第四节稳定同位素
- 格式:doc
- 大小:172.50 KB
- 文档页数:4
(1) 各同位素体系简介,包括表达形式及其在地球各储库的分布(2) 各同位素在地质过程中的主要分馏机制(3) 稳定同位素在地质过程中的应用,例举主要应用及其原理。
一、稳定同位素理论及简介1、 同位素(isotope)是同一化学元素的核素,它们具有相同的核外电子排布结构。
由于核外电子数由原子核中质子数决定,因而总的化学性质相同,只是质量不同。
2、 稳定同位素:不具有放射性的同位素称为稳定同位素(Stable isotopes)。
3、 一般传统稳定同位素限于质量数小于40的非金属元素,如CHONS 。
4、 同位素比值R=X*/X ,X*和X 分别表示重同位素和轻同位素含量.5、6、 两种物质间同位素分馏的程度用分馏系数a 表示:7、 ∆ = 103 ln α ; ∆ = (α - 1) × 1038、 振动能是产生同位素分馏的主因——这是理论计算同位素分馏的基础。
9、 自然界存在三种类型的同位素分馏,平衡分馏,动力学分馏和非质量相关分馏。
二、H 、O 同位素1、氧有3种稳定同位素 16O 17O 18O 氢有2种稳定同位素 1H D(2H)2、地球上的岩石有相似的氢同位素组成,平均:-60‰;大气水具有非常轻的氢同位素组成;地幔dD :-90~-60‰;绝大多数火成岩的d18O 变化范围为5~15‰,dD 范围为-40~-100‰。
橄榄岩:d18O =5.5‰ MORB : d18O =5.7‰;M 型花岗岩:δ18O = 6-7.5‰,同正常玄武岩浆分异有关;I 型花岗岩:δ18O = 7.5-10‰,源岩是贫18O 的地壳岩浆岩;S 型花岗岩:δ18O = 10-13‰,是富18O 沉积岩部分熔融产物。
化学沉积岩δ18O 较高,20-403、分馏机制:由于晶体化学差异,矿物不同18O 富集程度也不同。
石英>方解石》角闪石》黑云母》橄榄石。
4、O 同位素应用:古温度计、古气候、示踪陆壳物质再循环、水岩相互作用H 同位素应用:示踪成矿流体来源三、C 同位素1、自然界中碳以12C 、13C 、14C 等多种同位素的形式存在,12C 、13C 相对丰度分别为98.89%、1.11%;14C 只有极微量且具放射性,半衰期为5730年。
第六章同位素地球化学——稳定同位素第一节基本概念一、同位素的定义核素:是由一定数量的质子(P)和中子(N)构成的原子核。
核素具有质量、电荷、能量、放射性和丰度5中主要性质。
元素:具有相同质子数和中子数的核素.同位素:原子核内质子数相同而中子数不同的一类原子叫做同位素(isotope),他们处在周期表上的同一位置二、同位素的分类– 放射性同位素(radioactive isotope):原子核是不稳定的,它们能够白发地衰变成其他的同位素。
最终衰变为稳定的放射性成因同位素。
目前已知的放射性同位素达1200种左右,由于大部分放射性同位素的半衰期较短,目前已知自然界中存在的天然放射性同位素只有60种左右。
放射性同位素例子:238U→234Th+4He(α)+Q→206Pb;235U→207Pb;232Th→208Pb– 稳定同位素(stable isotope):原子核是稳定的,迄今还未发现它们能够自发衰变形成其他的同位素。
自然界中共有1700余种同位素,其中稳定同位素有260余种。
z轻稳定同位素,又称天然的稳定同位素,是核合成以来就保持稳定。
其特点是①原子量小,同—元素的各同位素间的相对质量差异较大;②轻稳定同位素变化主要原因是同位素分馏作用所造成的,其反应是可逆的。
如氢同位素(1H和2H)、氧同位素(16O和18O)、碳同位素(12C和13C)等。
