2013年全国高校自主招生数学模拟试卷七
- 格式:doc
- 大小:271.50 KB
- 文档页数:7
2013年全国高校自主招生数学模拟试卷一 参考答案一、选择题(本题满分36分,每小题6分)1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( B ) A.71 B. 71-C.21 D. 21-解:如图,在侧面PAB 内,作AM ⊥PB ,垂足为M 。
连结CM 、AC ,则∠AMC 为二面角A −PB −C 的平面角。
不妨设AB =2,则22==AC PA ,斜高为7,故2272⋅=⨯AM ,由此得27==AM CM 。
在△AMC 中,由余弦定理得712cos 222-=⋅⋅-+=∠CM AM AC CM AM AMC 。
2. 设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( A)A. ]31,31[-B. ]21,21[-C. ]31,41[- D. [−3,3] 解:令a x 32=,则有31||≤a ,排除B 、D 。
由对称性排除C ,从而只有A 正确。
一般地,对k ∈R ,令ka x 21=,则原不等式为2|||34|||23|1|||a k a k a ≥-⋅+-⋅,由此易知原不等式等价于|34|23|1|||-+-≤k k a ,对任意的k ∈R 成立。
由于⎪⎪⎪⎩⎪⎪⎪⎨⎧<-<≤-≥-=-+-125334121134325|34|23|1|k k k k k k k k ,所以31|}34|23|1{|min R =-+-∈k k k ,从而上述不等式等价于31||≤a 。
3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。
甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。
则使不等式a −2b +10>0成立的事件发生的概率等于( D ) A.8152 B.8159 C.8160 D.8161 解:甲、乙二人每人摸出一个小球都有9种不同的结果,故基本事件总数为92=81个。
2013年全国高校自主招生数学模拟试卷九一、选择题(36分,每小题6分)1.设全集是实数,若A={x |x -2≤0},B={x |10x 2-2=10x },则A ∩∁R B 是( )(A ){2} (B ){-1} (C ){x |x ≤2} (D ) ∅ 2.设sin α>0,cos α<0,且sin α3>cos α3,则α3的取值范围是( ) (A )(2k π+π6,2k π+π3), k ∈Z (B )( 2k π3+ π6,2k π3+π3),k ∈ Z(C )(2k π+5π6,2k π+π),k ∈ Z (D )(2k π+π4,2k π+π3)∪(2k π+5π6,2k π+π),k ∈ Z 3.已知点A 为双曲线x 2-y 2=1的左顶点,点B 和点C 在双曲线的右分支上,△ABC 是等边三角形,则△ABC 的面积是( )(A ) 33 (B ) 332 (C )3 3 (D )6 3 4.给定正数p ,q ,a ,b ,c ,其中p ≠q ,若p ,a ,q 是等比数列,p ,b ,c ,q 是等差数列,则一元二次方程bx 2-2ax +c=0( )(A )无实根 (B )有两个相等实根 (C )有两个同号相异实根 (D )有两个异号实根5.平面上整点(纵、横坐标都是整数的点)到直线y=53x +45的距离中的最小值是( ) (A ) 34170 (B ) 3485 (C ) 120 (D ) 130 6.设ω=cos π5+i sin π5,则以ω,ω3,ω7,ω9为根的方程是( ) (A )x 4+x 3+x 2+x +1=0 (B ) x 4-x 3+x 2-x +1=0 (C ) x 4-x 3-x 2+x +1=0 (D ) x 4+x 3+x 2-x -1=0 二.填空题(本题满分54分,每小题9分)1.arcsin(sin2000︒)=__________.2.设a n 是(3-x )n的展开式中x 项的系数(n=2,3,4,…),则lim n →∞(32a 2+33a 3+ (3)a n ))=________.3.等比数列a +log 23,a +log 43,a +log 83的公比是____________.4.在椭圆x 2a 2+y 2b 2=1 (a >b >0)中,记左焦点为F ,右顶点为A ,短轴上方的端点为B .若该椭圆的离心率是5-12,则∠ABF=_________.5.一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积是________.6.如果:(1)a ,b ,c ,d 都属于{1,2,3,4};(2)a ≠b ,b ≠c ,c ≠d ,d ≠a ;(3)a 是a ,b ,c ,d 中的最小值,那么,可以组成的不同的四位数____abcd 的个数是_________ 三、解答题(60分,每小题20分)1.设S n =1+2+3+…+n ,n ∈N *,求f (n )=S n(n +32)S n +1的最大值.2.若函数f (x )=-12x 2+132在区间[a ,b ]上的最小值为2a ,最大值为2b ,求[a ,b ].3.已知C 0:x 2+y 2=1和C 1:x 2a 2+y 2a 2=1 (a >b >0).试问:当且仅当a ,b 满足什么条件时,对C 1上任意一点P ,均存在以P 为顶点,与C 0外切,与C 1内接的平行四边形?并证明你的结论.2013年全国高校自主招生数学模拟试卷九参考答案一.选择题(本题满分36分,每小题6分)1.设全集是实数,若A={x |x -2≤0},B={x |10x 2-2=10x },则A ∩∁R B 是( )(A ){2} (B ){-1} (C ){x |x ≤2} (D ) ∅ 解:A={2},B={2,-1},故选D .2.设sin α>0,cos α<0,且sin α3>cos α3,则α3的取值范围是( ) (A )(2k π+π6,2k π+π3), k ∈Z (B )( 2k π3+ π6,2k π3+π3),k ∈Z(C )(2k π+5π6,2k π+π),k ∈ Z (D )(2k π+π4,2k π+π3)∪(2k π+5π6,2k π+π),k ∈Z 解:满足sin α>0,cos α<0的α的范围是(2k π+π2,2k π+π),于是α3的取值范围是(2kπ3+π6,2kπ3+π3),满足sin α3>cos α3的α3的取值范围为(2k π+π4,2k π+5π4).故所求范围是(2k π+π4,2k π+π3)∪(2k π+5π6,2k π+π),k ∈Z .选D .3.已知点A 为双曲线x 2-y 2=1的左顶点,点B 和点C 在双曲线的右分支上,△ABC 是等边三角形,则△ABC 的面积是( )(A ) 33 (B ) 332 (C )3 3(D )6 3解:A (-1,0),AB 方程:y=33(x +1),代入双曲线方程,解得B (2,3),∴ S=33.选C .4.给定正数p ,q ,a ,b ,c ,其中p ≠q ,若p ,a ,q 是等比数列,p ,b ,c ,q 是等差数列,则一元二次方程bx 2-2ax +c=0( )(A )无实根 (B )有两个相等实根 (C )有两个同号相异实根 (D )有两个异号实根解:a 2=pq ,b +c=p +q .b=2p +q 3,c=p +2q3;14△=a 2-bc=pq -19(2p +q )(p +2q )=-29(p -q )2<0.选A .5.平面上整点(纵、横坐标都是整数的点)到直线y=53x +45的距离中的最小值是( ) (A ) 34170 (B ) 3485 (C ) 120 (D ) 130 解:直线即25x -15y +12=0.平面上点(x ,y )到直线的距离=|25x -15y +12|534=|5(5x -3y +2)+2|534.∵5x -3y +2为整数,故|5(5x -3y +2)+2|≥2.且当x=y=-1时即可取到2.选B . 6.设ω=cos π5+i sin π5,则以ω,ω3,ω7,ω9为根的方程是( )(A )x 4+x 3+x 2+x +1=0 (B ) x 4-x 3+x 2-x +1=0 (C ) x 4-x 3-x 2+x +1=0 (D ) x 4+x 3+x 2-x -1=0解:ω5+1=0,故ω,ω3,ω7,ω9 都是方程x 5+1=0的根.x 5+1=(x +1)(x 4-x 3+x 2-x +1)=0.选B . 二.填空题(本题满分54分,每小题9分)1.arcsin(sin2000︒)=__________.解:2000°=180°×12-160°.故填-20°或-π9.2.设a n 是(3-x )n的展开式中x 项的系数(n=2,3,4,…),则lim n →∞(32a 2+33a 3+ (3)a n ))=________.解:a n =3n -2C 2n .∴3k a k =2·323k -2n (n -1)=18n (n -1),故填18.3.等比数列a +log 23,a +log 43,a +log 83的公比是____________. 