关于滤波电容、去耦电容、旁路电容作用
- 格式:pdf
- 大小:62.93 KB
- 文档页数:2
区别去耦电容去除在期间切换时从⾼高配到配电⽹网中的RF能量量储能作⽤用,供局部化的直流电源,减少跨板浪涌电流在VCC 引脚通常并联⼀一个去耦电容,电容同交隔直将交流分量量从这个电容接地有源器器件在开关时产⽣生的⾼高频开关噪声江燕电源线传播,去耦电容就是提供⼀一个局部的直流给有源器器件,减少开关噪声在板上的传播并且能将噪声引导到地。
如果主要是为了了增加电源和地的交流耦合,减少交流信号对电源的影响,就可以称为去耦电容;旁路路电容从元件或电缆中转移出不不想要的共模 RF 能量量。
这主要是通过产⽣生 AC 旁路路消除⽆无意的能量量进⼊入敏敏感的部分,另外还可以提供基带滤波功能(带宽受限)。
在电路路中,如果电容起的主要作⽤用是给交流信号提供低阻抗的通路路,就称为旁路路电容;电⼦子电路路中,去耦电容和旁路路电容都是起到抗⼲干扰的作⽤用,电容所处的位置不不同,称呼就不不⼀一样了了。
对于同⼀一个电路路来说,旁路路(bypass)电容是把输⼊入信号中的⾼高频噪声作为滤除对象,把前级携带的⾼高频杂波滤除,⽽而去耦 (decoupling)电容也称退耦电容,是把输出信号的⼲干扰作为滤除对象。
滤波电容选择经过整流桥以后的是脉动直流,波动⽅方位很⼤大,后⾯面⼀一般⽤用⼤大⼩小两个电容⼤大电容⽤用来稳定输出,因为电容两端电压不不能突变,可以使输出平滑,⼩小电容⽤用来滤除⾼高频⼲干扰,使输出电压纯净,电容越⼩小,谐振频率越⾼高,可滤除的⼲干扰频率越⾼高容量量的选择⼤大电容,负载越重,吸收电流的能⼒力力越强,这个⼤大电容的容量量就要越⼤大⼩小电容,凭经验,⼀一般104 即可1、电容对地滤波,需要⼀一个较⼩小的电容并联对地,对⾼高频信号提供了了⼀一个对地通路路。
2、电源滤波中电容对地脚要尽可能靠近地。
3、理理论上说电源滤波⽤用电容越⼤大越好,⼀一般⼤大电容滤低频波,⼩小电容滤⾼高频波。
4、可靠的做法是将⼀一⼤大⼀一⼩小两个电容并联,⼀一般要求相差两个数量量级以上,以获得更更⼤大的滤波频段.滤波电容电源和地直接连接去耦电容1.为本集成电路路蓄能电容2.滤除该期间产⽣生的⾼高频噪声,切断其通过供电回路路进⾏行行传播的通路路3.防⽌止电源携带的噪声对电路路构成⼲干扰滤波电容的选⽤用原则在电源设计中,滤波电容的选取原则是: C≥2.5T/R其中: C 为滤波电容,单位为UF; T 为频率, 单位为Hz,R 为负载电阻,单位为Ω当然,这只是⼀一般的选⽤用原则,在实际的应⽤用中,如条件(空间和成本)允许,都选取C≥5T/R.PCB制版电容的选择⼀一般的10PF 左右的电容⽤用来滤除⾼高频的⼲干扰信号,0.1UF 左右的⽤用来滤除低频的纹波⼲干扰,还可以起到稳压的作⽤用。
旁路电容和去耦电容一、引言旁路电容和去耦电容是电子电路中常见的两种电容器应用。
它们在不同的场景下起到了重要的作用。
本文将从定义、原理、应用以及选型等方面对旁路电容和去耦电容进行详细介绍。
二、旁路电容1. 定义旁路电容,又称旁路电容器,是指将电容器连接在电路中,以提供低阻抗路径来滤除高频噪声的装置。
其作用是将高频信号引到地,使其不进入到灵敏的电路中,从而保证电路的正常工作。
2. 原理旁路电容的原理是利用电容器的阻抗与频率成反比的特性。
在高频信号下,电容器的阻抗较小,相当于一个短路,因此高频信号会优先通过电容器,而不会进入到灵敏的电路中。
而在低频信号下,电容器的阻抗较大,相当于一个开路,所以低频信号可以绕过电容器,进入到灵敏的电路中。
3. 应用旁路电容广泛应用于各种电子设备中,特别是在功放电路、滤波电路和信号处理电路中。
它可以有效地滤除电源中的高频噪声,提高电路的抗干扰能力,保证信号的准确传输。
此外,旁路电容还可以用于电源线路的滤波,降低电源波动对设备的影响。
4. 选型旁路电容的选型需要考虑电容值、耐压、耐温度等因素。
一般来说,电容值越大,对高频信号的旁路作用越好;耐压越高,适用范围越广;耐温度越高,适应环境的能力越强。
因此,在选型时需要根据具体的应用场景来选择合适的旁路电容。
三、去耦电容1. 定义去耦电容,又称绕行电容,是指将电容器连接在电路中,以提供低阻抗路径来平衡电压的装置。
其作用是将电源中的纹波电压补偿掉,保证电路的稳定工作。
2. 原理去耦电容的原理是利用电容器的阻抗与频率成反比的特性。
在电源中存在纹波电压时,电容器的阻抗较小,相当于一个短路,因此纹波电压会优先通过电容器,而不会进入到电路中。
而在直流信号下,电容器的阻抗较大,相当于一个开路,所以直流信号可以绕过电容器,进入到电路中。
3. 应用去耦电容广泛应用于各种电子设备中,特别是在功放电路、放大器电路和稳压电路中。
它可以有效地补偿电源中的纹波电压,提高电路的稳定性,保证信号的可靠传输。
所谓电容,就是容纳和释放电荷的电子元器件。
电容的基本工作原理就是充电放电,当然还有整流、振荡以及其它的作用。
另外电容的结构非常简单,主要由两块正负电极和夹在中间的绝缘介质组成。
