中考函数与几何综合压轴题
- 格式:doc
- 大小:431.50 KB
- 文档页数:7
辽宁省沈阳市第一二六中学中考数学压轴题专项训练(学生版)中考数学压轴题(1)一次函数、反比例函数与几何综合1.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A,与y轴交于点B(0,9),与直线OC交于点C(8,3).(1)求直线AB的函数表达式;(2)过点C作CD⊥x轴于点D,将△ACD沿射线CB平移得到的三角形记为△A′C′D′,点A,C,D的对应点分别为A′,C′,D′,若△A′C′D′与△BOC重叠部分的面积为S,平移的距离CC′=m,当点A′与点B重合时停止运动.①若直线C′D′交直线OC于点E,则线段C′E的长为(用含有m的代数式表示);②当0<m<时,S与m的关系式为;③当S=时,m的值为.2.如图,平面直角坐标系中,O是坐标原点,直线y=kx+15(k≠0)经过点C(3,6),与x 轴交于点A,与y轴交于点B.线段CD平行于x轴,交直线y=x于点D,连接OC,AD.(1)填空:k=,点A的坐标是(,);(2)求证:四边形OADC是平行四边形;(3)动点P从点O出发,沿对角线OD以每秒1个单位长度的速度向点D运动,直到点D为止;动点Q同时从点D出发,沿对角线DO以每秒1个单位长度的速度向点O运动,直到点O为止.设两个点的运动时间均为t秒.①当t=1时,△CPQ的面积是.②当点P,Q运动至四边形CP AQ为矩形时,请直接写出此时t的值.3.在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B.(1)k的值是;(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.①如图,点E为线段OB的中点,且四边形OCED是平行四边形时,求▱OCED的周长;②当CE平行于x轴,CD平行于y轴时,连接DE,若△CDE的面积为,请直接写出点C的坐标.4.如图,直线y=x+6分别与x轴、y轴交于点A、B,点C为线段AB上一动点(不与A、B重合),以C为顶点作∠OCD=∠OAB,射线CD交线段OB于点D,将射线OC绕点O顺时针旋转90°交射线CD 于点E,连结BE.(1)证明:=;(用图1)(2)当△BDE为直角三角形时,求DE的长度;(用图2)(3)点A关于射线OC的对称点为F,求BF的最小值.(用图3)5.如图,△AOB是等边三角形,过点A作y轴的垂线,垂足为C,点C的坐标为(0,).P是直线AB上在第一象限内的一动点,过点P作y轴的垂线,垂足为D,交AO于点E,连接AD,作DM⊥AD交x轴于点M,交AO于点F,连接BE,BF.(1)填空:若△AOD是等腰三角形,则点D的坐标为;(2)当点P在线段AB上运动时(点P不与点A,B重合),设点M的横坐标为m.①求m值最大时点D的坐标;②是否存在这样的m值,使BE=BF?若存在,求出此时的m值;若不存在,请说明理由.6.如图,在平面直角坐标系中,四边形ABCD,A在y轴的正半轴上,B,C在x轴上,AD∥BC,BD平分∠ABC,交AO于点E,交AC于点F,∠CAO=∠DBC.若OB,OC的长分别是一元二次方程x2﹣5x+6=0的两个根,且OB>OC.请解答下列问题:(1)求点B,C的坐标;(2)若反比例函数y=(k≠0)图象的一支经过点D,求这个反比例函数的解析式;(3)平面内是否存在点M,N(M在N的上方),使以B,D,M,N为顶点的四边形是边长比为2:3的矩形?若存在,请直接写出在第四象限内点N的坐标;若不存在,请说明理由.7.如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.8.如图,在平面直角坐标系中,点A坐标为(6,0),点B坐标为(2,﹣2),直线AB与y轴交于点C.(1)求直线AB的函数表达式及线段AC的长;(2)点B关于y轴的对称点为点D.①请直接写出点D的坐标为;②在直线BD上找点E,使△ACE是直角三角形,请直接写出点E的横坐标为.9.在平面直角坐标系中,y关于x的一次函数y=x+5﹣c(c为常数),其图象与y轴交于点A,与x轴交于点B.(1)当c=4时,求线段OA的长;(2)若△OAB的面积为18.①求出满足条件的一次函数表达式;②若点A在y轴正半轴,点B在x轴负半轴上,且点C在直线AB上,当S△OAC=5S△OBC时,请直接写出点C的坐标.10.如图,在平面直角坐标系中,一次函数y=x+12的图象分别交x,y轴于点A和B,与经过点C(,0),D(0,﹣3)的直线交于点E.(1)求直线CD的函数解析式及点E的坐标;(2)点P是线段DE上的动点,连接BP.①当BP分△BDE面积为1:2时,请直接写出点P的坐标;②将△BPE沿着直线BP折叠,点E对应点E',当点E'落在坐标轴上时,直接写出点P的坐标.11.如图,在平面直角坐标系中,直线AB与y轴交于点A,与x轴交于点B,OB=2OA,点N在线段OB 上,过点N作NM⊥AB于M,当动点D从点A匀速运动到点M时,动点E恰好从点B匀速运动点O;当点D运动到线段AM中点时,动点E恰好运动到点N,设AD=x,OE=y,且.(1)求线段OA的长;(2)求线段BM的长;(3)连接DE,当△DEB的面积最大时,直接写出x的值.12.如图,在平面直角坐标系中,矩形OABC的边OA在x轴的正半轴上,OC在y轴的正半轴上,OA=3,OC=.动点P从C点出发沿折线CB﹣BA向终点A运动、在边CB上以每秒1个单位长度的速度匀速运动,在边BA上以每秒个单位长度的速度匀速运动.过点P作线段PD与射线OA相交于点D,且∠PDO=60°,连接PO,BO,PD与BO相交于点E.设点P的运动时间为t,△OPD与△OAB重合部分的面积为S.(1)直接写出点B的坐标(,);(2)当点P与点C重合时,求OD的长;(3)当点P在边BA上运动时,求BP的长(用含t的代数式表示);(4)直接写出S关于t的函数关系式及自变量t的取值范围.13.如图,在平面直角坐标系中,菱形OABC的边OA在x轴的正半轴上,点B,C在第一象限,∠C=120°,边OA=8.点P从原点O出发,沿x轴正半轴以每秒1个单位长度的速度做匀速运动:点Q从点A出发,沿边AB→BC→CO以每秒2个单位长度的速度做匀速运动.过点P作直线EP垂直于x轴并交折线OCB于E,交对角线OB于F,点P和点Q同时出发,分别沿各自路线运动,点Q运动到原点O时,P 和Q两点同时停止运动.(1)请直接填写点A的坐标(,),B的坐标(,),C的坐标(,);(2)当t=1时,求线段EF的长;(3)求t为何值时,点E与点Q重合;(4)设△AEQ的面积为S,当4≤t≤8,请直接写出s与t的函数关系式.14.如图,在平面直角坐标系xOy中,直线AB的表达式为y=kx+2,且经过点(1,4),与x轴、y轴分别交于点A、B,将直线AB向下平移4个单位得到直线l.(1)求直线l的表达式;(2)将△AOB绕点O逆时针旋转90°后得到△A′OB′(点A的对应点是点A′,点B的对应点是点B′),求直线A′B′与直线AB的交点坐标;(3)设直线l与x轴交于点C,点D为该平面直角坐标系内的点,如果以点A、B、C、D为顶点的四边形是平行四边形,求点D的坐标.15.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴交于点A,与y轴交于点B,将线段AB绕点A顺时针旋转90°,得到线段AC,过点B,C作直线,交x轴于点D.(1)点C的坐标为;求直线BC的表达式;(2)若点E为线段BC上一点,且△ABE的面积为,求点E的坐标;(3)在(2)的条件下,在平面内是否存在点P,使以点A,B,E,P为顶点的四边形为平行四边形,直接写出点P的坐标16.已知,在平面直角坐标系中,点O为坐标原点,直线y=kx+3与x轴交于点B,与y轴交于点A,OA =OB.(1)如图1,求直线AB的解析式;(2)如图2,点C是第一象限内一点,BC⊥OB,AD⊥AC交x轴负半轴于点D,若点D的横坐标为t,线段BC的长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,当d=﹣2t时,点E是线段AB上,点F在线段OA上,OF=BE,连接CE,作FG∥x轴,连接CG交线段AB于点H,连接DF、AG,若∠ECG=45°,DF=AG,求点H的坐标.17.如图,直线y=kx+b与x轴交于点A(4,0),与y轴交于点B(0,2),P是x轴上的动点.(1)求k的值.(2)连结PB,当∠PBA=90°时,求OP的长.(3)过点P作AB的平行线,交y轴于点M,点Q在直线x=2上.是否存在点Q,使得△PMQ是等腰直角三角形?若存在,请直接写出所有符合条件的点Q的坐标,若不存在,请说明理由.18.如图,在平面直角坐标系中,直线l1:y=kx+1交y轴于点A,交x轴于点B(4,0),过点E(2,0)的直线l2平行于y轴,交直线l1于点D,点P是直线l2上一动点(异于点D),连接P A、PB.(1)求直线l1的解析式;(2)设P(2,m),求△ABP的面积S的表达式(用含m的代数式表示);(3)当△ABP的面积为3时,则以点B为直角顶点作等腰直角△BPC,请直接写出点C的坐标.19.如图1,在平面直角坐标系中,已知直线l:y=kx+b与x轴交于点A,与y轴交于点B,直线CD相交于点D,其中AC=14,C(﹣6,0),D(2,8).(1)求直线l函数表达式;(2)如图2,点P为线段CD延长线上的一点,连接PB,当△PBD的面积为7时,将线段BP沿着y 轴方向平移,使得点P落在直线AB上的点P'处,求点P'到直线CD的距离;(3)若点E为直线CD上的一点,在平面直角坐标系中是否存在点F,使以点A、D、E、F为顶点的四边形为菱形,若存在请直接写出点F的坐标;若不存在,请说明理由.20.如图,在平面直角坐标系中,直线l1的解析式为y=﹣x,直线l2与l1交于点A(a,﹣a),与y轴交于点B(0,b),其中a,b满足﹣a=3.(1)求直线l2的解析式.(2)在平面直角坐标系中第二象限有一点P(m,5),使得S△AOP=S△AOB,请求出点P的坐标.(3)已知平行于y轴左侧有一动直线,分别与l1,l2交于点M、N,且点M在点N的下方,点Q为y 轴上一动点,且△MNQ为等腰直角三角形,请求出满足条件的点Q的坐标.21.如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式;(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(﹣,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.22.把正方形纸片放在直角坐标系中,如图所示,正方形纸片ABCD的边长为3,点E、F分别在BC、CD 上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知3BE=BC.(1)请直接写出D、E两点的坐标,并求出直线EF的解析式;(2)在直线EF上是否存在点M,使得△AFM的面积是△AEF的面积的一半,若存在,请求出点M的坐标,若不存在,请说明理由.(3)若点P、Q分别是线段AG、AF上的动点,则EP+PQ的最小值是多少?并求出此时点Q的坐标.23.在平面直角坐标系中,点A的坐标为(﹣,0),点B在直线l:上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.①若BA=BO,求证:CD=CO.②若∠CBO=45°,求四边形ABOC的面积.(2)是否存在点B,使得以A,B,C为顶点的三角形与△BCO相似?若存在,求OB的长;若不存在,请说明理由.24.如图,平面直角坐标系中,直线AC解析式为y=mx+b与y轴交于点A,与x轴交于点C,直线BE解析式为y=nx+b﹣10交y轴于点E,与x轴交于点B.(1)求线段AE长;(2)连接AB,K为线段AB上一点,F为线段AC上一点,连接FK交y轴于点G,若直线FK解析式为y=﹣x+k,求tan∠AGK的值;(3)在(2)的条件下,若∠ABE=45°,∠ACB=2∠EBO,AC=15,取AG中点H,连接KH,若KH =3,求F点坐标.25.如图在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b分别交x轴,y轴于点A、B,OA=4,∠OBA的外角平分线交x轴于点D.(1)求点D的坐标;(2)点P是线段BD上一点(不与B、D重合),过点P作PC⊥BD交x轴于点C,设点P的横坐标为t,△BCD的面积为S,求S与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,PC的延长线交y轴于点E,当PC=PB时,将射线EP绕点E旋转45°交直线AB于点F,求F点坐标.26.如图1,在平面直角坐标系中,直线l1:y=﹣x+2与x轴交于点A,与y轴交于点B,与直线l2交于点C(m,3),直线l2与x轴交于点D(﹣2,0).(1)求直线l2的解析式;(2)如图2,点P在线段CD上,连接AP,3S△APD=2S△ACD,过点P的直线交x轴负半轴于点M,交y轴正半轴于点N,请问:+是否为定值?若是,求出定值;若不是,请说明理由.(3)当点E在直线l1上运动时,平面内是否存在一点F,使得以点C、D、E、F为顶点的四边形是菱形?若存在,求出点E的坐标;若不存在,请说明理由.27.在正方形ABCD中,点E是直线BC上一点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)如图1,若点E是BC的中点.求证:AE=EF;(2)如图2,若点E是BC边上任意一点(不含B,C),结论“AE=EF”还成立吗?若成立,请证明;若不成立,请说明理由;(3)如图3,若点E是BC延长线上任意一点,结论“AE=EF”还成立吗?若成立,请证明若不成立,请说明理由;(4)如图4,在平面直角坐标系xOy中,点O与点B重合,正方形的边长为4,若点F恰好落在直线y =x+7上,请直接写出此时点E的坐标.28.如图,在平面直角坐标系xOy中,点A在y轴的正半轴上,点B在x轴的正半轴上,OA=OB=10.(1)求直线AB的解析式;(2)若点P是直线AB上的动点,当S△OBP=S△OAP时,求点P的坐标;(3)将直线AB向下平移10个单位长度得到直线l,点M,N是直线l上的动点(M,N的横坐标分别是x M,x N,且x M<x N),MN=4,求四边形ABNM的周长的最小值,并说明理由.29.如图1,在平面直角坐标系中,O为坐标原点,直线y=ax+10a分别交x轴、y轴于点A、B,△AOB 的面积为25.(1)求a的值;(2)如图2,点D为AB上一点(D不与A、B重合),C为x轴正半轴一点,连接CD交y轴于点E,C、D关于点E对称,设点D的横坐标为t,∠DCA的正切值为s,求s关于t的函数关系式;(3)如图3,在(2)的条件下,F为DE上一点,K为CF的中点,连接BK,2∠ACD=90°﹣∠BKF,P为第一象限一点,CP⊥OC,连接FP、FB,将FP沿FB翻折交BD于点Q,FQ=FP,当s=时,求直线PQ的解析式.30.直线y=kx+10k交x轴、y轴于A、B两点.(1)如图1,求点A坐标;(2)如图2,点D为第三象限内一点,连接DB交x轴于点C,若BA=BD,∠DAC=∠ABD,设点D 的横坐标为t,求AC长(用t的代数式来表示);(3)如图3,在(2)的条件下,作射线DO,当DO∥AB时,在射线DO上是否存在一点E,使得∠AEB =45°,若存在,请求出直线BE的解析式;若不存在,请说明理由.31.如图1,在平面直角坐标系xOy中,已知直线AB:y=﹣x+3与直线CD:y=kx﹣2相交于点M(4,a),分别交坐标轴于点A、B、C、D,点P是线段CD延长线上的一个点,△PBM的面积为15.