MATLAB作业——工业炉温控制系统为例概述
- 格式:doc
- 大小:2.04 MB
- 文档页数:15
基于MATLAB的炉温控制综述炉温控制在工业生产中具有重要的作用,可以实现炉子的安全运行和产品质量的稳定。
因此,炉温控制的研究一直是一个热点。
本文主要介绍了基于MATLAB的炉温控制的一些综述,包括炉温控制的基本原理、常用控制策略和MATLAB在炉温控制中的应用等方面。
1. 炉温控制的基本原理炉温控制的基本原理是通过控制炉内的供暖方式来控制炉内温度。
在工业生产中,常见的供暖方式有电热、燃气、燃油等。
炉温控制的主要任务是使炉内温度稳定在设定值附近,并能在一定的范围内波动。
炉温控制的难点在于炉内温度的变化是一个复杂的非线性过程,需要通过对热力学原理和物理学原理的研究来进行控制。
2. 常用的炉温控制策略常用的炉温控制策略包括PID控制、模糊控制、自适应控制等。
(1)PID控制PID控制是一种广泛应用的控制策略,通过对系统的误差、偏差和变化率进行计算来控制系统。
PID控制可以实现对炉温的精确控制,但由于炉内温度变化非常复杂,常常需要对PID控制进行优化才能得到令人满意的控制效果。
(2)模糊控制模糊控制是一种基于模糊逻辑的控制策略,适用于变化性较大的控制系统。
模糊控制比PID控制更加灵活,可以根据实际情况对控制规则进行调整。
但模糊控制的缺点在于需要建立复杂的规则库,难以应用于不同类型的控制系统。
(3)自适应控制自适应控制是一种能够自行调整控制策略的控制方法。
自适应控制可以根据炉内温度变化的情况自动调整控制参数,从而实现对炉温的精确控制。
但自适应控制需要建立精确的模型,且系统复杂度较高,实现起来比较困难。
MATLAB是一种功能强大的科学计算软件,广泛应用于动态系统的建模和仿真等方面。
在炉温控制中,MATLAB可以通过建立热力学模型和控制模型来进行仿真和优化。
在控制策略的选择和优化方面,MATLAB提供了丰富的函数库和工具箱,如PID控制工具箱、模糊逻辑工具箱等。
通过MATLAB可以进行系统建模和控制器参数调整等操作,从而优化炉温控制系统的性能。
加热炉温度串级控制系统设计摘要:温度控制系统广泛应用于工业控制领域,如钢铁厂、化工厂、火电厂等锅炉的温度控制系统,电焊机的温度控制系统等。
加热炉温度控制在许多领域中得到广泛的应用。
生产自动控制过程中 ,随着工艺要求 ,安全、经济生产不断提高的情况下 ,简单、常规的控制已不能适应现代化生产。
传统的单回路控制系统很难使系统完全抗干扰。
串级控制系统具备较好的抗干扰能力、快速性、适应性和控制质量,因此在复杂的过程控制工业中得到了广泛的应用.对串级控制系统的特点和主副回路设计进行了详述,设计了加热炉串级控制系统,并将基于MATLAB的增量式PID算法应用在控制系统中。
结合基于计算机控制的PID参数整定方法实现串级控制,控制结果表明系统具有优良的控制精度和稳定性。
关键词:干扰串级控制主回路副回路Abstract:Automatic control of production process, with the technical requirements, security, economic production rising cases, simple, conventional control can not meet the modern production. The traditional single-loop control system is difficult to make the system completely anti-interference. Cascade control system with good anti-jamming capability, rapidity, flexibility and quality control, and therefore a complex process control industry has been widely used. Cascade control system of the characteristics and the main and sub-loop design was elaborate, designed cascade control system, furnace, and MATLAB-based incremental PID algorithm is applied in the control system. Combination of computer-based control method to achieve PID parameter tuning cascade control, control results show that the system has excellent control accuracy and stabilityKeywords:Cascade control, interference, the main circuit, the Deputy loop目录1.前言 (2)2、整体方案设计 (3)2.1方案比较 (3)2.2方案论证 (6)2.3方案选择 (7)3、串级控制系统的特点 (8)4. 温度控制系统的分析与设计 (9)4.1控制对象的特性 (9)4.2主回路的设计 (10)4.3副回路的选择 (10)4.4主、副调节器规律的选择 (10)4.5主、副调节器正反作用方式的确定 (10)5、控制器参数的工程整定 (12)6 、MATLAB系统仿真 (13)6.1系统仿真图 (13)6.2副回路的整定 (15)6.3主回路的整定 (16)7.设计总结 (18)【参考文献】 (19)1.前言随着我国国民经济的快速发展,加热炉的使用范围越来越广泛。
第二章 被控对象及控制策略控制系统意味着通过它可以按照所希望的方式保持和改变机器、结构或其他设备内任何感兴趣或可变化的量。
控制系统同时是为了使被控制对象达到预定的理想状态而实施的。
