4t,∴CH=CF•cosC=4t,∴BE=CH,∵AB=AC,AD△BC,∴BD=DC,∴DE=DH,∵DN△FH,∴EDDH=ENNF=1,∴EN=FN,∴S△END=S△FND,∴△EFD被AD分得的两部分面积相等,同法可证当点F在AB上,点E在CD上时,△EFD被AD分得的两部分面积相等,∴不存在某一时刻,使得△EFD被AD分得的两部分面积之比为3:5.(3)解:①如图3中,当以EF为直径的△O经过点A时,△O与线段AC有两个交点,连接AE,则△EAF=90°.由ACEC=cosC= 45,可得1016−4t=45,∴t=78,∴0≤t<78时,△O与线段AC只有一个交点.②如图4中,当△O与AC相切时,满足条件,此时t= 6441.③如图5中,当△O与AB相切时,cosB= BFBE,即45=20−5t4t,解得t= 10041.④如图6中,△O 经过点A 时,连接AE ,则△EAF=90°.由cosB= AB AE = 45 ,即 104t = 45 ,t= 258, ∴258<t≤4时,△O 与线段AC 只有一个交点. 综上所述,当△O 与线段AC 只有一个交点时,0≤t < 78 或 6441 或 10041 或 258<t≤4 3.【答案】(1)(8,0);(0,6)(2)(3,0)(3)解:∵OA=8,v=2,∴t=8÷2=4,∴P 从O 运动到A 的时间为4秒,∴当0≤t≤4时,P 在线段OA 上运动.OP=2t ,PA=8-OP=8-2t ,S=S △BAP = 12 •PA•OB= 12•(8-2t )•6=24-6t. 当S=8时,8=24-6t ,解得:t= 83 ,∴OP=2t =2× 83 = 163 ,∴P ( 163,0).答:S= 24-6t (0≤t≤4),当S=8时,P ( 163,0).4.【答案】(1)解:能.理由如下:在ΔDFC中,∠DFC=90°,∠C=30°,DC=4t,∴DF=2t,又∵AE=2t,∴AE=DF,∵AB⊥BC,DF⊥BC,∴AE//DF,又∵AE=DF,∴四边形AEFD为平行四边形,当AE=AD时,四边形AEFD为菱形,即40−4t=2t,解得t=20 3.∴当t=203秒时,四边形AEFD为菱形.(2)解:①当∠DEF=90°时,由(1)知四边形AEFD为平行四边形,∴EF//AD,∴∠ADE=∠DEF=90°,∵∠A=60°,∴∠AED=30°,∴AD=12AE=t,又AD=40−4t,即40−4t=t,解得t=8;②当∠EDF=90°时,四边形EBFD为矩形,在RtΔAED中∠A=60°,∴∠ADE=90°−∠A=30°,∴AD=2AE,即40−4t=4t,解得t=5.③若∠DFE =90°,则E 与B 重合,D 与A 重合,此种情况不存在.综上所述,当t =8或5秒时,ΔDEF 为直角三角形.5.【答案】(1)解:过C 作CM△x 轴于M 点,如图1,∵CM△OA ,AC△AB ,∴△MAC+△OAB= 90° ,△OAB+△OBA= 90°则△MAC=△OBA在△MAC 和△OBA 中 {∠CMA =∠AOB =90∠MAC =∠OBA AC =BA∘则△MAC△△OBA(AAS)则CM=OA=2,MA=OB=4,则点C 的坐标为(−6,−2);(2)解:过D 作DQ△OP 于Q 点,如图2,则OP−DE=PQ,△APO+△QPD= 90° ,△APO+△OAP= 90° ,则△QPD=△OAP ,在△AOP 和△PDQ 中 {∠AOP =∠PQD =90∘∠QPD =∠OAP AP =PD则△AOP△△PDQ(AAS)∴OP−DE=PQ=OA=2;(3)解:结论②是正确的,m+n=−4,如图3,过点F 分别作FS△x 轴于S 点,FT△y 轴于T 点,则FS=FT=2,△FHS=△HFT=△FGT ,在△FSH 和△FTG 中 {∠FSH =∠FTG =90∘∠FHS =∠FGT FS =FT则△FSH△△FTG(AAS)则GT=HS ,又∵G(0,m),H(n,0),点F 坐标为(−2,−2),∴OT═OS=2,OG=|m|=−m ,OH=n ,∴GT=OG−OT=−m−2,HS=OH+OS=n+2,则−2−m=n+2,则m+n=−4.6.【答案】(1)解:AB ,BC ,CD 三边的数量关系是:AB+CD =BC , 理由如下:∵△AEB+△AED =△BED ,△EDC+△C =△BED ,且△AED =△C ,∴△AEB =△EDC ,在△ABE 和△ECD 中,{∠B =∠C ∠AEB =∠EDC AE =ED,∴△ABE△△ECD (AAS ),∴AB =EC ,BE =DC ,∴AB+CD =BE+EC =BC ;(2)解:如图,过D 作BD 垂线B'D 且使得B'D =BD ,连接B'E ,∵△EDF =△B'DB =90°,∴△BDF+△B'DF =△B'DF+△B'DE ,∴△BDF =△B'DE ,在△B'DE 与△BDF 中,{B ′D =BD ∠BDF =∠B ′DE DE =DF,∴△B'DE△△BDF (SAS ),∴BF =B'E ,∵点到直线垂线段最短,∴B'E△AC 时,B'E 取最小值,过点B'作B'G△AC 交AC 于G ,∵△C =△CDB'=△CGB'=90°,∴四边形CDB'G 为矩形,∴B'G =CD =3,CG =B'D =BD =8﹣3=5,∴BF 取最小值时AE =AG =AC ﹣CG =1,BF 最小值为B'G =3.7.【答案】(1)0≤t≤7;解:②证明:如图1中,由题意点P 运动到AB 的中点时,t =5, ∴CQ =5×2﹣8=2, ∵△ACB =90°,PA =PB ,∴PC =PA =PB =5, ∴△PCQ =△A , ∵QC AQ =24=12 , CP AB =12, ∴QC AQ =CP AB , ∴△QCP△△CAB ,(2)解:①如图2中,当PQ△AC 时,△PQB =△C =90°,∵PQ△AC ,∴BQ BC =BP AB,∴2t 8=10−t 10, 解得: t =207; ②如图3中,当△QPB =90°时,∵△QPB =△ACB =90°,△B =△B ,∴△BPQ△△BCA ,∴PB BC =BP BA, ∴10−t 8=2t 10, 解得: t =5013; 综上所述,满足条件的t 的值为: 207 或 5013. 8.【答案】(1)BD△CE ;BC=CD+CW 尝试探究:(2)解: BD ⊥CE 成立,数量关系不成立,关系为 BC =CE −CD . 理由:如图2中,由 (1) 同理可得,∵∠BAC =∠DAE =90∘ ,∴∠BAC +∠CAD =∠DAE +∠CAD即 ∠BAD =∠CA E ,∴ 在 △ABD 和 △ACE 中,{AB =AC ∠BAD =∠CAE AD =AE,∵△ABD △ △ACE(SAS) ,∴BD =CE , ∠ACE =∠ABC ,∵AB =AC ,∴∠ABC =∠ACB =45∘ ,∴BD =BC +CD ,即 CE =BC +CD , ∠ACE +∠ACB =90∘ , ∴BC =CE −CD ; BD ⊥CE ;拓展延伸:(3)解:如图3中,由 (1) 同理可得,∵∠BAC=∠DAE=90∘,∴∠BAC−∠BAE=∠DAE−∠BAE,即∠BAD=∠EAC,易证△ABD△ △ACE(SAS),∴BD=CE=2,∠ACE=∠ABD=135∘,∴CD=BC+BD=BC+CE=8,∵∠ACB=45∘∴∠DCE=90∘,在Rt△DCE中,由勾股定理得DE2=DC2+CE2=82+22=68,∴DE=2√17.9.【答案】(1)∵△ABC为等边三角形,∴AB=AC,△B=△PAC=60°,∵点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,∴AP=BQ,在△APC和△BQA中{AP=BQ∠PAC=∠B AC=AB,∴△APC△△BQA(SAS),∴△BAQ=△ACP,∴△CMQ=△CAQ+△ACP=△BAQ+△CAQ=△BAC=60°,∴在P、Q运动的过程中,△CMQ不变,△CMQ=60°;(2)∵运动时间为ts,则AP=BQ=t,∴PB=4-t,①当△PQB=90°时,∵△B=60°,∴PB=2BQ,∴4-t=2t,解得t=4 3,②当△BPQ=90°时,∵△B=60°,∴BQ=2PB ,∴t=2(4-t ),解得 t =83, ∴当t 为 43 s 或 83s 时,△PBQ 为直角三角形 10.【答案】(1)6-t ;12-2t(2)解:当 ∠BPQ =∠BOA 时,即 PQ//OA ,则 △BPQ ∼△BOA , ∴BP BO =BQ BA ,即 6−t 6=2t 12, 解得: t =3 ;当 ∠BPQ =∠A 时,则 △BPQ ∼△BAO ,∴BP BA =BQ BO ,即 6−t 12=2t 6, 解得: t =65; ∴当 t =65秒或3秒时,以点P 、B 、Q 为顶点的三角形与 △AOB 相似 (3)解: y =S △OAB −S △BPQ =12×6×12−12×2t ×(6−t)=t 2−6t +36=(t −3)2+27 ,∵a =1 ,∴t =3 时,y 有最小值是27;(4)解:存在,理由如下:当E 在y 轴负半轴上时,以B 、Q 、E 、P 为顶点不能形成四边形; 当E 在y 轴正半轴上时,设 E(0,m) ,∴以B 、Q 、E 、P 为顶点的四边形的面积=梯形 BQEO 的面积- △OPE 的面积, 即 12×6×(m +2t)−12×m ×t =(6−12m)t +3m , 当以B 、Q 、E 、P 为顶点的四边形的面积是一个常数,则 6−12m =0 ,解得: m =12 ,∴点E 的坐标为 (0,12) ;11.