解:q=a +log 43a +log 23=a +log 83a +log 43=(a +log 43)-(a +log 83)(a +log 23)-(a +log 43)=log 43-log 83log 23-log 43=13.填13.4.在椭圆x 2a 2+y 2b 2=1 (a >b >0)中,记左焦点为F ,右顶点为A ,短轴上方的端点为B .若该椭圆的离心率是5-12,则∠ABF=_________.解:c=5-12a ,∴|AF |=5+12a .|BF |=a ,|AB |2=|AO |2+|OB |2=5+32a 2. 故有|AF |2=|AB |2+|BF |2.即∠ABF=90°.填90°. 或由b 2=a 2-c 2=5-12a 2=ac ,得解.5.一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积是________.解:取球心O 与任一棱的距离即为所求.如图,AE=BE=32a ,G ADBEOHAG=63a ,AO=64a ,BG=33a ,AB ∶AO=BG ∶OH . OH=AO ·BG AB =24a .V=43πr 3=224πa 3.填224πa 3.. 6.如果:(1)a ,b ,c ,d 都属于{1,2,3,4}; (2)a ≠b ,b ≠c ,c ≠d ,d ≠a ;(3)a 是a ,b ,c ,d 中的最小值,那么,可以组成的不同的四位数____abcd 的个数是_________解:a 、c 可以相等,b 、d 也可以相等. ⑴ 当a 、c 相等,b 、d 也相等时,有C 24=6种; ⑵ 当a 、c 相等,b 、d 不相等时,有A 23+A 22=8种; ⑶ 当a 、c 不相等,b 、d 相等时,有C 13C 12+C 12=8种;⑷ 当a 、c 不相等,b 、d 也不相等时,有A 33=6种;共28种.填28.三、解答题(本题满分60分,每小题20分)1.设S n =1+2+3+…+n ,n ∈N *,求f (n )=S n(n +32)S n +1的最大值.解:S n =12n (n +1),f (n )= n (n +1)(n +32)(n +1)(n +2) = 1n +64n +34≤150.(n=8时取得最大值).2.若函数f (x )=-12x 2+132在区间[a ,b ]上的最小值为2a ,最大值为2b ,求[a ,b ]. 解:⑴ 若a ≤b <0,则最大值为f (b )=-12b 2+132=2b .最小值为f (a )=-12a 2+132=2a .即a ,b 是方程x 2+4x -13=0的两个根,而此方程两根异号.故不可能.⑵ 若a <0<b ,当x=0时,f (x )取最大值,故2b=132,得b=134.当x=a 或x=b 时f (x )取最小值,①f (a )=-12a 2+132=2a 时.a=-2±17,但a <0,故取a=-2-17.由于|a |>|b |,从而f (a )是最小值.②f (b )=-12b 2+132=3932=2a >0.与a <0矛盾.故舍.⑶ 0≤a <b .此时,最大值为f (a )=2b ,最小值为f (b )=2a .∴ -12b 2+132=2a .-12a 2+132=2b .相减得a +b=4.解得a=1,b=3.∴ [a ,b ]=[1,3]或[-2-17,134].3.已知C 0:x 2+y 2=1和C 1:x 2a 2+y 2a 2=1 (a >b >0).试问:当且仅当a ,b 满足什么条件时,对C 1上任意一点P ,均存在以P 为顶点,与C 0外切,与C 1内接的平行四边形?并证明你的结论.解:设PQRS 是与C 0外切且与C 1内接的平行四边形.易知圆的外切平行四边形是菱形.即PQRS 是菱形.于是OP ⊥OQ .设P (r 1cos θ,r 1sin θ),Q (r 2cos(θ+90°),r 2sin(θ+90°),则在直角三角形POQ 中有r 12+r 22=r 12r 22(利用△POQ 的面积).即1r 21+1r 22=1.但r 21cos 2θa 2+r 22sin 2θb 2=1,即1r 21=cos 2θa 2+sin 2θb 2,同理,1r 22=sin 2θa 2+cos 2θb 2,相加得1a 2+1b 2=1.反之,若1a 2+1b 2=1成立,则对于椭圆上任一点P (r 1cos θ,r 1sin θ),取椭圆上点Q (r 2cos(θ+90°),r 2sin(θ+90°),则1r 21=cos 2θa 2+sin 2θb 2,,1r 22=sin 2θa 2+cos 2θb 2,,于是1r 21+1r 22=1a 2+1b 2=1,此时PQ 与C 0相切.即存在满足条件的平行四边形.故证.。
感谢赏析2013 年全国高校自主招生数学模拟试卷命题人:南昌二中高三( 01)班 张阳阳 一、选择题 (此题满分 36 分,每题 6 分 )|→ →| | → |AC 1.已知△ ABC ,若对随意 t ∈ R , BA - tBC ≥ ,则△ ABC 必定为A .锐角三角形B .钝角三角形C .直角三角形D .答案不确立2.设 log x (2x 2+ x - 1)> log x 2- 1,则 x 的取值范围为A . 1<x < 1B . x >1且 x ≠ 1C . x > 1D . 0< x < 12 23.已知会合 A = { x|5x - a ≤0} , B = { x|6x - b > 0} , a , b ∈N ,且 A ∩B ∩ N = {2 , 3, 4} ,则整数对 (a , b)的个数为A .20B . 25C . 30D .42 4.在直三棱柱πA 1B 1C 1- ABC 中,∠ BAC = , AB = AC = AA 1= 1.已知 G 与 E 分别为 A 1B 12和 CC 1 的中点, D 与 F 分别为线段 AC 和 AB 上的动点 (不包含端点 ).若 GD ⊥ EF ,则线段 DF 的长度的取值范围为 A .[ 1,1)B .[1,2)C .[1, 2)D .[1, 2)5555.设 f(x)= x 3+ log 2(x + x2+ 1),则对随意实数 a , b , a +b ≥ 0 是 f(a)+ f(b)≥0 的A. 充分必需条件B. 充分而不用要条件C. 必需而不充分条件D. 既不充分也不用要条件6.数码 a 1, a 2 , a 3, , a 2006 中有奇数个 9 的 2007 位十进制数 -2a1a2 a2006的个数为12006+8200612006-820062006 +820062006- 82006A .2(10)B .2(10)C .10D .10二、填空题 (此题满分 54 分,每题 9 分 )7.44的值域是 .设 f( x)= sin x - sinxcosx + cos x ,则 f(x)8. 若对全部 θ∈ R ,复数 z = (a + cos θ)+(2a -sin θ)i 的模不超出 2,则实数 a 的取值范围 为 .x2 y29.已知椭圆 16+ 4 = 1 的左右焦点分别为 F 1 与 F 2,点 P 在直线 l :x - 3y + 8+2 3=0 上.当∠ F 1PF 2 取最大值时,比|PF1|的值为. |PF2|110.底面半径为 1cm 的圆柱形容器里放有四个半径为 2cm 的实心铁球,四个球两两相切,此中基层两球与容器底面相切 . 现往容器里灌水,使水面恰巧淹没所有铁球,则需要注水cm 3.11.方程 (x 2006+ 1)(1+ x 2+ x 4+ + x 2004)= 2006x 2005 的实数解的个数为 .12. 袋内有 8 个白球和 2 个红球,每次从中随机拿出一个球,而后放回1 个白球,则第 4 次恰巧取完所有红球的概率为.三、解答题(此题满分 60 分,每题 20 分)13. 给定整数 n ≥ 2,设 M 0(x 0, y 0)是抛物线 y 2= nx -1 与直线 y = x 的一个交点 . 试证明对随意正整数 m ,必存在整数 k ≥ 2,使 (xm0, ym)为抛物线 y 2= kx -1 与直线 y =x 的一个交点.14.将 2006 表示成 5 个正整数 x1, x2, x3, x4, x5之和.记 S=Σx i x j.问:1≤i<j ≤5⑴当 x1, x2, x3, x4, x5取何值时, S 取到最大值;⑵ 进一步地,对随意1≤ i ,j ≤ 5 有|xi - xj |≤ 2,当 x1, x2, x3, x4, x5取何值时, S 取到最小值 .说明原因.15.设f(x) =x2+a. 记 f1(x)= f(x), f n(x)= f( f n-1(x)), n= 1, 2, 3,,1M= { a∈R |对所有正整数n,|fn(0) |≤2} .证明, M= [- 2,4].2013 年全国高校自主招生数学模拟试卷四参照答案一、选择题 (此题满分 36 分,每题 6 分 )答 C .→ →→解:令∠ ABC = α,过 A 作 AD ⊥BC 于 D ,由 |BA - tBC |≥ |AC |,推出→ 2 →→ → 2 → 2 → → 2 BA · BC |BA | -2tBA · BC + t |BC | ≥ |AC | ,令 t = → 2 ,代入上式,得| BC |→2→ 22→ 22→ 2 → 22α≥ →2|BA | -2|BA | cos α+ |BA | c os α≥ |AC | ,即 |BA | sin |AC | ,也即 → |sinα≥ → → →π .|BA |AC |.