控制系统使被控制对象趋于某种需要的稳定状态。
2.1被控对象本文的被控对象电烤箱或者电炉的温度。
设计目的是要对它的温度进行控制,达到调节时间短、超调量为零且稳态误差在±1℃内的技术要求。
在工业生产过程中,控制对象各种各样。
理论分析和实验结果表明:电加热装置是一个具有自平衡能力的对象,可用二阶系统纯滞后环节来描述。
然而,对于二阶不振荡系统,通过参数辨识可以降为一阶模型。
因而一般可用一阶惯性滞后环节来描述温控对象的数学模型。
所以, 电烤箱模型的传递函数为:1)(+•=-TS e K S G s τ(2-1)式(2-1)中 K-对象的静态增益T-对象的时间常数τ-对象的纯滞后时间目前工程上常用的方法是对过程对象施加阶跃输入信号,测取过程对象的阶跃响应,然后由阶跃响应曲线确定过程的近似传递函数。
由于本文是对温度控制系统的控制方式(采用什么样的控制器)优劣的探究,所以对于控制对象不是主要的研究对象,这里取三组控制温度控制对象的模型)(S G 如下:1220)(5.01+=-S e S G s se 5.0-1420)(5.02+=-S e S G s)14)(12(20)(5.03++=-S S e S G s2.2 控制策略分别设计PID 和Fuzzy 控制器,并做多层次不同比较各自性能,得出最优控制方法。
其中Yd=1, 1)()2)0.1t d ξ⎧=⎨=⎩白噪声 方差0.0001确定干扰,采样周期为0.1s.2.3 控制器的模型2.3.1 PID 控制器的模型与设计)(11)(s E S T S T K s U d i p ⎥⎦⎤⎢⎣⎡++=或写成传递函数形式:)11()()()(S T ST K S E S U S G d i p p ++==公式中U(s)和E (s )分别是u (t )和e (t )的拉氏变换,其中p K 、i T 、d T 分别控制器的比例系数、积分时间常数、微分时间常数。
基于组态王和MATLAB 的温度控制系统姓名:班级:学号:一、系统简介组态王是运行在Windows98/NT/2000上的一种工业组态软件,提供了多种I/0驱动程序,可以直接使用变量名读写I/O设备⋯,把下位机的信息实时地传送到上位机中。
但是,在许多工业监控系统中,上位机不仅要实现人机交互的功能,还需要执行控制算法,实现对下位机的实时控制。
组态王的命令语言是一段类似C语言的程序,其编程环境较弱,很难实现复杂的控制算法,因此有必要借助其他软件环境实现系统的控制算法。
MATLAB语言是目前工程界流行最广的一种科学计算语言。
利用MATLAB可以设计先进、复杂的控制算法,将人们从繁琐、复杂的底层编程中解放出来,从而提高编程效率。
本研究在锅炉水温监控系统中采用组态王构成系统的软件平台,完成数据的实时采集和处理,实现人机对话和以动画的方式显示控制设备的运行状态等监控功能。
同时,采用MATLAB语言作为后台程序扩充组态王的编程功能,实现系统的模糊控制算法。
二、监控系统的组成2.1监控系统的硬件组成锅炉水温监控系统结构如图1所示,其系统的工作过程如下:(1)温度传感器PTl00检测出锅炉水的温度信号,经温度变送器将温度信号转换为相应1—5V的模拟量信号,该量经A/D板卡PCL812PG 转换成对应的数字量信号送上位机显示和处理。
(2)在上位机中将检测的温度信号与上位机中设定的温度值进行比较,产生控制器的输人变量(如温度偏差和温度偏差变化率),由控制器计算后输出控制量信号u。
(3)控制量U经过数字量输出板卡PCL726转换为对应的4~20mA 的模拟量信号,送控制装置中SCR可控硅模块执行,SCR模块通过控制可控硅来调节电阻丝两端的电压,对系统的温度进行控制,最终使锅炉温度达到设定值。
图1锅炉水温控制系统结构框图2.2监控系统的软件组成监控系统的软件结构由两个模块组成:前台运行的监控界面模块由组态王开发,以模拟控制系统动态运行为主,生动直观地显示各个变量的各种信息,并实现数据实时采集、人机对话和数据记录等功能;后台运行的数据处理模块以MATLAB语言为开发环境,实现系统的控制算法,产生系统执行机构的控制变量。
实验八 炉温控制系统的设计一、设计目的1、了解被控对象数学模型建立的方法;2、掌握PID 控制的基本原理; 4、掌握PID 参数整定的两种方法;3、掌握Matlab/Simulink 在控制系统设计中的应用。
二、设计要求电炉是一个特性参数随炉温变化的被控对象,炉温控制具有单向性、大惯性、大滞后、时变性的特点。
设计PID 控制器,当系统处于平衡状态时,通过调节PID 控制器的比例系数p K 、积分时间系数i T 和微分时间D τ,炉温稳定在给定值,从而实现了电炉的温度控制。
三、设计任务3.1电炉数学模型一般将电阻炉视为一阶惯性环节加滞后的对象,其传递函数为s e Ts K s G τ-+=1)(。
其中:T 为电炉的时间常数,T=RC (C 为电炉热容,R 为热阻);K 为比例系数;τ为纯滞后时间,单位s ;S 为复频域连续函数。
系数T 、K 、S 对于不同的被控对象,其数值有所不同。
现有一台50kW 箱式电阻炉,其T=360、K=8、τ=180s 。
3.2电炉控制系统框图常用电阻炉炉温控制系统如图1所示,其中PID 控制器是应用最广泛、最成熟的一种调节器。
图一 电阻炉炉温控制系统 3.3 PID 校正前系统响应分析(要求:采用Matlab/simulink 建立模型,绘制阶跃响应曲线,分析系统是否稳定) 1、 Matlab/simulink 建立模型 2、 绘制阶跃响应曲线 3、 分析系统是否稳定?3.4 PID 控制器设计PID 控制器的传递函数为)11()(s sT K s G D i p c τ++=,其中,p K 为比例常数,i T 为积分时间常数,D τ为微分时间常数。
一、Ziegler-Nichols 整定---反应曲线法反应曲线法是根据系统在开环状态下的动态特性,估算对象特性参数。
其中K 为控制 对象的增益,L 为等效滞后时间,T 为等效时间常数,然后根据表1的经验值选取控制器参数。
