6求函数的极值线性规划
- 格式:doc
- 大小:151.50 KB
- 文档页数:5
目标函数的几种极值求解方法在数学和优化领域中,目标函数是一个描述优化问题的函数,其目标是将该函数的值最小化或最大化。
目标函数的极值求解方法主要有以下几种方法:1.数值方法:数值方法是通过计算目标函数在一组特定点上的近似值来确定极值。
其中最简单的方法是取目标函数的一些特定点,并计算这些点上的函数值。
然后根据计算结果确定极值。
这些特定点通常是目标函数的极值点的近似值。
例如,可以使用微分方法来估计目标函数的极值点。
2.数学分析方法:数学分析方法是通过对目标函数进行数学分析来确定极值。
其中最常用的方法是求解目标函数的导数或二阶导数,并设置导数等于零来求解函数的极值点。
这个方法适用于一些简单的函数,例如多项式函数。
它可以精确地确定函数的极值点。
3.迭代方法:迭代方法是通过不断迭代目标函数来逼近极值。
迭代方法通常需要一个初始点,然后在每一步中更新该点,直到满足一些停止条件。
最常用的迭代方法是梯度下降法和牛顿法。
梯度下降法通过不断沿着函数的梯度方向进行迭代来逐渐接近极小值。
牛顿法将函数近似为一个二次函数,并使用二次函数的极值点来逼近原函数的极值点。
4.线性规划方法:线性规划方法是对一类特殊的目标函数进行极值求解的方法。
线性规划问题是指包含一组线性不等式或等式约束条件的目标函数的最小化或最大化问题。
线性规划方法可以通过求解线性规划问题的对偶问题来确定原问题的极值。
这个方法对于一些特殊的线性规划问题非常高效。
5.元启发式方法:元启发式方法是一种基于经验和启发式规则来确定目标函数极值的方法。
这些方法通常使用一些随机算法和优化算法,例如遗传算法、粒子群算法等。
元启发式方法通过不断目标函数的解空间来逼近极值。
总之,目标函数的极值求解方法有多种选择,可以根据具体的问题和需求选择合适的方法。
不同的方法有不同的适用范围和计算复杂度,需要根据具体情况进行选择和调整。
线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。
它的实际应用十分广泛,例如管理学、经济学、物流学等领域。
线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。
本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。
一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。
它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。
通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。
在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。
这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。
例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。
这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。
二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。
决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。
2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。
3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。
例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。
4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。
它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。
线性规划的建模技巧和求解线性规划是一种数学优化方法,用于确定一个或多个线性方程的最佳解。
它在许多领域有广泛应用,如生产、物流、金融等。
下面将介绍线性规划的建模技巧和求解方法。
一、线性规划的建模技巧:1. 确定决策变量:首先要确定需要决策的变量,这些变量决定了模型的目标函数和约束条件。
变量可以表示限制条件或可供选择的决策。
2. 确定目标函数:目标函数是需要优化的目标,可以是最大化或最小化。
一般情况下,目标函数是由决策变量的线性组合构成的。
3. 确定约束条件:约束条件是限制决策变量的条件,包括等式约束和不等式约束。
约束条件可以是资源的限制、技术要求等。
4. 确定约束集:约束集是所有约束条件的集合,它定义了可行解的范围。
在确定约束集时,需要将每个约束条件转化为决策变量的线性等式或不等式。
5. 确定可行域:可行域是约束集在决策变量空间中的几何图形。
可行域是一个多面体或多面体的集合,其中每个面都由一个或多个约束条件定义。
6. 确定边界条件:边界条件是可行域的边界,在边界上的解是目标函数的极值点。
通过分析边界条件,可以确定是否存在最优解以及在哪个边界上可以找到最优解。
二、线性规划的求解方法:1. 图形法:图形法适用于二维情况,可以将可行域和目标函数的等值线绘制在一个坐标系中,通过观察交点找到最优解。
但是,图形法只适用于简单的问题,对于复杂问题无法使用。
2. 单纯形法:单纯形法是一种常用的线性规划求解方法。
它通过迭代的方式从可行域的某个顶点开始,逐步向更优解迭代,直到找到最优解。
单纯形法的思想是寻找一个可以改进目标函数值的方向,并且每次改进保证不会违反约束条件。
3. 对偶理论:线性规划问题的对偶问题可以通过原问题的约束条件和目标函数得到。