【答案】(1)(3,3 √3 );等边(2)解:存在,理由如下:∵△ABC 为等边三角形,∴△ACD+△DCB=60°,∵△DCE为等边三角形,∴△BCE+△DCB=60°,∴△ACD=△BCE,在△ACD和△BCE中,{CA=CB∠ACD=∠BCECD=CE,∴△ACD△△BCE(SAS)∴AD=BE,∴四边形CDBE的周长=CD+DB+BE+CE=CD+DB+AD+CE=6+2CD,当CD最小时,四边形CDBE的周长存在最小值,由垂线段最短可知,CD△AB时,CD最小,CD的最小值为3 √3,∴四边形CDBE的周长最小值为6+6 √3,此时点D的坐标为(3,0)(3)解:由(2)可知,△ACD△△BCE,∴BE=AD,∴△DBE=120°或60°,不能为90°,如图②,△DEB=90°时,△DBE=60°,∴△BDE=30°,∴DB=2BE,∵BE=AD,∴AD=AB=6,此时,点D的坐标为(-6,0),如图③,当△BDE=90°时,△ADC=90°-60°=30°,∵△CAD=60°,∴△ACD=90°,又△ADC=30°,∴AD=2AC=12,此时,点D的坐标为(12,0),综上所述,当△BDE是直角三角形时,点D的坐标为(-6,0)或(12,0).12.【答案】(1)解:①全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1厘米,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC−BP,BC=4cm,∴PC=4−1=3cm,∴PC=BD.∴△BPD≅△CQP;②假设△BPD≅△CQP,∵v P≠v Q,∴BP≠CQ,又∵△BPD≅△CQP,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t=BP1=2秒,∴v Q=CQ t=32=1.5cm/s;(2)2413.【答案】(1)FC;4(2)解:∵△CDE△△CBF,∴EC=FC,△DCE=△BCF,∵△DCE+△ECB=90°,∴△BCF+△ECB=90°,即△ECF=90°,∴△ECF是等腰直角三角形,当t=1时,DE=1,在Rt△CDE中,由勾股定理得:CE=√DE2+CD2=√12+22=√5,∴EF=√2CE=√2× √5=√10,∵Q为EF中点,∴CQ=12EF=12×√10=√102;(3)解:t=(√5+1)s∵BP△CF,△ECF=90°,∴△BPC=90°,∴点P的轨迹在以BC为直径的圆弧上,设BC的中点为G,连接AG,如图2所示:当点P在AG上时,AP最短,此时,PG=BG=1,在Rt△ABG中,由勾股定理得AG=√AB2+BG2=√22+12=√5,∴AP=AG﹣PG=√5﹣1,∵BC△DE,∴△AEP=△GCP,∵GC=GP,∴△GCP=△GPC,∵△GPC=△APE,∴△AEP=△APE,∴AP=AE=√5﹣1,∴E (0,1﹣ √5 ),∴DE =2﹣(1﹣ √5 )= √5 +1,∴t =( √5 +1)s ,故答案为:( √5 +1)s ;设CE 的解析式为:y =kx+b (k≠0),将C (2,2)、E (0,1﹣ √5 )代入解析式得: {2k +b =2b =1−√5, 解得: {k =√5+12b =1−√5,∴CE 的解析式为:y = √5+12x+1﹣ √5 , 令y =0,x =3﹣ √5 ,∴K (3﹣ √5 ,0),∴BK =2﹣(3﹣ √5 )= √5 ﹣1,∴BK AB = √5−12, ∴点K 是线段AB 的黄金分割点.14.【答案】(1)t ;(3-t )(2)解:由(1)得:AP =BQ =tcm ,BP =(3−t)cm ,①如图1,当∠PQB =90°时,∵△ABC 是等边三角形,∴∠B =60°,∴∠BPQ =30°,∴PB =2BQ ,即3−t =2t ,解得:t =1,②如图2,当∠BPQ =90°时,∵∠B=60°,∴∠BQP=30°,∴BQ=2BP,即t=2(3−t),解得:t=2,∴当t=1或t=2时,△PBQ为直角三角形;(3)解:不变,∠CMQ=60°.15.【答案】(1)√102(2)解:∵AD⊥CD,CB=CD,AB⊥BC,∴将△BCP绕点C旋转后得到△DCM,此时BC与DC重合,∴△BCP△△DCM,∴△DCM=△PCB,BP=DM,PC=CM,∵∠PCB+∠QCD=∠PCQ,∴∠DCM+∠QCD=∠PCQ,∴∠QCM=∠PCQ,∵PC=CM,QC=QC,∴△QCP△△QCM,∴PQ=QM,∴△APQ的周长=AQ+AP+PQ= AQ+AP+QM= AQ+AP+DQ+DM= AQ+AP+DQ+BP=AD+AB,∵AB=AD=a,∴△APQ的周长=2a;(3)解:如图3,连接BD,由于AD=CD,所以可将△BCD绕点D顺时针方向旋转60°,得到△DAB′,连接BB′,延长BA,作B′E△BE;{AD=CD∠CDB=∠ADB′BD=B′D∴△BCD△△B′AD∴S四边形ABCD=S四边形BDB′A,∵△ABC=75°,△ADC=60°,∴△BAB′=135°∴△B′AE=45°,∵B′A=BC=2∴B′E=AE= √2,∴BE=AB+AE=2 √2+ √2= 3√2,∴BB′=√(√2)2+(3√2)2=2√5∵等边△DBB′,∴BB′上的高= =2√5×√32=√15,∴.SΔABB′=12⋅AB⋅B′E=12×2√2×√2=2∴SΔBDB′=12×2√5×√15=5√3,∴S四边形ABCD=S四边形BDB′A=S△BDB′-S△ABB′= =5√3−2;16.【答案】(1)解:在矩形ABCD中,∵AB=6cm,BC=8cm,∴AC=10cm,AP=2tcm,PC=(10−2t)cm,CQ=tcm,过点P作PH⊥BC于点H,则PH=35(10−2t)cm根据题意,得12t•35(10−2t)=3.6,解得:t1=2,t2=3,∴ΔCQP的面积等于3.6cm2时,t的值为2或3.(2)解:如图1,当∠PQC=90∘时,PQ⊥BC,∵AB⊥BC,AB=6,BC=8,QC=t,PC=10−2t,∴ΔPQC△ ΔABC,∴PCAC=CQBC,即10−2t10=t8,解得t=4013(秒)如图2,当∠CPQ=90∘时,PQ⊥AC,∵∠ACB=∠QCP,∠B=∠QPC,∴ΔCPQ△ ΔCBA,∴CPBC=CQAC,即10−2t8=t10,解得t=257(秒)综上所述,t为4013秒与257时,ΔCPQ与ΔCBA相似.。
九年级数学动点最值问题压轴题专项练习1.在△ABC中.AB=10,AC=83.∠ACB=30°,将△ABC绕A按逆时针方向旋转.得到△ADE.(1)如图1,点F为BC与DE的交点,连接AF.求证:F A平分∠DFC;(2)如图2,点P为线段AB中点,点G是线段BC上的动点,在△ABC绕A按逆时针方向旋转的过程中,点G的对应点是点G1,求线段PG1长度的最大值与最小值.2.如图①,正方形ABCD中,点E是对角线AC上任意一点,连接DE、BE.(1)求证:DE BE=;(2)如图②,过点E作EF DEAB=,求AF的=时,若2⊥交AB于点F,当BE BF长;(3)如图③,在(2)的条件下,将BEF绕点B逆时针旋转得到BE F''△,连接AE',N为AE'的中点,连接CN,则旋转过程中线段CN的最大值为_______;最小值为_______.3.如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧AB上运动(不与点A,B 重合),连接DA ,DB ,DC . (1)求证:DC 是∠ADB 的平分线;(2)四边形ADBC 的面积S 是线段DC 的长x 的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M ,N 分别在线段CA ,CB 上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置,△DMN 的周长有最小值t ,随着点D 的运动,t 的值会发生变化,求所有t 值中的最大值.4.如图,⊙O 为等边△ABC 的外接圆,半径为2,点D 在劣弧AB 上运动(不与点2A B 重合),连接DA ,DB ,DC . (1)求证:DC 是∠ADB 的平分线;(2)若点,M N 分别在线段CA ,CB 上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置,△DMN 的周长有最小值t ,随着点D 的运动,t 的值会发生变化,求所有t 值中的最大值.5.如图①,在ABC 中,AB AC =,BAC α∠=,点D 、E 分别在边AB 、AC 上,AD AE =,连接BE ,点M 、P 、N 分别为DE 、BE 、BC 的中点.