基于Matlab的PID温控系统的设计与仿真摘要在Matlab6.5环境下,通过Matlab/Simulink提供的模块,对温度控制系统的PID控制器进行设计和仿真。
结果表明,基于Matlab的仿真研究,能够直观、简便、快捷地设计出性能优良的交流电弧炉温度系统控制器。
关键词温度系统数学模型;参数整定;传递函数在钢铁冶炼过程中,越来越多地使用交流电弧炉设备,温控系统的控制性能直接影响到钢铁的质量,所以炉温控制占据重要的位置。
PID控制是温控系统中一种典型的控制方式,是在温度控制中应用最广泛、最基本的一种控制方式。
随着科学发展,各行各业对温控精度要求越来越高,经典PID控制在某些场合已不能满足要求,因而智能PID控制的引入是精密温控系统的发展趋势。
为了改善电弧炉系统恒温控制质量差的现状,研制具有快速相应的、经济性好的、适合国情的恒温控制装置具有十分重要的意义。
1温控系统模型的建立在Matlab6.5环境下,通过Simulink提供的模块,对电弧炉温控系统的PID控制器进行设计和仿真。
由于常规PID控制器结构简单、鲁棒性强,被广泛应用于过程控制中。
开展数字PID控制的电弧炉控制系统模型使应用于生产实际的系统稳定性和安全性得到迅速改善。
1.1温控系统阶越响应曲线的获得在高校微机控制技术实验仪器上按以下步骤测得温度系统阶越响应曲线:1)给温度控制系统75%的控制量,即每个控制周期通过X0=255×75%=191个周波数,温度系统处于开环状态。
2)ATMEGA32L内部A/D每隔0.8s采样一次温度传感器输出的电压值,换算成实际温度值,再通过串口通讯将温度值送到电脑上保存。
使用通用串口调试助手“大傻串口调试软件-3.0AD”作为上位机接收数据并保存到文件“S曲线采集.txt”中。
3)在采集数据过程中,不时的将已经得到的数据通过“MicrosoftExcel”文档画图,查看温度曲线是否已经进入了稳态区;根据若曲线在一个较长时间里基本稳定在一个小范围值内即表明进入稳态区了,此时关闭系统。
基于MATLAB的锅炉水温与流量串级控制系统的设计目录摘要 (1)Abstract (2)1 概述 (3)1。
1过程控制 (3)1。
2串级控制系统 (5)1。
3 MATLAB软件 (6)1。
4 MCGS组态软件 (7)2 PID控制器原理 (9)2.1 PID控制器简介 (9)2.2 PID控制系统 (10)2。
3 PID控制参数的整定及方法 (11)2。
3。
1 PID控制参数的整定简介 (11)2.3。
2 PID控制参数整定方法 (11)3 建立被控对象模型 (14)3.1 被控对象建模 (14)3。
2 测量被控对象阶跃响应曲线 (15)3.3求取被控对象传递函数 (16)4 控制方案的设计及仿真 (21)4.1 设计控制系统框图 (21)4.2 Simulink控制系统仿真 (22)4.3仿真结果分析 (23)4。
4 串级控制与单回路控制系统抗干扰性能仿真 (25)5 结论 (28)致谢 (29)参考文献 (30)附录:英语资料及译文 .................................................. 错误!未定义书签。
摘要本设计针对锅炉温度控制问题,综合应用过程控制理论以及近年来兴起的仿真技术、计算机远程控制、组态软件,设计了锅炉温度流量串级控制系统。
首先,通过实验法建立锅炉的数学模型,得到锅炉温度与进水流量之间的传递函数,通过对理论设计的控制方案进行仿真,得到较好的响应曲线,为实际控制系统的实现提供先决条件。
其次,使用智能仪表作为控制器,组建现场仪表过程控制系统,通过参数整定,得到较好现场控制效果。
再次,实现积分分离的PID控制算法。
关键词:水温流量串级控制系统 PID控制仪表过程控制系统计算机过程控制系统AbstractThe purpose of this thesis is to design the liquid level's concatenation control system of the double capacity water tank。
错误!未找到目录项。
1 设计题目要求:1.查阅相关资料,分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。
2.分析系统每个环节的输入输出关系,代入相关参数求取系统传递函数。
3.分析系统时域性能和频域性能。
4.运用根轨迹法或频率法校正系统,使之满足给定性能指标要求。
(已知条件和性能要求待定)摘要炉温控制系统---是指根据炉温对给定温度的偏差,自动接通或断开供给炉子的热源能量,或连续改变热源能量的大小,使炉温稳定有给定温度范围,以满足热处理工艺的需要。
炉温自动控制用热电偶测量温度,与给定温度进行比较,将偏差信号放大后作为驱动信号,通过电机、减速器调节加热器上的电压来实现准确的温度控制。
本文经过正确分析系统工作过程,建立系统数学模型,画出系统结构图后,设计与校正前系统性能分析和可采取的解决方案、方法及分析。
运用matlab软件进行复杂的系统时域验证和计算机仿真,通过具体设计校正步骤、思路、计算分析过程和结果,对于炉温控制系统的研究与改进具有现实意义。
关键字炉温控制系统系统校正 matlab软件1 工业炉温自动控制系统的工作原理加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压f u 。
f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。
在正常情况下,炉温等于某个期望值T °C ,热电偶的输出电压f u 正好等于给定电压r u 。
此时,0e r f u u u =-=,故1a u u =,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。
这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