(1)求直线CD解析式和点P的坐标;(2)如图2,当点P为线段CD上的一个动点时,将BP绕点B逆时针旋转90°得到BQ,连接PQ与OQ.点Q随着点P的运动而运动,请求出点Q运动所形成的线段所在直线的解析式,以及OQ的最小值.(3)在(1)的条件下,直线AB上有任意一点F,平面直角坐标系内是否存在点N,使得以点B、D、F、N为顶点的四边形是菱形,如果存在,请直接求出点N的坐标;如果不存在,请说明理由.32.如图,直线y=k(x﹣6)交x轴正半轴于点A,交y轴正半轴于点B,且△AOB的面积等于27.(1)求直线AB的解析式;(2)P为线段AB上一点,过点B作BD∥x轴,交OP延长线于点D,设点P的横坐标为m,线段BD 的长为d,求d与m的函数关系式;(3)在(2)的条件下,过点P作PE⊥x轴,垂足为E,连接AE交OP于点F,Q为PE延长线上一点,若DE+EF=AF,∠AQD=45°,求PQ的长.33.如图,在平面直角坐标系xOy中,直线l1:y=x+m与y轴交于点A(0,3),直线l2:y=x﹣与x轴交于点B,点M,N分别是直线l1,l2在第一象限内的动点,且∠MON=60°,连接MN.(1)直接写出m的值,点B的坐标,∠OAM及∠OBN的度数;(2)求AM•BN的值;(3)当△MON是直角三角形时,直接写出点M的坐标.34.如图,在平面直角坐标系中,矩形OABC的边OC、OA分别在x轴、y轴上,点B的坐标为(8,4),连接AC.动点P从点A出发,以每秒个单位长度的速度沿对角线AC向终点C匀速运动,动点Q从点C出发,以每秒4个单位长度的速度沿C→O→A路线,向终点A匀速运动,两点同时出发,一点到达终点,另一点即停,连接PQ.设运动时间为t秒(t>0).(1)用含t的代数式表示:CQ=;CP=;(2)当点Q在边OC上,且△PQC为直角三角形时,直接写出t的值:t=;(3)过点P作PE⊥AB交AB于点E,连接EQ交对角线AC于点F,①t=时,S△EFP:S△EF A=2:3;②当0<t<2时,t=,EQ取得最小值;当2<t<3时,QE的最小值为.35.如图,在平面直角坐标系中,直线y=3x+6与x轴交于点B,与y轴交于点A,点C(3,0),连接AC 作点O关于直线AB的对称点E,线段OE交直线AB于点F,过点E作EH⊥x轴于点H,连接EB.(1)求证:△EHO∽△BOA;(2)①设HE=a,用含a的代数式表示HO=;②求a的值,并直接写出直线BE的表达式;(3)点M在直线BE上,连接AM,以线段AM为边作正方形AMPN(点A、M、P、N以逆时针方向排序),点Q在平面内,当四边形BCNQ为菱形时,连接PQ,请直接写出PQ的长度.36.如图,在平面直角坐标系中,矩形ABCO的顶点B的坐标是(6,4),动点P从点A出发,以每秒1个单位的速度沿线段AB运动,动点Q从点C出发,以每秒2个单位的速度沿线段OC运动,连接OB,连接PQ与线段PQ相交于点D,两点同时出发,当点Q到达点O时,P、Q同时停止运动,设运动时间为t(t>0).(1)AP=,OQ=;(请用含t的代数式表示)(2)当时,求t的值;(3)在P、Q运动的过程中,将矩形AOCB沿PQ折叠,点A,点O的对应点分别是点E,点F,①当点F恰好落在线段OB上时,直接写出此时的t值;②连接PF,连接OF,当∠PFO=45°时,直接写出此时点F的坐标.37.如图1,在坐标系中的△ABC,点A、B在x轴,点C在y轴,且∠ACB=90°,∠B=30°,AC=4,D是AB的中点.(1)求直线BC的表达式.(2)如图2,若E、F分别是边AC,CD的中点,矩形EFGH的顶点都在△ACD的边上.①请直接写出下列线段的长度:EF=,FG=.②将矩形EFGH沿射线AB向右平移,设矩形移动的距离为m,矩形EFGH与△CBD重叠部分的面积为S,当S=时,请直接写出平移距离m的值.(3)如图3,在(2)的条件下,在矩形EFGH平移过程中,当点F在边BC上时停止平移,再将矩形EFGH绕点G按顺时针方向旋转,当点H落在直线CD上时,此时矩形记作E1F1GH1,由H1向x轴作垂线,垂足为Q,则=.38.如图,点A、B在x轴上,点C在y轴上,且OA=2,OB=4,OC=8,直线MN过AB的中点且与y 轴平行,与直线BC交于点M,与x轴交于点N.(1)求点M的坐标.(2)若点P是直线MN上的一个动点,直接写出点P的坐标,使以P、C、M为顶点的三角形与△MNB 相似.(3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到直线MN上的点F,最后返回到点C.要使动点G走过的路程最短,请直接写出点E、F的坐标,并直接写出最短路程.(4)点Q是y轴上的一点,点R在x轴上,直接写出使△MQR为等腰直角三角形的Q的坐标.39.如图,在平面直角坐标系中,直线l1:y=x+与过点A(3,0)的直线l2交于点C(1,m),与x 轴交于点B.(1)点B坐标,直线l2的表达式;(2)点P是直线l2上的一个动点,过点P作EF⊥x轴于点E,交直线l1于点F,利用(1)中的结论,解答下列各问:①若PF=AB,求点P的横坐标;②过点P作PQ⊥l1于点Q,若PQ=2PE,请直接写出点P的坐标;③直线l1与y轴交于点D,过点B作y轴的平行线l3,在x轴上方的l3上有一点G,在线段BD上有一点H,若DH=BG,请直接写出OG+OH的最小值.40.在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象经过点A(6,0)和点B(0,9).与直线y=x相交于点C,过点C作CE⊥x轴于点E,将△OCE沿射线OC平移,移动后的三角形记为△O′C′E′(点O,C,E的对应点分别记为点O′,C′,E′),点O′与点C重合时运动停止.(1)求直线AB的表达式及点C的坐标;(2)①如图,当点E′落在线段AB上时,设点E′的横坐标为a,求a的值;②设△O′C′E′与△ACE重叠部分面积为S,△OCE沿射线OC平移的距离OO′为t,直接写出S=时,t的值.41.如图①,在矩形OABC中,OA=4,OC=3,分别以OC、OA所在的直线为x轴、y轴,建立如图所示的坐标系,连接OB,反比例函数y=(x>0)的图象经过线段OB的中点D,并与矩形的两边交于点E和点F,直线l:y=kx+b经过点E和点F.(1)求反比例函数的解析式;(2)在第一象限内,请直接写出关于x的不等式kx+b≤的解集:.(3)如图②,将线段OB绕点O顺时针旋转一定角度,使得点B的对应点H恰好落在x轴的正半轴上,连接BH,作OM⊥BH,点N、点G为线段OM.上的动点,且GN=.①的值为;②求四边形CGNH周长的最小值.42.已知,矩形OCBA在平面直角坐标系中的位置如图所示,点C在x轴的正半轴上,点A在y轴的正半轴上,已知点B的坐标为(4,2),反比例函数y=的图象经过AB的中点D,且与BC交于点E,设直线DE的解析式为y=mx+n,连接OD,OE.(1)求反比例函数y=的表达式和点E的坐标;(2)点M为y轴正半轴上一点,若△MBO的面积等于△ODE的面积,求点M的坐标;(3)点P为x轴上一点,点Q为反比例函数y=图象上一点,是否存在点P、Q使得以点P,Q,D,E为顶点的四边形为平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.43.如图1,矩形OABC的顶点A、C分别落在x轴、y轴的正半轴上,点B(4,3),反比例函数y=(x >0)的图象与AB、BC分别交于D、E两点,BD=1,点P是线段OA上一动点.(1)求反比例函数关系式和点E的坐标;(2)如图2,连接PE、PD,求PD+PE的最小值;(3)如图3,当∠PDO=45°时,求线段OP的长.44.如图,在平面直角坐标系中,一次函数y=﹣x+1与反比例函数y=的图象在第四象限相交于点A(2,﹣1),一次函数的图象与x轴相交于点B.(1)求反比例函数的表达式及点B的坐标;(2)当一次函数值小于反比例函数值时,请直接写出x的取值范围是;(3)点C是第二象限内直线AB上的一个动点,过点C作CD∥x轴,交反比例函数y=的图象于点D,若以O,B,C,D为顶点的四边形为平行四边形,请直接写出点C的坐标为.45.如图,一次函数y=kx+b(k>0)的图象与反比例函数y=(x>0)的图象交于点A,与x轴交于点B,与y轴交于点C,AD⊥x轴于点D,CB=CD,点C关于直线AD的对称点为点E.(1)点E是否在这个反比例函数的图象上?请说明理由;(2)连接AE、DE,若四边形ACDE为正方形.①求k、b的值;②若点P在y轴上,当|PE﹣PB|最大时,求点P的坐标.46.如图,一次函数y=x+1的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y轴交于点B.(1)求a,k的值;(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.①求△ABC的面积;②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.47.如图,在平面直角坐标系xOy中,一次函数y=﹣x+5的图象与反比例函数y=(k>0)的图象交于A、B两点(点A在点B左边),交x轴于点C,延长AO交反比例函数y=(k>0)的图象于点E,点F为第四象限内一点,∠AFE=90°,连接OF.(1)填空:FO AO(填“>”、“=”或“<”);(2)连接CF,若AF平分∠OAC.①若△AFC的面积为10,求k的值;②连接BF,四边形AOFB能否为菱形?若能,直接写出符合条件的k的值;若不能,说明理由.48.如图1,在平面直角坐标系中,直线l:y=﹣2x+2与x轴交于点A,将直线l绕着点A顺时针旋转45°后,与y轴交于点B,过点B作BC⊥AB,交直线l于点C.(1)求点A和点C的坐标;(2)如图2,将△ABC以每秒3个单位的速度沿y轴向上平移t秒,若存在某一时刻t,使A、C两点的对应点D、F恰好落在某反比例函数的图象上,此时点B对应点E,求出此时t的值;(3)在(2)的情况下,若点P是x轴上的动点,是否存在这样的点Q,使得以P、Q、E、F四个点为顶点的四边形是菱形?若存在,请直接写出符合题意的点Q的坐标;若不存在,请说明理由.49.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y=的第一象限内的图象上,OA=6,OC=10,动点P在x轴的上方,且满足S△P AO=.(1)若点P在这个反比例函数的图象上,求点P的坐标;(2)连接PO、P A,求PO+P A的最小值;(3)若点Q是平面内一点,使得以A、B、P、Q为顶点的四边形是菱形,则请你直接写出满足条件的所有点Q的坐标.50.如图,在平面直角坐标系中,四边形ABCO为矩形,B(5,4),D(﹣3,0),点P从点A出发,以每秒1cm的速度沿AB方向向终点B运动;点Q从点D出发,以每秒2cm的速度沿DC方向向终点C运动,已知动点P、Q同时出发,当点P、Q有一点到达终点时,P、Q都停止运动,设运动时间为t秒.(1)用含t的代数式表示:BP=cm,CQ=cm;(2)函数y=的图象在第一象限内的一支双曲线经过点P,且与线段BC交于点M,若出△POM的面积为7.5cm2,试求此时t的值;(3)点P、Q在运动过程的中,是否存在某一时刻t,使坐标平面上存在点E,以P、Q、C、E为顶点的四边形刚好是菱形?若存在,请求出所有满足条件的t的值,若不存在,请说明理由.51.在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,并与反比例函数y=(k≠0)的图象在第一象限相交于点C,且点B是AC的中点.(1)如图1,求反比例函数y=(k≠0)的解析式;(2)如图2,若矩形FEHG的顶点E在直线AB上,顶点F在点C右侧的反比例函数y=(k≠0)图象上,顶点H,G在x轴上,且EF=4.①求点F的坐标;②若点M是反比例函数的图象第一象限上的动点,且在点F的左侧,连结MG,并在MG左侧作正方形GMNP.当顶点N或顶点P恰好落在直线AB上,直接写出对应的点M的横坐标.52.如图(一),平面直角坐标系中,已知A(2,0)、B(0,4),以AB为直角边作等腰直角△ABC,其中∠BAC=90°,AC=AB,点C在第一象限内.双曲线y=经过点C.(1)求双曲线y=的表达式;(2)过点B的直线BE交x轴于点E,交线段AC于点D,若∠DBC=∠OBA.求直线BE的解析式;(3)在(2)的条件下,直线BE沿y轴正方向平移,恰好经过点C时,与双曲线k的另一个交点为F (m,n),如图(二).①连接FB、FD,则四边形ABFD的面积是;②连接OF,求OF的长度.53.如图,在平面直角坐标系中,一次函数y1=x﹣2的图象与反比例函数(k≠0)的图象交于A(﹣2,a)、B(m,2)两点,与y轴交于点C,与x轴交于点D,连接OA、OB.(1)求反比例函数(k≠0)的表达式;(2)求△AOB的面积;(3)点N为坐标轴上一点,点M为y2的图象上一点,当以点C、D、M、N为顶点的四边形是平行四边形时,请直接写出所有满足条件的N点的坐标.54.如图,一次函数y1=k1x+4与反比例函数y2=的图象交于点A(2,m)和B(﹣6,﹣2),与y轴交于点C.(1)求一次函数与反比例函数的表达式;(2)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点,设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=5:1时,求点P的坐标;(3)在(2)的条件下,点M是直线OP上的一个动点,当△MBC是以BC为斜边的直角三角形时,求点M的坐标.55.如图,等边△OAB和等边△AEF的一边都在x轴上,双曲线y=(k>0)经过OB的中点C和AE的中点D.已知等边△OAB的边长为4.(1)求k的值;(2)求等边△AEF的边长;(3)将等边△AEF绕点A任意旋转,得到等边△AE'F',P是E'F'的中点(如图2所示),连结BP,直接写出BP的最大值.56.如图,在平面直角坐标系中,直线y=3x+b经过点A(﹣1,0),与y轴正半轴交于B点,与反比例函数y=(x>0)交于点C,且AC=3AB,BD∥x轴交反比例函数y=(x>0)于点D.(1)求b、k的值;(2)如图1,若点E为线段BC上一点,设E的横坐标为m,过点E作EF∥BD,交反比例函数y=(x >0)于点F.若EF=BD,求m的值.(3)如图2,在(2)的条件下,连接FD并延长,交x轴于点G,连接OD,在直线OD上方是否存在。