通过对偶问题的求解,可以得到原问题的最优解、最优解的相应目标值以及松弛变量的价值。
4. 整数规划:如果决策变量是整数变量,那么线性规划问题称为整数规划问题。
整数规划问题的求解通常比线性规划问题要困难得多,因为整数变量会引入离散性。
第六节 多元函数的极值及其求法在实际问题中,我们会大量遇到求多元函数的最大值、最小值的问题. 与一元函数的情形类似,多元函数的最大值、最小值与极大值、极小值密切的联系. 下面我们以二元函数为例来讨论多元函数的极值问题.分布图示★ 引例 ★ 二元函数极值的概念 例1-3★ 极值的必要条件 ★ 极值的充分条件★ 求二元函数极值的一般步骤 ★ 例4 ★ 例5★ 求最值的一般步骤 ★ 例6 ★ 例7★ 例8 ★ 例9 ★ 例10 ★ 例11 ★ 条件极值的概念 ★ 拉格郎日乘数法 ★ 例12★ 例 13 ★ 例 14 ★ 例 15 ★ 例 16*数学建模举例★ 线性回归问题 ★ 线性规划问题★ 内容小结 ★ 课堂练习★ 习题6-6内容要点一、二元函数极值的概念定义1 设函数),(y x f z =在点),(00y x 的某一邻域内有定义, 对于该邻域内异于),(00y x 的任意一点),(y x , 如果),,(),(00y x f y x f <则称函数在),(00y x 有极大值;如果),,(),(00y x f y x f >则称函数在),(00y x 有极小值; 极大值、极小值统称为极值. 使函数取得极值的点称为极值点.定理1 (必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数, 且在点),(00y x 处有极值, 则它在该点的偏导数必然为零,即.0),(,0),(0000==y x f y x f y x (6.1)与一元函数的情形类似,对于多元函数,凡是能使一阶偏导数同时为零的点称为函数的驻点.定理2 (充分条件) 设函数),(y x f z =在点),(00y x 的某邻域内有直到二阶的连续偏导数,又,0),(00=y x f x .0),(00=y x f y 令.),(,),(,),(000000C y x f B y x f A y x f yy xy xx === (1) 当02>-B AC 时,函数),(y x f 在),(00y x 处有极值,且当0>A 时有极小值),(00y x f ;0<A 时有极大值),(00y x f ;(2) 当02<-B AC 时,函数),(y x f 在),(00y x 处没有极值;(3) 当02=-B AC 时,函数),(y x f 在),(00y x 处可能有极值,也可能没有极值.根据定理1与定理2,如果函数),(y x f 具有二阶连续偏导数,则求),(y x f z =的极值的一般步骤为:第一步 解方程组,0),(,0),(==y x f y x f y x 求出),(y x f 的所有驻点;第二步 求出函数),(y x f 的二阶偏导数,依次确定各驻点处A 、 B 、 C 的值,并根据2B AC -的符号判定驻点是否为极值点. 最后求出函数),(y x f 在极值点处的极值.二、二元函数的最大值与最小值求函数),(y x f 的最大值和最小值的一般步骤为:(1)求函数),(y x f 在D 内所有驻点处的函数值;(2)求),(y x f 在D 的边界上的最大值和最小值;(3)将前两步得到的所有函数值进行比较,其中最大者即为最大值, 最小者即为最小值. 在通常遇到的实际问题中,如果根据问题的性质,可以判断出函数),(y x f 的最大值(最小值)一定在D 的内部取得,而函数),(y x f 在D 内只有一个驻点,则可以肯定该驻点处的函数值就是函数),(y x f 在D 上的最大值(最小值).三、条件极值 拉格朗日乘数法前面所讨论的极值问题,对于函数的自变量一般只要求落在定义域内,并无其它限制条件,这类极值我们称为无条件极值. 但在实际问题中,常会遇到对函数的自变量还有附加条件的的极值问题. 对自变量有附加条件的极值称为条件极值.拉格朗日乘数法设二元函数),(y x f 和),(y x ϕ在区域D 内有一阶连续偏导数,则求),(y x f z =在D 内满足条件0),(=y x ϕ的极值问题,可以转化为求拉格朗日函数),(),(),,(y x y x f y x L λϕλ+=(其中λ为某一常数)的无条件极值问题.于是,求函数),(y x f z =在条件0),(=y x ϕ的极值的拉格朗日乘数法的基本步骤为:(1) 构造拉格朗日函数),(),(),,(y x y x f y x L λϕλ+=其中λ为某一常数;(2) 由方程组⎪⎩⎪⎨⎧===+==+=0),(,0),(),(,0),(),(y x L y x y x f L y x y x f L y y y x x x ϕλϕλϕλ解出λ,,y x , 其中x , y 就是所求条件极值的可能的极值点.注:拉格朗日乘数法只给出函数取极值的必要条件, 因此按照这种方法求出来的点是否为极值点, 还需要加以讨论. 不过在实际问题中, 往往可以根据问题本身的性质来判定所求的点是不是极值点.拉格朗日乘数法可推广到自变量多于两个而条件多于一个的情形:四、数学建模举例例题选讲二元函数极值的概念例1 (E01) 函数2232y x z +=在点(0, 0)处有极小值. 从几何上看,2232y x z +=表示一开口向上的椭圆抛物面,点)0,0,0(是它的顶点.(图7-6-1).例2 (E02) 函数22y x z +-=在点(0,0)处有极大值. 从几何上看,22y x z +-= 表示一开口向下的半圆锥面,点)0,0,0(是它的顶点.(图7-6-2).例3 (E03) 函数22x y z -= 在点(0,0)处无极值. 从几何上看,它表示双曲抛物面(马 鞍面)(图7-6-3)例4 (E04) 求函数x y x y x y x f 933),(2233-++-=的极值.