加热炉温度自动控制系统MATLOB加热炉温度自动控制系统MATLOB是一种用于控制加热炉温度的系统。
在工业生产过程中,控制加热炉温度的准确性和稳定性对于保证产品质量和生产效率至关重要。
MATLOB系统采用先进的温度感应器和控制器,通过实时监测和调节加热炉的温度,使其保持在设定的温度范围内。
该系统具有高精度、快速响应的特点,能够有效地控制加热炉温度的波动,确保生产过程的稳定性和可靠性。
背景信息包括MATLOB系统的发展历程、应用范围和优势等方面。
通过了解MATLOB系统的背景信息,可以更好地理解该系统的重要性和作用,为后续的具体操作和维护提供基础。
系统概述加热炉温度自动控制系统MATLOB由以下主要组成部分和功能组成:温度传感器:用于测量加热炉的温度。
控制器:通过接收温度传感器的信号,对加热炉的加热器进行控制,以维持设定的目标温度。
加热器:通过加热炉的加热元件来提供加热能量。
控制算法:控制器使用特定的算法根据当前温度和目标温度之间的差异来调整加热器的输出功率,以达到温度稳定控制。
用户界面:提供给操作员对加热炉温度自动控制系统进行设置和监控的界面,如设定目标温度、显示当前温度和报警信息等。
该系统的主要功能是通过自动控制加热炉的温度,使其能够稳定地达到用户设定的目标温度。
通过温度传感器实时监测加热炉的温度,并将数据传输给控制器。
控制器根据设定的目标温度和当前温度之间的差异,通过调整加热器的输出功率来控制加热炉的温度。
用户可以通过操作界面进行设定和监控,以确保加热炉的温度处于所需的范围内。
MATLOB加热炉温度自动控制系统是一个简单而有效的解决方案,旨在提供稳定和可靠的温度控制,以满足用户对加热炉温度精确控制的需求。
加热炉温度自动控制系统MATLOB相比其他系统具有许多优势和特点,下面是一些主要的优势:高精度:MATLOB系统采用先进的传感器和控制算法,能够实现对加热炉温度的高精度控制。
这种高精度控制可以确保加热炉内的温度保持在预定的范围内,从而提高生产效率和产品质量。
电加热炉温度控制系统性能的MATLAB仿真————————————————————————————————作者:————————————————————————————————日期:电加热炉温度控制系统性能的 MATLAB仿真系别:机电与自动化学院专业班:姓名:学号:指导教师:2013年月日电加热炉温度控制系统性能的MATLAB仿真MATLAB simulation the performance of the control system of heating furnace temperature摘要近年来随着工业的发展,电加热炉在工业控制中的应用越来越广泛。
温度是电加热炉控制系统的一个主要参数,对温度的控制要求也越来越高。
传统控制算法一般要建立在一定的数学模型之上,模型的精确度对控制效果有直接的影响.然而电加热炉是一种具有非线性、纯滞后、大惯性、时变性和升温单向性的控制对象,很难用数学方法建立精确模型.模糊控制不依赖于模型,但由于它的理论并不完善,算法复杂,控制过程会存在稳态误差。
传统PID控制理论成熟,容易实现,虽然大多数情况下可以满足性能要求,但其性能取决于参数的整定情况,且它的快速性和超调量之间的矛盾关系,使它不能同时满足快速升温和超调量小的要求。
鉴于此,本文将模糊算法和常规PID算法结合起来,在手动经验的基础上建立模糊规则,在线自整定PID的参数,提高控制效果。
本文提出了基于模糊PID的箱式电加热炉控制系统的设计方法。
首先介绍了模糊PID 控制器的设计方法,并用MATLAB仿真比较了常规PID控制算法和模糊PID控制算法的性能,分析了模糊PID在电加热炉温度控制中的可行性.最后在二次开发设计的基于组态软件King View开发的系统中,对模糊PID算法和常规PID算法进行了实时调试,并对实验结果进行了分析.关键词:温度控制;MATLAB;模糊PID;常规PIDAbstractWith the development of industry.electric heating furnace is more and more widely used 。
控制工程基础大作业MATLAB软件应用2016年秋季学期专业名称:机械设计制造及其自动化专业班级:__________________________________姓名: Sun Light Tomorrow ______学号:__________________________________授课教师:_______________________________成绩:__________________________________一、教学目的:使学生能够掌握现代工程工具MATLAB软件使用的基本方法,能够应用MATLAB软件对控制系统进行建模及性能分析。
二、内容要求:1. 控制系统建模(1)确定所研究的闭环反馈控制系统,清晰表述系统的具体工作原理及参数条件;(同学们可以通过查阅相关的文献资料、生活或者工程实践中的实际案例确定自己所研究的闭环反馈控制系统)(2)绘制闭环反馈控制系统的职能方框图、函数方框图,并建立系统的传递函数形式的数学模型。
2 •应用MATLAB软件进行控制系统性能分析针对所选定的闭环控制系统,应用MATLAB软件完成以下工作:(1)控制系统频域特性分析分别使用nyquist函数和bode函数绘制系统的开环奈奎斯特图和开环波德图,并附程序清单。
(2)控制系统稳定性分析判定控制系统的稳定性,并进行控制系统相对稳定性分析,计算稳定性裕量,并附程序清单。
(3)控制系统时域特性分析使用step函数绘制控制系统的单位阶跃响应曲线,分析控制系统响应的快速性指标,分析比较结构参数变化对系统性能的影响,并附程序清单。
三、作业书写注意事项:1•封皮格式按照此模板内容,不必更改,完整填写相应的个人信息;2. 正文按照第二部分内容要求的顺序分项书写,给出运行结果并附上完整的编写程序清单(同时提交电子版程序);3•本模板及要求保留,另起一页书写正文的内容成果,A4纸双面打印,左侧装订;4. 杜绝抄袭,如果雷同,按照零分计;5. 采用十分制记分,抽查答辩。