作为无源元件之一的电容,其作用不外乎以下几种:1、应用于电源电路,实现旁路、去藕、滤波和储能的作用1)旁路旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。
就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。
为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。
这能够很好地防止输入值过大而导致的地电位抬高和噪声。
地弹是地连接处在通过大电流毛刺时的电压降。
2)去藕去藕,又称解藕。
从电路来说,总是可以区分为驱动的源和被驱动的负载。
如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。
这就是耦合。
去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。
将旁路电容和去藕电容结合起来将更容易理解。
旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。
高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10uF或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。
总的来说旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。
这应该是他们的本质区别。
3)滤波从理论上(即假设电容为纯电容)说,电容越大,阻抗越小,通过的频率也越高。
但实际上超过1uF的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。
有时会看到有一个电容量较大电解电容并联了一个小电容,这时大电容通低频,小电容通高频。
1.隔直流:作用是阻止直流通过而让交流通过。
2.旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。
3.耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路4.滤波:这个对DIY而言很重要,显卡上的电容基本都是这个作用。
5.温度补偿:针对其它元件对温度的适应性不够带来的影响,而进行补偿,改善电路的稳定性。
6.计时:电容器与电阻器配合使用,确定电路的时间常数。
7.调谐:对与频率相关的电路进行系统调谐,比如手机、收音机、电视机。
8.整流:在预定的时间开或者关半闭导体开关元件。
9.储能:储存电能,用于必须要的时候释放。
例如相机闪光灯,加热设备等等。
(如今某些电容的储能水平已经接近锂电池的水准,一个电容储存的电能可以供一个手机使用一天。
电容就是两块导体(阴极和阳极)中间夹着一块绝缘体(介质)构成的电子元件。
电容的种类首先要按照介质种类来分。
这当中可分为无机介质电容器、有机介质电容器和电解电容器三大类。
不同介质的电容,在结构、成本、特性、用途方面都大不相同。
电容指的是在给定电位差下的电荷储藏量;记为C,国际单位是法拉(F)。
一般来说,电荷在电场中会受力而移动,当导体之间有了介质,则阻碍了电荷移动而使得电荷累积在导体上;造成电荷的累积储存,最常见的例子就是两片平行金属板。
也是电容器的俗称在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是:1法拉(F)= 1000毫法(mF)=1000000微法(μF)1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。
相关公式:一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法,即:C=Q/U但电容的大小不是由Q或U决定的,即:C=εS/4πkd 。
其中,ε是一个常数,S为电容极板的面积,d为电容极板的距离,k则是静电力常量。
电容器的作用这学期我学习了有关电容器的知识,我觉得这么一个小小的原件,这么简单的结构却蕴藏着这么多的原理,所以我的论文内容就是谈谈这么一个小小的电容器的不同作用,来体现在简单结构下的巨大价值。
首先在直流电路中,电容器就相当于断路,从电容器的结构上说,最简单的电容器是由两端的极板和中间的绝缘电介质(有的是空气)构成的。
通电后,极板带电,形成电势差,但是由于中间的绝缘物质,所以整个电容器是不导电的。
不过,这样的情况是在没有超过电容器的临界电压(击穿电压)的前提条件下的。
我们知道,任何物质都是相对绝缘的,当物质两端的电压加大到一定程度后,物质是都可以导电的,我们称这个电压叫击穿电压。
电容也不例外,电容被击穿后,就坏了,不再是断路了。
不过,这样的电压在电路中几乎是见不到的,所以都是在击穿电压以下工作的,可以被当做绝缘体看。
其次是在交流电路中,因为电流的方向是随时间变化的,而电容器则有着充放电的过程是,这个过程,在极板间形成变化的电场,而这个电场也是随时间变化。
实际上,电流是通过借助电场的“手”在电容器间通过的。