解 先解方程组解得驻点为),0,1(),2,1(),0,3(-).2,3(-再求出二阶偏导数),(y x f xx ,66+=x ),(y x f xy ,0=),(y x f yy .66+-=y在点 (1, 0) 处, ,06122>⋅=-B AC 又,063),(0963),(22⎪⎩⎪⎨⎧=+-==-+=y y y x f x x y x f y x ,0>A 故函数在该点处有极小值;5)0,1(-=f在点 (1, 2) 处, )0,3(-处,,06122<⋅-=-B AC 故函数在这两点处没有极值;在点)2,3(-处,,0)6(122>-⋅-=-B AC 又,0<A 故函数在该点处有极大值.31)2,3(=-f例5 证明函数 y y ye x e z -+=cos )1(有无穷多个极大值而无一极小值.二元函数的最大值与最小值.证 由⎪⎩⎪⎨⎧=--='=+-='0)1(cos 0sin )1(y x e z x e z y y y x).(1)1(Z k y k x k ∈⎩⎨⎧--==π 又,cos )1(x e z A y xx +-=''=,sin x e z B y xy -=''=).2(cos y x e z C y yy--=''= 在点))(0,2(z n n ∈π处,,2-=A ,0=B ,1-=C ,022>=-B AC又,0<A 所以函数z 取得极大值;在点))(2,)12((z n n ∈-+π处,,12-+=e A ,0=B ,2--=e C ,0422<--=---e e B AC 此时函数无极值.证毕.二元函数的最大值与最小值例6 求函数y xy x y x f 22),(2+-=在矩形域 |),{(y x D =}20,30≤≤≤≤y x上的最大值和最小值.解 先求函数),(y x f 在D 内驻点.由,022=-=y x f x 022=+-=x f y 求得f 在D 内部的唯一驻点 (1, 1),且.1)1,1(=f 其次求函数),(y x f 在D 的边界上的最大值和最小值.如图所示.区域D 的边界包含四条直线段.,,,4321L L L L在1L 上,0=y ,)0,(2x x f =.30≤≤x 这是x 的单调增加函数,故在1L 上f 的最大值为,9)0,3(=f 最小值为.0)0,0(=f同样在2L 和4L 上f 也是单调的一元函数,易得最大值、最小值分别为,9)0,3(=f 1)2,3(=f (在2L 上),,4)2,0(=f 0)0,0(=f (在4L 上),而在3L 上,2=y ,44)2,(2+-=x x x f ,30≤≤x 易求出f 在3L 上的最大值,4)2,0(=f 最小值.0)2,2(=f将f 在驻点上的值)1,1(f 与4321,,,L L L L 上的最大值和最小值比较,最后得到f 在D 上的最大值,9)0,3(=f 最小值.0)2,2()0,0(==f f例7 求二元函数)4(),(2y x y x y x f z --==在直线6=+y x , x 轴和y 轴所围成的闭区域D 上的最大值与最小值.解 先求函数在D 内的驻点,解方程组 ,0)4(),(0)4(2),(222⎩⎨⎧=---='=---='y x y x x y x f y x y x xy y x f xx 得唯一驻点),1,2(且,4)1,2(=f 再求),(y x f 在D 边界上得最值,在边界6=+y x 上,即,6x y -=于是),2)(6(),(2--=x x y x f由,02)6(42=+-='x x x fx 得4,021==x x ,264=-==x x y 而,64)2,4(-=f 所以4)1,2(=f 为最大值,64)2,4(-=f 为最小值.例8 求函数 32233),(x y x y x f -+=在区域16:22≤+y x D 上的最小值.解 先求),(y x f 在D 内的极值.由,36),(2x x y x f x -=',6),(y y x f y =' 解方程组⎩⎨⎧==-060362y x x 得驻点(0, 0), (2, 0). 由于,6)0,0(=''xxf ,0)0,0(=''xy f ,6)0,0(=''yy f ,6)0,2(-=''xxf ,0)0,2(=''xy f .6)0,2(=''yy f 所以, 在点 (0, 0) 处,0362<-=-AC B ,06>=A 故在 (0, 0) 处有极小值.0)0,0(=f 在点 (2, 0) 处,0362>=-AC B 故函数在点 (2, 0)处无极值.再求),(y x f 在边界1622=+y x 上的最小值.由于点),(y x 在圆周1622=+y x 上变化,故可解出),44(1622≤≤--=x x y 代入),(y x f 中,有z ),(y x f =32233x y x -+=348x -=),44(≤≤-x这时z 是x 的一元函数,求得在]4,4[-上的最小值.164-==x z 最后比较可得,函数32233),(x y x y x f -+=在闭区间D 上的最小值.16)0,4(-=f例9 求 122+++=y x yx z 的最大值和最小值.解 x z 22222)1()(2)1(+++-++=y x y x x y x ,0=y z 22222)1()(2)1(+++-++=y x y x y y x ,0=解得驻点 ⎪⎪⎭⎫ ⎝⎛21,21和,21,21⎪⎪⎭⎫ ⎝⎛-- 因为,01lim 22=+++∞→∞→y x y x y x 即边界上的值为零.又 ,2121,21=⎪⎪⎭⎫ ⎝⎛z ,2121,21-=⎪⎪⎭⎫ ⎝⎛--z 所以最大值为,21最小值为.21-例10 (E05) 某厂要用铁板做成一个体积为32m 的有盖长方体水箱. 问当长、宽、高各 取怎样的尺寸时, 才能使用料最省.解 设水箱的长为,xm 宽为,ym 则其高应为./2xym 此水箱所用材料的面积 A ⎪⎪⎭⎫ ⎝⎛⋅+⋅+=xy x xy y xy 222⎪⎪⎭⎫ ⎝⎛++=y x xy 222).0,0(>>y x 此为目标函数.