温度控制 matlab温度控制在许多领域中都是一个重要的问题,特别是在工业生产和环境控制中。
温度控制的目标是保持系统内的温度在设定的范围内稳定,并且能够及时响应外部环境的变化。
在这篇文章中,我们将探讨如何使用MATLAB进行温度控制。
我们需要了解温度控制的基本原理。
温度是一个物体内部分子的平均热运动程度的度量。
温度控制的目标是通过调节能量输入或输出来维持所需的温度。
常见的温度控制方法包括开关控制和调节控制。
开关控制是最简单和最常见的温度控制方法之一。
它基于一个简单的原理:当温度超过设定值时,控制系统将打开或关闭一个设备来增加或减少能量输入。
例如,当室内温度超过设定温度时,空调系统将启动并开始制冷,直到温度降至设定值以下。
调节控制是一种更复杂的温度控制方法,它基于比例、积分和微分(PID)控制原理。
PID控制器根据当前温度与设定温度之间的误差来调整能量输入,以使温度稳定在设定值附近。
PID控制器根据比例、积分和微分三个参数的权重来计算控制器的输出。
比例项用于根据误差的大小调整控制器的输出,积分项用于修正长期误差,微分项用于预测温度变化的趋势并相应地调整控制器的输出。
在MATLAB中,我们可以使用控制系统工具箱来设计和模拟温度控制系统。
控制系统工具箱提供了许多函数和工具,用于分析和设计各种类型的控制系统。
我们可以使用这些函数和工具来创建一个温度控制系统的模型,并进行模拟和优化。
我们需要定义一个温度控制系统的模型。
我们可以使用传递函数来表示系统的动态特性。
传递函数是一个比例多项式除以一个比例多项式的形式,用于描述输入和输出之间的关系。
在温度控制系统中,输入是控制器的输出,输出是温度的变化。
然后,我们可以使用控制系统工具箱中的函数来分析和设计温度控制系统的性能。
例如,我们可以使用阶跃响应函数来评估系统的稳定性和响应速度。
阶跃响应函数是系统对一个单位阶跃输入的响应。
通过分析阶跃响应可以得到系统的稳态误差、超调量和调整时间等性能指标。
MATLAB温度控制系统课程设计报告案例范本一、课程设计题目基于MATLAB的温度控制系统设计二、设计背景温度控制是工业生产、家庭生活中常见的一种控制过程,其目的是通过控制温度来保持环境的稳定性和舒适性。
本次课程设计旨在通过MATLAB软件,设计一种基于PID控制的温度控制系统,实现对温度的精确控制。
三、设计目标1.熟悉PID控制器的基本原理和控制算法;2.掌握MATLAB软件的基本操作和编程技巧;3.设计出一种基于PID控制的温度控制系统,实现对温度的稳定控制;4.学会分析和优化控制系统的性能。
四、设计流程1.建立模型根据实际情况,建立温度控制系统的数学模型,可以采用传热学原理,建立温度传递方程,得到系统的状态空间模型。
2.设计控制器采用PID控制器对温度控制系统进行控制,根据系统的状态空间模型,设计PID控制器的参数,可以采用自整定PID控制器或手动调整PID 控制器的参数。
3.仿真分析使用MATLAB软件进行系统仿真分析,对控制系统的性能进行评估,包括稳态误差、响应速度、稳定性等指标。
4.优化控制器根据仿真分析的结果,对控制器进行参数调整和优化,提高系统的控制性能。
5.实际实验将控制器实现到实际温度控制系统中,进行实际实验,验证控制器的性能和稳定性。
五、设计结果通过以上流程,设计出一种基于PID控制的温度控制系统,实现对温度的稳定控制。
在仿真分析中,系统的稳态误差小、响应速度快、稳定性好,满足实际控制需求。
在实际实验中,控制器的性能和稳定性得到了验证,达到了预期的控制效果。
六、设计总结本次课程设计通过MATLAB软件,设计出一种基于PID控制的温度控制系统,深入理解了PID控制器的基本原理和控制算法,掌握了MATLAB软件的基本操作和编程技巧。
通过仿真分析和实际实验,对控制系统的性能进行了评估和优化,提高了系统的控制性能和稳定性。
本次课程设计对于提高学生的实际操作能力和掌握控制理论知识有一定的帮助。
控制系统仿真课程大作业题目: 基于MATLAB的炉温控制系统的仿真院系名称:电气工程学院专业班级:自动F0904学生姓名:学号:指导教师:教师职称:讲师评语:成绩:任课教师:时间:在数字PID算法中,为了避免传统PID控制器算法中积分累积所造成的系统较大超调和不稳定,甚至是积分饱和,人们常常会使用积分分离PID算法加以改进。
本文又提出了变速积分PID算法,并以电锅炉温度控制系统为例,基于MATLAB 并运用仿真分析手段,对两种不同算法的控制效果进行了比较,得出了积分分离算法的上升时间tr较短,而变速积分算法的调节时间ts较短,最大超调量较小,振荡次数较少,在温度控制系统中变速积分优于积分分离的结论。
本文以加热炉控制系统为例提出了一种模糊控制方案, 介绍了模糊控制器的设计过程并很方便地利用SIMULINK 进行了仿真研究, 结果证明, 这种模糊控制系统具有良好的动态性能。
关键词:PID控制;积分分离;变速积分;MATLAB1 绪论 (4)2 系统描述 (4)2.1 系统过程 (4)2.2 系统的组成和基本工作原理 (5)2.3 对象模型的归纳 (6)3 PID控制及仿真 (6)3.1分分离PID控制算法 (7)3.2 变速积分PID控制算法 (7)4 基于两种控制算法的炉温控制系统仿真 (8)结论 (10)致谢 (10)参考文献 (11)1 绪论控制系统计算机仿真是应用现代科学手段对控制系统进行科学研究的十分重要的手段之一。
进入80年代以来, 几乎所有控制系统的高品质控制均离不开系统仿真研究。
通过仿真研究可以对照比较各种控制策略与方案, 优化并确定相关参数, 特别是对于新控制决策与算法的研究, 进行系统仿真更是必不可少的。
一般而言, 对控制系统进行计算机仿真首先应建立系统模型, 然后依据模型编制仿真程序, 充分利用计算机作为工具对其进行数值求解并将结果加以显示。
显然, 通常在仿真过程中, 十分耗费时间与精力的是编制和修改仿真程序。