有句话叫通交流,阻直流,说的就是电容的这个性质。
下面说说电容的作用:1)旁路旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。
就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。
为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。
这能够很好地防止输入值过大而导致的地电位抬高和噪声。
2)去耦又称解耦。
从电路来说,总是可以区分电源和负载的。
如果负载电容比较大,电源要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作,这就是所谓的“耦合”。
去耦电容就是起到一个“电池”的作用,满足电源的变化,避免相互间的耦合干扰,在电路中进一步减小电源与参考地之间的高频干扰阻抗。
滤波电容、去耦电容、旁路电容作用电容在减小同步开关噪声起重要作用,而电源完整性设计的重点也在如何合理地选择和放置这些电容上。
各种各样的电容种类繁杂,但无论再怎么分类,其基本原理都是利用电容对交变信号呈低阻状态。
交变电流的频率 f 越高,电容的阻抗就越低。
旁路电容起的主要作用是给交流信号提供低阻抗的通路;去耦电容的主要功能是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地,加入去耦电容后电压的纹波干扰会明显减小;滤波电容常用于滤波电路中。
对于理想的电容器来说,不考虑寄生电感和电阻的影响,那么在电容设计上就没有任何顾虑,电容的值越大越好。
但实际情况却相差很远,并不是电容越大对高速电路越有利,反而小电容才能被应用于高频。
滤波电容用在电源整流电路中,用来滤除交流成分。
使输出的直流更平滑。
去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。
旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。
1. 去耦电容蓄能作用的理解(1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。
而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。
如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z= i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。
而去耦电容可以弥补此不足。
这也是为什么很多电路板在高频器件vcC f脚处放置小电容的原因之一(在Vcc 引脚上通常并联一个去耦电容,这样交流分量就从这个电容接地。
(2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。
去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。
2. 旁路电容与去耦电容的区别去耦电容:去除在器件切换时从高频器件进入到配电网络中的RF能量。
旁路电容和去耦电容作用和区别1. 引言在电子电路设计和高频电路中,旁路电容和去耦电容扮演着重要的角色。
它们被广泛应用于各种电子设备和电路中,起到稳定电压、抑制噪声和滤波的作用。
本文将介绍旁路电容和去耦电容的作用及其区别。
2. 旁路电容的作用旁路电容的作用是将高频信号从某些部件或节点旁路过去,以确保信号的稳定性和纯净性。
它通常与电源或地连接,将高频信号绕过感性元件,如电感或电源。
旁路电容可以消除感性元件对高频信号的阻抗,从而提高系统的性能。
旁路电容可以起到以下几个方面的作用: - 滤波作用:旁路电容能够对高频信号进行滤波,将噪声和干扰滤除,提高电路的信噪比。
- 提供稳定的电源:旁路电容能够提供电源电压的稳定性,减少电源噪声对电路的影响,保证电路正常工作。
- 改善信号传输:在传输线上,旁路电容可以抑制信号的反射和损耗,提高信号的传输效率和质量。
3. 旁路电容的选择和应用旁路电容的选择应根据具体的应用需求和电路特性进行。
重要的参数包括容值、耐压和温度系数等。
在电源旁路应用中,一般选择电解电容或固态电容,容值较大、耐压较高的电容。
而在高频应用中,通常选择钽电容或多层陶瓷电容,容值较小、频率响应较好的电容。
在实际应用中,旁路电容常被用于电源滤波、放大器的电源旁路、RF射频模块的旁路等场合。
4. 去耦电容的作用去耦电容是将电路中直流(DC)和交流(AC)分离的一种电容器。
它的作用是将直流信号绕开交流信号,保证电路中直流电压的稳定性,提供纯净的直流电源。
去耦电容通常被放置在集成电路(IC)的电源引脚处,将IC芯片的供电电压稳定到指定值,同时滤除电源中的噪声和纹波。
5. 去耦电容的选择和应用去耦电容的选择应根据芯片的需求和电源情况进行。
通常,去耦电容的容值要求较大,能够滤除更多的噪声和纹波。