周日解答题压轴题二次函数与几何图形综合一模块一2022中考真题集训类型一二次函数中的最值问题(1)自变量范围与最值问题1.(2022•绍兴)已知函数y =-x 2+bx +c (b ,c 为常数)的图象经过点(0,-3),(-6,-3).(1)求b ,c 的值.(2)当-4≤x ≤0时,求y 的最大值.(3)当m ≤x ≤0时,若y 的最大值与最小值之和为2,求m 的值.思路引领:(1)将图象经过的两个点的坐标代入二次函数解析式解答即可;(2)根据x 的取值范围,二次函数图象的开口方向和对称轴,结合二次函数的性质判定y 的最大值即可;(3)根据对称轴为x =-3,结合二次函数图象的性质,分类讨论得出m 的取值范围即可.解:(1)把(0,-3),(-6,-3)代入y =-x 2+bx +c ,得b =-6,c =-3.(2)∵y =-x 2-6x -3=-(x +3)2+6,又∵-4≤x ≤0,∴当x =-3时,y 有最大值为6.(3)①当-3<m ≤0时,当x =0时,y 有最小值为-3,当x =m 时,y 有最大值为-m 2-6m -3,∴-m 2-6m -3+(-3)=2,∴m =-2或m =-4(舍去).②当m ≤-3时,当x =-3时y 有最大值为6,∵y 的最大值与最小值之和为2,∴y 最小值为-4,∴-(m +3)2+6=-4,∴m =-3-10或m =-3+10(舍去).综上所述,m =-2或-3-10.总结提升:此题主要考查了待定系数法求二次函数解析式以及二次函数的性质等知识,正确分类讨论得出m 的取值范围是解题关键.2.(2022•安顺)在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P 为和谐点.例如:点(1,1),12,12 ,(-2,-2),⋯⋯都是和谐点.(1)判断函数y =2x +1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y =ax 2+6x +c (a ≠0)的图象上有且只有一个和谐点52,52.①求a ,c 的值;周日②若1≤x ≤m 时,函数y =ax 2+6x +c +14(a ≠0)的最小值为-1,最大值为3,求实数m 的取值范围.思路引领:(1)设函数y =2x +1的和谐点为(x ,x ),可得2x +1=x ,求解即可;(2)将点52,52代入y =ax 2+6x +c ,再由ax 2+6x +c =x 有且只有一个根,Δ=25-4ac =0,两个方程联立即可求a 、c 的值;②由①可知y =-x 2+6x -6=-(x -3)2+3,当x =1时,y =-1,当x =3时,y =3,当x =5时,y =-1,则3≤m ≤5时满足题意.解:(1)存在和谐点,理由如下,设函数y =2x +1的和谐点为(x ,x ),∴2x +1=x ,解得x =-1,∴和谐点为(-1,-1);(2)①∵点52,52是二次函数y =ax 2+6x +c (a ≠0)的和谐点,∴52=254a +15+c ,∴c =-254a -252,∵二次函数y =ax 2+6x +c (a ≠0)的图象上有且只有一个和谐点,∴ax 2+6x +c =x 有且只有一个根,∴Δ=25-4ac =0,∴a =-1,c =-254;②由①可知y =-x 2+6x -6=-(x -3)2+3,∴抛物线的对称轴为直线x =3,当x =1时,y =-1,当x =3时,y =3,当x =5时,y =-1,∵函数的最大值为3,最小值为-1;当3≤m ≤5时,函数的最大值为3,最小值为-1.总结提升:本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,理解定义,并与二次函数的性质结合解题是关键.(2)胡不归问题3.(2022•淮安)如图(1),二次函数y =-x 2+bx +c 的图象与x 轴交于A 、B 两点,与y 轴交于C 点,点B 的坐标为(3,0),点C 的坐标为(0,3),直线l 经过B 、C 两点.(1)求该二次函数的表达式及其图象的顶点坐标;(2)点P 为直线l 上的一点,过点P 作x 轴的垂线与该二次函数的图象相交于点M ,再过点M 作y 轴的垂线与该二次函数的图象相交于另一点N ,当PM =12MN 时,求点P 的横坐标;(3)如图(2),点C 关于x 轴的对称点为点D ,点P 为线段BC 上的一个动点,连接AP ,点Q 为线段AP 上一点,且AQ =3PQ ,连接DQ ,当3AP +4DQ 的值最小时,直接写出DQ 的长.周日思路引领:(1)用待定系数法求函数的解析式即可;(2)设P(t,-t+3),则M(t,-t2+2t+3),N(2-t,-t2+2t+3),则PM=|t2-3t|,MN=|2-2t|,由题意可得方程|t2-3t|=12|2-2t|,求解方程即可;(3)由题意可知Q点在平行于BC的线段上,设此线段与x轴的交点为G,由QG∥BC,求出点G(2,0),作A点关于GQ的对称点A',连接A'D与AP交于点Q,则3AP+4DQ=4DQ+34AP=4 (DQ+AQ)≥4A'D,利用对称性和∠OBC=45°,求出A'(2,3),求出直线DA'的解析式和直线QG的解析式,联立方程组y=-x+2y=3x-3,可求点Q54,34,再求DQ=5104.解:(1)将点B(3,0),C(0,3)代入y=-x2+bx+c,∴-9+3b+c=0c=3,解得b=2c=3,∴y=-x2+2x+3,∵y=-x2+2x+3=-(x-1)2+4,∴顶点坐标(1,4);(2)设直线BC的解析式为y=kx+b,∴3k+b=0b=3,解得k=-1b=3,∴y=-x+3,设P(t,-t+3),则M(t,-t2+2t+3),N(2-t,-t2+2t+3),∴PM=|t2-3t|,MN=|2-2t|,∵PM=12MN,∴|t2-3t|=12|2-2t|,解得t=1+2或t=1-2或t=2+3或t=2-3,∴P点横坐标为1+2或1-2或2+3或2-3;(3)∵C(0,3),D点与C点关于x轴对称,∴D(0,-3),令y=0,则-x2+2x+3=0,解得x=-1或x=3,周日∴A (-1,0),∴AB =4,∵AQ =3PQ ,∴Q 点在平行于BC 的线段上,设此线段与x 轴的交点为G ,∴QG ∥BC ,∴AQ AP =AG BA ,∴34=AG 4,∴AG =3,∴G (2,0),∵OB =OC ,∴∠OBC =45°,作A 点关于GQ 的对称点A ',连接A 'D 与AP 交于点Q ,∵AQ =A 'Q ,∴AQ +DQ =A 'Q +DQ ≥A 'D ,∴3AP +4DQ =4DQ +34AP =4(DQ +AQ )≥4A 'D ,∵∠QGA =∠CBO =45°,AA '⊥QG ,∴∠A 'AG =45°,∵AG =A 'G ,∴∠AA 'G =45°,∴∠AGA '=90°,∴A '(2,3),设直线DA '的解析式为y =kx +b ,∴b =-32k +b =3,解得k =3b =-3 ,∴y =3x -3,同理可求直线QG 的解析式为y =-x +2,联立方程组y =-x +2y =3x -3 ,解得x =54y =34,∴Q 54,34 ,∴DQ =5104.总结提升:本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,利用轴对称求最短距离的方法,解绝对值方程,待定系数法求函数的解析式是解题的关键.4.(2022•梧州)如图,在平面直角坐标系中,直线y =-43x -4分别与x ,y 轴交于点A ,B ,抛物线y =518x 2+bx +c 恰好经过这两点.周日(1)求此抛物线的解析式;(2)若点C 的坐标是(0,6),将△ACO 绕着点C 逆时针旋转90°得到△ECF ,点A 的对应点是点E .①写出点E 的坐标,并判断点E 是否在此抛物线上;②若点P 是y 轴上的任一点,求35BP +EP 取最小值时,点P 的坐标.思路引领:(1)根据直线解析式可得点A 、B 的坐标,代入二次函数解析式,解方程即可;(2)①由旋转的性质可得E (6,3),当x =6时,y =518×62-12×6-4=3,可知点E 在抛物线上;②过点E 作EH ⊥AB ,交y 轴于P ,垂足为H ,sin ∠ABO =AO AB=HP BP =35,则HP =35BP ,得35BP +EP =HP +PE ,可知HP +PE 的最小值为EH 的长,从而解决问题.解:(1)∵直线y =-43x -4分别与x ,y 轴交于点A ,B ,∴当x =0时,y =-4;当y =0时,x =-3,∴A (-3,0),B (0,-4),∵抛物线y =518x 2+bx +c 恰好经过这两点.∴518×(-3)2-3b +c =0c =-4,解得b =-12c =-4,∴y =518x 2-12x -4;(2)①∵将△ACO 绕着点C 逆时针旋转90°得到△ECF ,∴∠OCF =90°,CF =CO =6,EF =AO =3,EF ∥y 轴,∴E (6,3),当x =6时,y =518×62-12×6-4=3,∴点E 在抛物线上;②过点E 作EH ⊥AB ,交y 轴于P ,垂足为H ,周日∵A(-3,0),B(0,-4),∴OA=3,OB=4,∴AB=5,∵sin∠ABO=AOAB =HPBP=35,∴HP=35BP,∴35BP+EP=HP+PE,∴当E,P,H三点共线时,HP+PE有最小值,最小值为EH的长,作EG⊥y轴于G,∵∠GEP=∠ABO,∴tan∠GEP=tan∠ABO,∴PG EG =AO BO,∴PG6=34,∴PG=92,∴OP=92-3=32,∴P0,-32.总结提升:本题是二次函数综合题,主要考查了待定系数法求函数解析式,旋转的性质,三角函数,两点之间、线段最短等知识,利用三角函数将35BP转化为HP的长是解题的关键.5.(2022•济南)抛物线y=ax2+114x-6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx-6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求抛物线的表达式和t,k的值;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+12PQ的最大值.思路引领:(1)用待定系数法求函数的解析式即可求解;周日(2)作PM ⊥x 轴交于M ,可求PM =14m 2-114m +6,AM =m -3,通过证明△COA ∽△AMP ,利用OA OC =PMAM,求m 的值即可求P 点坐标;(3)作PN ⊥x 轴交BC 于N ,过点N 作NE ⊥y 轴交于E ,通过证明△PQN ∽△BOC ,求出QN =35PN ,PQ =45PN ,再由△CNE ∽△CBO ,求出CN =54EN =54m ,则CQ +12PQ =CN +PN =-14m -132 2+16916,即可求解.解:(1)将B (8,0)代入y =ax 2+114x -6,∴64a +22-6=0,∴a =-14,∴y =-14x 2+114x -6,当y =0时,-14t 2+114t -6=0,解得t =3或t =8(舍),∴t =3,∵B (8,0)在直线y =kx -6上,∴8k -6=0,解得k =34;(2)作PM ⊥x 轴交于M ,∵P 点横坐标为m ,∴P m ,-14m 2+114m -6 ,∴PM =14m 2-114m +6,AM =m -3,在Rt △COA 和Rt △AMP 中,∵∠OAC +∠PAM =90°,∠APM +∠PAM =90°,∴∠OAC =∠APM ,∴△COA ∽△AMP ,∴OA OC =PM AM,即OA •MA =CO •PM ,3(m -3)=614m 2-114m +6 ,解得m =3(舍)或m =10,∴P 10,-72;(3)作PN ⊥x 轴交BC 于N ,过点N 作NE ⊥y 轴交于E ,∴PN =-14m 2+114m -6-34m -6 =-14m 2+2m ,∵PN ⊥x 轴,∴PN ∥OC ,∴∠PNQ =∠OCB ,周日∴Rt△PQN∽Rt△BOC,∴PN BC =NQOC=PQOB,∵OB=8,OC=6,BC=10,∴QN=35PN,PQ=45PN,由△CNE∽△CBO,∴CN=54EN=54m,∴CQ+12PQ=CN+NQ+12PQ=CN+PN,∴CQ+12PQ=54m-14m2+2m=-14m2+134m=-14m-1322+16916,当m=132时,CQ+12PQ的最大值是16916.总结提升:本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,三角形相似的判定及性质是解题的关键.类型二二次函数中的面积问题1.(2022•内蒙古)如图,抛物线y=ax2+x+c经过B(3,0),D-2,-52两点,与x轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式和点C的坐标;(2)若点M在直线BC上方的抛物线上运动(与点B,C不重合),求使△MBC面积最大时M点的坐标,并求最大面积;(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上,要使以点A,B,P,Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)思路引领:(1)用待定系数法求函数的解析式即可;(2)作直线BC,过M点作MN∥y轴交BC于点N,求出直线BC的解析式,设M m,-12m2+m+32,则N m,-12m+32,可得S△MBC=12•MN•OB=-34m-322+2716,再求解即可;(3)设Q(0,t),P m,-12m2+m+32,分三种情况讨论:①当AB为平行四边形的对角线时;②当AQ为平行四边形的对角线时;③当AP为平行四边形的对角线时;根据平行四边形的对角线互相平分,利用中点坐标公式求解即可.解:(1)将B(3,0),D-2,-5 2代入y=ax2+x+c,周日∴9a +3+c =04a -2+c =-52,解得a =-12c =32 ,∴y =-12x 2+x +32,令x =0,则y =32,∴C 0,32;(2)作直线BC ,过M 点作MN ∥y 轴交BC 于点N ,设直线BC 的解析式为y =kx +b ,∴3k +b =0b =32,解得k =-12b =32 ,∴y =-12x +32设M m ,-12m 2+m +32 ,则N m ,-12m +32 ,∴MN =-12m 2+32m ,∴S △MBC =12•MN •OB =-34m -32 2+2716,当m =32时,△MBC 的面积有最大值2716,此时M 32,158;(3)令y =0,则-12x 2+x +32=0,解得x =3或x =-1,∴A (-1,0),设Q (0,t ),P m ,-12m 2+m +32,①当AB 为平行四边形的对角线时,m =3-1=2,∴P 2,32;②当AQ 为平行四边形的对角线时,3+m =-1,解得m =-4,∴P -4,-212;③当AP 为平行四边形的对角线时,m -1=3,解得m =4,Y our Text07周日∴P 4,-52;综上所述:P 点坐标为2,32 或-4,-212 或4,-52.总结提升:本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,平行四边形的性质,分类讨论是解题的关键.2.(2022•淄博)如图,抛物线y =-x 2+bx +c 与x 轴相交于A ,B 两点(点A 在点B 的左侧),顶点D(1,4)在直线l :y =43x +t 上,动点P (m ,n )在x 轴上方的抛物线上.(1)求这条抛物线对应的函数表达式;(2)过点P 作PM ⊥x 轴于点M ,PN ⊥l 于点N ,当1<m <3时,求PM +PN 的最大值;(3)设直线AP ,BP 与抛物线的对称轴分别相交于点E ,F ,请探索以A ,F ,B ,G (G 是点E 关于x 轴的对称点)为顶点的四边形面积是否随着P 点的运动而发生变化,若不变,求出这个四边形的面积;若变化,说明理由.思路引领:(1)利用顶点式求解,可得结论;(2)如图,设直线l 交x 轴于点T ,连接PT ,BD ,BD 交PM 于点J .设P (m ,-m 2+2m +3).四边形DTBP 的面积=△PDT 的面积+△PBT 的面积=12×DT ×PN +12×TB ×PM =52(PM +PN ),推出四边形DTBP 的面积最大时,PM +PN 的值最大,求出四边形DTBP 的面积的最大值,可得结论;(3)四边形AFBG 的面积不变.如图,设P (m ,-m 2+2m +3),求出直线AP ,BP 的解析式,可得点E ,F 的坐标,求出FG 的长,可得结论.