z重稳定同位素,又称放射成因同位素(radiogenic isotope):稳定同位素中部分是由放射性同位素通过衰变后形成的稳定产物。
其特点是①原子量大,同—元素的各同位素间的相对质量差异小(0.7%~1.2%)环境的物理和化学条件的变化通常不导致重稳定同位素组成改变;②重稳定同位素变化主要原因是放射性同位素衰败引起,这种变化是单向的不可逆的。
如87Sr是由放射性同位素87Rb衰变而来的;三、同位素的丰度和原子量1.同位素丰度(isotope abundance) :可分为绝对丰度和相对丰度绝对丰度是指某一同位素在所有各种稳定同位素总量中的相对份额,常以该同位素与1H(取1H=1012)或28Si(取28Si=106)的比值表示。
第四节稳定碳同位素同位素:指元素周期表中原子序数相同,原子量不同的元素。
稳定同位素:指原子核的结构不会自发的发生改变的同位素。
稳定同位素有两个最显著的属性:1.稳定性:即经过复杂的化学反应之后,原子核结构不发生变化。
2.分馏作用:指同位素在两种同位素比值不同的物质之间进行分配。
一、稳定同位素分馏机理分馏作用是稳定同位素的属性之一,碳稳定同位素的分馏机理有:1.同位素的交换反应:是化学物质间,不同相或单个分子发生的同位素重新分配。
12CO2+13CH4=13CO2+12CH413CO2+H 12CO3-=12CO2+H13CO3-2.光合作用的动力效应:植物在光合作用过程中,富集12C,而使13C 进一步减小。
3.热力和化学反应的动力效应:-C-C-键的稳定性顺序:-13C-13C>-13C-12C->12C-12C-。
在低温条件下,形成的烃类,富集12C;在高温条件下形成的烃类,富集13C。
4.同位素的物理化学效应:蒸发:气相富集轻同位素12C,夜相富集13C;扩散:先扩散12C,残余13C。
二、稳定同位素在自然界的分布、比值符号和标准同位素比值的测量和对比单位一般是用千分数(‰)表示。
式中:Rs :为样品的同位素比值; Rr:为标准的稳定同位素的比值。
各国用各自的标准计算Rr ,再换算成PDB标准。
标准之间的换算公式:式中:δ13CB:为求取对B标准的δ值;δ13CA:为测得对A标准的δ值;RAr、RBr:为A、B标准的13C/12C比值。
三、油气中碳同位素的组成特征1、原油δ13C一般为-22‰~-33‰,平均值为-25‰~-26‰。
①海相原油δ13C值较高,为-27‰~-22‰;陆相原油δ13C值偏低,为-29‰~-33‰。
②随组分分子量的增大,急剧增大烷烃<芳烃<胶质<沥青质,烷烃<环烷烃,正构烷烃<异构烷烃,芳烃随环数增加δ13C值增大,可溶沥青<干酪根。
稳定同位素什么是稳定同位素?稳定同位素是指其中不具有放射活性的同位素。
同位素是指元素的核内具有相同质子数(即原子序数Z)但质子数不同的原子。
例如,氢的三种同位素分别为氢-1(1H)、氢-2(2H,也称为重氢或氘)、氢-3(3H,也称为氚)。
其中氢-1是稳定同位素,而氢-2和氢-3是放射性同位素。
相比于放射性同位素,稳定同位素在自然界中存在的丰度更加稳定。
而稳定同位素具有多种用途,在环境科学、地质学、生物学、化学等领域都有广泛的应用。
稳定同位素的应用领域环境科学稳定同位素的使用在环境科学领域中非常重要。
通过对水体、大气、土壤等环境中稳定同位素的测量,可以追踪物质的来源、运移和转化过程,从而获得对环境系统的理解。
例如,氢、氧、碳、氮、硫等元素的稳定同位素分析被广泛应用于水文地质、地下水、河流和湖泊水质研究、排污源追踪、有机物来源和循环研究等。
地质学稳定同位素对于地质学也具有重要意义。