下面求使这函数取得最小值的点).,(y x 令,0222=⎪⎭⎫ ⎝⎛-=x y A x .0222=⎪⎪⎭⎫ ⎝⎛-=y x A y 解这方程组,得唯一的驻点,23=x .23=y根据题意可断定,该驻点即为所求最小值点. 因此当水箱的长为m 32、宽为m 32、高为=⋅33222m 32时,水箱所用的材料最省.注: 体积一定的长方体中,以立方体的表面积为最小.例11 (E06) 设1q 为商品A 的需求量, 2q 为商品B 的需求量, 其需求函数分别为,10420,4216212211p p q p p q -+=+-=总成本函数为2123q q C +=,其中21,p p 为商品A 和B 的价格, 试问价格21,p p 取何值时可使利润最大?解 按题意,总收益函数为),10420()42216(2122112211p p p p p p q p q p R -+++--=+=于是总利润函数为)2()3(2211-+-=-=p q p q C R L).10420)(2()4216)(3(212211p p p p p p -+-++--=为使总利润最大,求一阶偏导数,并令其为零:,08414211=+-=∂∂p p p L )2(10)10420()3(422111---++-=∂∂p p p p p L ,02082821=-+=p p由此解得 ,14,26321==p p 又因 .0)20)(4(8)(22<---=''⋅''-''yy xx xy L L L 故取价格14,26321==p p 时利润可达最大,而此时得产量为.6,921==q q例12 求函数xyz u =在附加条件a z y x /1/1/1/1=++ ()0,0,0,0>>>>a z y x (1)下的极值.解 作拉格朗日函数),,,(λz y x L )./1/1/1/1(a z y x xyz -+++=λ由.3.3/.0)/1/1/1(30/0/0/222a x y x a xyz z y x xyz z xy L y xz L x yz L zy x ===⇒=⇒=++-⇒⎪⎩⎪⎨⎧=-==-==-=λλλλλ故)3,3,3(a a a 是函数xyz u =在条件(1)下唯一驻点.把条件(1)确定的隐函数记作),,(y x z z =将目标函数看作),,(),(y x F y x z xy u =⋅=再应用二元函数极值的充分条件判断,知点,3,3(a a )3a 是函数xyz u =在条件(1)下的极小值点.而所求极值为.273a条件极值 拉格朗日乘数法例13 (E07) 求表面积为2a 而体积为最大的长方体的体积.解 设长方体的三棱长为,,,z y x 则问题就是在条件 ),,(z y x ϕ2222a xz yz xy -++=0=(1) 下, 求函数)0,0,0(>>>=z y x xyz V 的最大值.作拉格朗日函数),,,(λz y x L ),222(2a xz yz xy xyz -+++=λ 由..,0)(20)(20)(2z y x z x y x z y z y z x y x x y xy L z x xz L z y yz L zy x ==⇒++=++=⇒⎪⎩⎪⎨⎧=++==++==++=λλλ代入 (1) 式,得唯一可能的极值点:,6/6a z y x ===由问题本身意义知,此点就是所求最大值点.即,表面积为2a 的长方体中,以棱长为6/6a 的正方体的体积为最大,最大体积.3663a V =例14 在经济学中有个Cobb-Douglas 生产函数模型,),(1a a y cx y x f -=式中x 代 表劳动力的数量, y 为资本数量(确切地说是y 个单位资本), c 与)10(<<a a 是常数, 由各工厂的具体情形而定. 函数值表示生产量.现在已知某制造商的Cobb-Douglas 生产函数是=),(y x f ,1004143y x 每个劳动力与每单位资本的成本分别是150元及250元. 该制造商的总预算是50000元. 问他该如何分配这笔钱用于雇用劳动力与资本,以使生产量最高.解 这是个条件极值问题,求函数4143100),(y xy x f =在条件50000250150=+y x 下的最大值. 令)25015050000(100),,(413y x y x y x L --+=λλ,由方程组⎪⎩⎪⎨⎧=--==-==-=--0250150500000250250150754343141y x L yx L y x L xx x λλ 中的第一个方程解得,21411y x -=λ将其代入第二个方程中,得 ,0125254141343=---y x y x 在该式两边同乘,4341y x 有,012525=-y x 即.5y x =将此结果代入方程组的第三个方程得,50,250==y x 即该制造商应该雇用250个劳动力而把其余得部分作为资本投入,这时可获得最大产量.16719)50,250(=f例15 (E08) 设销售收入R (单位:万元)与花费在两种广告宣传的费用y x ,(单位:万元) 之间的关系为yy x x R +++=101005200 利润额相当五分之一的销售收入, 并要扣除广告费用. 已知广告费用总预算金是25万元, 试问如何分配两种广告费用使利润最大?解 设利润为,z 有 z y x R --=51.1020540y x y y x x --+++=,限制条件为.25=+y x 这是条件极值问题.令),,(λy x L )25(1020540-++--+++=y x y x yy x x λ 从,01)5(2002=+-+=λx L x 01)10(2002=+-+=λy L y22)10()5(y x +=+又,25x y -=解得,15=x .10=y 根据问题本身的意义及驻点的唯一性即知,当投入两种广告的费用分别为15万元和10万元时,可使利润最大.例16 设某电视机厂生产一台电视机的成本为c , 每台电视机的销售价格为p , 销售量为x .