解:(1)∵抛物线的顶点D (1,4),∴可以假设抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3;(2)如图,设直线l 交x 轴于点T ,连接PT ,BD ,BD 交PM 于点J .设P (m ,-m 2+2m +3).点D (1,4)在直线l :y =43x +t 上,∴4=43+t ,∴t =83,周日∴直线DT 的解析式为y =43x +83,令y =0,得到x =-2,∴T (-2,0),∴OT =2,∵B (3,0),∴OB =3,∴BT =5,∵DT =32+42=5,∴TD =TB ,∵PM ⊥BT ,PN ⊥DT ,∴四边形DTBP 的面积=△PDT 的面积+△PBT 的面积=12×DT ×PN +12×TB ×PM =52(PM +PN ),∴四边形DTBP 的面积最大时,PM +PN 的值最大,∵D (1,4),B (3,0),∴直线BD 的解析式为y =-2x +6,∴J (m ,-2m +6),∴PJ =-m 2+4m -3,∵四边形DTBP 的面积=△DTB 的面积+△BDP 的面积=12×5×4+12×(-m 2+4m -3)×2=-m 2+4m +7=-(m -2)2+11∵-1<0,∴m =2时,四边形DTBP 的面积最大,最大值为11,∴PM +PN 的最大值=25×11=225;解法二:延长MP 交直线l 与点H ,易得直线l :y =43x +83,∴H m ,43m +83设直线l 交x 轴于点C ,交y 轴于点L ,∴C (-2,0),L 0,83,∴CL =103,∴sin ∠CLO =35,由LO ∥HM ,∴∠NHM =∠CLO ,∴sin ∠NHM =35,∴PH =43m +83+m 2-2m -3=m 2-23m -13,∴PN =35PH ,周日∴PM +PN =-m 2+2m +3+35m 2-23m -13 =-25(m -2)2+225,∵-25<0,∴m =2时,PM +PN 的值最小,最小值为225;(3)四边形AFBG 的面积不变.理由:如图,设P (m ,-m 2+2m +3),∵A (-1,0),B (3,0),∴直线AP 的解析式为y =-(m -3)x -m +3,∴E (1,-2m +6),∵E ,G 关于x 轴对称,∴G (1,2m -6),∴直线PB 的解析式y =-(m +1)x +3(m +1),∴F (1,2m +2),∴GF =2m +2-(2m -6)=8,∴四边形AFBG 的面积=12×AB ×FG =12×4×8=16.∴四边形AFBG 的面积是定值.总结提升:本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会利用参数解决问题,属于中考压轴题.类型三二次函数与角度问题1.(2022•菏泽)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (-2,0)、B (8,0)两点,与y 轴交于点C (0,4),连接AC 、BC .(1)求抛物线的表达式;(2)将△ABC 沿AC 所在直线折叠,得到△ADC ,点B 的对应点为D ,直接写出点D 的坐标,并求出四边形OADC 的面积;(3)点P 是抛物线上的一动点,当∠PCB =∠ABC 时,求点P 的坐标.思路引领:(1)利用待定系数法解答即可;(2)过点D 作DE ⊥x 轴于点E ,利用轴对称的性质和三角形的中位线的性质定理求得线段OE ,DE ,则点D 坐标可得;利用四边形OADC 的面积=S △OAC +S △ACD ,S △ADC =S △ABC ,利用三角形的面积公式即可求得结论;周日(3)利用分类讨论的思想方法分两种情况讨论解答:①当点P在BC上方时,利用平行线的判定与性质可得点C,P的纵坐标相等,利用抛物线的解析式即可求得结论;②当点P在BC下方时,设PC交x 轴于点H,设HB=HC=m,利用等腰三角形的判定与性质和勾股定理求得m值,则点H坐标可求;利用待定系数法求得直线PC的解析式,与抛物线解析式联立即可求得点P坐标;解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于A(-2,0)、B(8,0)两点,与y轴交于点C(0,4),∴4a-2b+c=064a+8b+c=0c=4,解得:a=-14b=32c=4.∴抛物线的表达式为y=-14x2+32x+4;(2)点D的坐标为(-8,8),理由:将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,如图,过点D作DE⊥x轴于点E,∵A(-2,0)、B(8,0),C(0,4),∴OA=2,OB=8,OC=4.∵OA OC =12,OCOB=12,∴OA OC =OC OB.∵∠AOC=∠COB=90°,∴△AOC∽△COB,∴∠ACO=∠CBO.∵∠CBO+∠OCB=90°,∴∠ACO+∠OCB=90°,∴∠ACB=90°,∵将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,∴点D,C,B三点在一条直线上.由轴对称的性质得:BC=CD,AB=AD.∵OC⊥AB,DE⊥AB,∴DE∥OC,∴OC为△BDE的中位线,∴OE=OB=8,DE=2OC=8,∴D(-8,8);由题意得:S△ACD=S△ABC,∴四边形OADC的面积=S△OAC+S△ADC=S△OAC+S△ABC=12×OC•OA+12×AB•OC=12×4×2+12×10×4=4+20 =24;周日(3)①当点P在BC上方时,如图,∵∠PCB=∠ABC,∴PC∥AB,∴点C,P的纵坐标相等,∴点P的纵坐标为4,令y=4,则-14x2+32x+4=4,解得:x=0或x=6,∴P(6,4);②当点P在BC下方时,如图,设PC交x轴于点H,∵∠PCB=∠ABC,∴HC=HB.设HB=HC=m,∴OH=OB-HB=8-m,在Rt△COH中,∵OC2+OH2=CH2,∴42+(8-m)2=m2,解得:m=5,∴OH=3,∴H(3,0).设直线PC的解析式为y=kx+n,∴n=43k+n=0,解得:k=-43n=4.∴y=-43x+4.∴y=-43x+4y=-14x2+32x+4,解得:x1=0y1=4,x2=343y2=-1009.∴P343,-100 9.综上,点P的坐标为(6,4)或343,-1009.总结提升:本题主要考查了二次函数图象的性质,待定系数法,一次函数图象的性质,抛物线上点的坐标的特征,一次函数图象上点的坐标的特征,勾股定理,相似三角形的判定与性质,利用点的坐标表示出相应线段的长度是解题的关键.2.(2022•鞍山)如图,抛物线y=-12x2+bx+c与x轴交于A(-1,0),B两点,与y轴交于点C(0,2),连接BC.(1)求抛物线的解析式.(2)点P是第三象限抛物线上一点,直线PB与y轴交于点D,△BCD的面积为12,求点P的坐标.(3)在(2)的条件下,若点E是线段BC上点,连接OE,将△OEB沿直线OE翻折得到△OEB',当直线周日EB'与直线BP相交所成锐角为45°,时,求点B'的坐标.思路引领:(1)用待定系数法求函数的解析式即可;(2)先由△BDC的面积求出OD的长,从而确定D点坐标为(0,-4),再由待定系数法求出直线BD的解析式,直线BD与抛物线的交点即为所求;(3)当B'在第一象限时,由∠ODB=45°,可知EB'∥CD,求出直线BC的解析式,可设E t,-12t+2,在Rt△OHB'中,B'H=16-t2,则BE=16-t2+12t-2,在Rt△BHE中,由勾股定理得16-t2+12t-22=(4-t)2+-12t+22,求出t的值即可求B'坐标;当B'在第二象限时,B'G∥x轴,可得四边形B'OBE是平行四边形,则B't-4,-12t+2,由折叠的性质可判断平行四边形OBEB'是菱形,再由BE=OB,可得(4-t)2+-12t+22=4,求出t的值即可求B'坐标.解:(1)将A(-1,0),C(0,2)代入y=-12x2+bx+c,∴c=2-12-b+c=0 ,解得b=32c=2 ,∴y=-12x2+32x+2;(2)令y=0,则-12x2+32x+2=0,解得x=-1或x=4,∴B(4,0),∴OB=4,∴S△BCD=12×4×(2+OD)=12,∴OD=4,∴D(0,-4),设直线BD的解析式为y=kx+b,∴b=-44k+b=0 ,周日解得k =1b =-4 ,∴y =x -4,联立方程组y =x -4y =-12x 2+32x +2,解得x =-3y =-7 或x =4y =0 ,∴P (-3,-7);(3)如图1,当B '在第一象限时,设直线BC 的解析式为y =k 'x +b ',∴b '=24k '+b '=0,解得k '=-12b '=2,∴y =-12x +2,设E t ,-12t +2 ,∴OH =t ,EH =-12t +2,∵D (0,-4),B (4,0),∴OB =OD ,∴∠ODB =45°,∵直线EB '与直线BP 相交所成锐角为45°,∴EB '∥CD ,由折叠可知,OB '=BO =4,BE =B 'E ,在Rt △OHB '中,B 'H =16-t 2,∴B 'E =16-t 2--12t +2 =16-t 2+12t -2,∴BE =16-t 2+12t -2,在Rt △BHE 中,16-t 2+12t -2 2=(4-t )2+-12t +2 2,解得t =±455,∵0≤t ≤4,∴t =455,∴B '455,855 ;如图2,当B '在第二象限,∠BGB '=45°时,∵∠ABP =45°,∴B 'G ∥x 轴,周日∵将△OEB 沿直线OE 翻折得到△OEB ',∴BE =B 'E ,OB =OB ',∠BOE =∠B 'OE ,∴∠BOE =∠B 'EO ,∴B 'E ∥B 'O ,∵B 'E =BO ,∴四边形B 'OBE 是平行四边形,∴B 'E =4,∴B 't -4,-12t +2 ,由折叠可知OB =OB '=4,∴平行四边形OBEB '是菱形,∴BE =OB ,∴(4-t )2+-12t +2 2=4,解得t =4+855或t =4-855,∵0≤t ≤4,∴t =4-855,∴B '-855,455;综上所述:B '的坐标为455,855 或-855,455.方法2:在Rt △BCO 中,BC =25,CO :OB :BC =1:2:5,∵BP 与x 轴和y 轴的夹角都是45°,BP 与B 'E 的夹角为45°,∴B 'E ∥x 轴或B 'E ∥y 轴,当B 'E ∥y 轴时,延长B 'E 交x 轴于F ,∴B 'F ⊥OB ,∵∠CBA =∠OB 'E ,∴△OB 'F ∽△CBO ,∴OF :FB ':B 'O =1:2:5,∵OB =OB '=4,∴FO =455,B 'F =855,∴B '455,855 ;当B 'E ∥x 轴时,过B '作B 'F ⊥x 中交于F ,∴B 'F ⊥OF ,B 'E ∥OB ,∵B 'E 和BE 关于OE 对称,OB 和OB '关于OE 对称,∴BE ∥OB ',∵∠FOB '=∠OBC ,∴△OB 'F ∽△BCO ,∴B 'F :FO :OB '=1:2:5,∵OB =OB '=4,周日∴B 'F =455,OF =855,∴B '-855,455;综上所述:B '坐标为455,855 或-855,455.总结提升:本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,直角三角形的性质,折叠的性质,勾股定理的应用是解题的关键.类型四二次函数与圆综合1.(2022•扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB 在x 轴上,且AB =8dm ,外轮廓线是抛物线的一部分,对称轴为y 轴,高度OC =8dm .现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB 上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB 上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3dm 的圆,请说明理由.思路引领:(1)先根据题意求出抛物线的解析式,当正方形的两个顶点在抛物线上时正方形面积最大,先根据GH =2OG 计算H 的横坐标,再求出此时正方形的面积即可;(2)由(1)知:设H t ,-12t 2+8 (t >0),表示矩形EFGH 的周长,再根据二次函数的性质求出最值即可;(3)解法一:设半径为3dm 的圆与AB 相切,并与抛物线相交,设交点为N ,求出点N 的坐标,并计算点N 是圆M 与抛物线在y 轴右侧的切点即可.解法二:计算MN 2,配方法可得结论.解法三:同解法二得MN 2,利用换元法可解答.解:(1)如图1,由题意得:A (-4,0),B (4,0),C (0,8),设抛物线的解析式为:y =ax 2+8,把B (4,0)代入得:0=16a +8,∴a =-12,∴抛物线的解析式为:y =-12x 2+8,∵四边形EFGH 是正方形,∴GH =FG =2OG ,设H t ,-12t 2+8 (t >0),周日∴-12t2+8=2t,解得:t1=-2+25,t2=-2-25(舍),∴此正方形的面积=FG2=(2t)2=4t2=4(-2+25)2=(96-325)dm2;(2)如图2,由(1)知:设H t,-12t2+8(t>0),∴矩形EFGH的周长=2FG+2GH=4t+2-12t2+8=-t2+4t+16=-(t-2)2+20,∵-1<0,∴当t=2时,矩形EFGH的周长最大,且最大值是20dm;(3)解法一:若切割成圆,能切得半径为3dm的圆,理由如下:如图3,N为⊙M上一点,也是抛物线上一点,过N作⊙M的切线交y轴于Q,连接MN,过点N作NP⊥y轴于P,则MN=OM=3,NQ⊥MN,设N m,-12m2+8,由勾股定理得:PM2+PN2=MN2,∴m2+-12m2+8-32=32,解得:m1=22,m2=-22(舍),∴N(22,4),∴PM=4-3=1,∵cos∠NMP=PMMN =MNQM=13,∴MQ=3MN=9,∴Q(0,12),设QN的解析式为:y=kx+b,∴b=1222k+b=4 ,∴k=-22 b=12,∴QN的解析式为:y=-22x+12,-1 2x2+8=-22x+12,12x2-22x+4=0,Δ=(-22)2-4×12×4=0,即此时N为圆M与抛物线在y轴右侧的唯一公共点,∴若切割成圆,能切得半径为3dm的圆.解法二:如图3,取点M(0,3),在抛物线上取点N m,-12m2+8,且0<m<4,周日则MN 2=m 2+-12m 2+8-3 2=14(m 2-8)2+9,∴当m =22时,MN 有最小值为3,此时抛物线上除了点N ,N '(点N ,N '关于y 轴对称)外,其余各点均在以点M (0,3)为圆心,3dm 为半径的圆外(铁皮底部边缘中点O 也在该圆上),∴若切割成圆,能切得半径为3dm 的圆.解法三:如图3,取点M (0,m ),在抛物线上取点N a ,-12a 2+8 ,且0<a <4,则MN 2=a 2+-12a 2+8-m 2,令y =a 2,则MN 2=y +-12y +8-m 2=14(y +2m -14)2+15-2m ,∴MN 2的最小值是15-2m ,当MN 的最小值=OM =m 时,⊙O 与抛物线相切,此时⊙M 最大,∴15-2m =m ,∴m =-5(舍)或3,∴若切割成圆,能切得半径为3dm 的圆.总结提升:本题是二次函数与圆,四边形的综合题,考查了利用待定系数法求二次函数和一次函数的解析式,圆的切线的性质,矩形和正方形的性质,二次函数的最值问题,综合性较强,并与方程相结合解决问题是本题的关键.2.