进而有 |AD |≥ |AC |.由此可得∠ACB = 2答 B .解:因为x >0, x ≠1 ,解得 x > 1且 x ≠ 1.由 log x (2x 2+ x - 1)> log x 2- 1, 2x2+ x - 1>0 2log x (2x 3+ x 2- x)> log x 20< x < 1,或 x > 1, .解得 0< x < 1 或 x > 1.2x3 + x2- x < 22x3+ x2- x > 2 所以 x 的取值范围为 x > 1且 x ≠ 1.2 答 C .解: 5x - a ≤ 0 x ≤ a ; 6x -b > 0 x > b.要使 A ∩ B ∩ N = {2 ,3, 4} ,则5 6b1≤< 2,6 ,即 6≤b<12, 所以数对 (a , b)共有 C 1C 1= 30 个.a20≤a< 25.6 54≤ <55答 A .解:成立直角坐标系,以A 为坐标原点, AB 为 x 轴, AC 为 y 轴, AA 1 为 z 轴,则 F(t 1,1 1→ 1 ),0,0)(0< t 1 < 1),E(0,1,),G(,0,1),D (0,t 2,0)(0< t 2< 1).所以 EF =(t 1,- 1,-222→1 1 →GD = (- ,t 2,-1).因为 GD ⊥ EF ,所以 t 1+ 2t 2= 1,由此推出0< t 2< .又DF = (t 1,- t 2,2 20),→2 2 22 2 1 1 →|DF |=t 1+ t 2= 5t 2- 4t2+ 1= 5(t2- 5) + 5,进而有 5≤|DF |<1.答 A .解:明显 f(x)= x 3+ log 2(x + x2+ 1)为奇函数,且单一递加.于是若 a +b ≥ 0,则 a ≥- b ,有 f(a)≥ f(- b),即 f(a)≥- f(b),进而有 f(a)+ f(b)≥0.反之,若 f(a)+ f(b)≥ 0,则 f(a)≥- f(b)= f(- b), 推出 a ≥- b ,即 a + b ≥ 0.感谢赏析答 B .解:出现奇数个 9 的十进制数个数有 120053200320059.又因为A = C 20069 +C 20069+ + C 2006 2006 2006- k 2006 2006k 2006- k2006 C k 以及 (9- 1) = Σ C k(9+ 1) = Σ 9 (-1) 9k = 0 2006k = 0 2006进而得A = C 2006192005+ C 2006392003+ + C 200520069= 12(102006- 82006).9填[0,8].解: f(x)= sin 4x - sinxcosx + cos 4x = 1-1sin2x -1sin 22x .令 t =sin2x ,则2 21 12 9 11 2min g(t) =g(1) = 0,maxg(t)= g(-f(x)= g(t)= 1-t - t = -(t + ) .所以228 22 - 1≤t ≤1 - 1≤t ≤11 9)= .2 895 , 5故, f(x)∈ [0, 8] .填 [- 5 5 ] .解:依题意,得 |z|≤2(a + cos θ)2+ (2a - sin θ)2≤ 4 2a(cos θ- 2sin θ)≤ 3-5a 2.25-2 5asin(θ-φ)≤ 3- 5a (φ=arcsin 5 )对随意实数 θ成立.2 5 5 52 5|a|≤ 3- 5a|a|≤ 5 ,故 a 的取值范围为[-5, 5 ] .填 3-1..解:由平面几何知,要使∠F 1PF 2 最大,则过 F 1 ,F 2, P 三点的圆必然和直线 l 相切于点 P .直线 l 交 x 轴于 A(- 8- 2 3, 0),则∠ APF 1=∠ AF 2P ,即 ?APF 1∽ ?AF 2P ,即|PF1|= |AP|⑴|PF2| |AF2|又由圆幂定理,|AP|2= |AF 1 |·|AF 2|⑵而 F 1(- 2 3,0), F 2(2 3, 0), A(- 8- 2 3, 0),进而有 |AF 1|= 8, |AF 2|= 8+ 4 3. 代入⑴,⑵得,|PF1|=|AF1|= 8 = 4-2 3= 3-1.|PF2||AF2|8+ 4 312填 (3+ 2 )π.解:设四个实心铁球的球心为O 1,O 2, O 3, O 4,此中 O 1,O 2 为基层两球的球心, A ,B ,C ,D 分别为四个球心在底面的射影.则ABCD 是一个边长为2的正方形。
2013年全国高校自主招生数学模拟试卷五一.选择题(本题满分36分,每小题6分)1.设锐角使关于x 的方程x 2+4x cos+cos=0有重根,则的弧度数为( )A .6B .12或512 C .6或512 D .122.已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ,则b 的取值范围是( )A .[-62,62] B .(-62,62) C .(-233,233] D .[-233,233] 3.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4]4.设点O 在ABC 的内部,且有→OA +2→OB +3→OC=→0,则ABC 的面积与AOC 的面积的比为( )A .2B .32C .3D .535.设三位数n=¯¯¯abc,若以a ,b ,c 为三条边长可以构成一个等腰(含等边)三角形,则这样的三位数n有( )A.45个B.81个C.165个D.216个6.顶点为P的圆锥的轴截面是等腰直角三角形,A是底面圆周上的点,B是底面圆内的点,O为底面圆圆心,AB⊥OB,垂足为B,OH⊥PB,垂足为H,且PA=4,C为PA的中点,则当三棱锥O-HPC的体积最大时,OB的长为( )A.53B.253C.63D.263二.填空题(本题满分54分,每小题9分)7.在平面直角坐标系xOy中,函数f(x)=a sin ax+cos ax(a>0)在一个最小正周期长的区间上的图像与函数g(x)=a2+1的图像所围成的封闭图形的面积是;8.设函数f:R→R,满足f(0)=1,且对任意x,y∈R,都有f(xy+1)=f(x)f(y)-f(y)-x+2,则f(x)=;9.如图,正方体ABCD-A1B1C1D1中,二面角A-BD1—A1的度数是;10.设p是给定的奇质数,正整数k使得k2-pk也是一个正整数,则B1A1B CD A C1D1k= ;11.已知数列a 0,a 1,a 2,…,a n ,…满足关系式(3-a n +1)(6+a n )=18,且a 0=3,则n∑i=01a i的值是 ;12.在平面直角坐标系xOy 中,给定两点M (-1,2)和N (1,4),点P 在x 轴上移动,当∠MPN 取最大值时,点P 的横坐标为 ; 三.解答题(本题满分60分,每小题20分)13.一项“过关游戏”规则规定:在第n 关要抛掷一颗骰子n 次,如果这n 次抛掷所出现的点数的和大于2n ,则算过关.问:⑴ 某人在这项游戏中最多能过几关? ⑵ 他连过前三关的概率是多少?14.在平面直角坐标系xOy 中,给定三点A (0,43),B (-1,0),C (1,0),点P到直线BC 的距离是该点到直线AB 、AC 距离的等比中项.⑴ 求点P 的轨迹方程;⑵ 若直线L 经过ABC 的内心(设为D ),且与P 点轨迹恰好有3个公共点,求L 的斜率k 的取值范围.15.已知,是方程4x 2-4tx -1=0(t ∈R )的两个不等实根,函数f (x )=2x -tx 2+1的定义域为[,].⑴ 求g (t )=max f (x )-min f (x );⑵ 证明:对于u i ∈(0,2)(i=1,2,3),若sin u 1+sin u 2+sin u 3=1,则1g (tan u 1)+1g (tan u 2)+1g (tan u 3)<364.2013年全国高校自主招生数学模拟试卷四参考答案一.选择题(本题满分36分,每小题6分)1.设锐角使关于x 的方程x 2+4x cos+cot =0有重根,则的弧度数为( )A .6B .12或512 C .6或512 D .12解:由方程有重根,故14=4cos 2-cot =0,∵ 0<<2,2sin2=1,=12或512.选B .2.已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ,则b 的取值范围是( )A .[-62,62] B .(-62,62) C .(-233,233] D .[-233,233]解:点(0,b )在椭圆内或椭圆上,2b 2≤3,b ∈[-62,62].选A .3.不等式log 2x -1+12log 12x 3+2>0的解集为A .[2,3)B .(2,3]C .[2,4)D .(2,4]解:令log 2x=t ≥1时,t -1>32t -2.t ∈[1,2),x ∈[2,4),选C .4.设点O 在ABC 的内部,且有→OA +2→OB +3→OC=→0,则ABC 的面积与AOC 的面积的比为( )A .2B .32C .3D .53解:如图,设AOC=S ,则OC 1D=3S ,OB 1D=OB 1C 1=3S ,AOB=OBD=1.5S .OBC=0.5S ,ABC=3S .选C .5.