假设该厂的生产处于平衡状态, 即电视机的生产量等于销售量. 根据市场预测, 销售量x 与销售价格为p 之间有下面的关系:ap Me x -= )0,0(>>a M (1) 其中M 为市场最大需求量, a 是价格系数. 同时, 生产部门根据对生产环节的分析, 对每台电视机的生产成本c 有如下测算: x k c c ln 0-= (1,0>>x k ), (2) 其中0c 是只生产一台电视机时的成本, k 是规模系数. 根据上述条件, 应如何确定电视机的售价p , 才能使该厂获得最大利润?解 设厂家获得的利润为,u 每台电视机售价为,p 每台生产成本为,c 销售量为,x 则.)(x c p u -=于是问题化为利润函数x c p u )(-=在附加条件(1)、(2) 下的极值问题.利用拉格朗日乘数法,作拉格朗日函数:),,,,(μλc p x L ).ln ()()(0x k c c Me x x c p ap +-+-+-=-μλ令x L x k c p /)(μλ++-=,0=p L ap aMe x -+=λ,0=c L μ+-=x .0=将 (1) 代入 (2),得 ).(ln 0ap M k c c --= (3)由 (1) 及0=p L 知 ,1-=a λ即./1a -=λ (4)由0=c L 知,μ=x 即 .1/=μx将 (3)、(4)、(5) 代入,0=x L 得,0/1)(ln 0=+--+-k a ap M k c p由此得 *p .1/1ln 0akk a M k c --+-=由问题本身可知最优价格必定存在,故这个*p 就是电视机的最优价格.数学建模举例1.最小二乘法数理统计中常用到回归分析,也就是根据实际测量得到的一组数据来找出变量间的函数关系的近似表达式. 通常把这样得到的函数的近似表达式叫做经验公式. 这是一种广泛采用的数据处理方法. 经验公式建立后,就可以把生产或实践中所积累的某些经验提高到理论上加以分析,并由此作出某些预测. 下面我们通过实例来介绍一种常用的建立经验公式的方法.例17 (E09) 测定刀具的磨损速度,按每隔一小时测量一次刀具厚度的方式,得到如下 实测数据:8.243.257.251.263.265.268.260.27)(76543210)(76543210毫米刀具厚度小时时间顺序编号i i y t i试根据这组实测数据建立变量y 和t 之间的经验公式).(t f y =解 观察散点图,易发现所求函数)(t f y =可近似看作线性函数,因此可设,)(b at t f +=其中a 和b 是待定常数,但因为图中各点并不在同一条直线上,因此希望要使偏差)7,,2,1,0()(Λ=-i t f y i i 都很小.为了保证每个这个的偏差都很小,可考虑选取常数,,b a 使∑=+-=702)]([i i i b at yM 最小.这种根据偏差的平方和为最小的条件来选择常数b a ,的方法叫做最小二乘法.求解本例:可考虑选取常数,,b a 使∑=+-=702)]([i i i b at yM 最小.把M 看成自变量a和b 的一个二元函数,那么问题就可归结为求函数),(b a M M =在那些点处取得最小值.令,0)]([20)]([2707⎪⎪⎩⎪⎪⎨⎧=+--=∂∂=+--=∂∂∑∑==i i i i i i i b at y b M t b at y a M即 .0)]([0)]([77⎪⎪⎩⎪⎪⎨⎧=+-=+-∑∑==i i i i i i i b at y t b at y 整理得.871717171712⎪⎪⎩⎪⎪⎨⎧=+=+∑∑∑∑∑=====i i i i i i i i i i i y b t a t y t b t a (1) 计算,得.0.717,5.208,140,28717171271====∑∑∑∑====i ii i i iii ity ytt代入(1),得 ⎩⎨⎧=+=+5.20882871728140b a b a.125.27,3036.0=-=b a于是,所求经验公式为 .125.273036.0)(+-==t t f y (2) 根据上式算出的)(i t f 与实测的i y 有一定的偏差,见下表:注:偏差的平方和,108165.0=M 其平方根.392.0=M 我们把M 称为均方误差,它的大小在一定程度上反映了用经验公式近似表达原来函数关系的近似程度的好坏.注:本例中实测数据的图形近似为一条直线,因而认为所求函数关系可近似看作线性函数关系,这类问题的求解比较简便.有些实际问题中,经验公式的类型虽然不是线性函数,但我们可以设法把它转化成线性函数的类型来讨论.2.线性规划问题求多个自变量的线性函数在一组线性不等式约束条件下的最大值最小值问题,是一类完全不同的问题,这类问题叫做线性规划问题. 下面我们通过实例来说明.例18 (E10) 一份简化的食物由粮和肉两种食品做成, 每份粮价值30分, 其中含有4单位醣, 5单位维生素和2单位蛋白质; 每一份肉价值50分, 其中含有1单位醣, 4单位维生素和4单位蛋白质. 对一份食物的最低要求是它至少要由8单位醣, 20单位维生素和10单位蛋白质组成, 问应当选择什么样的食物, 才能使价钱最便宜.解 设食物由x 份粮和y 份肉组成,其价钱为.5030y x C +=由食物的最低要求得到三个不等式约束条件,即:为了有足够的醣,应有;84≥+y x 为了有足够的维生素,应有;2045≥+y x为了有足够的蛋白质,应有;1042≥+y x 并且还有.0,0≥≥y x 上述五个不等式把问题的解限制在平面上如图的阴影区域中,现在考虑直线族.5030y x C +=当C 逐渐增加时,与阴影区域相交的第一条直线是通过顶点S 的直线,S 是两条直线 2045=+y x 和1042=+y x 的交点,所以点S 对应于C 的最小值的坐标是),65,310(即这种食物是由313份粮和65份肉组成. 代入y x C 5030+=即得到所要求的食物的最低价格32141655031030min =⨯+⨯=C 分.下面的例子是用几何方法来解决的.