(2022•盐城)【发现问题】小明在练习簿的横线上取点O 为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描出了同心圆与横线的一些交点,如图1所示,他发现这些点的位置有一定的规律.【提出问题】小明通过观察,提出猜想:按此步骤继续画圆描点,所描的点都在某二次函数图象上.【分析问题】小明利用已学知识和经验,以圆心O 为原点,过点O 的横线所在直线为x 轴,过点O 且垂直于横线的直线为y 轴,相邻横线的间距为一个单位长度,建立平面直角坐标系,如图2所示.当所描的点在半径为5的同心圆上时,其坐标为(-3,4)或(3,4).【解决问题】请帮助小明验证他的猜想是否成立.【深度思考】小明继续思考:设点P (0,m ),m 为正整数,以OP 为直径画⊙M ,是否存在所描的点在⊙M 上.若存在,求m 的值;若不存在,说明理由.周日思路引领:【分析问题】根据题意可知:该点的纵坐标为4,利用勾股定理,即可求出该点的横坐标,进而可得出点的坐标;【解决问题】设所描的点在半径为n (n 为正整数)的同心圆上,则该点的纵坐标为(n -1),利用勾股定理可得出该点的坐标为(-2n -1,n -1)或(2n -1,n -1),结合点横、纵坐标间的关系,可得出该点在二次函数y =12x 2-12的图象上,进而可证出小明的猜想正确;【深度思考】设该点的坐标为(±2n -1,n -1),结合⊙M 的圆心坐标,利用勾股定理,即可用含n 的代数式表示出m 的值,再结合m ,n 均为正整数,即可得出m ,n 的值.【分析问题】解:根据题意,可知:所描的点在半径为5的同心圆上时,其纵坐标y =5-1=4,∵横坐标x =±52-42=±3,∴点的坐标为(-3,4)或(3,4).【解决问题】证明:设所描的点在半径为n (n 为正整数)的同心圆上,则该点的纵坐标为(n -1),∴该点的横坐标为±n 2-(n -1)2=±2n -1,∴该点的坐标为(-2n -1,n -1)或(2n -1,n -1).∵(±2n -1)2=2n -1,n -1=2n -1-12,∴该点在二次函数y =12(x 2-1)=12x 2-12的图象上,∴小明的猜想正确.【深度思考】解:设该点的坐标为(±2n -1,n -1),⊙M 的圆心坐标为0,12m ,∴(±2n -1-0)2+n -1-12m 2=12m ,∴m =n 2n -1=(n -1+1)2n -1=(n -1)2+2(n -1)+1n -1=n -1+2+1n -1.又∵m ,n 均为正整数,∴n -1=1,∴m =1+2+1=4,∴存在所描的点在⊙M 上,m 的值为4.总结提升:本题考查了勾股定理、二次函数图象上点的坐标特征以及与圆有关的位置关系,解题的关键是:【分析问题】利用勾股定理,求出该点的横坐标;【解决问题】根据点的横、纵坐标间的关系,找出点在二次函数y =12x 2-12的图象上;【深度思考】利用勾股定理,用含n 的代数式表示出m 的值.周日类型五二次函数中的定值问题1.(2022•巴中)如图1,抛物线y =ax 2+2x +c ,交x 轴于A 、B 两点,交y 轴于点C ,F 为抛物线顶点,直线EF 垂直于x 轴于点E ,当y ≥0时,-1≤x ≤3.(1)求抛物线的表达式;(2)点P 是线段BE 上的动点(除B 、E 外),过点P 作x 轴的垂线交抛物线于点D .①当点P 的横坐标为2时,求四边形ACFD 的面积;②如图2,直线AD ,BD 分别与抛物线对称轴交于M 、N 两点.试问,EM +EN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.思路引领:(1)由当y ≥0时,-1≤x ≤3,可知x 1=-1,x 2=3是ax 2+2x +c =0的两根,代入方程可得a ,c ,从而得解;(2)①把x =2代入抛物线解析式可得D 点坐标,再将x =0代入抛物线解析式可得C 点坐标,从而得知线段CD ∥x 轴,利用配方法可知点F 坐标,从而利用S 四边形ACFD =S △FCD +S △ACD =12CD (y F -y A )求面积;②设D (m ,-m 2+2m +3)(1<m <3),用待定系数法求出直线AD 与直线BD 的解析式,再令x =1得y M ,y N ,从而得出ME ,NE 的长,从而得到NE +ME 是定值8.解:(1)∵当y ≥0时,-1≤x ≤3,∴x 1=-1,x 2=3是ax 2+2x +c =0的两根,A (-1,0),B (3,0),∴a -2+c =09a +6+c =0,解得:a =-1c =3 ,∴抛物线的表达式为:y =-x 2+2x +3;(2)①把x =2代入y =-x 2+2x +3得:y =3,∴D (2,3).又当x =0,y =3,∴C (0,3),∴线段CD ∥x 轴.∵y =-x 2+2x +3=-(x -1)2+4,∴F (1,4),S 四边形ACFD =S △FCD +S △ACD =12CD (y F -y A )=4;②设D (m ,-m 2+2m +3)(1<m <3),周日直线AD :y =k 1x +b 1,BD :y =k 2x +b 2,因此可得:0=-k 1+b 1-m 2+2m +3=k 1m +b 1或0=3k 2+b 2-m 2+2m +3=k 2m +b 2,解得:k 1=3-m b 1=3-m 或k 2=-1-mb 2=3m +3 ,∴直线AD :y =(3-m )x +(3-m ),BD :y =-(m +1)x +3(m +1).令x =1得y M =6-2m ,y N =2m +2,∴ME =6-2m ,NE =2m +2,∴NE +ME =8.总结提升:本题考查二次函数与一次函数综合,涉及四边形的面积求法,待定系数法等知识,掌握待定系数法和面积求法是解题的关键.类型六二次函数中几何图形的存在性问题1.(2022•枣庄)如图①,已知抛物线L :y =x 2+bx +c 经过点A (0,3),B (1,0),过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当△OPE 面积最大时,求出P 点坐标;(3)将抛物线L 向上平移h 个单位长度,使平移后所得抛物线的顶点落在△OAE 内(包括△OAE 的边界),求h 的取值范围;(4)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P ,使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.思路引领:(1)利用待定系数法可得抛物线的解析式;(2)过P 作PG ∥y 轴,交OE 于点G ,设P (m ,m 2-4m +3),根据OE 的解析式表示点G 的坐标,表示PG 的长,根据面积和可得△OPE 的面积,利用二次函数的最值可得其最大值;(3)求出原抛物线的对称轴和顶点坐标以及对称轴与OE 的交点坐标、与AE 的交点坐标,用含h 的代数式表示平移后的抛物线的顶点坐标,列出不等式组求出h 的取值范围;(4)存在四种情况:作辅助线,构建全等三角形,证明△OMP ≌△PNF ,根据|OM |=|PN |,列方程可得点P 的坐标;同理可得其他图形中点P 的坐标.解:(1)∵抛物线L :y =x 2+bx +c 经过点A (0,3),B (1,0),∴1+b +c =0c =3,解得b =-4c =3 ,周日∴抛物线的解析式为:y =x 2-4x +3;(2)如图,过P 作PG ∥y 轴,交OE 于点G ,设P (m ,m 2-4m +3),∵OE 平分∠AOB ,∠AOB =90°,∴∠AOE =45°,∴△AOE 是等腰直角三角形,∴AE =OA =3,∴E (3,3),∴直线OE 的解析式为:y =x ,∴G (m ,m ),∴PG =m -(m 2-4m +3)=-m 2+5m -3,∴S △OPE =S △OPG +S △EPG=12PG •AE =12×3×(-m 2+5m -3)=-32(m 2-5m +3)=-32m -52 2+398,∵-32<0,∴当m =52时,△OPE 面积最大,此时,P 点坐标为52,-34;(3)由y =x 2-4x +3=(x -2)2-1,得抛物线l 的对称轴为直线x =2,顶点为(2,-1),抛物线L 向上平移h 个单位长度后顶点为F (2,-1+h ).设直线x =2交OE 于点M ,交AE 于点N ,则E (3,3),∵直线OE 的解析式为:y =x ,∴M (2,2),∵点F 在△OAE 内(包括△OAE 的边界),∴2≤-1+h ≤3,解得3≤h ≤4;(4)设P (m ,m 2-4m +3),分四种情况:①当P 在对称轴的左边,且在x 轴下方时,如图,过P 作MN ⊥y 轴,交y 轴于M ,交l 于N ,∴∠OMP =∠PNF =90°,∵△OPF 是等腰直角三角形,∴OP =PF ,∠OPF =90°,周日∴∠OPM +∠NPF =∠PFN +∠NPF =90°,∴∠OPM =∠PFN ,∴△OMP ≌△PNF (AAS ),∴OM =PN ,∵P (m ,m 2-4m +3),则-m 2+4m -3=2-m ,解得:m =5+52(舍)或5-52,∴P 的坐标为5-52,1-52 ;②当P 在对称轴的左边,且在x 轴上方时,同理得:2-m =m 2-4m +3,解得:m 1=3+52(舍)或m 2=3-52,∴P 的坐标为3-52,5+12 ;③当P 在对称轴的右边,且在x 轴下方时,如图,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF ,∴PN =FM ,则-m 2+4m -3=m -2,解得:m 1=3+52或m 2=3-52(舍);P 的坐标为3+52,1-52 ;④当P 在对称轴的右边,且在x 轴上方时,如图,同理得m 2-4m +3=m -2,解得:m =5+52或5-52(舍),P 的坐标为:5+52,5+12;综上所述,点P 的坐标是:5-52,1-52或3-52,5+12或3+52,1-52 或5+52,5+12 .方法二:作直线DE :y =x -2,E (1,-1)是D 点(2,0)绕O 点顺时针旋转45°并且OD 缩小2倍得到,易知直线DE 即为对称轴上的点绕O 点顺时针旋转45°,且到O 点距离缩小2倍的轨迹,联立直线DE 和抛物线解析式得x 2-4x +3=x -2,周日解得x 1=5+52,x 2=5-52,同理可得x 3=3+52或x 4=3-52;综上所述,点P 的坐标是:5-52,1-52 或3-52,5+12 或3+52,1-52 或5+52,5+12 .总结提升:本题属于二次函数综合题,主要考查了二次函数的综合应用,二次函数的图象与性质及图形的平移,全等三角形的判定与性质以及解一元二次方程的方法,运用分类讨论思想和方程的思想解决问题的关键.2.(2022•攀枝花)如图,二次函数y =ax 2+bx +c 的图象与x 轴交于O (O 为坐标原点),A 两点,且二次函数的最小值为-1,点M (1,m )是其对称轴上一点,y 轴上一点B (0,1).(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点P ,连结PA ,PB ,设点P 的横坐标为t ,△PAB 的面积为S ,求S 与t 的函数关系式;(3)在二次函数图象上是否存在点N ,使得以A 、B 、M 、N 为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点N 的坐标,若不存在,请说明理由.思路引领:(1)根据题意知,二次函数顶点为(1,-1),设二次函数解析式为y =a (x -1)2-1,将点B (0,0)代入得,a -1=0,即可得出答案;(2)连接OP ,根据题意得点A 的坐标,则S =S △AOB +S △OAP -S △OBP ,代入化简即可;(3)设N (n ,n 2-2n ),分AB 或AN 或AM 分别为对角线,利用平行四边形的性质和中点坐标公式,分别求出n =的值,进而得出答案.解:(1)∵二次函数的最小值为-1,点M (1,m )是其对称轴上一点,∴二次函数顶点为(1,-1),设二次函数解析式为y =a (x -1)2-1,将点O (0,0)代入得,a -1=0,∴a =1,∴y =(x -1)2-1=x 2-2x ;(2)连接OP ,。
二次函数与几何综合压轴题几乎所有的地方都把二次函数与几何综合压轴题作为中考压轴题。
1.(2023·青海·中考真题)如图,二次函数2y x bx c =−++的图象与x 轴相交于点A 和点()1,0C ,交y 轴于点()0,3B .(1)求此二次函数的解析式;(2)设二次函数图象的顶点为P ,对称轴与x 轴交于点Q ,求四边形AOBP 的面积(请在图1中探索); (3)二次函数图象的对称轴上是否存在点M ,使得△AMB 是以AB 为底边的等腰三角形?若存在,请求出满足条件的点M 的坐标;若不存在,请说明理由(请在图2中探索).2.(2023·内蒙古·中考真题)如图,在平面直角坐标系中,抛物线2y x bx c =−++与x 轴的交点分别为A 和()10B ,(点A 在点B 的左侧),与y 轴交于点()0,3C ,点P 是直线AC 上方抛物线上一动点.(1)求抛物线的解析式;(2)如图1,过点P 作x 轴平行线交AC 于点E ,过点P 作y 轴平行线交x 轴于点D ,求PE PD +的最大值及点P 的坐标;(3)如图2,设点M 为抛物线对称轴上一动点,当点P ,点M 运动时,在坐标轴上确定点N ,使四边形PMCN 为矩形,求出所有符合条件的点N 的坐标.3.(2023·海南·中考真题)如图1,抛物线2y x bx c =++交x 轴于A ,()3,0B 两点,交y 轴于点()0,3C −.点P 是抛物线上一动点.(1)求该抛物线的函数表达式;(2)当点P 的坐标为()1,4−时,求四边形BACP 的面积;(3)当动点P 在直线BC 上方时,在平面直角坐标系是否存在点Q ,使得以B ,C ,P ,Q 为顶点的四边形是矩形?若存在,请求出点Q 的坐标;若不存在,请说明理由;(4)如图2,点D 是抛物线的顶点,过点D 作直线DH y ∥轴,交x 轴于点H ,当点P 在第二象限时,作直线PA ,PB 分别与直线DH 交于点G 和点I ,求证:点D 是线段IG 的中点.4.(2023·西藏·中考真题)在平面直角坐标系中,抛物线2y x bx c =−++与x 轴交于()30A −,,()10B ,两点,与y 轴交于点C .(1)求抛物线的解析式;(2)如图甲,在y 轴上找一点D ,使ACD 为等腰三角形,请直接写出点D 的坐标;(3)如图乙,点P 为抛物线对称轴上一点,是否存在P 、Q 两点使以点A ,C ,P ,Q 为顶点的四边形是菱形?若存在,求出P 、Q 两点的坐标,若不存在,请说明理由.5.(2023·四川甘孜·中考真题)已知抛物线2y x bx c =++与x 轴相交于()10A −,,B 两点,与y 轴相交于点()03C −,.(1)求b ,c 的值;(2)P 为第一象限抛物线上一点,PBC 的面积与ABC 的面积相等,求直线AP 的解析式;(3)在(2)的条件下,设E 是直线BC 上一点,点P 关于AE 的对称点为点P ′,试探究,是否存在满足条件的点E ,使得点P ′恰好落在直线BC 上,如果存在,求出点P ′的坐标;如果不存在,请说明理由.6.(2023·四川达州·中考真题)如图,抛物线2y ax bx c ++过点()()()1,0,3,,00,3A B C −.(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出PBC 的最大面积及此时点P 的坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以BC 为边,点B C M N 、、、为顶点的四边形是菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.7.