地质学家通过对稳定同位素的测量和分析,可以了解地球形成和演化过程中的各种活动,包括岩石和矿物的成因、地壳物质的循环、古气候和古环境的重建等。
例如,氧同位素分析被广泛应用于古气候研究,碳同位素分析用于古环境研究,硫同位素分析用于岩石和矿石成因研究等。
生物学稳定同位素在生物学领域中也有广泛的应用。
通过对食物链中不同生物体稳定同位素的测量,可以了解食物链结构、物种间的营养关系和能量流动。
稳定同位素还可以用于动物迁徙和栖息地选择的研究,通过对动物体内稳定同位素含量的分析,可以确定动物的迁徙路线和栖息地的选择。
此外,稳定同位素还可用于植物光合作用研究、动物种群演化和人类营养学研究等。
化学稳定同位素在化学领域中的应用也是非常广泛的。
稳定同位素标记技术可用于反应机理研究、溯源分析、质谱仪校准和测定样品的身份等。
通过利用稳定同位素进行标记的化合物,可以追踪化学反应的发生位置、路径和速率,研究化学反应过程中的键断裂、共振、异构体生成等机理。
稳定同位素的概念、原理及优缺点概念稳定性同位素是天然存在于⽣物体内的不具有放射性的⼀类同位素,其原⼦核结构是稳定的,不会⾃发地放出射线⽽使核结构发⽣改变。
20世纪70年代初被成功引⼊⽣物学的多个研究领域,如光合作⽤途径的研究、光能利⽤率、植物⽔分利⽤率、物质代谢和⽣物量变化等[23-26]。
迄今发现的稳定同位素有274种,但得到产业化⽣产并已⼴泛应⽤的主要为氘-2(2H)、碳-13(13C)、氮-15(15N)、氧- 18(18O)、氖-22(22Ne)、硼-10(10B)等少数⼏种产品。
原理稳定同位素⽰踪技术主要是利⽤稳定同位素及其化合物的特性来展开。
在⾃然界中,稳定同位素及其化合物与相应的普通元素及其化合物之间的化学性质和⽣物性质是相同的,只是具有不同的核物理性质,可以被区别检测,因此,可以⽤稳定同位素作为⽰踪原⼦,合成标记化合物(如标记氨基酸、标记药物、标记蛋⽩质等)来代替相应的⾮标记化合物。
利⽤标记与⾮标记化合物的不同特性,通过质谱、核磁共振等分析仪器来测定稳定同位素反应前后的位置及数量变化,从⽽阐明反应的机制和途径。
优势与缺点稳定同位素和放射性同位素均可⽤来⽰踪,但在实际应⽤中,稳定同位素具有放射性同位素⽆法⽐拟的优越性[32-34]:(1)安全、⽆辐射,稳定同位素对动植物不会造成伤害,在使⽤、运输和储存的过程中⽐较⽅便;(2)半衰期长,放射性同位素因其半衰期太短⽽没有实⽤性,限制了其应⽤,⽽稳定同位素的半衰期均⼤于1×1015年,因⽽不受研究时间的限制;(3)可同时测定,放射性同位素⼀次只能测定⼀种同位素,⽽稳定同位素允许对不同质量数进⾏同时测定,因此可以对同⼀元素的不同同位素或不同元素的同位素进⾏同时测定,从⽽提⾼实验效率;(4)物理性质稳定,稳定同位素的信号值不会随时间⽽衰减。
然⽽,稳定同位素的测定对仪器设备要求⽐较⾼,尤其是同时标记多种元素时,则需要超⾼分辨率的质谱进⾏测定,必要时还需要进⾏衍⽣化。
第一章石油天然气油田水的基本特征1.9 油气中的稳定同位素同位素:在化学元素周期表上占同一位置,具相同质子数(Z)和不同中子数(N)的元素的原子,称为该元素的同位素。
稳定同位素:原子核结构不会自发地改变的同位素。
放射性同位素:即不稳定同位素,系指那些能自发进行蜕变,形成质子数不同的新原子的同位素。