(1)观察猜想:图①中,线段PM 与PN 的数量关系是_____________,用含α的代数式表示MPN ∠的度数是________________________;(2)探究证明:把ADE 绕点A 顺时针方向旋转到图②的位置,连接MN ,BD ,CE ,当120α=︒时,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内任意旋转,若90α=︒,3AD =,7AB =,请直接写出线段MN 的最大值和最小值.6.如图,在ABC ∆中,90ACB ∠=︒,45ABC ∠=︒,12BC cm =,半圆O 的直径12DE cm =.点E 与点C 重合,半圆O 以2/cm s 的速度从左向右移动,在运动过程中,点D 、E 始终在BC 所在的直线上.设运动时间为()x s ,半圆O 与ABC ∆的重叠部分的面积为()2S cm .(1)当0x =时,设点M 是半圆O 上一点,点N 是线段AB 上一点,则MN 的最大值为_________;MN 的最小值为________.(2)在平移过程中,当点O 与BC 的中点重合时,求半圆O 与ABC ∆重叠部分的面积S ; (3)当x 为何值时,半圆O 与ABC ∆的边所在的直线相切?7.如图,在直角坐标系中,抛物线y =ax 2+bx -2与x 轴交于点A (-3,0)、B (1,0),与y 轴交于点C .(1)求抛物线的函数表达式.(2)在抛物线上是否存在点D ,使得△ABD 的面积等于△ABC 的面积的53倍?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点E是以点C为圆心且1为半径的圆上的动点,点F是AE的中点,请直接写出线段OF的最大值和最小值.8.如图1,两块直角三角纸板(Rt△ABC和Rt△BDE)按如图所示的方式摆放(重合点为B),其中∠BDE=∠ACB=90°,∠ABC=30°,BD=DE=AC=2.将△BDE绕着点B 顺时针旋转.(1)当点D在BC上时,求CD的长;(2)当△BDE旋转到A,D,E三点共线时,画出相应的草图并求△CDE的面积(3)如图2,连接CD,点G是CD的中点,连接AG,求AG的最大值和最小值.9.如图,在平行四边形ABCD中,∠A=45°,CD=12cm,点E在边AD上,EF与CD所在直线垂直,垂足为点F,半圆的圆心为点O,直径EF=6cm,P为弧EF的中点,Q是弧EF上的动点.发现:DQ的最小值是cm;DQ的最大值为cm;探究:沿直线CD向左平移半圆.(1)当P落在▱ABCD的边上时,区域半圆与其重合部分的面积;(2)半圆向左以每秒3cm的速度平移,以图所在位置开始平移,运动时间为ts,当其与▱ABCD的边(CD边除外)相切时,求t的值.10.如图,已知AB 为半圆O 的直径,P 为半圆上的一个动点(不含端点),以OP OB 、为一组邻边作POBQ ,连接OQ AP 、,设OQ AP 、的中点分别为M N 、,连接PM ON 、. (1)试判断四边形OMPN 的形状,并说明理由.(2)若点P 从点B 出发,以每秒15︒的速度,绕点O 在半圆上逆时针方向运动,设运动时间为s t .①是否存在这样的t ,使得点Q 落在半圆O 内?若存在,请求出t 的取值范围;若不存在,请说明理由.②试求:当t 为何值时,四边形OMPN 的面积取得最大值?并判断此时直线PQ 与半圆O 的位置关系(需说明理由).11.在O 中,直径12AB =,BC 是弦,30ABC ∠=︒,点P 在BC 上,点Q 在O 上,且OP PQ ⊥.(1)如图1,当//PQ AB 时,求PQ 的长度; (2)如图2,当点P 在BC 上移动时,求PQ 的最大值12.如图,抛物线2y ax bx c =++的图象与x 轴交于(1,0)、(3,0),(0,6)三点,边长为2的正方形OABC 的顶点A ,C 分别在x 轴,y 轴上.(1)求抛物线解析式,并求出当14x -≤≤时,y 的最大值与最小值.(2)将正方形OABC向右平移,平移距离记为h:①当点C首次落在抛物线上时,求h的值;②当抛物线落在正方形内的部分满足y随x的增大而减小时,请求出h的取值范围.13.如图1,已知抛物线2=++经过A(-3,0),B(1,0),C(0,-3)三点,其y ax bx c顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图2,若E是线段AD上的一个动点(E与A、D不重合),过E点作平行于y 轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①试求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.14.如图,在平面直角坐标系中,已知抛物线213222y x x =+-交x 轴于点A 、B ,交y 轴于点C .(1)求线段BC 的长;(2)点P 为第三象限内抛物线上一点,连接BP ,过点C 作CE //BP 交x 轴于点E ,连接PE ,求△BPE 面积的最大值及此时点P 的坐标.15.如图,在平面直角坐标系xOy 中,抛物线213442y x x =-++与两坐标轴分别相交于A ,B ,C 三点(1)求证:∠ACB =90°(2)点D 是第一象限内该抛物线上的动点,过点D 作x 轴的垂线交BC 于点E ,交x 轴于点F .①求DE +BF 的最大值;②点G 是AC 的中点,若以点C ,D ,E 为顶点的三角形与AOG 相似,求点D 的坐标.16.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(﹣2,0),直线BC的解析式为y=﹣2x+2.3(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标.参考答案1.解:(1)如图1,作AM⊥BC,AN⊥DE于点M,N,根据旋转的性质可知:△ABC≌△ADE,∴△ABC的面积=△ADE的面积,即1122BC AM CE AN⨯=⨯,∴AM=AN,∴AF平分∠DFC,∴∠AFD=∠AFC;(2)线段PG1长度的最大值为5+83,PG1长度的最小值为43-5.解题过程如下:①如图a,过点A作AF⊥BC,F为垂足,在Rt△ACF中,AC3∠ACB=30°,∴AF=12AC3∵AB=10,点P为线段AB中点,∴AP=12AB=5,当G在BC上运动,AG与BC垂直时,即点F与点G重合时,△ABC绕点A旋转,使点G的对应点G1在线段AB上时,PG1最小,最小值为:PG1=AG1-AP=AF-AP3;②如图b,当G在BC上运动至点C,△ABC绕点A旋转,使点G的对应点G1在线段BA延长线上时,PG1最大,最大值为:PG1=AP+AG1=AP+AC=5+83.综上所述,线段PG1长度的最大值为5+83,EP1长度的最小值为43-5.2.解:(1)证明:如图①中,四边形ABCD是正方形,∠=∠,∴=,DCE BCECD CB=,CE CE∴∆≅∆,DCE BCE SAS()∴=.DE BE(2)如图②,过E作EM BF⊥,由(1)知,DCE BCE ∆≅∆,CDE CBE ∴∠=∠,90ADC ABC ︒∠=∠=,ADE ABE ∴∠=∠,DE EF ⊥,90DEF ∴∠=︒,在四边形ADEF 中,90DAF ∠=︒,180ADE AFE ∴∠+∠=︒,180AFE BFE ∠+∠=︒,BFE EBF ∴∠=∠,BE EF ∴=,BE BF =,BEF ∴∆是等边三角形,60EBF ∴∠=︒,设BM x =,则MF BM x ==,3EM x =,四边形ABCD 是正方形,1452BAE BAD ∴∠=∠=︒, 3AM EM x ∴=,2AM BM AB +==,32x x ∴=, 解得,31x =,22(31)43AF AB BF ∴=-=-=-(3)如图3中,取AB 的中点R ,连接NR ,CR .四边形ABCD 是正方形,2AB BC ∴==,90ABC ∠=︒,1AR RB ==,2222125CR BR BC ∴++AR BR =,AN NE =',1312RN BE ∴=', 5(31)5(31)CN ≤≤, 531531CN ≤,CN ∴531531, 531531.3.【详解】(1)∵△ABC 是等边三角形,∴∠ABC =∠BAC =∠ACB =60°. ∵∠ADC =∠ABC =60°,∠BDC =∠BAC =60°, ∴∠ADC =∠BDC ,∴DC 是∠ADB 的平分线;(2)四边形ADBC 的面积S 是线段DC 的长x 的函数,理由如下:如图1,将△ADC 绕点逆时针旋转60°,得到△BHC ,∴CD =CH ,∠DAC =∠HBC .∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线.∵DC=CH,∠CDH=60°,∴△DCH是等边三角形.∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH34=CD2,∴S34=x2;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF.∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,作CP⊥EF于P,∴△DMN 的周长最小值为EF=t.∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD.∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB=120°.∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC12=EC,PE3=PC32=EC,∴EF=2PE3=EC3=CD=t,∴当CD有最大值时,EF有最大值,即t有最大值.∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为43.4.证明:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵∠ADC=∠ABC=60°,∠BDC=∠BAC=60°,∴∠ADC=∠BDC,∴DC是∠ADB的平分线;(2)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D ,点E 关于直线AC 对称,∴EM =DM ,同理DN =NF ,∵△DMN 的周长=DM +DN +MN =FN +EM +MN ,∴当点E ,点M ,点N ,点F 四点共线时,△DMN 的周长有最小值, 则连接EF ,交AC 于M ,交BC 于N ,连接CE ,CF ,DE ,DF ,作CP ⊥EF 于P , ∴△DMN 的周长最小值为EF =t ,∵点D ,点E 关于直线AC 对称,∴CE =CD ,∠ACE =∠ACD ,∵点D ,点F 关于直线BC 对称,∴CF =CD ,∠DCB =∠FCB ,∴CD =CE =CF ,∠ECF =∠ACE +∠ACD +∠DCB +∠FCB =2∠ACB =120°, ∵CP ⊥EF ,CE =CF ,∠ECF =120°, ∴EP =PF ,∠CEP =30°,∴PC 12=EC ,PE ==,∴EF =2PE ===t ,∴当CD 有最大值时,EF 有最大值,即t 有最大值, ∵CD 为⊙O 的弦,∴CD 为直径时,CD 有最大值4,∴t 的最大值为5.(1)AB =AC ,AD =DE ,∴BD =EC ,M 、P 分别是DE 、BE 的中点,∴MP =12BD ,MP //BD ,∴EPM EBD ∠=∠,同理可证:NP =12CE ,NP //CE , ∴MP = NP ,∴NPE PEA ∠=∠,∴MPN ∠=EPM ∠+NPE ∠=EBD ∠+PEA ∠=180°-α. (2)由旋转可得:CAB EAD ∠=∠,AD =AE ,∴CAE BAD ∠=,在CAE 与BAD 中,AB AC CAE BAD AE AD =⎧⎪∠=⎨⎪=⎩, ∴CAE ≌BAD ,∴CE =BD ,由(1)同理可证MP =12BD ,MP //BD ,NP =12CE ,NP //CE , ∴MP = NP ,∴PMN 是等腰三角形,EPM ∠=EBD ∠=ABD ∠+ABE ∠,NPE ∠=PBN ∠+PNB ∠=PBN ∠+ECB ∠,∴MPN ∠=EPM ∠+NPE ∠=ABD ∠+ABE ∠+PBN ∠+ECB ∠=180°-120°=60°, ∴PMN 是等边三角形.(3)等腰直角ADE 中,AD =3,∴DE,M 是DE 的中点,∴AM, ∴M 的运动轨迹是以点A为半径的一个圆, 如图,连接NA 并延长分别交⊙A 于点M 1、M 2,等腰直角ABC 中,AB =7,∴BC,N 是BC 的中点,∴AN,AN ⊥BC , 当点M 旋转至M 1位置时,MN 最大,MN当点M 旋转至M 2位置时,MN 最小,MN =722-322=22.6.解:解(1)当N 与点B 重合,点M 与点D 重合时,MN 最大,此时121224()MN DB DE BC cm ==+=+=如图①,过点O 作ON AB ⊥于N ,与半圆交于点M ,此时MN 最小,MN ON OM =-,45ABC ∠=︒,45NOB ∴∠=︒,在Rt ONB ∆中,61218()OB OC CB cm =+=+=292()2ON BN OB cm ∴===, 926()MN ON OM cm ∴=-=-,故答案为24cm ,(926)cm -;(2)当点O 与BC 的中点重合时,如图②,点O 移动了12cm ,设半圆与AB 交于点H ,连接OH 、CH .BC 为直径,90CHB ∴∠=︒,45ABC ∠=︒45HCB ∴∠=︒,HC HB ∴=,OH BC ∴⊥,6OH OC OB ===,29016669183602BOH HOC S S S ππ∆=+=⋅+⨯⨯=+阴影扇形; (3)当半圆O 与直线AC 相切时,运动的距离为0或12, 0x ∴=(秒)或6(秒);当半圆O 与直线AB 相切时,如图③,连接OH ,则OH AB ⊥,6OH =45B ∠=︒,90OHB ∠=︒,262OB OH ∴=,1262OC BC OB =-=- 移动的距离为61221862()cm +--,运动时间为1862932x --), 综上所述,当x 为0或6或932-O 与ABC ∆的边所在的直线相切. 7. 解:(1)将点A (-3,0)、B (1,0)代入y =ax 2+bx -2中,得932020a b a b --=⎧⎨+-=⎩,解得2343a b ⎧=⎪⎪⎨⎪=⎪⎩, ∴224x 233y x =+- (2)若D 在x 轴的下方,当D 为抛物线顶点(-1,83-)时,02C (,-),∴△ABD 的面积是△ABC 面积的43倍, 4533<,所以D 点一定在x 轴上方. 设D (m ,n ),△ABD 的面积是△ABC 面积的53倍, ∴n =103 ∴224233m m +-=103∴m =-4或m =2 ∴D (-4,103)或(2,103) (3)设E(x,y),∵点E 是以点C 为圆心且1为半径的圆上的动点,∴22(2)1x y ++=,∴y=212x , ∴E 2(,12)x x ,∵F 是AE 的中点,∴F 的坐标2312(,)22x x ,设F(m,n),∴m=32x -,n=2122x ,∴x=2m+3,∴n=21(23)22m , ∴2n+2=21(23)m , ∴(2n+2)2=1-(2m+3)2,∴4(n+1)2+4(32m)2=1, ∴22231(1)()()22n m , ∴F 点的轨迹是以3(,1)2--为圆心,以12为半径的圆, ∴2231131(0)12222,最小值:2231131(0)12222 最大值13122+; 最小值13122- 8. 解:(1)如图1中,在Rt △ABC 中,∵∠C =90°,AC =2,∠ABC =30°,∴BC =AC ÷tan30°=23, ∵BD =2,∴CD =BC ﹣BD =23﹣2.(2)如图2中,当A 、D 、E 共线时,易证四边形ACBD 是矩形,∴S △CDE =12×DE ×CA =12×2×2=2. 如图3中,当A 、E 、D 共线时,作CH ⊥AD 于H .在Rt△ADB中,∵AB=2BD,∴∠BAD=30°,∵∠CAB=60°,∴∠CAH=30°,∴CH=12AC=1,∴S△CDE=12×DE×CH=12×2×1=1.(3)如图4中,取BC的中点H,连接GH.∵CG=GD,CH=HB,∴HG=12BD=1,∴点G的运动轨迹是以H为圆心1为半径的圆,在Rt△ACH中,AH22AC CH+43+7,∴AG的最小值=AH﹣GH71,AG的最大值=AH+GH79.解:当Q与F重合时,DQ的值最小,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EDF=∠A=45°,∵EF⊥直线CD,∴∠EFD=90°,△DEF是等腰直角三角形,∴DF=EF=6cm,即DQ的最小值为6cm;连接DO并延长交半圆O于点Q,如图1所示:此时DQ的值最大=OD+半径,在Rt△ODF中,OF=12EF=3cm,由勾股定理得:OD=2222DF0F6335+=+=,∴DQ的最大值=35+3(cm);故答案为6,35+3;探究:解:(1)分两种情况:①当P落在▱ABCD的边AD上时,此时F与D重合,如图2所示:区域半圆与其重合部分的面积S=14S圆O+S△POF=14×π×32+12×3×3=9942π+;②当P落在▱ABCD的边BC上时,此时F与C重合,如图3所示:区域半圆与其重合部分的面积S=14S圆O﹣S△POF=14×π×32﹣12×3×3=9942π+;(2)分两种情况:①半圆与边AD相切时,如图4所示:设切点为H,连接OH、OD,则OH⊥AD,∵EF⊥CD,OF是半径,∴FD是半圆的切线,∠FOH=360°﹣90°﹣90°﹣135°=45°,由切线长定理得:DF=DH,∠DOF=12∠FOH=22.5°,在OF上截取OM=DM,则∠MDO=∠DOF=22.5°,∴∠DMF=45°,∴△DMF是等腰直角三角形,∴MF=DF,设MF=DF=x,则PM=DM=2x,∵OM=OF﹣MF,∴2x=3﹣x,解得:x=32﹣3,∵平移的距离为6+32﹣3=3+32,半圆向左以每秒3cm的速度平移,∴平移的时间t=3323+=1+2(秒);②半圆与边BC相切时,如图5所示:同理CF=DF=2﹣3,∵平移的距离为2﹣3=2,半圆向左以每秒3cm的速度平移,∴平移的时间t 1532+2(秒);综上所述,半圆向左以每秒3cm的速度平移,当其与▱ABCD的边(CD边除外)相切时,t 的值为(2210.