设三位数n=¯¯¯abc ,若以a ,b ,c 为三条边长可以构成一个等腰(含等边)三角形,则这样的三位数n 有( )A .45个B .81个C .165个D .216个解:⑴等边三角形共9个;⑵ 等腰但不等边三角形:取两个不同数码(设为a ,b ),有36种取法,以小数为底时总能构成等腰三角形,而以大数为底时,b <a <2b .a=9或8时,b=4,3,2,1,(8种);a=7,6时,b=3,2,1(6种);a=5,4时,b=2,1(4种);a=3,2时,b=1(2种),共有20种不能取的值.共有236-20=52种方法,而每取一组数,可有3种方法构成三位数,故共有523=156个三位数即可取156+9=165种数.选C .6.顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且PA=4,C为PA 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为S B 11OABC( )A .53B .253 C .63 D .263 解:AB ⊥OB ,PB ⊥AB ,AB ⊥面POB ,面PAB ⊥面POB .OH ⊥PB ,OH ⊥面PAB ,OH ⊥HC ,OH ⊥PC ,又,PC ⊥OC ,PC ⊥面OCH .PC 是三棱锥P -OCH 的高.PC=OC=2. 而OCH 的面积在OH=HC=2时取得最大值(斜边=2的直角三角形).当OH=2时,由PO=22,知∠OPB=30,OB=PO tan30=263.又解:连线如图,由C 为PA 中点,故V O -PBC =12V B -AOP ,而V O -PHC ∶V O -PBC =PH PB =PO 2PB2(PO 2=PH ·PB ).记PO=OA=22=R ,∠AOB=,则 V P —AOB =16R3sin cos =112R3sin2,V B -PCO =124R 3sin2.PO 2PB 2=R 2R 2+R 2cos 2=11+cos 2=23+cos2.V O -PHC =sin23+cos2112R 3.∴ 令y=sin23+cos2,y =2cos2(3+cos2)-(-2sin2)sin2(3+cos2)2=0,得cos2=-13,cos =33,∴ OB=263,选D .ABPOH C二.填空题(本题满分54分,每小题9分)7.在平面直角坐标系xOy 中,函数f (x )=a sin ax +cos ax (a >0)在一个最小正周期长的区间上的图像与函数g (x )= a 2+1的图像所围成的封闭图形的面积是 ;解:f (x )=a 2+1sin(ax +),周期=2a,取长为2a,宽为2a 2+1的矩形,由对称性知,面积之半即为所求.故填2aa 2+1.又解:∫1a 2+1[1-sin(ax +)]dx=a 2+1a ∫20(1-sin t )dt=2paa 2+1.8.设函数f :R →R ,满足f (0)=1,且对任意x ,y ∈R ,都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (x )= ;解:令x=y=0,得,f (1)=1-1-0+2,f (1)=2.令y=1,得f (x +1)=2f (x )-2-x +2,即f (x +1)=2f (x )-x .①又,f (yx +1)=f (y )f (x )-f (x )-y +2,令y=1代入,得f (x +1)=2f (x )-f (x )-1+2,即f (x +1)=f (x )+1.②比较①、②得,f (x )=x +1.9.如图,正方体ABCD -A 1B 1C 1D 1中,二面角A -BD 1—A 1的度数M NB 1A 1B C D AC 1D 1是 ;解:设AB=1,作A 1M ⊥BD 1,AN ⊥BD 1,则BN ·BD 1=AB2,BN=D 1M=NM=33.A 1M=AN=63.∴ AA 12=A 1M2+MN 2+NA 2-2A 1M ·NA cos ,12=23+23+13-223cos ,cos =12.=60.10.设p 是给定的奇质数,正整数k 使得k 2-pk 也是一个正整数,则k= ;解:设k 2-pk=n ,则(k -p2)2-n 2=p 24,(2k -p +2n )(2k -p -2n )=p 2,k=14(p +1)2.11.已知数列a 0,a 1,a 2,…,a n ,…满足关系式(3-a n +1)(6+a n )=18,且a 0=3,则n∑i=01a i的值是 ;解:1a n +1=2a n +13,令b n =1a n +13,得b 0=23,b n =2b n -1,b n =232n .即1a n=2n +1-13,n∑i=01a i =13(2n +2-n -3).12.在平面直角坐标系xOy 中,给定两点M (-1,2)和N (1,4),点P 在x 轴上移动,当∠MPN 取最大值时,点P 的横坐标为 ;解:当∠MPN 最大时,⊙MNP 与x 轴相切于点P (否则⊙MNP 与x 轴交于PQ ,则线段PQ 上的点P 使∠MP N 更大).于是,延长NM 交x 轴于K (-3,0),有KM ·KN=KP 2,KP=4.P (1,0),(-7,0),但(1,0)处⊙MNP 的半径小,从而点P 的横坐标=1. 三.解答题(本题满分60分,每小题20分)13.一项“过关游戏”规则规定:在第n 关要抛掷一颗骰子n 次,如果这n 次抛掷所出现的点数的和大于2n ,则算过关.问:⑴ 某人在这项游戏中最多能过几关? ⑵ 他连过前三关的概率是多少?解:⑴ 设他能过n 关,则第n 关掷n 次,至多得6n 点, 由6n >2n ,知,n ≤4.即最多能过4关.⑵ 要求他第一关时掷1次的点数>2,第二关时掷2次的点数和>4,第三关时掷3次的点数和>8.第一关过关的概率=46=23;MNPKOxy第二关过关的基本事件有62种,不能过关的基本事件有为不等式x+y ≤4的正整数解的个数,有C 24个 (亦可枚举计数:1+1,1+2,1+3,2+1,2+2,3+1)计6种,过关的概率=1-662=56;第三关的基本事件有63种,不能过关的基本事件为方程x +y +z ≤8的正整数解的总数,可连写8个1,从8个空档中选3个空档的方法为C 38=876321=56种,不能过关的概率=5663=727,能过关的概率=2027; ∴连过三关的概率=23562027=100243. 14.在平面直角坐标系xOy 中,给定三点A (0,43),B (-1,0),C (1,0),点P到直线BC 的距离是该点到直线AB 、AC 距离的等比中项.⑴ 求点P 的轨迹方程;⑵ 若直线L 经过ABC 的内心(设为D ),且与P 点轨迹恰好有3个公共点,求L 的斜率k 的取值范围.解:⑴ 设点P 的坐标为(x ,y ), AB 方程:x-1+3y4=1,4x -3y +4=0, ①BC 方程:y=0, ②D-111B CA yxOK PAC 方程:4x +3y -4=0, ③∴ 25|y |2=|(4x -3y +4)(4x +3y -4)|, 25y 2+16x 2-(3y -4)2=0,16x 2+16y 2+24y -16=0,2x 2+2y 2+3y -2=0. 或25y 2-16x 2+(3y -4)2=0,16x 2-34y 2+24y -16=0, 8x 2-17y 2+12y -8=0.∴ 所求轨迹为圆:2x 2+2y 2+3y -2=0, ④或双曲线:8x 2-17y 2+12y -8=0. ⑤ 但应去掉点(-1,0)与(1,0).⑵ABC 的内心D (0,12):经过D 的直线为x=0或y=kx +12. ⑥(a ) 直线x=0与圆④有两个交点,与双曲线⑤没有交点; (b ) k=0时,直线y=12与圆④切于点(0,12),与双曲线⑤交于(±582,12),即k=0满足要求.(c ) k=±12时,直线⑥与圆只有1个公共点,与双曲线⑤也至多有1个公共点,故舍去.(c ) k 0时,k 12时,直线⑥与圆有2个公共点,以⑥代入⑤得:(8-17k 2)x 2-5kx -254=0.当8-17k 2=0或(5k)2-25(8-17k 2)=0,即得k=±23417与k=±22.∴ 所求k 值的取值范围为{0,±23417,±22}. 15.已知,是方程4x 2-4tx -1=0(t ∈R )的两个不等实根,函数f (x )= 2x -t x 2+1的定义域为[,].⑴ 求g (t )=max f (x )-min f (x );⑵ 证明:对于u i ∈(0,2)(i=1,2,3),若sin u 1+sin u 2+sin u 3=1,则1g (tan u 1)+1g (tan u 2)+1g (tan u 3)<364. 解:⑴+=t ,=-14.故<0,>0.当x 1,x 2∈[,]时,∴ f (x )= 2(x 2+1)-2x (2x -t )(x 2+1)2=-2(x 2-xt )+2(x 2+1)2.而当x ∈[,]时,x 2-xt <0,于是f (x )>0,即f (x )在[,]上单调增. ∴ g (t )=2-t2+1-2-t2+1=(2-t )(2+1)-(2-t )(2+1)(2+1)(2+1)=(-)[t (+)-2+2]22+2+2+1=t2+1(t2+52)t2+2516=8t2+1(2t2+5)16t2+25⑵g(tan u)=8sec u(2sec2u+3)16sec2u+9=16+24cos2u16cos u+9cos3u≥16616+9cos2u,∴1g(tan u1)+1g(tan u2)+1g(tan u3)≤1166[163+9(cos2u1+cos2u2+cos2u3)]=1166[75-9(sin2u1+sin2u2+sin2u3)]而13(sin2u1+sin2u2+sin2u3)≥(sin u1+sin u2+sin u33)2,即9(sin2u1+sin2u2+sin2u3)≥3.∴1g(tan u1)+1g(tan u2)+1g(tan u3)≤1166(75-3)=364.由于等号不能同时成立,故得证.。