(2023·四川巴中·中考真题)在平面直角坐标系中,抛物线2(0)y ax bx c a ++≠经过点(1,0)A −和(0,3)B ,其顶点的横坐标为1.(1)求抛物线的表达式.(2)若直线x m =与x 轴交于点N ,在第一象限内与抛物线交于点M ,当m 取何值时,使得AN MN +有最大值,并求出最大值.(3)若点P 为抛物线2(0)y ax bx c a ++≠的对称轴上一动点,将抛物线向左平移1个单位长度后,Q 为平移后抛物线上一动点.在(2)的条件下求得的点M ,是否能与A 、P 、Q 构成平行四边形?若能构成,求出Q 点坐标;若不能构成,请说明理由.8.(2023·四川眉山·中考真题)在平面直角坐标系中,已知抛物线2y ax bx c ++与x 轴交于点()()3,0,1,0A B −两点,与y 轴交于点()0,3C ,点P 是抛物线上的一个动点.(1)求抛物线的表达式;(2)当点P 在直线AC 上方的抛物线上时,连接BP 交AC 于点D .如图1.当PD DB的值最大时,求点P 的坐标及PD DB 的最大值; (3)过点P 作x 轴的垂线交直线AC 于点M ,连接PC ,将PCM △沿直线PC 翻折,当点M 的对应点'M 恰好落在y 轴上时,请直接写出此时点M 的坐标.9.(2023·四川内江·中考真题)如图,在平面直角坐标系中,抛物线2y ax bx c ++与x 轴交于()4,0B ,()2,0C −两点.与y 轴交于点()0,2A −.(1)求该抛物线的函数表达式;(2)若点P 是直线AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点K ,过点P 作y 轴的平行线交x 轴于点D ,求与12PK PD +的最大值及此时点P 的坐标; (3)在抛物线的对称轴上是否存在一点M ,使得MAB △是以AB 为一条直角边的直角三角形:若存在,请求出点M 的坐标,若不存在,请说明理由.10.(2023·湖北黄冈·中考真题)已知抛物线212y x bx c =−++与x 轴交于,(4,0)A B 两点,与y 轴交于点(0,2)C ,点P 为第一象限抛物线上的点,连接,,,CA CB PB PC .(1)直接写出结果;b =_____,c =_____,点A 的坐标为_____,tan ABC ∠=______;(2)如图1,当2PCB OCA ∠=∠时,求点P 的坐标; (3)如图2,点D 在y 轴负半轴上,OD OB =,点Q 为抛物线上一点,90QBD ∠=°,点E ,F 分别为BDQ △的边,DQ DB 上的动点,QE DF =,记BE QF +的最小值为m . ①求m 的值;②设PCB 的面积为S ,若214S m k =−,请直接写出k 的取值范围.11.(2023·湖北武汉·中考真题)抛物线21:28=−−C y x x 交x 轴于,A B 两点(A 在B 的左边),交y 轴于点C .(1)直接写出,,A B C 三点的坐标;(2)如图(1),作直线()04=<<x t t ,分别交x 轴,线段BC ,抛物线1C 于,,D E F 三点,连接CF .若BDE 与CEF △相似,求t 的值;(3)如图(2),将抛物线1C 平移得到抛物线2C ,其顶点为原点.直线2y x =与抛物线2C 交于,O G 两点,过OG 的中点H 作直线MN (异于直线OG )交抛物线2C 于,M N 两点,直线MO 与直线GN 交于点P .问点P 是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.12.(2023·湖南郴州·中考真题)已知抛物线24y ax bx ++与x 轴相交于点 1,0A ,()4,0B ,与y 轴相交于点C .(1)求抛物线的表达式;(2)如图1,点P 是抛物线的对称轴l 上的一个动点,当PAC △的周长最小时,求PAPC的值; (3)如图2,取线段OC 的中点D ,在抛物线上是否存在点Q ,使1tan 2QDB ∠=若存在,求出点Q 的坐标;若不存在,请说明理由.且与直线:1l y x =−−交于D E 、两点(点D 在点E 的右侧),点M 为直线l 上的一动点,设点M 的横坐标为t .(1)求抛物线的解析式.(2)过点M 作x 轴的垂线,与拋物线交于点N .若04t <<,求NED 面积的最大值.(3)抛物线与y 轴交于点C ,点R 为平面直角坐标系上一点,若以B C M R 、、、为顶点的四边形是菱形,请求出所有满足条件的点R 的坐标.在此抛物线上,其横坐标分别为,2(0)m m m >,连接AP ,AQ .(1)求此抛物线的解析式.(2)当点Q 与此抛物线的顶点重合时,求m 的值.(3)当PAQ ∠的边与x 轴平行时,求点P 与点Q 的纵坐标的差.(4)设此抛物线在点A 与点P 之间部分(包括点A 和点P )的最高点与最低点的纵坐标的差为1h ,在点A 与点Q 之间部分(包括点A 和点Q )的最高点与最低点的纵坐标的差为2h .当21h h m −=时,直接写出m 的值.15.(2023·青海西宁·中考真题)如图,在平面直角坐标系中,直线l 与x 轴交于点()6,0A ,与y 轴交于点()0,6B −,抛物线经过点A ,B ,且对称轴是直线1x =.(1)求直线l 的解析式; (2)求抛物线的解析式;(3)点P 是直线l 下方抛物线上的一动点,过点P 作PC x ⊥轴,垂足为C ,交直线l 于点D ,过点P 作PM l ⊥,垂足为M .求PM 的最大值及此时P 点的坐标.16.(2023·湖南·中考真题)如图,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于C 点,其中()10B ,,()0,3C .(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点P ,使得PAC ABC S S =△△?若存在,请求出P 点坐标;若不存在,请说明理由;(3)点Q 是对称轴l 上一点,且点Q 的纵坐标为a ,当QAC △是锐角三角形时,求a 的取值范围.17.(2023·辽宁营口·中考真题)如图,抛物线()210y ax bx a +−≠与x 轴交于点 1,0A 和点B ,与y 轴交于点C ,抛物线的对称轴交x 轴于点()3,0D ,过点B 作直线l x ⊥轴,过点D 作DE CD ⊥,交直线l 于点E .(1)求抛物线的解析式;(2)如图,点P 为第三象限内抛物线上的点,连接CE 和BP 交于点Q ,当57BQ PQ =时.求点P 的坐标; (3)在(2)的条件下,连接AC ,在直线BP 上是否存在点F ,使得DEF ACD BED ∠=∠+∠?若存在,请直接写出点F 的坐标;若不存在,请说明理由.18.(2023·湖南湘西·中考真题)如图(1),二次函数25y ax x c =−+的图像与x 轴交于()4,0A −,(),0B b 两点,与y 轴交于点()0,4C −.(1)求二次函数的解析式和b 的值.(2)在二次函数位于x 轴上方的图像上是否存在点M ,使13BOM ABC S S =△△?若存在,请求出点M 的坐标;若不存在,请说明理由.(3)如图(2),作点A 关于原点O 的对称点E ,连接CE ,作以CE 为直径的圆.点E ′是圆在x 轴上方圆弧上的动点(点E ′不与圆弧的端点E 重合,但与圆弧的另一个端点可以重合),平移线段AE ,使点E 移动到点E ′,线段AE 的对应线段为A E ′′,连接E C ′,A A ′,A A ′的延长线交直线E C ′于点N ,求AA CN′的值.19.(2023·辽宁盘锦·中考真题)如图,抛物线23y ax bx ++与x 轴交于点()10A −,,()30B ,,与y 轴交于点C .(1)求抛物线的解析式.(2)如图1,点Q 是x 轴上方抛物线上一点,射线QM x ⊥轴于点N ,若QM BM =,且4tan 3MBN ∠=,请直接写出点Q 的坐标.(3)如图2,点E 是第一象限内一点,连接AE 交y 轴于点D ,AE 的延长线交抛物线于点P ,点F 在线段CD 上,且CF OD =,连接FA FE BE BP ,,,,若AFE ABE S S =△△,求PAB 面积.20.(2023·重庆·中考真题)如图,在平面直角坐标系中,抛物线22y ax bx ++过点()1,3,且交x 轴于点()1,0A −,B 两点,交y 轴于点C .(1)求抛物线的表达式;(2)点P 是直线BC 上方抛物线上的一动点,过点P 作PD BC ⊥于点D ,过点P 作y 轴的平行线交直线BC 于点E ,求PDE △周长的最大值及此时点P 的坐标;(3)在(2)中PDE △周长取得最大值的条件下,将该抛物线沿射线CB M 为平移后的抛物线的对称轴上一点.在平面内确定一点N ,使得以点A ,P ,M ,N 为顶点的四边形是菱形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.21.(2023·四川广安·中考真题)如图,二次函数2y x bx c =++的图象交x 轴于点A B ,,交y 轴于点C ,点B 的坐标为()1,0,对称轴是直线=1x −,点P 是x 轴上一动点,PM x ⊥轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的解析式.(2)若点P 在线段AO 上运动(点P 与点A 、点O 不重合),求四边形ABCN 面积的最大值,并求出此时点P 的坐标.(3)若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M 、N C Q 、、为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.22.(2023·湖北十堰·中考真题)已知抛物线28y ax bx ++过点()4,8B 和点()8,4C ,与y 轴交于点A .(1)求抛物线的解析式;(2)如图1,连接,AB BC ,点D 在线段AB 上(与点,A B 不重合),点F 是OA 的中点,连接FD ,过点D 作DE FD ⊥交BC 于点E ,连接EF ,当DEF 面积是ADF △面积的3倍时,求点D 的坐标;(3)如图2,点P 是抛物线上对称轴右侧的点,(),0H m 是x 轴正半轴上的动点,若线段OB 上存在点G (与点,O B 不重合),使得GBP HGP BOH ∠=∠=∠,求m 的取值范围.23.(2023·四川·中考真题)如图1,在平面直角坐标系中,已知二次函数24y ax bx ++的图象与x 轴交于点()2,0A −,()4,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)已知E 为抛物线上一点,F 为抛物线对称轴l 上一点,以B ,E ,F 为顶点的三角形是等腰直角三角形,且90BFE ∠=°,求出点F 的坐标; (3)如图2,P 为第一象限内抛物线上一点,连接AP 交y 轴于点M ,连接BP 并延长交y 轴于点N ,在点P 运动过程中,12OM ON +是否为定值?若是,求出这个定值;若不是,请说明理由.24.(2023·黑龙江绥化·中考真题)如图,抛物线21y ax bx c =++的图象经过(6,0)A −,(2,0)B −,(0,6)C 三点,且一次函数6y kx =+的图象经过点B .(1)求抛物线和一次函数的解析式.(2)点E ,F 为平面内两点,若以E 、F 、B 、C 为顶点的四边形是正方形,且点E 在点F 的左侧.这样的E ,F 两点是否存在?如果存在,请直接写出所有满足条件的点E 的坐标:如果不存在,请说明理由.(3)将抛物线21y ax bx c =++的图象向右平移8个单位长度得到抛物线2y ,此抛物线的图象与x 轴交于M ,N 两点(M 点在N 点左侧).点P 是抛物线2y 上的一个动点且在直线NC 下方.已知点P 的横坐标为m .过点P 作PD NC ⊥于点D .求m 为何值时,12CD PD +有最大值,最大值是多少?25.(2023·四川德阳·中考真题)已知:在平面直角坐标系中,抛物线与x 轴交于点(4,0)A −,(2,0)B ,与y 轴交于点(0,4)C −.(1)求抛物线的解析式;(2)如图1,如果把抛物线x 轴下方的部分沿x 轴翻折180°,抛物线的其余部分保持不变,得到一个新图象.当平面内的直线6y kx =+与新图象有三个公共点时,求k 的值; (3)如图2,如果把直线AB 沿y 轴向上平移至经过点D ,与抛物线的交点分别是E ,F ,直线BC 交EF 于点H ,过点F 作FG CH ⊥于点G ,若DF HG=F 的坐标.26.(2023·辽宁锦州·中考真题)如图,抛物线2y bx c ++交x 轴于点()1,0A −和B ,交y 轴于点(C ,顶点为D .(1)求抛物线的表达式;(2)若点E 在第一象限内对称右侧的抛物线上,四边形ODEB 的面积为E 的坐标;(3)在(2)的条件下,若点F 是对称轴上一点,点H 是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G ,使以E ,F ,G ,H 为顶点的四边形是菱形,且60EFG ∠=°,如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.27.(2023·辽宁鞍山·中考真题)如图1,抛物线253y ax x c =++经过点()3,1,与y 轴交于点()0,5B ,点E 为第一象限内抛物线上一动点.(1)求抛物线的解析式.(2)直线243y x =−与x 轴交于点A ,与y 轴交于点D ,过点E 作直线EF x ⊥轴,交AD 于点F ,连接BE .当BE DF =时,求点E 的横坐标.(3)如图2,点N 为x 轴正半轴上一点,OE 与BN 交于点M .若OE BN =,3tan 4BME ∠=,求点E 的坐标.28.(2023·辽宁丹东·中考真题)抛物线24y ax bx +−与x 轴交于点()4,0A −,()2,0B ,与y 轴交于点C .(1)求抛物线的表达式;(2)如图,点D 是抛物线上的一个动点,设点D 的横坐标是()42m m −<<,过点D 作直线DE x ⊥轴,垂足为点E ,交直线AC 于点F .当D ,E ,F 三点中一个点平分另外两点组成的线段时,求线段DF 的长;(3)若点P 是抛物线上的一个动点(点P 不与顶点重合),点M 是抛物线对称轴上的一个点,点N 在坐标平面内,当四边形CMPN 是矩形邻边之比为1:2时,请直接写出点P 的横坐标.。