解:(1)四边形OMPN为矩形,理由如下:∵四边形POBQ为平行四边形,∴PQ//OB,PQ=OB,又∵OB=OA,∴PQ=AO,又∵PQ//OA,∴四边形PQOA为平行四边形,∴P A//QO,P A=QO.又∵M、N分别为OQ、AP的中点,∴OM=12OQ,PN=12AP,∴OM=PN,∴四边形OMPN为平行四边形,∵OP=OA,N是AP的中点,∴ON⊥AP,即∠ONP=90°,∴四边形OMPN为矩形;(2)①如图,当点Q落在半圆O上时,∵四边形POBQ是平行四边形,∴PQ=OB,PO=BQ,又∵OB=OP=OQ,∴OP=OQ=PQ=BO=BQ,∴△POQ是等边三角形,△BQO是等边三角形,∴∠POQ=∠BOQ=60°,∴∠BOP=120°,∴t=12015=8s,∴当t=8s时,点Q落在半圆O上,∵当点P与点A重合时,t=18015=12s,∴当8<t<12时,点Q落在半圆O内;②∵四边形OMPN为矩形,∴S矩形OMPN=ON•NP=12AP•ON,∴S矩形OMPN=S△AOP,∵△AOP的底AO为定值,∴当P旋转运动90°(运动至最高点)时,高取得最大值,此时△AOP的面积取得最大值.∴t=90÷15=6秒.∴当t=6s时,四边形OMPN面积最大,此时,PQ与半圆O相切.理由如下:∵∠POB=90°,PQ//OB,∴∠OPQ=90°,∴PQ与半圆O相切.11.(1)连接OQ,如图所示:∵AB=12,∴OQ=OB=6,∵OP⊥PQ,∴∠QPO=90°,∵PQ∥AB,∴∠POB=∠QPO=90°,在Rt△POB中,∠POB=90°,∴PB2=OB2+OP2,又∵30ABC∠=︒,∴BP=2OP ,∴(2OP )2=62+OP 2,∴OP=23, 在Rt △QPO 中,()222262326PQ OQ OP =-=-=; (2)连接OQ ,如图所示:由(1)得:OQ=OB=6,∴在Rt △QPO 中,22PQ OQ OP =-∴当OP 的长最小时,PQ 的长为最大,根据垂线段最短可得当OP ⊥BC 时最短,∵∠ABC=30°, ∴132OP OB ==, ∴2233PQ OQ OP =-= ∴PQ 的最大值为3312.解:(1)由题意得:09306ab c a b c c ,解得286a b c , 故抛物线的表达式为2286y x x =-+,由抛物线的表达式知,其顶点坐标为(2,2)-,当1x =-时,228616y x x ,故当14x -时,1x =-时,y 取得最大值16,而在顶点处取得最小值2-; (2)①当点C 首次落在抛物线上,则22286C y x x ==-+,解得22x = 因为点C 首次落在抛物线上,22x =则2h x ==②当点C首次落在抛物线上,2h =2h >满足y 随x 的增大而减小,当3h =时,即正方形运动到点(3,0)处,此时抛物线落在正方形内的部分,满足y 随x 的增大而减小,当3h >时,对称轴右侧的抛物线进入正方形内,不满足y 随x 的增大而减小,故3h ;故23h .13.解:(1)由题意得93003a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得 123a b c =⎧⎪=⎨⎪=-⎩∴该抛物线的表达式为223y x x =+-(2)∵△PBC 的周长为:PB +PC +BC又∵BC 是定值 ∴当PB +PC 最小时,△PBC 的周长最小.∵点A ,点B 关于对称轴l 对称.∴连接AC 交l 于点P ,即点P 为所求点.∴AP =BP∴△PBC 的周长最小值是:PB +PC +BC =AC +BC∵A(-3,0),B(1,0),C(0,-3)∴AC=BC故△PBC的周长最小值为(3)①∵抛物线的表达式为223y x x =+-=2(1)4x +- ∴点D 的坐标为(-1,-4)设直线AD 的表达式为y kx n =+,把点A(-3,0),D(-1,-4)代入 得304k n k n -+=⎧⎨-+=-⎩ ,解得 26k n =-⎧⎨=-⎩ ∴直线AD 的表达式为26y x =--∵点E 的横坐标为m .∴E(m ,-2m -6),F(m ,223m m +-)∴EF =226(23)m m m ---+-=243m m ---∴S =EFA EFD S S ∆∆+ =1122EF AG EF GH ⋅⋅+⋅⋅ =12EF AH ⋅⋅ =21(43)22m m ---⨯ =243m m ---∴S 与m 的函数表达式为S =243m m ---②存在.∵S =243m m ---=22)1m -++( ∴当m =-2时,S 最大,最大值为1.此时点E 的坐标为(-2,-2).14.解:(1)令y =0,则12x 2+32x -2=0, 解得:x 1=-4,x 2=1,∴点A 的坐标为(1,0),点B 的坐标为(-4,0),令x =0,则y =-2,∴点C 的坐标为(0,-2),∴OB =4,OC =2,∴BC =2224225OB OC +=+=; (2)如图,连接OP ,CP ,设P (m ,12m 2+32m -2). ∵CE ∥PB ,∴S △PBE =S △PBC =S △POC +S △POB -S △OBC∴S △PBE =12×2×(-m )+12×4×(-12m 2-32m +2)-12×2×4=-m 2-4m =-(m +2)2+4, ∵-1<0,∴S △PBE 在m =-2时,取得最大值,最大值为4,此时,点P 的坐标为(-2,-3).答:△BPE 面积的最大值为4,此时点P 的坐标为(-2,-3). 15.解:(1)令x =0,得4y =(0,4)C ∴令0y =得2134042x x -++= 26160x x(8)(2)0x x -+=(2,0)A ∴-,(8,0)B10,AB AC BC==22210=+222AB AC BC∴=+90ACB∴∠=︒(2)①设直线BC的解析式为:(0)y kx b k=+≠,代入(8,0)B,(0,4)C得804k bb+=⎧⎨=⎩124kb⎧=-⎪∴⎨⎪=⎩142y x∴=-+设213(,4)42D x x x-++22131184(4)42224BF x D xE x x x x∴=-=-++-+=-+-,21+428D xE BF x x∴=+-+-2814xx=++-21()844x x=--+21()942x-=-+14-<21()042x-∴-≤221()994x∴-+≤-9+DE BF∴≤即DE+BF的最大值为9;②点G是AC的中点,在Rt AOC△中,12OG AC AG===即AOG为等腰三角形,90CAO ACO ACO OCB ∠+∠=∠+∠=︒CAO OCB ∴∠=∠//OC DFOCB DEC ∴∠=∠CAO DEC ∴∠=∠整理得,240x x ∴-=10x ∴=,24x =(0,4)D ∴或(4,6)D ,同理:()0,4D 不合题意,舍去,综上所述,(4,6)D 或25(3,)4D . 16.解:(1)直线BC 的解析式为y 2x +2,令y =0,则x =2,令x =0,则y =2, 故点B 、C 的坐标分别为(2,0)、(0,2);∵A 20), 则y =ax 2+bx +2=a (x 2)(x ﹣2,把(0,2)代入得,﹣6a =2,解得:a =﹣13, 故抛物线的表达式为:y =﹣13(x 2)(x ﹣2=﹣13x 222x +2①; (2)如图,过点B 、E 分别作y 轴的平行线分别交CD 于点H ,交BC 于点F ,∵AD ∥BC ,直线AD 可以看做由直线BC 向下平移22 ∴直线AD 的表达式为:y 2x 2②, 联立①②并解得:1142103x y ⎧=⎪⎨=-⎪⎩1120x y ⎧=⎪⎨=⎪⎩D (2103), 由点C 、D 的坐标得,直线CD 的表达式为:y 22x +2, 当x =2时,y CD 22x +2=﹣2,即点H (22), 设点E (x ,﹣13x 2+223x +2),则点F (x 2+2), 则四边形BECD 的面积S =S △BCE +S △BCD =12×EF ×OB +12×(x D ﹣x C )×BH =12×(﹣13x 222x 2﹣2)×212×2×22x 2+3x 2,即2232252)S x =, ∵﹣22<0,故S 有最大值,当x 32S 252E 32,52).。