2013届高三数学全国高校自主招生模拟试卷(带答案)2013年全国高校自主招生数学模拟试卷四一、选择题(本题满分36分,每小题6分)1.已知△ABC,若对任意t∈R,→BA-t→BC≥→AC,则△ABC一定为A.锐角三角形B.钝角三角形C.直角三角形D.答案不确定2.设logx(2x2+x-1)>logx2-1,则x的取值范围为A.12<x<1B.x>12且x≠1C.x>1D.0<x<13.已知集合A={x|5x-a≤0},B={x|6x-b>0},a,b∈N,且A∩B∩N ={2,3,4},则整数对(a,b)的个数为A.20B.25C.30D.424.在直三棱柱A1B1C1-ABC中,∠BAC=π2,AB=AC=AA1=1.已知G与E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围为A.15,1)B.15,2)C.1,2)D.15,2)5.设f(x)=x3+log2(x+x2+1),则对任意实数a,b,a+b≥0是f(a)+f(b)≥0的A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件6.数码a1,a2,a3,…,a2006中有奇数个9的2007位十进制数-2a1a2…a2006的个数为A.12(102006+82006)B.12(102006-82006)C.102006+82006D.102006-82006二、填空题(本题满分54分,每小题9分)7.设f(x)=sin4x-sinxcosx+cos4x,则f(x)的值域是.8.若对一切θ∈R,复数z=(a+cosθ)+(2a-sinθ)i的模不超过2,则实数a的取值范围为.9.已知椭圆x216+y24=1的左右焦点分别为F1与F2,点P在直线l:x-3y+8+23=0上.当∠F1PF2取最大值时,比|PF1||PF2|的值为.10.底面半径为1cm的圆柱形容器里放有四个半径为12cm的实心铁球,四个球两两相切,其中底层两球与容器底面相切.现往容器里注水,使水面恰好浸没所有铁球,则需要注水cm3.11.方程(x2006+1)(1+x2+x4+…+x2004)=2006x2005的实数解的个数为.12.袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为.三、解答题(本题满分60分,每小题20分)13.给定整数n≥2,设M0(x0,y0)是抛物线y2=nx-1与直线y=x的一个交点.试证明对任意正整数m,必存在整数k≥2,使(x0m,y0m)为抛物线y2=kx-1与直线y=x的一个交点.14.将2006表示成5个正整数x1,x2,x3,x4,x5之和.记S=1≤i <j≤5Σxixj.问:⑴当x1,x2,x3,x4,x5取何值时,S取到最大值;⑵进一步地,对任意1≤i,j≤5有xi-xj≤2,当x1,x2,x3,x4,x5取何值时,S取到最小值.说明理由.15.设f(x)=x2+a.记f1(x)=f(x),fn(x)=f(fn-1(x)),n=1,2,3,…,M={a∈R|对所有正整数n,fn(0)≤2}.证明,M=-2,14].2013年全国高校自主招生数学模拟试卷四参考答案一、选择题(本题满分36分,每小题6分)答C.解:令∠ABC=α,过A作AD⊥BC于D,由→BA-t→BC≥→AC,推出→BA2-2t→BA•→BC+t2→BC2≥→AC2,令t=→BA•→BC→BC2,代入上式,得→BA2-2→BA2cos2α+→BA2cos2α≥→AC2,即→BA2sin2α≥→AC2,也即→BAsinα≥→AC.从而有→AD≥→AC.由此可得∠ACB=π2.答B.解:因为x>0,x≠12x2+x-1>0,解得x>12且x≠1.由logx(2x2+x -1)>logx2-1,+x2-x)><x<1,2x3+x2-x<2或x>1,2x3+x2-x>2.解得0<x<1或x>1.所以x的取值范围为x>12且x≠1.答C.解:5x-;6x-b>>b6.要使A∩B∩N={2,3,4},则1≤b6<2,4≤a5<5,即6≤b<12,20≤a<25.所以数对(a,b)共有C61C51=30个.答A.解:建立直角坐标系,以A为坐标原点,AB为x轴,AC为y轴,AA1为z轴,则F(t1,0,0)(0<t1<1),E(0,1,12),G(12,0,1),D(0,t2,0)(0<t2<1).所以→EF=(t1,-1,-12),→GD=(-12,t2,-1).因为GD⊥EF,所以t1+2t2=1,由此推出0<t2<12.又→DF=(t1,-t2,0),→DF=t12+t22=5t22-4t2+1=5(t2-25)2+15,从而有15≤→DF<1.答A.解:显然f(x)=x3+log2(x+x2+1)为奇函数,且单调递增.于是若a+b≥0,则a≥-b,有f(a)≥f(-b),即f(a)≥-f(b),从而有f(a)+f(b)≥0.反之,若f(a)+f(b)≥0,则f(a)≥-f(b)=f(-b),推出a≥-b,即a+b≥0.答B.解:出现奇数个9的十进制数个数有A=C2006192005+C2006392003+…+C200620059.又由于(9+1)2006=k=0Σ2006C2006k92006-k以及(9-1)2006=k=0Σ2006C2006k(-1)k92006-k从而得A=C2006192005+C2006392003+…+C200620059=12(102006-82006).填0,98].解:f(x)=sin4x-sinxcosx+cos4x=1-12sin2x-12sin22x.令t=sin2x,则f(x)=g(t)=1-12t-12t2=98-12(t+12)2.因此-1≤t≤1ming(t)=g(1)=0,-1≤t≤1maxg(t)=g(-12)=98.故,f(x)∈0,98].填-55,55].解:依题意,得+cosθ)2+(2a--2sinθ)≤3-5a2.-25asin(θ-φ)≤3-5a2(φ=arcsin55)对任意实数θ成立.-,故a的取值范围为-55,55].填3-1..解:由平面几何知,要使∠F1PF2最大,则过F1,F2,P三点的圆必定和直线l相切于点P.直线l交x轴于A(-8-23,0),则∠APF1=∠AF2P,即∆APF1∽∆AF2P,即|PF1||PF2|=|AP||AF2|⑴又由圆幂定理,|AP|2=|AF1|•|AF2|⑵而F1(-23,0),F2(23,0),A(-8-23,0),从而有|AF1|=8,|AF2|=8+43.代入⑴,⑵得,|PF1||PF2|=|AF1||AF2|=88+43=4-23=3-1.填(13+22)π.解:设四个实心铁球的球心为O1,O2,O3,O4,其中O1,O2为下层两球的球心,A,B,C,D分别为四个球心在底面的射影.则ABCD是一个边长为22的正方形。
2013年全国高校自主招生数学模拟试卷二一、填空题(64分)1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A .2.函数11)(2-+=x x x f 的值域为 . 3.设b a ,为正实数,2211≤+ba ,32)(4)(ab b a =-,则=b a log . 4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 . 5.现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为 .(用数字作答)6.在四面体ABCD 中,已知︒=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为 .7.直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为 .8.已知=n a C())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn,则数列}{n a 中整数项的个数为 . 二、解答题(56分)9.(16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足)21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值.10.(20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++nn n n n n t a t t a t a ∈n (N )*. (1)求数列}{n a 的通项公式;(2)若0>t ,试比较1+n a 与n a 的大小.11.(20分)作斜率为31的直线l 与椭圆C :143622=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方. (1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积.2013年全国高校自主招生数学模拟试卷二参考答案1.