控制系统仿真课程大作业题目: 基于MATLAB的炉温控制系统的仿真院系名称:电气工程学院专业班级:自动F0904学生姓名:学号:指导教师:教师职称:讲师评语:成绩:任课教师:时间:在数字PID算法中,为了避免传统PID控制器算法中积分累积所造成的系统较大超调和不稳定,甚至是积分饱和,人们常常会使用积分分离PID算法加以改进。
本文又提出了变速积分PID算法,并以电锅炉温度控制系统为例,基于MATLAB 并运用仿真分析手段,对两种不同算法的控制效果进行了比较,得出了积分分离算法的上升时间tr较短,而变速积分算法的调节时间ts较短,最大超调量较小,振荡次数较少,在温度控制系统中变速积分优于积分分离的结论。
本文以加热炉控制系统为例提出了一种模糊控制方案, 介绍了模糊控制器的设计过程并很方便地利用SIMULINK 进行了仿真研究, 结果证明, 这种模糊控制系统具有良好的动态性能。
关键词:PID控制;积分分离;变速积分;MATLAB1 绪论 (4)2 系统描述 (4)2.1 系统过程 (4)2.2 系统的组成和基本工作原理 (5)2.3 对象模型的归纳 (6)3 PID控制及仿真 (6)3.1分分离PID控制算法 (7)3.2 变速积分PID控制算法 (7)4 基于两种控制算法的炉温控制系统仿真 (8)结论 (10)致谢 (10)参考文献 (11)1 绪论控制系统计算机仿真是应用现代科学手段对控制系统进行科学研究的十分重要的手段之一。
进入80年代以来, 几乎所有控制系统的高品质控制均离不开系统仿真研究。
通过仿真研究可以对照比较各种控制策略与方案, 优化并确定相关参数, 特别是对于新控制决策与算法的研究, 进行系统仿真更是必不可少的。
一般而言, 对控制系统进行计算机仿真首先应建立系统模型, 然后依据模型编制仿真程序, 充分利用计算机作为工具对其进行数值求解并将结果加以显示。
显然, 通常在仿真过程中, 十分耗费时间与精力的是编制和修改仿真程序。
基于Matlab的电阻炉温度控制系统仿真
李艳
【期刊名称】《工业加热》
【年(卷),期】2024(53)2
【摘要】电阻炉作为重要的工业加热设备对部件进行热处理,是一种利用电流通过电阻材料发生热能的加热炉,电阻炉在机械领域主要用于金属的锻压前加热、粉末冶金烧结、玻璃陶瓷焙烧及退火、熔点低金属熔化等。
电阻炉与火焰炉相比具有结构简单、炉温均匀、加热质量好、便于控制、无噪声等优点。
作为重要的热处理设备,电阻炉的温度控制直接关系到生产产品部件的质量和精度。
但电阻炉的温度变化具有较强的时滞性以及惯性,因此建立有效的温度控制系统提升电阻炉的温度控制水平具有重要的意义。
先分析了模糊PID算法的原理,然后基于SX-10-12型号箱式电阻炉介绍了温度控制系统的整体设计方案、硬件设计以及软件设计,并在Matlab仿真环境下对温度控制系统的运行情况进行论述,旨在提升电阻炉温度控制的自动化水平。
【总页数】4页(P46-49)
【作者】李艳
【作者单位】四川工业科技学院
【正文语种】中文
【中图分类】TF806.4
【相关文献】
1.基于OPC和MATLAB的电阻炉温度控制系统设计
2.基于Matlab的电阻炉温度模糊控制系统设计及仿真
3.基于Matlab的电阻炉温度控制系统设计及仿真比较
4.基于Matlab的电阻炉温度控制系统设计与实现
因版权原因,仅展示原文概要,查看原文内容请购买。
课程设计报告题目:MATLAB 及控制系统仿真课程设计学 院 电子信息工程学院 学科门类 电气信息类 专 业 自动化学 号 2012449107 姓 名 陈文华 指导教师 姜萍2016年 1 月 16 日装 订 线目录一引言 (2)1.1 实验目的 (2)1.2 实验内容与要求 (2)1.2.1实验内容 (2)1.2.2实验要求 (2)二倒立摆控制系统设计 (3)2.1倒立摆的简介 (3)2.2倒立摆的数学模型 (3)2.2.1本设计中所用到的各变量的取值及其意义 (3)2.2.2动力学模型 (3)2.3模型转化 (5)三基于状态反馈的倒立摆系统设计 (6)3.1系统的开环仿真 (6)3.1.1开环仿真的系统Simulink结构 (6)3.1.2开环系统的分析 (7)3.2输出反馈设计方法 (7)3.2.1输出反馈仿真 (7)3.2.2输出反馈系统的分析 (8)3.3状态反馈设计 (8)3.3.1基于状态反馈控制器的倒立摆设计过程 (8)3.3.2状态反馈仿真 (9)3.3.3状态反馈分析 (10)3.4全维状态观测器的倒立摆控制系统设计与仿真 (10)3.4.1基于全维状态观测器的倒立摆系统设计步骤 (10)3.4.2系统仿真 (10)3.4.3基于状态观测器的状态反馈曲线分析 (11)四锅炉过热汽温控制系统设计及仿真 (12)4.1蒸汽温度控制的任务 (12)4.2影响蒸汽温度的因素 (12)4.3蒸汽温度系统开环模型建立 (12)4.3.1减温水量对蒸汽温度的影响 (12)4.3.2动态特性 (12)4.4蒸汽温度控制系统设计 (12)4.4.1开环系统动态特性仿真及分析 (12)4.4.2开环特性曲线分析 (13)4.5单回路控制系统 (13)4.5.1单回路控制系统仿真及分析 (13)4.5.2系统PID参数的整定 (13)4.5.3单回路控制系统仿真曲线分析 (15)4.6串级控制系统 (15)4.6.1串级控制系统仿真 (15)4.6.2系统PID参数的整定 (16)4.6.3串级系统响应曲线分析 (18)五总结 (18)附录 (19)一引言1.1 实验目的(1)加强学生对控制理论及控制系统的理解,熟练应用计算机仿真常用算法和工具,完成控制系统计算机辅助设计的训练。
基于MATLAB的炉温控制设计题目-------基于MATLAB的电炉温度控制算法比较及仿真研究系别:电子电气工程系班级:10级电气工程及其自动化(1)班姓名:李权洋指导教师:梁绒香学号:201095014030《计算机控制技术》2010级期末考查题目一、题目基于MATLAB 的电炉温度控制算法比较及仿真研究二、说明:设某电炉控制对象的控制模型为s e ss W 22011)(-+=,运用所学知识,对其控制算法进行比较研究并运用MATLAB 编程或者simulink 模块进行仿真,从而给出最优控制算法结论。