例19 (E11) 一个糖果制造商有500g 巧克力, 100g 核桃和50g 果料. 他用这些原料生产三种类型的糖果. A 类每盒用3g 巧克力, 1g 核桃和1g 果料, 售价10元. B 类每盒用4g 巧克力和1g 核桃, 售价6元. C 类每盒是5g 巧克力, 售价4元. 问每类糖果各应做多少盒, 才能使总收入最大?解 设制造商出售C B A ,,三类糖果各为z y x ,,盒,总收入是z y x R 4610++=(元). 不等式约束条件由巧克力、核桃和果料的存货限额给出,依次为 .50,100,500543≤≤+≤++x y x z y x当然,由问题的性质知,y x ,和z 也是非负的,所以 .0,0,0≥≥≥z y x 于是,问题化为:求R 的满足这些不等式的最大值.上述不等式把允许的解限制在Oxy 空间中的一个多面体区域之内(如图).在平行平面R z y x =++4610中只有一部分平面和这个区域相交,随着R 增大,平面离原点越来越远.显然,R 的最大值一定出现在这样的平面上,这种平面正好经过允许值所在多面体区域的由图可见,R 的最大值是920元,相应的点是,)30,50,50(所以A 类50盒,B 类30盒,C 类30盒时收入最多.课堂练习1.求函数)(2)(),(22222y x y x y x f --+=的极值.2.求函数)sin(sin sin ),(y x y x y x f z +-+==在由x 轴, y 轴及直线π2=+y x 所围成三角形中的最大值.3.某工厂生产两种产品A 与B, 出售单价分别为10元与9元, 生产x 单位的产品A 与生产y 单位的产品B 的总费用是:)()33(01.03240022元y xy x y x +++++求取得最大利润时, 两种产品的产量各多少?。
高三线性规划知识点线性规划是高中数学中的一个重要知识点,它在实际生活中有着广泛的应用。
本文将全面介绍高三线性规划的相关知识,包括定义、基本概念、解题步骤以及一些典型例题。
一、线性规划的定义线性规划是一种数学模型,用于求解一个线性函数在一组线性约束条件下的最优值。
在实际生活中,我们常常需要在一定的条件下寻找最优解,例如:生产成本最小、收益最大、资源利用最佳等等。
线性规划通过建立数学模型,帮助我们找到最优解。
二、线性规划的基本概念1. 目标函数:线性规划的目标通常是最大化或最小化一个线性函数。
这个函数被称为目标函数,记作Z。
2. 线性约束条件:线性规划的约束条件是一组线性不等式或等式,限制了变量的取值范围。
3. 变量:线性规划的变量是我们要求解的未知数,可以用任意字母表示。
4. 可行解:满足所有约束条件的解称为可行解。
可行解的集合称为可行域。
5. 最优解:在所有可行解中,使目标函数取到最大值或最小值的解称为最优解。
三、线性规划的解题步骤1. 建立数学模型:根据问题的描述,将目标函数和约束条件用代数式表示出来。
2. 确定可行域:将约束条件化为不等式形式,并将它们表示在坐标系中,找出它们的交集,确定可行域的范围。
3. 确定最优解:在可行域内寻找目标函数的极值点,得出最优解。
4. 检验最优解:将最优解代入原问题中,检验是否满足所有约束条件。
四、典型例题例题1:某工厂生产甲、乙两种产品,甲产品每吨利润为1000元,乙产品每吨利润为1200元。
已知生产一吨甲产品需要材料A 30千克,材料B 10千克;生产一吨乙产品需要材料A 20千克,材料B 40千克。
工厂每天可以使用材料A 600千克,材料B 200千克。
问如何安排生产,使得利润最大化?解:首先,我们定义两个变量x和y,分别表示甲、乙产品的生产量(吨)。
目标函数Z表示利润的最大值,即Z=1000x+1200y。
约束条件如下:30x+20y ≤ 60010x+40y ≤ 200x,y ≥ 0我们可以将该问题转化为图形解法,将约束条件绘制在坐标系中,确定可行域的范围。
求函数最值的方法归纳函数的最大值和最小值是数学中一个非常重要的概念,对于函数的性质和图像的研究非常有帮助。
本文将介绍求函数最值的一些常用方法,并归纳总结出一些有效的求最值的技巧。
一、闭区间上求最值对于一个定义在闭区间[a,b]上的函数f(x),我们首先需要找到其在区间内的临界点。
临界点包括两种情况:一是函数的极值点,二是函数的不可导点。
然后,分别计算临界点和区间端点处函数的取值,最后找到最大值和最小值。
具体步骤如下:1.找到函数的临界点:求出函数的导数f'(x),将其导数等于零,并解方程求出函数的极值点。
2.判断函数是否在临界点可导:将临界点代入导数f'(x)中,如果导数存在,则临界点为可导点,如果导数不存在,则临界点为不可导点。
3.计算函数在临界点和区间端点处的取值:将临界点和区间端点代入原函数f(x)中,得到函数在这些点处的取值。
4.比较得出最大值和最小值:将计算得到的函数取值进行比较,找到最大值和最小值。
二、无穷区间上求最值对于一个定义在无穷区间(-∞,+∞)上的函数f(x),我们无法使用有限步骤来找到其最大值和最小值。
但是,我们可以使用以下方法来求解。
1.函数的图像观察法:观察函数的图像,找出函数的大致走势和极值点的位置。
通过观察可以初步得出函数的最大值和最小值的范围。
2. 函数的性质分析法:对于特定的函数类型,我们可以通过分析其性质来求解最值。
例如,对于二次函数f(x) = ax^2 + bx + c,如果a > 0,则函数的最小值发生在顶点处,如果a < 0,则函数的最大值发生在顶点处。
3.使用导数求极值:对于可导的函数,在极值点处导数等于零。
因此,我们可以求出函数的导数,并解方程求出极值点。
然后,通过比较函数在极值点和区间端点处的取值,得出最大值和最小值。
4.通过函数的变化趋势求极值:对于连续的函数,在函数的一些变化趋势中,极值点位于函数值的突变处。
通过观察函数的变化趋势,我们可以得出函数的最值。
第二章线性规划一.线性规划所研究的问题可以归结为两方面:1)在现有的资源条件下,如何充分利用资源,使目标完成的最好。