{3,0,2,6}-. 提示:显然,在A 的所有三元子集中,每个元素均出现了3次,所以15853)1()(34321=+++-=+++a a a a ,故54321=+++a a a a ,于是集合A 的四个元素分别为5-(-1)=6,5-3=2,5-5=0,5-8=-3,因此,集合}6,2,0,3{-=A .2.(,(1,)2-∞-+∞. 提示:设22,tan πθπθ<<-=x ,且4πθ≠,则)4sin(21cos sin 11tan cos 1)(πθθθθθ-=-=-=x f .设)4sin(2πθ-=u ,则12<≤-u ,且0≠u ,所以 ),1(]22,(1)(+∞--∞∈= u x f .3.-1. 提示:由2211≤+ba ,得ab b a 22≤+.又 23322)(8)(24)(44)(4)(ab ab ab ab ab b a ab b a =⋅⋅≥+=-+=+,即ab b a 22≥+. ①于是ab b a 22=+. ②再由不等式①中等号成立的条件,得1=ab .与②联立解得⎪⎩⎪⎨⎧+=-=,12,12b a 或⎪⎩⎪⎨⎧-=+=,12,12b a故1log -=b a .4.⎪⎭⎫⎝⎛45,4ππ. 提示:不等式)cos (sin 7sin cos 3355θθθθ-<-等价于θθθθ5353cos 71cos sin 71sin +>+.又5371)(x x x f +=是),(+∞-∞上的增函数,所以θθcos sin >,故 ∈+<<+k k k (45242ππθππZ ). 因为)2,0[πθ∈,所以θ的取值范围是⎪⎭⎫⎝⎛45,4ππ. 5.15000. 提示:由题设条件可知,满足条件的方案有两种情形:(1)有一个项目有3人参加,共有3600!5!51537=⋅-⋅C C 种方案; (2)有两个项目各有2人参加,共有11400!5!5)(21252527=⋅-⋅⋅C C C 种方案;所以满足题设要求的方案数为15000114003600=+.6提示:设四面体ABCD 的外接球球心为O ,则O 在过△ABD 的外心N 且垂直于平面ABD 的垂线上.由题设知,△ABD 是正三角形,则点N 为△ABD 的中心.设M P ,分别为CD AB ,的中点,则N 在DP 上,且DP ON ⊥,CD OM ⊥.因为︒=∠=∠=∠60ADB CDB CDA ,设CD 与平面A B D 所成角为θ,可求得32s i n ,31c o s ==θθ.在△DMN 中,33233232,121=⋅⋅=⋅===DP DN CD DM . 由余弦定理得231312)3(1222=⋅⋅⋅-+=MN ,故2=MN .四边形DMON 的外接圆的直径3322sin ===θMNOD .故球O 的半径3=R .7.)2,1(-或)6,9(-.提示: 设)2,(),,(),,(22211t t C y x B y x A ,由⎩⎨⎧==--,4,0122x y y x 得 BC DOP MN0482=--y y ,则821=+y y ,421-=⋅y y .又12,122211+=+=y x y x ,所以182)(22121=++=+y y x x , 11)(24212121=+++⋅=⋅y y y y x x .因为︒=∠90ACB ,所以0=⋅,即有0)2)(2())((212212=--+--y t y t x t x t ,即0)(24)(21212212214=⋅++-+⋅++-y y t y y t x x t x x t ,即03161424=---t t t ,即0)14)(34(22=--++t t t t .显然0142≠--t t ,否则01222=-⋅-t t ,则点C 在直线012=--y x 上,从而点C 与点A 或点B 重合.所以0342=++t t ,解得3,121-=-=t t .故所求点C 的坐标为)2,1(-或)6,9(-.8.15. 提示:=n a C65400320020023n n n--⋅⋅.要使)951(≤≤n a n 为整数,必有65400,3200nn --均为整数,从而4|6+n . 当=n 2,8,14,20,26,32,38,44,50,56,62,68,74,80时,3200n -和65400n-均为非负整数,所以n a 为整数,共有14个.当86=n 时,=86a C 5388620023-⋅⋅,在C !114!86!20086200⋅=中,!200中因数2的个数为1972200220022002200220022002200765432=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡, 同理可计算得!86中因数2的个数为82,!114中因数2的个数为110,所以C 86200中因数2的个数为511082197=--,故86a 是整数.当92=n 时,=92a C 10369220023-⋅⋅,在C !108!92!20092200⋅=中,同样可求得!92中因数2的个数为88,!108中因数2的个数为105,故C 86200中因数2的个数为410588197=--,故92a 不是整数.因此,整数项的个数为15114=+.9.因为)21()(++-=b b f a f ,所以 |)2lg(||)21lg(||)121lg(||)1lg(|+=+=+++-=+b b b b a , 所以21+=+b a 或1)2)(1(=++b a ,又因为b a <,所以21+≠+b a ,所以1)2)(1(=++b a .又由|)1lg(|)(+=a a f 有意义知10+<a ,从而2110+<+<+<b b a ,于是2110+<<+<b a .所以1210)2(6)2(6)1(101)21610(>+++=+++=+++b b b a b a . 从而]210)2(6lg[|]210)2(6lg[|)21610(+++=+++=++b b b b b a f . 又2lg 4)21610(=++b a f ,所以2lg 4]210)2(6lg[=+++b b , 故16210)2(6=+++b b .解得31-=b 或1-=b (舍去). 把31-=b 代入1)2)(1(=++b a 解得52-=a .所以 52-=a ,31-=b .10.(1)由原式变形得112)1)(1(211--++-=++n n n n n t a a t a ,则2111)1(212)1(21111+-+-+=-++=-+++n n n n n n n n n t a t a t a a t a . 记n n n b t a =-+11,则221+=+n n n b b b ,21221111=--=-+=t t t a b . 又211,211111=+=+b b b n n ,从而有221)1(111n n b b n =⋅-+=, 故 n t a n n 211=-+,于是有 1)1(2--=nt a n n .(2)nt n t a a n n n n )1(21)1(211--+-=-++ [])1)(1()1()1()1(211--++++-+++++-=n n n t t n t t t n n n t[][])()()1()1()1(2)1()1()1(211---++-+-+-=+++-+-=n n n n n n t t t t t n n t t t nt n n t[]132212)1()1()1()1(2-----++++++++++-=n n n n n t t t t t t n n t , 显然在)1(0≠>t t 时恒有01>-+n n a a ,故n n a a >+1.11.(1)设直线l :m x y +=31,),(),,(2211y x B y x A . 将m x y +=31代入143622=+y x 中,化简整理得03696222=-++m mx x .于是有2369,322121-=-=+m x x m x x ,232,2322211--=--=x y k x y k P B P A . 则PA PB k k +==,上式中,分子)23)(231()23)(231(1221--++--+=x m x x m x)2(26))(22(322121--+-+=m x x m x x )2(26)3)(22(2369322----+-⋅=m m m m 0122626312322=+-+--=m m m m ,从而,0=+P B P A k k .又P 在直线l 的左上方,因此,APB ∠的角平分线是平行于y 轴的直线,所以△PAB 的内切圆的圆心在直线23=x 上.(2)若︒=∠60APB 时,结合(1)的结论可知3,3-==P B P A k k . 直线PA 的方程为:)23(32-=-x y ,代入143622=+y x 中,消去y 得0)3313(18)331(69142=-+-+x x .它的两根分别是1x 和23,所以14)3313(18231-=⋅x ,即14)3313(231-=x .所以7)133(23|23|)3(1||12+=-⋅+=x PA .同理可求得7)133(23||-=PB .所以1||||sin 6021249PAB S PA PB ∆=⋅⋅⋅︒==.。