三、要求:1. 炉温变化范围:0—200℃,要求实现80℃温度的恒温控制;2.炉温变化参数要求:S t ≤80S ;超调量p σ≤10℅;静态误差v e ≤2℃。
3. 至少采用三种算法(如PID 算法及其改进算法、Smith 预估控制算法、达林算法或者其他算法等)做算法对比研究。
4、可以自己在基本要求基础上,增加其他算法研究,如:各种PID 改进算法、模糊控制算法等。
5、截取每种算法的算法连接图或者程序以及对应的仿真结果四、报告书写:实验完成后,用A4纸撰写研究报告,主要包括: 1、研究对象分析说明;2、各算法设计部分包括:1)算法简介;2)仿真程序或者仿真连接图;3)仿真结果;4)仿真结果分析说明3、对每种算法作总结比较,总结各自特点,讨论并最终得出本电炉温度控制的理想算法。
4、对本次设计整个过程做小结,说明自己在整个过程中面临的问题、解决的措施、心得及体会四、时间安排:设计时间两周,最迟6月7日之前完成。
五、其他事项说明:1、首页封面包括题目、班级、学号、姓名;2、报告中所用图应均为自己仿真完成,切忌抄袭、复制他人,一经发现,抄的和被炒的自我负责成绩,别怪老师手下不留情哦。
请大家自觉。
3、各班班长最后把每个班的仿真算法发给我,我随机运行你们的仿真结果。
大家在图号上最好包含自己名字缩写。
一、PID算法的设计及分析1、控制算法的确定PID调节是连续系统中技术最成熟的、应用最广泛的一种控制算方法。
控制工程基础大作业MATLAB软件应用2016年秋季学期专业名称:机械设计制造及其自动化专业班级:姓名: Sun Light Tomorrow学号:授课教师:成绩:一、教学目的:使学生能够掌握现代工程工具MATLAB软件使用的基本方法,能够应用MATLAB软件对控制系统进行建模及性能分析。
二、内容要求:1.控制系统建模(1)确定所研究的闭环反馈控制系统,清晰表述系统的具体工作原理及参数条件;(同学们可以通过查阅相关的文献资料、生活或者工程实践中的实际案例确定自己所研究的闭环反馈控制系统)(2)绘制闭环反馈控制系统的职能方框图、函数方框图,并建立系统的传递函数形式的数学模型。
2.应用MATLAB软件进行控制系统性能分析针对所选定的闭环控制系统,应用MATLAB软件完成以下工作:(1)控制系统频域特性分析分别使用nyquist函数和bode函数绘制系统的开环奈奎斯特图和开环波德图,并附程序清单。
(2)控制系统稳定性分析判定控制系统的稳定性,并进行控制系统相对稳定性分析,计算稳定性裕量,并附程序清单。
(3)控制系统时域特性分析使用step函数绘制控制系统的单位阶跃响应曲线,分析控制系统响应的快速性指标,分析比较结构参数变化对系统性能的影响,并附程序清单。
三、作业书写注意事项:1.封皮格式按照此模板内容,不必更改,完整填写相应的个人信息;2.正文按照第二部分内容要求的顺序分项书写,给出运行结果并附上完整的编写程序清单(同时提交电子版程序);3.本模板及要求保留,另起一页书写正文的内容成果,A4纸双面打印,左侧装订;4.杜绝抄袭,如果雷同,按照零分计;5.采用十分制记分,抽查答辩。
一、控制系统建模(炉温控制系统) 1.1原理简述炉温自动控制就是根据炉子的实际温度与设定温度的偏差,自动接通或断开供给炉子热源,以及连续改变热源功率的大小,使炉温稳定在给定范围之内,以满足热处理工艺的需要。
在正常情况下,炉温等于某个期望值T °C ,热电偶的输出电压正好等于给定电压。
此时,偏差信号∆u 为0,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使电阻丝电压保持一定的数值。
这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
1.2系统职能方框图1.3具体工作原理及函数方框图 1.具体工作原理 (1)热电偶温度单元有热敏元件构成,热敏元件的输出端电压的大小正比于所测温度的大小。
且灵敏度系数和给定单元一样为e K 。
故所测电压为f U 为:lne Af B K N U es N =(2)比较单元比较单元将给定信号与实际信号相比较,得出差值信号,也就是负反馈。
该系统是将()r U s 和()f U s 串联反极性相连接来实现的,其中()()e r f U U s U s =-(3)放大器将偏差信号按比例放大。
()()()c ae U s G s K U s ==(4)执行电机放大器的输出电压作为电机的输入电压对电机进行调速控制。
电机的传递函数求解如下: 电枢回路电压平衡方程()()()a a aa a adi t u t L R i t E dt =++式中a E 是电枢旋转时铲射的反电势,其大小与激磁磁通成正比,方向一样电枢电压()a u t 相反,即()a e m E C t ω=,e C 是反电势系数。
电磁转矩方程()()m m a M t C i t =式中,m C 是电机转矩系数;()m M t 是电枢电流产生的电磁转矩。
电动机轴上的转矩平衡方程()()()()m mm m m c d t J f t M t M t dt ωω+=-式中,m f 是电动机和负载折合到电动机轴上的粘性摩擦系数;m J 是电动机和负载折合到电动机轴上的转动惯量。
由上式中校区中间变量()a i t ,a E 及()m M t ,便可得到以()m t ω为输出量,()a u t 为输入量的直流电动机微分方程:22()()()()()()()()m m a m a m a m a m m e m c m a a a c d t d t L J L f R J R f C C t dt dtdM t C u t L R M t dt ωωω++++=--在工程应用中,犹豫电枢电路电感aL 较小,通常忽略不计,因而上式可简化为()()()()m mm m a c c d t T t K u t K M t dt ωω+=-式中,()m a m a m m e T R J R f C C =+是电动机的时间常数;()m m a m m e K C R f C C =+, ()c a a m m e K R R f C C =+是电动机传递系数。