22.4二次函数与几何图形综合压轴题1.(2021·江苏中考真题)如图,点,A B 在函数214y x =的图像上.已知,A B 的横坐标分别为-2、4,直线AB 与y 轴交于点C ,连接,OA OB . (1)求直线AB 的函数表达式; (2)求AOB ∆的面积; (3)若函数214y x =的图像上存在点P ,使得PAB ∆的面积等于AOB ∆的面积的一半,则这样的点P 共有___________个.2.(2021·湖北中考真题)如图,抛物线2y ax bx c =++交x 轴于(1,0)A -,(3,0)B 两点,交y 轴于点(0,3)C -,点Q 为线段BC 上的动点. (1)求抛物线的解析式; (2)求||||QO QA +的最小值;(3)过点Q 作//PQ AC 交抛物线的第四象限部分于点P ,连接P A ,PB ,记PAQ △与PBQ △的面积分别为1S ,2S ,设12S S S =+,求点P 坐标,使得S 最大,并求此最大值.3.(2021·黑龙江中考真题)抛物线y =﹣x 2+bx +c 经过点A (﹣3,0)和点C (0,3). (1)求此抛物线所对应的函数解析式,并直接写出顶点D 的坐标;(2)若过顶点D 的直线将△ACD 的面积分为1:2两部分,并与x 轴交于点Q ,则点Q 的坐标为 . 注:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标(24,24b ac b a a)4.(2021·湖南中考真题)如图,一次函数333y x =-图象与坐标轴交于点A 、B ,二次函数233y x bx c =++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.5.(2021·河北九年级二模)如图,抛物线21:42G y x kx =-++(k 为常数)与x 轴和y 轴的正半轴分别交于点A 和B ,直线:6L y =,L 交y 轴于点C ,交G 于点M ,N (M 在N 的左侧).(1)当1k =时,△直接写出抛物线G 的对称轴和顶点坐标,并求AB 的长;△当05x ≤≤时,求2142y x kx =-++的最大值和最小值的差.(2)是否存在k ,使1CM =?若存在,求出k 的值;若不存在,说明理由; (3)当12x k ≥时,抛物线G 的最高点到L 的距离为1,请直接写出此时k 的值.6.(2020·江西赣州市·九年级期末)我们知道,二次函数y =a (x ﹣h )2+k (a ≠0)的图象是一条抛物线,现定义一种变换,先作这条抛物线关于原点对称的抛物线y ′,再将抛物线y ′向上平移m (m >0)个单位,得到新的抛物线y m ,我们称y m 叫做二次函数y =a (x ﹣h )2+k (a ≠0)的m 阶变换.(1)已知:二次函数y =2(x +2)2+1,它的顶点关于原点的对称点为 ,这个抛物线的2阶变换的表达式为 .(2)若二次函数M 的6阶变换的关系式为y 6=(x ﹣1)2+5. △二次函数M 的函数表达式为 .△若二次函数M 的顶点为点A ,与x 轴相交的两个交点中左侧交点为点B ,动点P 在抛物线y 6上,作PD △直线AB ,请求出PD 最小时P 点的坐标.7.(2021·湖南娄底市·九年级期末)如图,已知二次函数y=ax2+bx+c(a≠0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,直线y=﹣2x+3经过点C,与x轴交于点D.(1)求二次函数的解析式;(2)点P是(1)中的抛物线上的一个动点,设点P的横坐标为t(0<t<3),求△PCD的面积的最大值及此时点P的坐标.8.(2021·广西九年级期中)如图1,抛物线y=ax2+bx+c交x轴于点A(﹣3,0)和B(1,0),交y轴于点C(0,﹣3).(1)求抛物线的解析式;(2)连接BC,若点E在抛物线上且S△BOC=14S△AOE,求点E的坐标;(3)如图2,设点F是线段AC上的一动点,作DF△x轴,交抛物线于点D,求线段DF的最大值.9.(2021·吉林真题)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象经过点70,4A ⎛⎫- ⎪⎝⎭,点11,4B ⎛⎫⎪⎝⎭.(1)求此二次函数的解析式;(2)当22x -≤≤时,求二次函数2y x bx c =++的最大值和最小值;(3)点P 为此函数图象上任意一点,其横坐标为m ,过点P 作//PQ x 轴,点Q 的横坐标为21m -+.已知点P 与点Q 不重合,且线段PQ 的长度随m 的增大而减小. △求m 的取值范围;△当7PQ ≤时,直接写出线段PQ 与二次函数2123y x bx c x ⎛⎫=++-≤< ⎪⎝⎭的图象交点个数及对应的m 的取值范围.10.(2021·湖南中考真题)如图,已知抛物线24y ax bx =++经过(1,0)A -,(4,0)B 两点,交y 轴于点C . (1)求抛物线的解析式;(2)连接BC ,求直线BC 的解析式;(3)请在抛物线的对称轴上找一点P ,使AP PC +的值最小,求点P 的坐标,并求出此时AP PC +的最小值;(4)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使得以A 、C 、M 、N 四点为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.11.(2021·广西中考真题)如图,已知抛物线y =a (x ﹣3)(x +6)过点A (﹣1,5)和点B (﹣5,m )与x 轴的正半轴交于点C .(1)求a ,m 的值和点C 的坐标;(2)若点P 是x 轴上的点,连接PB ,P A ,当25PB PA =时,求点P 的坐标; (3)在抛物线上是否存在点M ,使A ,B 两点到直线MC 的距离相等?若存在,求出满足条件的点M 的横坐标;若不存在,请说明理由.12.(2021·内蒙古中考真题)如图,抛物线2y x bx c =-++与x 轴交于3,0、()1,0B 两点,对称轴l 与x轴交于点F ,直线m //AC ,过点E 作EH △m ,垂足为H ,连接AE 、EC 、CH 、AH . (1)抛物线的解析式为 ;(2)当四边形AHCE 面积最大时,求点E 的坐标;(3)在(2)的条件下,连接EF ,点P 在x 轴上,在抛物线上是否存在点Q ,使得以F 、E 、P 、Q 为顶点的四边形是平行四边形,请直接写出点Q 的坐标;若不存在请说明理由.13.(2021·长沙麓山国际实验学校九年级其他模拟)如图,已知二次函数()20y x bx c c =-++>的图象与x轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OB =OC =3,顶点为M . (1)求该二次函数的解析式;(2)点P 为线段BM 上的一个动点,过点P 作x 轴的垂线PQ ,垂足为点Q ,若OQ =m ,四边形ACPQ 的面积为S ,求S 关于m 的函数解析式,并写出m 的取值范围;(3)探索:线段BM 上是否存在点P ,使PMC 为等腰三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由.14.(2021·上海中考真题)已知抛物线2(0)y ax c a =+≠过点(3,0),(1,4)P Q .(1)求抛物线的解析式;(2)点A 在直线PQ 上且在第一象限内,过A 作AB x ⊥轴于B ,以AB 为斜边在其左侧作等腰直角ABC . △若A 与Q 重合,求C 到抛物线对称轴的距离; △若C 落在抛物线上,求C 的坐标.15.(2021·长沙市长郡双语实验中学八年级期末)如图,已知抛物线y =14x 2+bx +c 与y 轴交于点B (0,1),顶点为A .点F (2,1)在抛物线的对称轴上,点C (0,3)是y 轴上一点.点P 在抛物线上运动,过点P 作PM △x 轴于点M ,连接PF 和CF .(1)求抛物线的解析式;(2)求证:在点P 运动的过程中,总有PF =PM +1;(3)若将“使△PCF 面积为2”的点P 记作“巧点”,则存在多个“巧点”,请求出所有“巧点”的坐标.是否存在使△PCF 的周长最小的“巧点”,若有,请直接写出“巧点”的坐标;若无,请说明理由.16.(2021·苏州吴中区木渎实验中学九年级月考)如图,已知抛物线213y x bx c =++(b ,c 是常数,且0c <)与x 轴分别交于点A ,B (点A 位于点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(1,0)-.(1)b =________,点B 的横坐标为________(上述结果均用含c 的代数式表示);(2)连接BC ,过点A 作直线//AE BC ,与抛物线213y x bx c =++交于点E .点D 是x 轴上一点,其坐标为(2,0),当C ,D ,E 三点在同一直线上时,求抛物线的解析式.17.(2020·湖北十堰市·九年级期末)如图,已知抛物线y =21322x -x ﹣n (n >0)与x 轴交于A ,B 两点(A点在B 点的左边),与y 轴交于点C . (1)若△ABC 为直角三角形,求n 的值;(2)在(1)的条件下,点D 在抛物线上,点E 在抛物线的对称轴上,若以BC 为边,以点B ,C ,D ,E 为顶点的四边形是平行四边形,求点D ,E 的坐标.18.(2019·内蒙古九年级二模)如图,抛物线2y ax bx c =++()0a ≠与y 轴交于点()0,4C ,与x 轴交于点A 和点B ,其中点A 的坐标为()2,0-,抛物线的对称轴1x =与抛物线交于点D ,与直线BC 交于点E . (1)求抛物线的解析式;(2)若点F 是直线BC 上方的抛物线上的一个动点,是否存在点F 使四边形ABFC 的面积为17,若存在,求出点F 的坐标;若不存在,请说明理由;(3)平行于DE 的一条动直线l 与直线BC 相交于点P ,与抛物线相交于点Q ,若以D 、E 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标.19.(2021·四川九年级期末)如图,抛物线经过A (﹣1,0),B (0,﹣4),D (3,﹣4)三点. (1)求抛物线的解析式.(2)直线AD 交y 轴于点G ,M 是线段GD 上动点,MN //x 轴与抛物线CD 段交于点N .MF △x 轴于F ,NH △x 轴于H ,当四边形MFHN 是正方形时,求点M 的坐标.(3)探究在抛物线上是否存在点P ,使S △PBC =2S △DBC ?若存在,请求出点P 的坐标;若不存在,试说明理由.20.(2021·江苏九年级二模)定义:如果二次函数2111y a x b x c =++(10a ≠,1a ,1b ,1c 是常数)与2222y a x b x c =++(20a ≠,2a ,2b ,2c 是常数)满足120a a +=,12b b =,120c c +=,则这两个函数互为“N ”函数.(1)写出21y x x =-+-的“N ”函数的表达式;(2)若题(1)中的两个“N ”函数与正比例函数(0)y kx k =≠的图像只有两个交点,求k 的值;(3)如图,二次函数y 1与y 2互为“N ”函数,A 、B 分别是“N ”函数y 1与y 2图象的顶点,C 是“N ”函数2y 与y 轴正半轴的交点,连接AB 、AC 、BC ,若点(2,1)A -且ABC 为直角三角形,求点C 的坐标.21.(2021·重庆九年级期中)如图,已知抛物线2y x 2x 3=-++与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,连接BC .(1)求A 、B 、C 三点的坐标;(2)若点P 为线段BC 上的一点(不与B 、C 重合),PM △y 轴,且PM 交抛物线于点M ,交x 轴于点N ,当线段PM 的长度最大时,求点M 的坐标;(3)在(2)的条件下,当线段PM 的长度最大时,在抛物线的对称轴上有一点Q ,使得△CNQ 为直角三角形,直接写出点Q 的坐标.22.(2021·湖北九年级一模)已知抛物线223y x mx m =--与直线1:l y kx b =+有一个交点P .(1)若点P 的坐标为12,2⎛⎫ ⎪⎝⎭,求m 的值,并写出抛物线的顶点坐标; (2)若1k =,点P 在y 轴上,直线1l 与抛物线的另一交点是Q ,当32PQ =时,求抛物线的解析式; (3)设平行于直线1l 且经过原点的直线2l 与抛物线交于A ,B 两点,PAB △的面积33PAB S =△,若对于任意x 的取值,满足223x mx m kx b --≥+恒成立,求b 的值.23.(2021·广西中考真题)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣1,0),B(0,3),顶点为C.平移此抛物线,得到一条新的抛物线,且新抛物线上的点D(3,﹣1)为原抛物线上点A 的对应点,新抛物线顶点为E,它与y轴交于点G,连接CG,EG,CE.(1)求原抛物线对应的函数表达式;(2)在原抛物线或新抛物线上找一点F,使以点C,E,F,G为顶点的四边形是平行四边形,并求出点F 的坐标;(3)若点K是y轴上的一个动点,且在点B的上方,过点K作CE的平行线,分别交两条抛物线于点M,N,且点M,N分别在y轴的两侧,当MN=CE时,请直接写出点K的坐标.24.(2021·辽宁阜新市教育服务中心中考真题)在平面直角坐标系中,抛物线23y ax bx=+-交x轴于点(1,0)A-,(3,0)B,过点B的直线223y x=-交抛物线于点C.(1)求该抛物线的函数表达式;(2)若点P是直线BC下方抛物线上的一个动点(P不与点B,C重合),求PBC面积的最大值;(3)若点M在抛物线上,将线段OM绕点O旋转90°,得到线段ON,是否存在点M,使点N恰好落在直线BC上?若存在,请直接写出....点M的坐标;若不存在,请说明理由.25.(2021·广西中考真题)已知O为坐标原点,直线l:y=﹣12x+2与x轴、y轴分别交于A、C两点,点B(4,2)关于直线l的对称点是点E,连接EC交x轴于点D.(1)求证:AD=CD;(2)求经过B、C、D三点的抛物线的函数表达式;(3)当x>0时,抛物线上是否存在点P,使S△PBC=53S△OAE?若存在,求点P的坐标;若不存在,说明理由.。
一次函数综合题通用的解题思路:(1)一次函数与几何图形的面积问题首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(2)一次函数的优化问题通常一次函数的最值问题首先由不等式找到x 的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(3)用函数图象解决实际问题从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.1(2024•鼓楼区一模)如图,直线y =-3x +6与⊙O 相切,切点为P ,与x 轴y 轴分别交于A 、B 两点.⊙O 与x 轴负半轴交于点C .(1)求⊙O 的半径;(2)求图中阴影部分的面积.【分析】(1)由OP =OA ⋅sin60°,即可求解;(2)由图中阴影部分的面积=S 扇形COP -S ΔPOC ,即可求解.【解答】解:(1)对于直线y =-3x +6,令y =-3x +6=0,则x =23,即OA =23,由一次函数的表达式知,OB =6,则tan ∠BAC =OB AO =623=3,则∠BAC =60°连接OP ,则OP ⊥AB ,则OP =OA ⋅sin60°=23×32=3;(2)过点P 作PH ⊥AC 于点H ,∵∠POH =30°,则∠POC =150°,PH =12OP =32,则图中阴影部分的面积=S 扇形COP -S ΔPOC =150°360°×π×32-12×3×32=15π-94.【点评】本题考查了一次函数和圆的综合运用,涉及到圆切线的和一次函数的性质,解直角三角形,面积的计算等,综合性强,难度适中.2(2023•宿豫区三模)如图①,在平面直角坐标系中,直线l 1:y =x +1与直线l 2:x =-2相交于点D ,点A 是直线l 2上的动点,过点A 作AB ⊥l 1于点B ,点C 的坐标为(0,3),连接AC ,BC .设点A 的纵坐标为t ,ΔABC 的面积为s .(1)当t =2时,求点B 的坐标;(2)s 关于t 的函数解析式为s =14t 2+bt -54t -1或t 5 a t +1 t -5 (-1<t <5),其图象如图②所示,结合图①、②的信息,求出a 与b 的值;(3)在直线l 2上是否存在点A ,使得∠ACB =90°,若存在,请求出此时点A 的坐标;若不存在,请说明理由.