质子中子电子6个质子,7个中子6个质子,6个中子碳稳定同位素中质子、中子和电子构型示意图石油和天然气中主要元素的同位素特征(据张厚福等,1999)质子数元素名称元素符号中子数原子量相对丰度,原子百分率1 氢H 0 1 99.98441 2 0.01562 3 -------2 氦He 13 1.3×10-42 4 99.99996 碳 C 6 12 98.8927 13 1.1088 14 ------7 氮N 7 14 99.6358 15 0.3658 氧O 8 16 99.7599 17 0.037410 18 0.203916 硫S 16 32 95.117 33 0.7418 34 4.2 20 36 0.016一、油气中的碳同位素稳定同位素:12C、13C12C相对丰度为98.892%,13C相对丰度为1.108% 放射性同位素:14C ,半衰期5568年,用于考古有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)1.碳稳定同位素的表示方法:标准:美国南卡罗莱纳州白垩系箭石的碳同位素,简称PDB 标准。
其中 13C/12C =1123.7×10-5001000)/()/()/(12131213121313×标准标准样品C C C C C C C -=δ2.油气中的碳稳定同位素的特征(1)石油的δ13C一般为-22‰~-33‰,海相石油高于陆相石油。
一般陆相石油δ13C<-29‰,海相石油δ13C> -27‰(2)石油中不同组分的碳稳定同位素组成有差异。
第四节稳定碳同位素
同位素:指元素周期表中原子序数相同,原子量不同的元素。
稳定同位素:指原子核的结构不会自发的发生改变的同位素。
稳定同位素有两个最显著的属性:1.稳定性:即经过复杂的化学反应之后,原子核结构不发生变化。
2.分馏作用:指同位素在两种同位素比值不同的物质之间进行分配。
一、稳定同位素分馏机理
分馏作用是稳定同位素的属性之一,碳稳定同位素的分馏机理有:
1.同位素的交换反应:是化学物质间,不同相或单个分子发生的同位素重新分配。
12CO
+13CH4=13CO2+12CH4
2
13CO
+H12CO3-=12CO2+H13CO3-
2
2.光合作用的动力效应:植物在光合作用过程中,富集12C,而使13C 进一步减小。
3.热力和化学反应的动力效应:
-C-C-键的稳定性顺序:-13C-13C>-13C-12C->12C-12C-。
在低温条件下,形成的烃类,富集12C;在高温条件下形成的烃类,富集13C。
4.同位素的物理化学效应:
蒸发:气相富集轻同位素12C,夜相富集13C;扩散:先扩散12C,残余13C。
二、稳定同位素在自然界的分布、比值符号和标准
同位素比值的测量和对比单位一般是用千分数(‰)表示。
式中:Rs :为样品的同位素比值;Rr:为标准的稳定同位素的比值。
各国用各自的标准计算Rr ,再换算成PDB标准。
标准之间的换算公式:
式中:δ13CB:为求取对B标准的δ值;
δ13CA:为测得对A标准的δ值;
RAr、RBr:为A、B标准的13C/12C比值。
三、油气中碳同位素的组成特征
1、原油
δ13C一般为-22‰~-33‰,平均值为-25‰~-26‰。
①海相原油δ13C值较高,为-27‰~-22‰;陆相原油δ13C值偏低,为-29‰~-33‰。
②随组分分子量的增大,急剧增大烷烃<芳烃<胶质<沥青质,烷烃<环烷烃,正构烷烃<异构烷烃,芳烃随环数增加δ13C值增大,可溶沥青<干酪根。
2、天然气
δ13C随天然气成熟度的增大而增大,
生物成因气: ≤-60‰~-95‰低
热解成因气: -50‰~-20‰高
以上两种气的混合气: -50‰~-60‰
天然气成份中:δ13C1<δ13C2<δ13C3<δ13C4,分子量增加,增大。
四、油气中碳同位素和氢同位素之间的关系石油的δD与δ13C值没有明显的相关关系。
天然气的δD与δ13C存在不很明显的关系。