中考九年级数学高频考点专题训练--三角形-动点问题一、单选题1.如图,正方形ABCD和等腰直角三角形EFG,斜边EF与AD在一条直线上,AB=6,EG=4,△EFG沿射线DA方向运动(点E从点D出发),设ED=x,△EFG与正方形ABCD重叠部分的面积为y.若y=7,则x的值为()A.3√2或4√2B.3√2或6+√2C.6+√2或6−√2D.3√2或6−√22.如图,在等边△ABC中,AB=2 √3,点D在△ABC内或其边上,AD=2,以AD为边向右作等边△ADE,连接CD,CE.设CE的最小值为m;当ED的延长线经过点B时,∠DEC=n∘,则m,n的值分别为()A.√3,55B.√3,60C.2 √3-2,55D.2 √3-2,603.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=20,点P是AC边上的一个动点,将线段BP绕点B顺时针旋转60°得到线段BQ,连接CQ,则在点P运动过程中,线段CQ的最小值为()A.5B.10C.20D.25 4.如图,在等边△ABC中,AB=12,点D在AB边上,AD=4,E为AC中点,P为△ABC内一点,且∠BPD=90°,则线段PE的最小值为()A.3 √3﹣2B.4√3−2C.2 √13﹣4D.4 √13﹣85.如图,线段AB的长为8,点D在AB上,ΔACD是边长为3的等边三角形,过点D作与CD垂直的射线DP,过DP上一动点G(不与D重合)作矩形CDGH,记矩形CDGH的对角线交点为O,连接OB,则线段BO的最小值为()A.5B.4C.4√3D.5√3 6.如图,在△ABC中,AB=BC=3,∠ABC=30°,点P为△ABC内一点,连接PA、PB、PC,求PA+PB+PC的最小值()A.3√2B.3+ √2C.3√3D.3+ √3 7.如图,直角三角形ABC中,AC=BC,AD是△ABC的角平分线,动点M、N同时从A点出发,以相同的速度分别沿A→C→B和A一B→C方向运动,并在边BC上的点E相遇,连接AE,①AE平分△ABC的周长,②AE是△ABD的角平分线,③AE是△ABD的中线.以上结论正确的有()A.①②B.①③C.②③D.①②③8.正方形ABCD的边长为8,点E、F分别在边AD、BC上,将正方形沿EF折叠,使点A 落在A′处,点B落在B′处,A′B′交BC于G.下列结论错误的是()A.当A′为CD中点时,则tan∠DA′E=34B.当A′D:DE:A′E=3:4:5时,则A′C=163C.连接AA′,则AA′=EFD.当A′(点A′不与C、D重合)在CD上移动时,△A′CG周长随着A′位置变化而变化二、填空题9.如图,△ABC中.AC=BC,∠ACB=100°,点D在线段AB上运动(D不与A、B重合),连接CD,作∠CDE=30°,DE交BC于点E,若△BDE是等腰三角形,则∠ADC的度数是.10.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2,边AB上有一动点P,将△ABC绕点C逆时针旋转90°得△DEC,点P的对应点为P′,连接PP′,则PP′长的最小值为.11.如图,在Rt△ABC中,∠ACB=90°,∠A=3∠B,AB=20cm,点D是AB中点,点M从点A出发,沿线段AB运动到点B,点P始终是线段CM的中点.对于下列结论:①CD=10cm;②∠CDA=60°;③线段CM长度的最小值是5 √2cm;④点P运动路径的长度是10cm.其中正确的结论是(写出所有正确结论的序号).12.如图,在平面直角坐标系中,直线l:y= √33x﹣√33与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B22作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.13.如图,在△ABC中,∠BAC=90°,点D是BC的中点,点E、F分别是AB、AC 上的动点,∠EDF=90°,M、N分别是EF、AC的中点,连接AM、MN,若AC=6,AB=5,则AM﹣MN的最大值为.14.如图,在Rt△ABC中,∠C=90°,AC=4,AB=12,AD平分∠BAC交BC于点D,过点D作DE⊥AD交AB于点E,P是DE上的动点,Q是BD上的动点,则BP+PQ的最小值为.三、综合题15.如图1,在直角坐标系中,O是坐标原点,点A在y轴正半轴上,二次函数y=ax2+16x+c的图象F交x轴于B、C两点,交y轴于M点,其中B(﹣3,0),M (0,﹣1).已知AM=BC.(1)求二次函数的解析式;(2)证明:在抛物线F上存在点D,使A、B、C、D四点连接而成的四边形恰好是平行四边形,并请求出直线BD的解析式;(3)在(2)的条件下,设直线l过D且l⊥BD,分别交直线BA、BC于不同的P、Q两点,AC、BD相交于N,求1BP+1BQ的值;16.在直线上顺次取A,B,C三点,分别以AB,BC为边长在直线的同侧作正三角形,作得两个正三角形的另一顶点分别为D,E.(1)如图①,连结CD,AE,求证:CD=AE;(2)如图②,若AB=1,BC=2,求DE的长;(3)如图③,将图②中的正三角形BEC绕B点作适当的旋转,连结AE,若有DE2+BE2=AE2,试求∠DEB的度数.17.如图,△ABC中,AB =BC=AC =6cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.(3)点M、N运动几秒后,可得到直角三角形△BMN?18.在△ABC中,∠ACB=90°,AC=BC,点A、C分别是x轴和y轴上的一动点.(1)如图1.若点B的横坐标为﹣4,求点C的坐标;(2)如图2,BC交x轴于点D,若点B的纵坐标为3,A(5,0),求点C的坐标;(3)如图3,当A(5,0),C(0,﹣2)时,以AC为直角边作等腰直角△ACE,(﹣2,0)为F点坐标,连接EF交y轴于点M,当点E在第一象限时,求S△CEM:S△ACO的值.19.已知ΔABC是边长为8cm的等边三角形,动点P,Q同时出发,分别在三角形的边或延长线上运动,他们的运动时间为t(s).(1)如图1,若P点由A向B运动,Q点由C向A运动,他们的速度都是1cm/s,连接PQ.则AP=,AQ=,(用含t式子表示);(2)在(1)的条件下,是否存在某一时刻,使得ΔAPQ为直角三角形?若存在,请求出t的值,若不存在,请说明理由;(3)如图2,若P点由A出发,沿射线AB方向运动,Q点由C出发,沿射线AC方向运动,P的速度为3cm/s,Q的速度为.acm/s是否存在某个a的值,使得在运动过程中ΔBPO恒为以BP为底的等腰三角形?如果存在,请求出这个值,如果不存在,请说明理由.20.如图,在△ABC中,AD⊥BC于点D,AD=4,BD=3,DC=8,点P是BC边上一点(不与点B、D、C重合),过点P作PQ⊥BC交AB或AC于点Q,作点Q关于直线AD的对称点M,连结QM,过点M作MN⊥BC交直线BC 于点N.设BP=x,矩形PQMN与△ABC重叠部分图形的周长为y.(1)直接写出PQ的长(用含x的代数式表示).(2)求矩形PQMN成为正方形时x的值.(3)求y与x的函数关系式.(4)当过点C和点M的直线平分△ADC的面积时,直接写出x的值.答案解析部分1.【答案】B 2.【答案】D 3.【答案】A 4.【答案】C 5.【答案】B 6.【答案】A 7.【答案】B 8.【答案】D9.【答案】50º或80º或110º 10.【答案】√6 11.【答案】①③④ 12.【答案】22017−1213.【答案】251214.【答案】815.【答案】(1)解:∵二次函数y=ax 2+16x+c 的图象经过点B (-3,0),M (0,-1),∴{9a +16×(−3)+c =0c =−1, 解得a=16,c=-1. ∴二次函数的解析式为:y=16x 2+16x-1.(2)证明:∵二次函数的解析式为:y=16x 2+16x-1,令y=0,得0=16x 2+16x-1,解得x 1=-3,x 2=2, ∴C (2,0), ∴BC=5; 令x=0,得y=-1, ∴M (0,-1),OM=1. 又AM=BC , ∴OA=AM-OM=4, ∴A (0,4).设AD ∥x 轴,交抛物线于点D ,如图1所示, 则y D =16x 2+16x −1=OA =4,解得x 1=5,x 2=-6(位于第二象限,舍去) ∴D 点坐标为(5,4). ∴AD=BC=5, 又∵AD ∥BC ,∴四边形ABCD 为平行四边形.即在抛物线F 上存在点D ,使A 、B 、C 、D 四点连接而成的四边形恰好是平行四边形.设直线BD 解析式为:y=kx+b , ∵B (3,0),D (5,4),∴{−3k +b =05k +b =4, 解得:k=12,b=32,∴直线BD 解析式为:y=12x+32.(3)解:在Rt △AOB 中,AB =√OA 2+OB 2=5, 又AD=BC=5, ∴▱ABCD 是菱形.①若直线l ∥BD ,如图1所示. ∵四边形ABCD 是菱形, ∴AC ⊥BD , ∴AC ∥直线l ,∴BA BP =BC BQ =BN BD =12,∵BA=BC=5, ∴BP=BQ=10,∴1BP +1BQ =110+110=15.16.