(求极大问题).2)在给定的目标和任务下,以最少的资源消耗或代价,去实现目标。
(求极小化问题)。
二.线性规划的标准型:1.标准型: max z=c1x1+c2x2+…+c n x ns.t. a11x1+a12x2+…a1n x1n=b1a21x1+a22x2+…+a2n x2=b2…a m1x1+a m2x2+…a mn x n=b mx1,x2,…,x n≥02.线性规划变换方法:1)min转换为max 目标函数乘以(-1);2)对于≤引进松弛变量,将其变成取等号。
对于≥引进剩余变量,将其变成取等号。
3)将变量中的非正限制或无限制转化为非负限制。
3.二维线性规划的图解法:1)正法向量:由目标函数系数组成的与等值线垂直的向量,称正法向量。
2)等值线:使目标函数取相等值的所有点的集合,称等值线。
4.二维线性规划解的形式:1)唯一最优解 2)无穷多个最优解 3)有可行解但无最优解 4)无可行解5.线性规划解的概念:1)解:满足约束方程条件的点。
2)可行解:满足所有约束条件的点。
(非负性约束)3)最优解:使目标函数得到极值的可行解。
4)基:由最大的线性无关的列向量所构成的子矩阵。
(基向量/非基向量)5)基变量:与基向量对应的变量称为基变量。
同理(非基变量)6)基本解:X=(B-1b)( 0 )7)基本可行解:对于基本解,同时又满足非负性要求称基本可行解。
(可行解与基本解之间相交的部分)有图。
8)可行基:基本可行解对应的基。
9)基本最优解:满足目标函数要求的基本解。
10)退化基本可行解:基本可行解中存在取值为零的基变量。
6.线性规划的基本定理:1)如果一个线性规划问题存在可行解,则一定有基本可行解。
2)若线性规划问题存在最优解,则一定存在最优基本可行解。
三 线性规划的求解1.单纯形方法(消去发):1)标准化处理。
第七章求极值及解线性规划问题命令与例题在一些实际问题中, 经常遇到需要知道某个已知函数(带有条件约束或不带条件约束)在哪些点取得极大值或极小值的问题,所考虑的已知函数常称为目标函数,Mathematica 提供了求目标函数的局部极小值命令和线性规划(即带有线性条件约束的线性目标函数在约束范围内的极小和极大值)命令。
7.1求函数的局部极值Mathematica只给出了求局部极小值的命令,如果要求局部极大值只要把命令中的目标函数加上负号即可,即把“目标函数”变为“-目标函数”就可以求局部极大值了。
Mathematica求函数局部极小值的一般形式为:FindMinimum [目标函数, {自变量名1,初始值1}, {自变量名2,初始值2},…]具体的拟合命令有:命令形式1:FindMinimum [f[x], {x, x0}]功能:以x0为初值, 求一元函数f(x)在x0附近的局部极小值。
命令形式2:FindMinimum [f[x], {x, { x0 , x1}}]功能:以x0和x1为初值,求一元函数f(x)在它们附近的局部极小值。
命令形式3:FindMinimum [f[x], {x, x0 , xmin,xmax }]功能:以x0为初值, 求一元函数f(x)在x0附近的局部极小值, 如果中途计算超出自变量范围[xmin,xmax], 则终止计算。
命令形式4:FindMinimum [f[x,y,...], {x, x0},{y, y0},…]功能:以点(x0, y0,…)为初值, 求多元函数f(x,y,…)在(x0, y0,…)附近的局部极小值。
注意:1)所有命令结果显示形式为:{极小值, {自变量-> 极小值点}}2)把上面命令中的目标函数f[…]写为–f[…],对应的命令就可以用来求局部极大值了,但要注意的是此时求出的结果是–f[…]的局部极小值,因此,还要把所求出的极小值前面加上负号才是所要的局部极大值。
3)命令2主要用于目标函数没有导数的情况。
例题例1.求函数y=3x4-5x2+x-1, 在[-2,2]的极大值、极小值和最大值、最小值。
解: 先画出函数图形,再确定求极值的初值和命令。
Mathematica 命令为:In[1]:= Plot[3x^4-5x^2+x-1,{x,-2,2}]Out[1]=-Graphics-从图中看到函数在-1和1附近有两个极小值点,在0附近有一个极大值点,用Mathematica 命令求之:In[2]:=FindMinimum[3x^4-5x^2+x-1,{x,1}]Out[2]= {-2.19701, {x -> 0.858028}} *函数在x=0.858028取得极小值-2.19701In[3]:=FindMinimum[3x^4-5x^2+x-1,{x,-1}]Out[3]= {-4.01997, {x -> -0.959273}} *函数在x=-0.959273取得极小值-4.01997In[4]:=FindMinimum[- (3x^4-5x^2+x-1), {x,0}]Out[4]= {0.949693, {x -> 0.101245}} *函数在x=0.101245取得极大值-0.949693In[5]:= 3x^4-5x^2+x-1/.x->-2 *计算函数在x=-2的值Out[5]=25In[6]:= 3x^4-5x^2+x-1/.x->2 *计算函数在x=2的值Out[6]=29所以,所求函数在[-2,2]的x=2处取得最大值29, 在x=-0.959273处取得最小值为-4.01997。
例2.求函数f(x,y,z)=x 4+siny-cosz,在点(0,5,4)附近的极小值。
解: In[7]:= FindMinimum[x^4+Sin[y]-Cos[z],{x,0},{y,5},{z,4}]Out[7]= {-2., {x -> 0., y -> 4.71239, z -> 6.28319}}故函数在(0, 4.71239, 6.28319)取得极小值-2。
例3.求函数f(x)= x sin[x2+1],在区间[1,2.5]内的极小值。