2013年全国高校自主招生数学模拟试卷命题人:南昌二中 高三(01)班 张阳阳一、选择题(本题满分36分,每小题6分)1.已知△ABC ,若对任意t ∈R ,||→BA -t →BC ≥||→AC ,则△ABC 一定为A .锐角三角形B .钝角三角形C .直角三角形D .答案不确定 2.设log x (2x 2+x -1)>log x 2-1,则x 的取值范围为A .12<x <1B .x >12且x ≠1 C . x >1 D . 0<x <13.已知集合A ={x |5x -a ≤0},B ={x |6x -b >0},a ,b ∈N ,且A ∩B ∩N ={2,3,4},则整数对(a ,b )的个数为A .20B .25C .30D .42 4.在直三棱柱A 1B 1C 1-ABC 中,∠BAC =π2,AB =AC =AA 1=1.已知G 与E 分别为A 1B 1和CC 1的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点).若GD ⊥EF ,则线段DF 的长度的取值范围为A .[15,1)B .[15,2)C .[1,2)D .[15,2)5.设f (x )=x 3+log 2(x +x 2+1),则对任意实数a ,b ,a +b ≥0是f (a )+f (b )≥0的A . 充分必要条件B . 充分而不必要条件C . 必要而不充分条件D . 既不充分也不必要条件 6.数码a 1,a 2,a 3,…,a 2006中有奇数个9的2007位十进制数-2a 1a 2…a 2006的个数为A .12(102006+82006)B .12(102006-82006) C .102006+82006 D .102006-82006二、填空题(本题满分54分,每小题9分)7. 设f (x )=sin 4x -sin x cos x +cos 4x ,则f (x )的值域是 .8. 若对一切θ∈R ,复数z =(a +cos θ)+(2a -sin θ)i 的模不超过2,则实数a 的取值范围为 .9.已知椭圆x 216+y 24=1的左右焦点分别为F 1与F 2,点P 在直线l :x -3y +8+23=0上.当∠F 1PF 2取最大值时,比|PF 1||PF 2|的值为 .10.底面半径为1cm 的圆柱形容器里放有四个半径为12cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 cm 3.11.方程(x 2006+1)(1+x 2+x 4+…+x 2004)=2006x 2005的实数解的个数为 . 12. 袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为 .三、解答题(本题满分60分,每小题20分)13. 给定整数n ≥2,设M 0(x 0,y 0)是抛物线y 2=nx -1与直线y =x 的一个交点. 试证明对任意正整数m ,必存在整数k ≥2,使(x 0m ,y 0m )为抛物线y 2=kx -1与直线y =x 的一个交点.14.将2006表示成5个正整数x 1,x 2,x 3,x 4,x 5之和.记S =1≤i <j ≤5Σx i x j .问:⑴ 当x 1,x 2,x 3,x 4,x 5取何值时,S 取到最大值;⑵ 进一步地,对任意1≤i ,j ≤5有||x i -x j ≤2,当x 1,x 2,x 3,x 4,x 5取何值时,S 取到最小值.说明理由.15.设 f (x )=x 2+a . 记f 1(x )=f (x ),f n (x )=f (f n -1(x )),n =1,2,3,…,M ={a ∈R |对所有正整数n ,||f n (0)≤2}.证明,M =[-2,14].2013年全国高校自主招生数学模拟试卷四参考答案一、选择题(本题满分36分,每小题6分)答C .解:令∠ABC =α,过A 作AD ⊥BC 于D ,由||→BA -t →BC ≥||→AC ,推出||→BA 2-2t →BA · →BC +t 2||→BC 2≥||→AC 2,令t =→BA · →BC ||→BC2,代入上式,得||→BA 2-2||→BA 2cos 2α+||→BA 2cos 2α≥||→AC 2,即 ||→BA 2sin 2α≥||→AC 2,也即||→BA sin α≥||→AC .从而有||→AD ≥||→AC .由此可得∠ACB =π2.答B .解:因为⎩⎨⎧x >0,x ≠12x 2+x -1>0,解得x >12且x ≠1.由log x (2x 2+x -1)>log x 2-1,⇒ log x (2x 3+x 2-x )>log x 2⎩⎨⎧0<x <1,2x 3+x 2-x <2或⎩⎨⎧x >1,2x 3+x 2-x >2.解得0<x <1或x >1. 所以x 的取值范围为x >12且x ≠1.答C . 解:5x -a ≤0x ≤a5;6x -b >0x >b6.要使A ∩B ∩N ={2,3,4},则 ⎩⎨⎧1≤b6<2,4≤a 5<5,即⎩⎨⎧6≤b <12,20≤a <25.所以数对(a ,b )共有C 61C 51=30个. 答A .解:建立直角坐标系,以A 为坐标原点,AB 为x 轴,AC 为y 轴,AA 1为z 轴,则F (t 1,0,0)(0<t 1<1),E (0,1,12),G (12,0,1),D (0,t 2,0)(0<t 2<1).所以→EF =(t 1,-1,-12),→GD =(-12,t 2,-1).因为GD ⊥EF ,所以t 1+2t 2=1,由此推出0<t 2<12.又→DF =(t 1,-t 2,0),||→DF =t 12+t 22=5t 22-4t 2+1=5(t 2-25)2+15,从而有15≤||→DF <1.答A .解:显然f (x )=x 3+log 2(x +x 2+1)为奇函数,且单调递增.于是若a +b ≥0,则a ≥-b ,有f (a )≥f (-b ),即f (a )≥-f (b ),从而有f (a )+f (b )≥0. 反之,若f (a )+f (b )≥0,则f (a )≥-f (b )=f (-b ),推出a ≥-b ,即a +b ≥0. 答B .解:出现奇数个9的十进制数个数有A =C 20061 92005+C 20063 92003+…+C 200620059.又由于(9+1)2006=k =0Σ2006C 2006k 92006-k以及(9-1)2006=k =0Σ2006C 2006k(-1)k 92006-k 从而得A =C 20061 92005+C 20063 92003+…+C 200620059=12(102006-82006). 填[0,98].解:f (x )=sin 4x -sin x cos x +cos 4x =1-12sin2x -12sin 22x .令t =sin2x ,则f (x )=g (t )=1-12t -12t 2=98-12(t +12)2.因此-1≤t ≤1min g (t )=g (1)=0,-1≤t ≤1max g (t )=g (-12)=98. 故,f (x )∈[0,98].填[-55,55].解:依题意,得|z |≤2(a +cos θ)2+(2a -sin θ)2≤42a (cos θ-2sin θ)≤3-5a 2. -25a sin(θ-φ)≤3-5a 2(φ=arcsin 55)对任意实数θ成立. 25|a |≤3-5a 2|a |≤55,故 a 的取值范围为[-55,55]. 填3-1..解:由平面几何知,要使∠F 1PF 2最大,则过F 1,F 2,P 三点的圆必定和直线l 相切于点P .直线l 交x 轴于A (-8-23,0),则∠APF 1=∠AF 2P ,即∆APF 1∽∆AF 2P ,即|PF 1||PF 2|=|AP ||AF 2|⑴ 又由圆幂定理,|AP |2=|AF 1|·|AF 2|⑵而F 1(-23,0),F 2(23,0),A (-8-23,0),从而有|AF 1|=8,|AF 2|=8+43. 代入⑴,⑵得,|PF 1||PF 2|=|AF 1||AF 2|=88+43=4-23=3-1.填(13+22)π. 解:设四个实心铁球的球心为O 1,O 2,O 3,O 4,其中O 1,O 2为下层两球的球心,A ,B ,C ,D 分别为四个球心在底面的射影.则ABCD 是一个边长为22的正方形。
2013年全国高校自主招生数学模拟试卷七一.选择题(36分,每小题6分) 1、 函数f(x)=)32(log221--x x 的单调递增区间是(A) (-∞,-1) (B) (-∞,1) (C) (1,+∞) (D) (3,+∞) 解:由x 2-2x-3>0⇒x<-1或x>3,令f(x)=u 21log, u= x 2-2x-3,故选A2、 若实数x, y 满足(x+5)2+(y -12)2=142,则x 2+y 2的最小值为 (A) 2 (B) 1 (C) 3 (D) 2解:B 3、 函数f(x)=221x x x--(A) 是偶函数但不是奇函数 (B) 是奇函数但不是偶函数(C) 既是奇函数又是偶函数 (D) 既不是奇函数又不是偶函数 解:A 4、 直线134=+y x 椭圆191622=+yx相交于A ,B 两点,该圆上点P ,使得⊿PAB 面积等于3,这样的点P 共有(A) 1个 (B) 2个 (C) 3个 (D) 4个解:设P 1(4cos α,3sin α) (0<α<2π),即点P 1在第一象限的椭圆上,如图,考虑四边形P 1AOB的面积S 。