【答案】(1)证明:∵△ABD 是等边三角形,∴AB=BD ,∵△BCE 是等边三角形, ∴BC=BE ,∵∠ABD=∠CBE=60°, ∴∠ABE=∠CBD , ∴△ABE ≌△DBC (SAS ), ∴CD=AE ;(2)解: 取BE 的中点F ,连接DF ,∵BD=BF=1,∠DBF=60°,∴△BDF为等边三角形,∴DF=1,∴FD=FE=FB=1,∴△BED为直角三角形,即∠BDE=90°,∴DE=√BE2−BD2=√3;(3)解:如图,连接DC,∵△ABD和△ECB都是等边三角形,∴AD=AB=BD,BC=BE=EC,∠ABD=∠EBC= 60°,∴∠ABE=∠DBC,∴AB=BD,在△ABE和△DBC中,AB=AD,∠ABE =∠DBC,BE=BC,∴△ABE≌△DBC ( SAS) ,∴AE=DC,∴DE2+BE2=AE2,BE=CE ,∴DE2+CE2=CD2 ,∴∠DEC=90° ,∴∠BEC=60° ,∴∠DEB=∠DEC-∠BEC=30° .17.【答案】(1)解:设M、N运动t秒后,M、N两点重合,依题可得,t×1+6=2t,解得:t=6.答:点M、N运动6秒后,M、N两点重合.(2)能得到以MN为底边的等腰△AMN,①当点M在AC上,点N在AB上,如图①所示:设运动时间为t秒,依题可得,AM=t,AN=6-2t,∵△AMN是以MN为底边的等腰三角形,∴AM=AN,∴t=6-2t,解得:t=2;②当点M、N都在BC上时,如图②所示:设运动时间为t秒,依题可得,CM=t-6,BN=18-2t,∵△AMN是以MN为底边的等腰三角形,∴AM=AN,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵△ABC是正三角形,∴∠B=∠C,AC=AB,在△ACM和△ABN中,{∠AMC=∠ANB∠C=∠BAC=AB,∴△ACM≌△ABN(AAS),∴CM=BN,即t-6=18-2t,解得:t=8;综上所述:能得到以MN为底边的等腰三角形AMN,此时,M、N的运动时间为2秒或8秒.(3)解:①当∠BNM=90°时,如图所示:设M、N运动时间是t秒,依题可得:BN=2t,AN=6-2t,AM=t,∵△ABC为等边三角形,∴∠A=60°,∴∠AMN=30°,∴AM=2AN,即t=2(6-2t),解得:t=2.4;②当点M、N都在AC上时,当∠BNM=90°时,如图所示:设M、N运动时间是t秒,依题可得:AN=2t-6,∴CN=6-AN=12-2t,∵△ABC为等边三角形,∴∠C=60°,∴∠CBN=30°,∴BC=2CN,即6=2(12-2t),解得:t=4.5;③当点M、N都在AC上时,当∠BMN=90°时,如图所示:设M、N运动时间是t秒,依题可得:AM=t,∴CM=6-AM=6-t,∵△ABC为等边三角形,∴∠C=60°,∴∠CBM=30°,∴BC=2CM,即6=2(6-t),解得:t=3;综上所述:当点M、N运动2.4秒或3秒或4.5秒时,可得到直角△BMN. 18.【答案】(1)解:如图1中,作BH⊥y轴于H.∵∠BHC=∠BCA=∠AOC=90°,∴∠BCH+∠ACO=90°,∠ACO+∠OAC=90°,∴∠BCH=∠OAC,∵BC=AC,∴△BHC≌△COA(AAS),∴OC=BH,∵点B的横坐标为−4,∴BH=4,∴OC=4,∴C(0,−4);(2)解:如图2中,作BH⊥y轴于H.由(1)可知△BHC≌△COA∴OC=BH,OA=CH,∵若点B的纵坐标为3,A(5,0),∴OA=CH=5,OH=3,∴BH=OC=2,∴C(0,−2);(3)解:如图3中,由题意点E在第一象限,作EH⊥OA于H.同法可证:△AHE≌△COA(AAS),∴AH =OC ,AO =EH , ∵A (5,0),C (0,−2), ∴EH =OA =5,OC =AH =2, ∴E (3,5),设直线 FE 的解析式为: y =kx +b , 则 {0=−2k +b 5=3k +b ,解得 {k =1b =2 ,∴直线 FE 的解析式为: y =x +2 , 令 x =0 ,则 y =2 , ∴OM =2,∴S △CEM :S △ACO = (12×4×3):(12×2×5)=6:5 .19.【答案】(1)tcm ;(6-t )cm(2)解:存在 t =83s 或16s时,使得 ΔAPQ 为直角三角形,理由是①当 PA ⊥AB 时,由题意有 2t =8−t ,解得 t =83s②当 PQ ⊥AC 时,由题意有 t =2(8−t), 解得 t =163s∴ 综上所述,存在 t =83s 或16s时,使得 ΔAPQ 为直角三角形(3)解:存在 a =3cm/s 时, ΔBPQ 恒为以 BP 为底的等腰三角形,理由是: 作 QM ⊥BP 于M ,如图2所示由题意得: AP =3t,CQ =at ,则 AQ =8+at,BP =|8−3t|∵PQ =BQ,QM ⊥BP ∴PM =BM =12BP∵ΔABC 是等边三角形,∴∠A =60° ∴∠AQM =30° ∴AQ =2AM ,①当 t ≤83 时,由题意有 2(3t +8−3t2)=8+at ,解得 a =3cm/s ,②当 t ≥83 时,由题意有 2(3t −3t−82)=8+at ,解得 a =3cm/s ,∴ 综上所述,存在 a =3cm/s 时, ΔBPQ 恒为以 BP 为底的等腰三角形.20.【答案】(1)解:①当PQ 交AB 于点Q 时,0<x<3,∵AD ⊥BC ,AD=4,BD=3,∴tan ∠B= 43,∵PQ ⊥BC , ∴PQ BP =43, ∴当0<x<3时,PQ= 43x ;②当PQ 交AC 于点Q 时,3<x<11, ∵AD ⊥BC ,AD=4,CD=8, ∴tan ∠C= 12 ,∵PQ ⊥BC ,∴PQ PC =12,PC=11-x , ∴当3<x<11时,PQ= 11−x 2;(2)解:①当PQ 交AB 于点Q 时,0<x<3, ∵四边形PQMN 为正方形, ∴PQ=QM=MN=NP , ∵QM=2(3-x ), ∴43x=2(3-x ), 解得x= 95;②当PQ 交AC 于点Q 时,3<x<11, ∵四边形PQMN 为正方形,∴PQ=QM=MN=NP , ∵QM=2(x-3), ∴(11−x)2=2(x-3),解得x= 235(3)解:y=PQ+MN+QM+PN , =2× 43x+2×2(3-x ),=12- 43x ;(4)解:如图,连接CM 交AD 于O ,由题可知: AE =DE =12AD =2 ,∵QP =ED =43x ,∴OE =OD −DE =2−43x , EM =QE =PD =3−x ,∵QM ∥BC , ∴△OME ∼△OCD , ∴EO DO =EM DC, ∴2−43x 2=3−x 8, 化简得: 4(2−43x)=3−x ,∴x =1513.。
七年级数学上册三角形上的动点问题专题训练在七年级数学上册的研究中,我们将会遇到许多与三角形上的动点问题有关的题目。
本文档将为同学们提供一些专题训练,帮助大家更好地理解和解决这类问题。
一、什么是三角形上的动点问题?三角形上的动点问题是指在一个三角形内部或边上存在一个或多个移动的点,通过观察这些点的运动和变化,我们可以得到一些有关三角形的性质和关系的信息。
二、为什么要训练三角形上的动点问题?训练三角形上的动点问题可以帮助我们更好地理解和掌握三角形的性质和相关知识。
通过解决这类问题,我们可以培养逻辑思维和分析问题的能力,并且提高解决复杂问题的能力。
三、训练题目1.设三角形 ABC 中,D 为边 BC 上的一个动点,在边 AB、AC 上分别分别作线段DE、DF,使得三角形DEF 是一个等边三角形。
证明:线段 AE=AF。
2.在一个等边三角形 ABC 中,点 D 在边 BC 上移动。
若线段AD 的长度为 a,线段 AC 的长度为 b,则线段 BD 的长度为多少?3.在三角形 ABC 中,点 D 在边 AC 上移动,点 E 在边 BC 上移动。
若线段 AD 的长度为 a,线段 CE 的长度为 b,则线段 BD 的长度可以表示为多少?4.在三角形 ABC 中,点 D 在边 BC 上移动,点 E 在边 AC 上移动。
若线段 AD 的长度为 a,线段 CE 的长度为 b,则线段 DE 的长度可以表示为多少?5.在三角形 ABC 中,点 D 在边 BC 上移动,点 E 在边 AC 上移动。
若线段 AD 的长度为 a,线段 CE 的长度为 b,则直线 DE 经过定点 F,请问点 F 在哪条边上?以上是一些三角形上的动点问题的训练题目,希望同学们通过解答这些题目,提高对三角形的理解和运用能力。
四、总结通过训练三角形上的动点问题,我们可以深入理解和掌握三角形的性质和相关知识。
同时,这类问题也能够培养我们的逻辑思维和解决问题的能力。
七年级数学下---全等三角形之动点问题练习1、如图,在直角三角形ABC中,/ B= 90°, A吐5cm BO6cm 点P从点B开始沿BA以1cm/s的速度向点A运动,同时,点Q从点B开始沿BC以2cn/s的速度向点C运动•几秒后,△ PBQ 的面积为9亦?2、如图所示,已知△ ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB BC方向匀速运动,其中点P运动的速度是1m/s,点Q运动的速度是2m/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t s,解答下列问题:(1)填空: △ ABC的面积为;(2)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(3)在点P与点Q的运动过程中,△ BPC是否能成为等边三角形?若能,请求出t,若不能,请说明理由.(4)当厶BPQ是直角三角形时,求t的值。