解:本题限制了求极值的范围,选用命令形式3,并取初值2,M a t h e m a t i c a命令为In[8]:=FindMinimum[x*Sin[x^2+1], {x, 2, 1, 2.5} ]Out[8]= {-1.94366, {x -> 1.96005}}求得函数在x= 1.96005取得极小值-1.94366,读者可以用绘图命令观察本题函数的图形以检验结果的正确性。
7.2解线性规划问题线性规划是运筹学的一个重要分支,应用很广。
线性规划问题可以描述为求一组非负变量,这些非负变量在满足一定线性约束的条件下,使一个线性目标函数取得极小(大)值的问题,线性规划的标准形式为:目标函数:minS= c 1x 1 + c 2x 2+ …+ c n x na11 x 1 + a12 x 2+….+ a1n x n= b 1a21 x 1 + a22 x 2+…. + a2n x n= b2约束条件:……….a m1x 1 + a m2x 2+….+ a mn x n=b mx 1 ,x 2 ,…, x n≥ 0这里x 1 ,x 2 ,…, x n是变量,c i, a ij,b i都是已知常数,且b i≥ 0,约束条件常用符号:s.t.表示。
线性规划的一般形式为:目标函数:minS= c 1x 1 + c 2x 2+ …+ c n x na11 x 1 + a12 x 2+….+ a1n x n b 1a21 x 1 + a22 x 2+…. + a2n x n b2s.t. ……….a m1 x 1 + a m2 x 2+….+ a mn x nb m式中符号“ ”可以是关系符号:>, <, =, ≥, ≤中的任意一个。
Mathematica提供了解线性规划(标准形式和一般形式)问题的命令,由于线性规划的标准形式是一般形式的特例,这里介绍解一般形式的线性规划问题的Mathematica命令。
Mathematica解一般线性规划问题的命令形式有:具体的拟合命令有:命令形式1:ConstrainedMin [f, {inequalities}, {x1,x2,…}]功能:求在给定约束条件inequalities下,线性目标函数f极小值和对应的极小点。
命令形式2:ConstrainedMax [f, {inequalities}, {x1,x2,…}]功能:求在给定约束条件inequalities下,线性目标函数f极大值和对应的极大点。
注意:1)命令1结果形式为:{极小值, {自变量1 -> 极小值点1,自变量2 -> 极小值点2,…}}。
2)命令2结果形式为:{极大值, {自变量1 -> 极大值点1,自变量2 -> 极大值点2,…}}。
3)上面命令中的f为线性规划中的目标函数,它必须是变量x1,x2,…的线性函数。
4)上面命令中的inequalities为线性规划中的约束不等式组,每个关系式必须用逗号分隔。
5)上面命令中的x1,x2,…线性规划中的自变量名称,它们必须取非负值且可以用其它符号名。
例题例4.求线性规划问题MaxS= 17x 1 -20 x 2 +18x 3x 1 -x 2 +x 3<10s.t. x 1 + x 3<5x 1 <5解: 本题用命令2求之。
Mathematica 命令为:In[9]:= ConstrainedMax[17x1-20x2+18x3, {x1-x2+x3<10,x1<5,x1+x3>20}, {x1, x2, x3}]Out[9]= {160, {x1 -> 0, x2 -> 10, x3 -> 20}}计算结果可得所求目标函数极大值为160,对应的极大值点为(0,10,20)。
例5.求线性规划问题Min m= 13x -y +5zx +y >=7,s.t. y + z < 10,x>2,y>0,z>0解: 本题用命令1求之。
Mathematica 命令为:In[10]:= ConstrainedMin[13x-y+5z, {x+y>=7, y+z<10, x>2, y>0, z>0}, {x,y,z}]Out[10]= {16, {x -> 2, y -> 10, z -> 0}}计算结果可得所求目标函数极小值为16,对应的极小值点为(0,10,0)。
例6.现有三种食品A1,A2,A3,各含有两种营养成分B1,B2, 每单位食物Ai含有Bj成分的数量及每种食物的单价如下表所示:问应如何选购食物,才能既满足对营养成分B1,B2的需要,又使费用最少?解: 设购买食品A1,A2,A3的数量分别为x 1, x 2,x 3,花费的费用为S,则本问题可以用以下的数学模型来描述:Min S= 4x 1 +2x 2 +3x 32x 1 + 4x 3≥ 5s.t. 2x 1 + 3x 2 +x 3≥ 4x 1 , x 2 , x 3 ≥ 0解: 用Mathematica 命令为:In[11]:= ConstrainedMax[4x1+2x2+3x3,{2x1+4x3>=5, 2x1+3x2+x3>=4,x1>=0,x2>=0,x3>=0 }, {x1, x2, x3}]Out[11]={67/12, {x1 -> 0, x2 -> 11/12, x3 -> 5/4}}计算结果显示购买11/12数量的食品A2, 5/4数量的食品A3可以满足本问题的要求,此时的花费的费用为67/12。
例7.求线性规划问题Min f = -x-3y-3z,3x+y+2z+ v =5s.t. x+ z+ 2v+w =2x+ 2z+u+2v =6x, y, z, u, v, w>0解: 本题用命令1求之。
Mathematica 命令为:In[10]:= ConstrainedMin[-x-3y-3z,{3x+y+2z+v==5, x+z+2v+w==2, x+2z+u+2v==6}, {x, y, z, u, v, w}]Out[10]= {-15, {x -> 0, y -> 5, z -> 0, u -> 6, v -> 0, w -> 2}}计算结果可得所求目标函数极小值为-15,对应的极小值点为(x, y, z, u, v, w)=(0,5,0,6,0,2)。