常见的电容材料包括电解电容、陶瓷电容和铝电解电容等。
在高速数字电路中,去耦电容的选择要考虑芯片的工作频率和功耗等因素。
较高频率的应用需要选择具有较低等效串联电感和更低ESR(等效系列电阻)的陶瓷电容。
电容类别容在电路中的作用:具有隔断直流、连通交流、阻止低频的特性,广泛应用在耦合、隔直、旁路、滤波、调谐、能量转换和自动控制等。
1、滤波电容:它接在直流电压的正负极之间,以滤除直流电源中不需要的交流成分,使直流电平滑,通常采用大容量的电解电容,也可以在电路中同时并接其它类型的小容量电容以滤除高频交流电。
2、退耦电容:并接于放大电路的电源正负极之间,防止由电源内阻形成的正反馈而引起的寄生振荡。
3、旁路电容:在交直流信号的电路中,将电容并接在电阻两端或由电路的某点跨接到公共电位上,为交流信号或脉冲信号设臵一条通路,避免交流信号成分因通过电阻产生压降衰减。
4、耦合电容:在交流信号处理电路中,用于连接信号源和信号处理电路或者作为两放大器的级间连接,用于隔断直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。
5、调谐电容:连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。
6、衬垫电容:与谐振电路主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,并能显著地提高低频端的振荡频率。
7、补偿电容:与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。
8、中和电容:并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管极间电容造成的自激振荡。
9、稳频电容:在振荡电路中,起稳定振荡频率的作用。
10、定时电容:在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。
11、加速电容:接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。
12、缩短电容:在UHF高频头电路中,为了缩短振荡电感器长度而串联的电容。
13、克拉波电容:在电容三点式振荡电路中,与电感振荡线圈串联的电容,起到消除晶体管结电容对频率稳定性影响的作用。
14、锡拉电容:在电容三点式振荡电路中,与电感振荡线圈两端并联的电容,起到消除晶体管结电容的影响,使振荡器在高频端容易起振。
15、稳幅电容:在鉴频器中,用于稳定输出信号的幅度。
滤波电容、去耦电容、旁路电容效果去耦在直流电源回路中,负载的改动会致使电源噪声。
例如在数字电路中,当电路从一个状况改换为另一种状况时,就会在电源线上发作一个很大的尖峰电流,构成瞬变的噪声电压。
配备去耦电容能够按捺因负载改动而发作的噪声,是印制电路板的可靠性方案的一种惯例做法,配备准则如下:●电源输入端跨接一个十~十0uF的电解电容器,假定印制电路板的方位容许,选用十0uF以上的电解电容器的抗烦扰作用会十分好。
●为每个集成电路芯片配备一个0.01uF的陶瓷电容器。
如遇到印制电路板空间小而装不下时,可每4~十个芯片配备一个1~十uF钽电解电容器,这种器材的高频阻抗分外小,在500kHz~20MHz方案内阻抗小于1Omega;,并且漏电流很小(0.5uA以下)。
●关于噪声才调弱、关断时电流改动大的器材和ROM、RAM等存储型器材,应在芯片的电源线(Vcc)和地线(GND)间直接接入去耦电容。
●去耦电容的引线不能过长,分外是高频旁路电容不能带引线。
/////////////////////////////////////////////////////////////////////(1)运用电容滤波时,特定频段(比方高频噪音)的滤波作用取决于电容值及其寄生电感的谐振频率。
十00pF的电容寄生电感必定比十uF的小的多,因而谐振频率也会落在高频段(区),相应的高频阻抗会极小,对高频烦扰旁路(滤波)作用才显着.反之,谐振频率落在低频段(区),高频信号阻抗很大,低频阻抗则较小,表现为对低频烦扰较有用,而对高频烦扰却力不从心。
图1电容根柢构造和高频等效模型。
电容的根柢公式是:式(1)闪现,减小电容器极板之间的间隔(d)和添加极板的截面积(A)将添加电容器的电容量。
电容通常存在等效串联电阻(ESR)和等效串联电感(ESL)二个寄生参数。
图2是电容器在纷歧样作业频率下的阻抗(Zc)。
一个电容器的谐振频率(fo)能够从它自身电容量(C)和等效串联电感量(LESL)得到,即当一个电容器作业频率在fo以下时,其阻抗随频率的上升而减小,即(频率低,电容表现为较大的容抗,电感表现为很小的感抗)当电容器作业频率在fo以上时,其阻抗会随频率的上升而添加,即(频率高时,电容表现出很小的容抗恰当与短路,电感表现为很大的感抗)当电容器作业频率挨近fo时,电容阻抗就等于它的等效串联电阻(RESR)。
浅谈滤波电容、去耦电容、旁路电容之间区别滤波电容电容是两个彼此靠近又相互绝缘的导体。