3、如图(1),AB= 4cm, AC丄AB BD丄AB AOBD= 3cm 点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动•它们运动的时间为t (s)(1)若点Q的运动速度与点P的运动速度相等,当t = 1时,△ ACP与△ BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC丄AB BD L AB'为改“/ CAB=Z DBA= 60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△人。
卩与厶BPC全等?若存在,求出相应的x、t 的值;若不存在,请说明理由.4、如图,△ ABC中,/ ACB=90,AC=6 BC=8点P从A点出发沿A-C-B路径向终点运动,终点为B点;点Q从B点出发沿B-C-A路径向终点运动,终点为A点.点P和Q分别以1和3的运动于E,QHl速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE丄l5、如图,已知三角形ABC中,AB=AC=24S米,BC=16,点D为AB的中点,如果点P在线段BC上从4厘米/秒的速度由B向C运动,同时,点Q在线段CA上由C向A运动,当Q的运动速度为多少厘米/秒时,能在某一时刻使三角形BPD与三角形CQP全等.6 如图,在长方形ABCD中, BC=8cm AC=10cm动点P以2cm/s的速度从点A出发,沿AC方向向点C运动,同时动点Q以1cm/s的速度从点C出发,沿CB方向向点B运动,当P, Q两点中其中一点到达终点时,两点同时停止运动,连接PQ设点P的运动时间为t秒,当t为多少秒时,△ PQC是以PQ 为底的等腰三角形.7、已知:如图,在△ ABC中, AB=AC=18 BC=12点D为AB的中点.点P在线段BC上以每秒3 个单位的速度由B点向C点运动,同时点Q在线段CA上以每秒a个单位的速度由C点向A点匀速运动,连接DP QP设点P的运动时间为t秒,解答下列问题:8、(1)根据点P的运动,对应的t的取值范围为()、A. 0€(壬4 B. c. 0€£壬12 D.910、(2)若某一时刻△ BPD与△ CQP全等,贝U t的值与相应的CQ的长为()A.t=2 ,CQ=9B.t=1 ,CQ=3或t=2,CQ=9C.t=1 ,CQ=3或t=2,CQ=6D.t=1 ,CQ=3(3) 若某一时刻△ BPD^A CPQ 贝U a=( )A. J B.2 C.3 D.七年级数学下---全等三角形之动点问题练习答案:2、(1)当点Q 到达点C 时,PQ 与AB 垂直,即△ BPC 为直角三角形.理由是:••• AB=AC=BC=6,V.当点Q 到达点C 时,BP=3cm •••点P 为AB 的中点.••• QPL BA (等边三角形三线合一的性质).(2)假设在点P 与点Q 的运动过程中,△ BPQ 能成为等边三角形,二BP=PQ=BQ •••6-t=2t ,解得t=2 .•••当t=2时,△ BPC 是个等边三角形.3、( 1)当 t=1 时,AP=BQ=,1 BP=AC=3 又/ A=Z B=90°,在厶 ACP^P ^ BPQ 中,AP=BQZA=ZBAC 二BF •••△ ACP^A BPQ( SAS . ACP M BPQ /-Z APC # BPQ M APC V ACP=90 .•••/ CPQ=90,即线段PC 与线段PQ 垂直.广―P=2综上所述,存在I *二1或I 巳使得△ ACP 与△ BPQ 全等4、解:•••△ PEC 与 QFC 全等,•斜边 CP=CQ 有三种情况:① P 在 AC 上, Q 在 BC 上, CP=6-t ,CQ=8-3t ,/ 6-t=8-3t ,•/ t=1 ;② P 、Q 都在 AC 上,此时 P 、Q 重合,• CP=6-t=3t-8,•/ t=3.5 ;③ Q 在 AC 上, P 在 BC 上, CQ=CP 3t-8=t-6,•/ t=1,AC+CP=1,答:点P 运动1或3.5或12时,△ PEC 与 QFC 全等。
动点问题最值三角形性质专练
————————————————————————————————作者: ————————————————————————————————日期:
动点问题三角形性质专练
三边能构成三角形,则必须满足性质:两边之和大于第三边,两边之差小于第三边!
1、如图,在直角梯形A BCD 中,AD∥BC,∠B=90°,A D=24c m,AB=8cm ,BC=26cm ,动:点P 从A 开始沿AD 边向D 以1cm/s 的速度运动;动点Q从点C 开始沿CB 边向B以3cm/s的速度运动.P、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.
(1)当t 为何值时,四边形P QCD 为平行四边形? (2)当t为何值时,四边形PQCD 为等腰梯形? (3)当t 为何值时,四边形PQC D为直角梯形?
2、如图,点A 的坐标为(-1,0),点B在直线y x =上运动,当线段A B最短时,点B 的坐标为【 】 A .(0,0) B.(21-,2
1
-) C.(22,22-) D.(22-,22-)
3、如图所示,在边长为2的正三角形A BC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ .
4、菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (2,0),︒=∠60DOB ,点P 是对角线OC 上一个动点,E (0,-1),当EP +BP 最短时,点P 的坐标为__________.
5、如图,在锐角三角形ABC 中,BC=24,∠ABC=45°,
B D平分∠ABC,M、N 分别是BD 、B
C 上的动点,则CM +MN 的最小值是 。
6、如图,在矩形ABCD 中,AB=4,AD=6,E 是A B的中点,F 是线段BC上的动点,将△EBF 沿EF 所在直线折叠得到△EB ′F,连接B ′D,则B ′D 的小值是( ) A .
B.6
ﻩ C.
D.4
7、如图,菱形ABCD 中,AB=2,∠A=120°,点P,Q,K分别为线段B C,CD,BD 上的任意一点,则PK+QK 的最小值为【 】
A .ﻩ1ﻩ B.3
C. 2ﻩ D .3+1
8、如图,正方形AB CD 的边长为2,ABE ∆是等边三角形,点E 在正方形ABCD 内,在对角线A C上有一点P ,使PD+PE的和最小,则这个最小值为( ) A 、2 ﻩB 、22
ﻩC 、2 ﻩﻩD、6
9、点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角
-的值最大的点,Q是y轴上使得QA十QB的坐标系如图所示.若P是x轴上使得PA PB
⋅= .
值最小的点,则OP OQ
10、如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN
交∠BCA的外角平分
线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;
(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的
结论.
11、如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点. (1)求证:△MDC是等边三角形;
(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.
12、在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x 轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).
(1)求边OA在旋转过程中所扫过的面积;
(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;
(3)设 MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.
13、已知:等边三角形ABC的边长为4厘米,长为1厘米的线段MN在ABC△的边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A 重合,点N到达点B时运动终止),过点MN、分别作AB边的垂线,与ABC△的其它边交于PQ、两点,线段MN运动的时间为t秒.
(1)线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面积;
(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间t变化的函数关系式,并写出自变量t的取值范围.。