S=11OBP OAP S S ∆∆+=ααcos 4321sin 3421⨯⨯+⨯⨯=6(sin α+cos α)=)4sin(26πα+∴S max =62∵S ⊿OAB =6∴626)(max 1-=∆AB P S ∵626-<3∴点P 不可能在直线AB 的上方,显然在直线AB 的下方有两个点P ,故选B 5、 已知两个实数集合A={a 1, a 2, … , a 100}与B={b 1, b 2, … , b 50},若从A 到B 的映射f 使得B中的每一个元素都有原象,且f(a 1)≤f(a 2)≤…≤f(a 100),则这样的映射共有(A) 50100C (B) 5090C (C) 49100C (D) 4999C解:不妨设b 1<b 2<…<b 50,将A 中元素a 1, a 2, … , a 100按顺序分为非空的50组,定义映射f :A →B ,使得第i 组的元素在f 之下的象都是b i (i=1,2,…,50),易知这样的f满足题设要求,每个这样的分组都一一对应满足条件的映射,于是满足题设要求的映射f 的个数与A 按足码顺序分为50组的分法数相等,而A 的分法数为4999C ,则这样的映射共有4999C ,故选D 。
6、 由曲线x 2=4y, x 2= -4y, x=4, x= -4围成图形绕y 轴旋转一周所得为旋转体的体积为V 1,满足x 2+y 2≤16, x 2+(y -2)2≥4, x 2+(y +2)2≥4的点(x,y)组成的图形绕y 轴旋转一周所得旋转体的体积为V 2,则(A) V 1=21V 2 (B) V 1=32V 2 (C) V 1=V 2 (D) V 1=2V 2解:如图,两图形绕y 轴旋转所得的旋转体夹在两相距为8的平行平面之间,用任意一个与y 轴垂直的平面截这两个旋转体,设截面与原点距离为|y|,则所得截面面积∵S 1=π(42-4|y|) ,S 2=π(42-y 2)-π[4-(2-|y|)2]=π(42-4|y|) ∴ S 1=S 2由祖暅原理知,两个几何体体积相等。
故远C 。
一、 填空题(54分,每小题9分)7、 已知复数Z 1,Z 2满足|Z 1|=2, |Z 2|=3,若它们所对应向量的夹角为60°,则2121z z z z -+= 。
解:由余弦定理得|Z 1+Z 2|=19, |Z 1-Z 2|=7,2121z z z z -+=71338、 将二项式nxx )21(4+的展开式按x 的降幂排列,若前三项系数成等差数列,则该展开式中x 的指数是整数的项共有 个。
解:不难求出前三项的系数分别是)1(81,21,1-n n n ,∵)1(811212-+=⋅n n n∴当n=8时,43161)21(r rr nr xC T -+= (r=0,1,2, (8)∴r=0,4,8,即有3个9、 如图,点P 1,P 2,…,P 10分别是四面体点或棱的中点,那么在同一平面上的四点组(P 1, P i , P j, P k )(1<i<j<k ≤10)有 个。
解:首先,在每个侧面上除P 1点外尚有五个点,其中任意三点组添加点P 1后组成的四点组都在同一个平面,这样三点组有35C 个,三个侧面共有335C 个。
P 9 8P10其次,含P 1的每条棱上三点组添加底面与它异面的那条棱上的中点组成的四点组也在一个平面上,这样的四点组有3个 ∴共有335C +3=33个10、 已知f(x)是定义在R 上的函数,f(1)=1且对任意x ∈R 都有 f(x+5)≥f(x)+5 f(x+1)≤f(x)+1若g(x)=f(x)+1-x ,则g(2002)= 。
解:由g(x)=f(x)+1-x 得f(x)=g(x)+ x -1 ∴g(x+5)+(x+5)-1≥g(x)+(x -1)+5 g(x+1)+(x+1)-1≤g(x)+(x -1)+5∴g(x+5)≥g(x), g(x+1)≤g(x)∴g(x)≤g(x+5)≤g(x+4)≤g(x+3)≤g(x+2)≤g(x+1)≤g(x) ∴g(x+1)=g(x) ∴T=1 ∵g(1)=1 ∴g(2002)=111、 若1)2(log )2(log 44=-++y x y x ,则|x|-|y|的最小值是 。
解:⎩⎨⎧=-≥>⇒⎪⎩⎪⎨⎧=-+>->+440||24)2)(2(020222y x y x y x y x y x y x 由对称性只考虑y ≥0,因为x>0,所以只须求x -y 的最小值。
令x -y=u 代入x 2-4y 2=4中有3y 2-2uy+(4-u 2)=0 ∵y ∈R ∴⊿≥03≥⇒u∴当33,334==y x 时,u=3,故|x|-|y|的最小值是312、 使不等式sin 2x+acosx+a 2≥1+cosx 对一切x ∈R 恒成立的负数a 的取值范围是 。
解:∵sin 2x+acosx+a 2≥1+cosx ∴4)1()21(cos 222-+≤--a a a x∵a<0,∴当cosx=1时,函数2)21(cos --=a x y 有最大值2)211(--a∴⇒-+≤--4)1()211(222a a a a 2+a -2≥0⇒a ≤-2或a ≥1∵a<0∴负数a 的取值范围是(-∞,2]二、解答题(本题满分60分,每小题20分)13、 已知点A(0,2)和抛物线y=x 2+4上两点B 、C 使得AB ⊥BC ,求点C 的纵坐标的取值范围。
解:设B 点坐标为B(y 12-4,y 1),C 点坐标为C(y 2-4,y) 显然y 12-4≠0,故21421211+=--=y y y k AB …………5分∵AB ⊥BC ∴K BC = -(y 1+2)∴⎪⎩⎪⎨⎧+=--+-=-4)]4()[2(22111x y y x y y y⇒(2+y 1)(y+y 1)+1=0⇒y 12+(2+y)y 1+(2y+1)=0 …………10分 ∵y 1∈R∴⊿≥0⇒y ≤0或y ≥4 …………15分 ∴当y=0时,点B 的坐标为(-3,-1);当y=4时,点B 的坐标为(5,-3),均满足题意。
故点C 的纵坐标的取值范围为(-∞,0]∪[4,+∞)14、 如图,有一列曲线P 0, P 1, P 2, ……,已知P 0所围成的图形是面积为1的等边三角形,P k+1是对P k 进行如下操作得到的:将P k 的每条边三等分,以每边中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉(k=0,1,2,3,…),记S n 为曲线P k 所围成图形面积。
①求数列{S n }的通项公式;②求n n S ∞→lim 。
解:①对P 0进行操作,容易看出P 0的每条边变成P 1的4条边,故P 1的边数为3×4;同样,对P 1进行操作,P 1的每条边变成P 2的4条边,故P 2的边数为3×42,从而不难得到P n 的边数为3×4n …………5分已知P 0的面积为S 0=1,比较P 1与P 0,容易看出P 1在P 0的每条边上增加了一个小等边三角形,其面积为231,而P 0有3条边,故S 1=S 0+3×231=1+31P 0P 1P 2再比较P 2与P 1,容易看出P 2在P 1的每条边上增加了一个小等边三角形,其面积为231×231,而P 1有3×4条边,故S 2=S 1+3×4×431=1+31+334类似地有:S 3=S 2+3×42×631=1+31+334+5234 …………5分∴S n =121523343434311--+++++n n=1+∑=nk k1)94(43=n)94(5358⋅-(※) …………10分 下面用数学归纳法证明(※)式当n=1时,由上面已知(※)式成立, 假设当n=k 时,有S k =k )94(5358⋅-当n=k+1时,易知第k+1次操作后,比较P k+1与P k ,P k+1在P k 的每条边上增加了一个小等边三角形,其面积为)1(231+k ,而P k 有3×4k 条边。
故S k+1=S k +3×4k ×)1(231+k =1)94(5358+⋅-k 综上所述,对任何n ∈N ,(※)式成立。
②58])94(5358[lim lim =⋅-=∞→∞→n n n n S 15、 设二次函数f(x)=ax 2+bx+c (a,b,c ∈R,a ≠0)满足条件:① 当x ∈R 时,f(x-4)=f(2-x),且f(x)≥x ;② 当x ∈(0,2)时,f(x)≤2)21(+x③ f(x)在R 上的最小值为0。
求最大值m(m>1),使得存在t ∈R ,只要x ∈[1,m],就有f(x+t)≤x 解:∵f(x -4)=f(2-x)∴函数的图象关于x= -1对称 ∴ 12-=-ab b=2a由③知当x= -1时,y=0,即a -b+c=0 由①得 f(1)≥1,由②得 f(1)≤1 ∴f(1)=1,即工+了+以=1,又a -b+c=0∴a=41 b=21 c=41∴f(x)=4121412++x x …………5分假设存在t ∈R ,只要x ∈[1,m],就有f(x+t)≤x 取x=1时,有f(t+1)≤1⇒41(t+1)2+21(t+1)+41≤1⇒-4≤t ≤0对固定的t ∈[-4,0],取x=m ,有f(t +m)≤m⇒41(t+m)2+21(t+m)+41≤m⇒m 2-2(1-t)m+(t 2+2t+1)≤0⇒t t 41---≤m ≤t t 41-+- …………10分∴m ≤t t 41--≤)4(4)4(1-⋅-+--=9 …………15分当t= -4时,对任意的x ∈[1,9],恒有 f(x -4)-x=41(x 2-10x+9)=41(x -1)(x -9)≤0∴m 的最大值为9。