()()()()2m mm b a c dw t T w t K u t K M t dt +=-式中()c M t 可视为负载扰动转矩。
根据线性系统的叠加原理,可分别求()a u t 到()m w t 和()c M t 到()m w t 的传递函数,以便研究在()a u t 和()c M t ,分别作用下的电动机转速()m w t 的性能,将他们叠加后,便是电动机转速的相应特性。
为求()()m a s U s Ω,令()0c M t =,则有()()()m m m b a dw t T w t K u t dt+=在初始条件下,对上式进行拉氏变换得故传递函数为(5)减速器减速器是一个比例环节,将伺服电动机的角速度变换成为阀门的开度ϕ。
设阀门关闭时的角度为零,全部打开的角度为mϕ,传递关系为变比系数1i。
故 :(6)调压器调压器是一个比例环节,将齿轮转过开度转化为调压器的电压,齿轮转过一定的角度对应一定的电压,因此传递函数为:(7)电炉一般将电路看做一节惯性环节,其传递函数为:()1dK G s Ts =+其中:T 为电炉的时间常数,T=RC(C 为电炉热容,R 为热阻);dK 为比例系数;s 为负频域连续函数。
2.函数方框图根据以上各环节的输入输出关系及系统的结构框图可求得传递函数如下:111()ln 1(1)(1)b dacm Aa b c d e Bm K K K K T s i Ts G s NK K K K K N i T s Ts es++=+++(1)(1)ln 1(1)(1)a b c d m A a b c d e B m K K K K i T s Ts N K K K K K N ies T s Ts ++=+++故系统的开环传递函数为系统的闭环传递函数为根据实际情况取放大系数3a K =,传递系数5b K =,电机时间常数, 比例系数1125i =, 2c K =,2d K =, ,,,3e K =由传递函数得到二、系统的频域特性稳定性分析 2.1控制系统频域特性分析 系统的闭、开环传递函数分别为:2.1.1系统的奈奎斯特图 系统的开环传递函数为由此可知,其奈奎斯特图始于(-6.124,-j ∞),经过原点,终于(-6.124,j ∞),奈奎斯特图如下:2.1.2系统的波徳图经计算幅频特性曲线经过点(0.01,45.56),相频特性图经过点(1,-190.24),其波徳图为:2.2控制系统稳定性分析程序如下:num=[0,0,161.64]den=[134.952,275.191,85.225,0]nyquist(num,den)从图中看其奈奎斯特图曲线经过(-6.11,-100)与(-6.11,100) 两点,验证了曲线始于点(-6.124,-j ∞)终于(-6.124,j ∞)的分析。
程序如下:num=[161.64]den=[134.952,275.191,85.225,0]w=logspace(-2,2,1000)bode(num,den,w)由波徳图可知幅频特性曲线经过了点(0.01,45.6),相频特性图曲线经过点(0.995,-190),验证了计算分析。
系统的开、闭环传递函数为:2.2.1劳斯判据 系统的特征方程为:特征方程的系数不缺项且大于0,故劳斯表为:从上面的劳斯表可以看出,第一列的各元素的数值全部为正数,所以系统是稳定系统。
2.2.2奈奎斯特频率稳定性分析2.2.3对数频率稳定性分析该系统的开环右极点P=0,且在波徳图中,幅频特 性与相频特性曲线均为单调变化,由图可知幅频特性比相频特性后交于横轴,即由开环传递函数可知,该系统的开环右极点数为0,故p=0,在左边的奈奎斯特图上,当P (w )= -1时,曲线并不经过(-1,j0)点,而是关于该点对称,故系统的奈奎斯特曲线不包围(-1,j0)点,所以N=0,而闭环右极点数Z=N+P 显然Z=0,则该系统稳定。
故系统稳定。
2.2.4相对稳定性分析由以上分析可知,该系统虽然是稳定系统,但稳定程度不高,奈奎斯特曲线并没有远离点 (-1,j0),所导致其相位裕量与幅值裕量并不高,且相位裕量没有达到工程上的30°至60°的要求。
三、控制系统时域特性分析 3.1系统降阶由于三阶系统分析较为麻烦,故先分析系统的闭环零极点看是否能够降阶。
用matlab 软件绘制出系统闭环传递函数的零极图如下:幅值裕量,令零极点图程序如下:num=[0,613.62,0];den=[134.952,275.191,85.225,161.64];pzmap(num,den)3.2系统的单位阶跃响应系统的闭环传递函数为阶跃响应曲线如下:程序如下:num=[0.5929]; den=[1,0.019,0.5929]; G=tf(num,den); step(G);3.3二阶系统的性能指标分析系统的单位阶跃响应如下图所示相关性能指标计算:四、系统校正前面所述的系统的相位裕量,幅值裕量,没有达到工程上的要求,在该系统中加入一个超前校正网络可以提高相位裕量与幅值裕量。
(1)计算需补偿的相位超前角m(2)计算衰减率(3)由求的值(4)由的值在系统开环伯德图上确定新的开环截止频率(5)其他参数的确定由可知,故校正传递函数此时G(s)的增益为(为衰减的),如串联到系统中则会使低频增益衰减,为保证系统增益值不受影响,使增益提高,故最终的传递函数为,系统校正后的总的开环传递函数为校正后系统的各图如下:在幅频特性图上找到线,找出所在位置频率,然后在相频特性图上找出所在频率的相角,此时校正系统后相位裕量,由图可以确定新的截止频率校正后的系统相位裕量,符合提高相位裕量要求。
校正后的零极点图奈奎斯特图阶跃响应曲线 波徳图校正后的零极点图参考文献[1]曲云霞.控制工程基础【第二版】.北京:中国升量出版杜,2010.7[2]柯勇.炉温的自动控制系统[B].工业计量,2001年第1期.[3]张科.工业炉温自动控制系统. 百度文库,未知.。