滤波电容是指安装在整流电路两端用以降低交流脉动波纹系数提升高效平滑直流输出的一种储能器件。
由于滤波电路要求储能电容有较大电容量。
所以,绝大多数滤波电路使用电解电容。
电解电容由于其使用电解质作为电极(负极)而得名。
作用滤波电容用在电源整流电路中,用来滤除交流成分。
使输出的直流更平滑。
而且对于精密电路而言,往往这个时候会采用并联电容电路的组合方式来提高滤波电容的工作效果。
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。
滤波电容在开关电源中起著非常重要的作用,如何正确选择滤波电容,尤其是输出滤波电容的选择则是每个工程技术人员十分关心的问题。
50赫兹工频电路中使用的普通电解电容器,其脉动电压频率仅为100赫兹,充放电时间是毫秒数量级。
为获得更小的脉动系数,所需的电容量高达数十万微法,因此普通低频铝电解电容器的目标是以提高电容量为主,电容器的电容量、损耗角正切值以及漏电流是鉴别其优劣的主要参数。
而开关电源中的输出滤波电解电容器,其锯齿波电压频率高达数万赫兹,甚至是数十兆赫兹。
这时电容量并不是其主要指标,衡量高频铝电解电容优劣的标准是“阻抗- 频率”特性。
要求在开关电源的工作频率内要有较低的等效阻抗,同时对于半导体器件工作时产生的高频尖峰信号具有良好的滤波作用。
普通的低频电解电容器在万赫兹左右便开始呈现感性,无法满足开关电源的使用要求。
而开关电源专用的高频铝电解电容器有四个端子,正极铝片的两端分别引出作为电容器的正极,负极铝片的两端也分别引出作为负极。
电流从四端电容的一个正端流入,经过电容内部,再从另一个正端流向负载;从负载返回的电流也从电容的一个负端流入,再从另一个负端流向电源负端[3]。
分类一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。
关于滤波电容、去耦电容、旁路电容作用
2010年07月12日 星期一下午 01:47
滤波电容用在电源整流电路中,用来滤除交流成分。
使输出的直流更平滑。
去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。
旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。
1.关于去耦电容蓄能作用的理解
1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。
而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。
你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水,
这时候,水不是直接来自于水库,那样距离太远了,
等水过来,我们已经渴的不行了。
实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。
如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高, 而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,
阻抗Z=i*wL+R,线路的电感影响也会非常大,
会导致器件在需要电流的时候,不能被及时供给。
而去耦电容可以弥补此不足。
这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一
(在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。
)
2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。
去耦电容的主要功能就是提供
一 个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地
2.旁路旁路旁路电电容和去容和去耦耦电容的容的区区别
去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量。
去耦电容还可以为器件 供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。
旁路:从元件或电缆中转移出不想要的共模RF能量。
这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。
我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。
在电电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。
对于同一个电路来说,旁路(bypass)电容是把输输入信入信号号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信出信号号的干扰作为滤除对象。
/shanliang/6026/message.aspx。