【分析】(1)解法一:先根据t =2可得点A (-2,2),因为B 在直线l 1上,所以设B (x ,x +1),利用y =0代入y =x +1可得G 点的坐标,在Rt ΔABG 中,利用勾股定理列方程可得点B 的坐标;解法二:根据可以使用y =x +1与x 轴正半轴夹角为45度来解答;(2)先把(7,4)代入s =14t 2+bt -54中计算得b 的值,计算在-1<t <5范围内图象上一个点的坐标值:当t =2时,根据(1)中的数据可计算此时s =94,可得坐标2,94,代入s =a (t +1)(t -5)中可得a 的值;(3)存在,设B (x ,x +1),如图5和图6,分别根据两点的距离公式和勾股定理列方程可解答.【解答】解:(1)解法一:如图1,连接AG ,当t =2时,A (-2,2),设B (x ,x +1),在y =x +1中,当x =0时,y =1,∴G (0,1),∵AB ⊥l 1,∴∠ABG =90°,∴AB 2+BG 2=AG 2,即(x +2)2+(x +1-2)2+x 2+(x +1-1)2=(-2)2+(2-1)2,解得:x 1=0(舍),x 2=-12,∴B -12,12;解法二:如图1-1,过点B 作BE ⊥x 轴于E ,过点A 作AH ⊥BE 于H ,当x =0时,y =1,当y =0时,x +1=0,则x =-1,∴OF =OG =1,∵∠GOF =90°,∴∠OGF =∠OFG =45°,∴BE =EF ,∵∠ABD =90°,∴∠ABH =∠BAH =45°,∴ΔABH 是等腰直角三角形,∴AH =BH ,当t =2时,A (-2,2),设B (x ,x +1),∴x +2=2-(x +1),∴x =-12,∴B -12,12 ;(2)如图2可知:当t =7时,s =4,把(7,4)代入s =14t 2+bt -54中得:494+7b -54=4,解得:b =-1,如图3,过B 作BH ⎳y 轴,交AC 于H ,由(1)知:当t =2时,A (-2,2),B -12,12 ,∵C (0,3),设AC 的解析式为:y =kx +n ,则-2k +n =2n =3 ,解得k =12n =3 ,∴AC 的解析式为:y =12x +3,∴H -12,114,∴BH =114-12=94,∴s=12BH⋅|x C-x A|=12×94×2=94,把2,9 4代入s=a(t+1)(t-5)得:a(2+1)(2-5)=94,解得:a=-1 4;(3)存在,设B(x,x+1),当∠ACB=90°时,如图5,∵∠ABD=90°,∠ADB=45°,∴ΔABD是等腰直角三角形,∴AB=BD,∵A(-2,t),D(-2,-1),∴(x+2)2+(x+1-t)2=(x+2)2+(x+1+1)2,(x+1-t)2=(x+2)2,x+1-t=x+2或x+1-t=-x-2,解得:t=-1(舍)或t=2x+3,RtΔACB中,AC2+BC2=AB2,即(-2)2+(t-3)2+x2+(x+1-3)2=(x+2)2+(x+1-t)2,把t=2x+3代入得:x2-3x=0,解得:x=0或3,当x=3时,如图5,则t=2×3+3=9,∴A(-2,9);当x=0时,如图6,此时,A(-2,3),综上,点A的坐标为:(-2,9)或(-2,3).【点评】本题考查二次函数综合题、一次函数的性质、等腰直角三角形的判定和性质、三角形的面积、两点间距离公式等知识,解题的关键是灵活运用所学知识解决问题.3(2023•溧阳市一模)如图1,将矩形AOBC放在平面直角坐标系中,点O是原点,点A坐标为(0,4),点B坐标为(5,0),点P是x轴正半轴上的动点,连接AP,ΔAQP是由ΔAOP沿AP翻折所得到的图形.(1)当点Q落在对角线OC上时,OP= 165 ;(2)当直线PQ经过点C时,求PQ所在的直线函数表达式;(3)如图2,点M是BC的中点,连接MP、MQ.①MQ的最小值为;②当ΔPMQ是以PM为腰的等腰三角形时,请直接写出点P的坐标.【分析】(1)通过Q 点在OC 上,可以通过∠BOC 的三角函数和∠OAP 的三角函数来导出对应的边的关系,求得结果;(2)通过直角ΔAQC 中,得到QC 的长度,然后通过OP =PQ =x ,可以在Rt ΔBCP 中,得到对应的x 值然后求出结果;(3)通过QA =OA =4,可得出Q 点的运动轨迹,是以A 点为圆心,4为半径长度的圆弧,从而可知,MA 的连线上的Q 点为最短的MQ 长度,通过分类讨论,PM =PQ ,PM =QM ,PQ =QM 来求得对应的P 的坐标.【解答】解:(1)如图1,∵∠OAP +∠AOE =90°,∠BOC +∠AOE =90°,∴∠OAP =∠BOC ,又∵∠AOP =∠OBC =90°,∴ΔOAP ∽ΔBOC ,∴OP BC =OA OB ,即OP 4=45,∴OP =165,故答案为:165;(2)如图,∵AQ ⊥PQ ,∴∠AQC =90°,∴QC =AC 2-AQ 2=52-42=3,∵AQ =AO =4,设OP =PQ =x ,则CP =3+x ,PB =5-x ,∴CP 2=BP 2+BC 2,(3+x )2=(5-x )2+42,x =2,∴P 点的坐标为(2,0),将P (2,0)和C (5,4)代入y =kx +b 中,0=2k +b 4=5k +b ,解得:k =43b =-83,∴PQ 所在直线的表达式为:y =43x -83;(3)如图,①∵AQ =AO =4,∴Q 点的运动轨迹,是以A 为圆心,4为半径的圆弧,∴MQ 的最小值在AM 的连线上,如图,MQ ′即为所求,∵M 是BC 中点,CM =12BC =2,∴AM =52+22=29,MQ ′=MA -AQ ′=29-4,故答案为:29-4;②如图,设OP =PQ =x ,BP =5-x ,∴PM 2=(5-x )2+22=x 2-10x +29,当PM =PQ 时,PM 2=PQ 2,∴x 2-10x +29=x 2,x =2910,∴P 2910,0,当MP =MQ 时,如图,若点Q 在AC 上,则AQ =OA =4,∵MP =MQ ,MB =MC ,∠PBM =∠QCM ,∴ΔPMB ≅ΔQMC (HL ),∴PB =QC ,QC =AC -AQ =5-4=1,∴PB =1,∴OP =BO -PB =5-1=4,∴P (4,0);若点Q 在AC 上方时,由对称性可知OM =MQ ,∵MQ =MQ ,∴MO =MP ,∴P (10,0);当MQ =PQ 时,不符合题意,不成立,故P 点坐标为P 2910,0或P (4,0)或(10,0).【点评】本题考查一次函数的图象及应用,通过一次函数坐标图象的性质,三角函数的性质,全等三角形的性质和勾股定理,来求得对应的解.4(2022•启东市模拟)我们知道一次函数y =mx +n 与y =-mx +n (m ≠0)的图象关于y 轴对称,所以我们定义:函数y =mx +n 与y =-mx +n (m ≠0)互为“M ”函数.(1)请直接写出函数y =2x +5的“M ”函数;(2)如果一对“M ”函数y =mx +n 与y =-mx +n (m ≠0)的图象交于点A ,且与x 轴交于B ,C 两点,如图所示,若∠BAC =90°,且ΔABC 的面积是8,求这对“M ”函数的解析式;(3)在(2)的条件下,若点D 是y 轴上的一个动点,当ΔABD 为等腰三角形时,请求出点D 的坐标.【分析】(1)根据互为“M ”函数的定义,直接写出函数y =2x +5的“M ”函数;(2)现根据已知条件判断ΔABC 为等腰直角三角形,再根据互为“M ”函数的图象关于y 轴对称,得出OA =OB =OC ,再根据函数解析式求出点A 、B 、C 的坐标,再根据ΔABC 的面积是8求出m 、n 的值,从而求出函数解析式;(3)ΔABD 为等腰三角形,分以A 为顶点,以B 为顶点,以D 为顶点三种情况讨论即可.【解答】(1)解:根据互为“M ”函数的定义,∴函数y =2x +5的“M ”函数为y =-2x +5;(2)解:根据题意,y =mx +n 和y =-mx +n 为一对“M 函数”.∴AB =AC ,又∵∠BAC =90°,∴ΔABC 为等腰直角三角形,∴∠ABC =∠ACB =45°,∵OB =OC ,∴∠BAO =∠CAO =45°,∴OA =OB =OC ,又∵S ΔABC =12×BC ×AO =8且BC =2AO ,∴AO =22,∵A 、B 、C 是一次函数y =mx +n 与y =-mx +n (m ≠0)的图象于坐标轴的交点,∴A (0,n ),B -n m ,0 ,C n m ,0,∵OA =OB =n ,∴n m=22,∴m =1,∴y =x +22和y =-x +22;(3)解:根据等腰三角形的性质,分情况,∵AO =BO =22,∴AB =4,由(2)知,A (0,22),B (-22,0),C (22,0),∴①以A 为顶点,则AB =AD ,当点D 在点A 上方时,AD =22+4,当点D 在点A 下方时,AD =22-4,∴D 1(0,22+4),D 2(0,22-4),②以B 为顶点,则BA =BD ,此时点D 在y 轴负半轴,∴D 3(0,-22),③以D 为顶点,则DA =DB ,此时D 为坐标原点,∴D 4(0,0).∴D 点坐标为D 1(0,22+4),D 2(0,22-4),D 3(0,-22),∴D 4(0,0).【点评】本题考查一次函数的综合应用,以及新定义、等腰三角形的性质等知识,关键是理解新定义,用新定义解题.5(2024•新北区校级模拟)如图①,动点P 从矩形ABCD 的顶点A 出发,以v 1的速度沿折线A -B -C 向终点C 运动;同时,一动点Q 从点D 出发,以v 2的速度沿DC 向终点C 运动,当一个点到达终点时,另一个点也停止运动.点E 为CD 的中点,连接PE ,PQ ,记ΔEPQ 的面积为S ,点P 运动的时间为t ,其函数图象为折线MN -NF 和曲线FG (图②),已知,ON =4,NH =1,点G 的坐标为(8,0).(1)点P 与点Q 的速度之比v 1v 2的值为 85 ;AB AD的值为;(2)如果OM =15.①求线段NF 所在直线的函数表达式;②求FG 所在曲线的函数表达式;③是否存在某个时刻t ,使得S ≥154?若存在,求出t 的取值范围:若不存在,请说明理由.【分析】(1)由函数图象可知t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,则Q 的速度v 2=DE 4,P 的速度v 1=AB 4,从而得出答案;(2)①当t =0时,P 与A 重合,Q 与D 重合,此时S ΔADE =2,可得AD =BC =DE =15,AB =CD =53AD =10,从而得出点P 与Q 的速度,即可得出点F 的坐标,利用待定系数法可得答案;②设FG 所在的曲线的数解析式为S =a (t -6)2+k (a ≠0),把F 5,154,G (8,0)代入解析式求得a ,k 值即可求解答;③利用待定系数法求出直线MN 的函数解析式,当S =154时,可得t 的值,根据图象可得答案.【解答】解:(1)∵ON =4,NH =1,G (8,0),∴N (4,0),H (5,0),由图象可知:t =4时,Q 与E 重合,t =5时,P 与B 重合,t =8时,P 与C 重合,∴Q 的速度v 2=DE 4,P 的速度v 1=AB 5,∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∵E 为CD 的中点,∴DE =12CD =12AB ,∴v 1v 2=AB5DE 4=AB 5⋅4DE =85,∵P 从A 到B 用了5秒,从B 到C 用了3秒,∴AB =5v 1,BC =3v 1,∴AB =53BC ,∴AB :AD 的值为53,故答案为:85,53;(2)①∵OM =15,∴M (0,15),由题知,t =0时,P 与A 重合,Q 与D 重合,∴S ΔEPQ =12AD ⋅DE =15,∵AB :AD =53,DE =12AB ,∴DE =56AD ,∴12AD ⋅56AD =15,∴AD =BC =6(舍去负值),∴AB =CD =53AD =10,∴v 2=DE 4=54,当t =5时,DQ =v 2t =54×5=254,∴QE =DQ -DE =254-5=54,此时P 与B重合,∴S ΔEPQ =12EQ ⋅BC =12×54×6=154,∴F 5,154 ,设直线NF 的解析式为S =kt +b (k ≠0),将N (4,0)与F 5,154 代入得:4k +b =05k +b =154,∴k =154b =-15 ,∴线段NF 所在直线的函数表达式为S =154t -15(4<t ≤5);②设FG所在的曲线的数解析式为S=1254t-5(16-2t)=-54t2+15t-40,∴FG所在的曲线的函数解析式为S=-54t2+15t-40(5≤t≤8);③存在,分情况讨论如下:当Q在DE上,P在AB上时,∵直线MN经过点M(0,15),N(4,0),可求得直线MN的解析式为S=-54t+15(0≤t≤4),当s=154时,-154t+15=154,∴x=3,∵s随x的增大而减小,∴当0≤x≤3时,S≥154,当Q在CE上,P在BC上时,直线NF的解析式为S=154t-15(4<t≤5);由F5,15 4知:当t=5时,S=154,当S=154时,-54t2+15t-40=154,∴t=7或5,由图象知:当5≤x≤7,x的取值范围为0≤t≤3或5≤t≤7.【点评】本题是一次函数综合题,主要考查了待定系数法求函数解析式,三角形的面积,矩形的性质等知识,理解函数图象中每一个拐点的意义是解题的关键.6(2024•梁溪区校级模拟)在平面直角坐标系xOy 中,二次函数y =-ax 2+3ax +4a 的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴正半轴交于点C ,直线y =12x 交于第一象限内的D 点,且ΔABC 的面积为10.(1)求二次函数的表达式;(2)点E 为x 轴上一点,过点E 作y 轴的平行线交线段OD 于点F ,交抛物线于点G ,当GF =5OF 时,求点G 的坐标;(3)已知点P (n ,0)是x 轴上的点,若点P 关于直线OD 的对称点Q 恰好落在二次函数的图象上,求n 的值.【分析】(1)在y =-ax 2+3ax +4a 中,令y =0得A (-1,0),B (4,0),根据ΔABC 的面积为10,即得OC =4,C (0,4),用待定系数法即得二次函数的表达式为y =-x 2+3x +4;(2)设E (m ,0),则F m ,12m ,G (m ,-m 2+3m +4),由GF =5OF ,可得-m 2+52m +4=5×52m ,即可解得G (2,6);(3)连接PQ 交直线OD 于K ,过Q 作QT ⊥x 轴于T ,设Q (r ,s ),可得K n +r 2,s 2 ,即得s 2=12×n +r 2,n +r =2s ①,又r 2+s 2=n 2,(n +r )(n -r )=s 2②,可解得r =35n ,s =45n ,故Q 35n ,45n ,代入y =-x 2+3x +4得45n =-35n 2+3×35n +4,解得n =5或n =-209.【解答】解:(1)如图:在y =-ax 2+3ax +4a 中,令y =0得-ax 2+3ax +4a =0,解得x =4或x =-1,∴A (-1,0),B (4,0),∴AB =5,∵ΔABC 的面积为10,∴12AB ⋅OC =10,即12×5⋅OC =10,∴OC =4,∴C (0,4),把C (0,4)代入y =-ax 2+3ax +4a 得:4a =4,∴a =1,∴二次函数的表达式为y =-x 2+3x +4;(2)如图:设E (m ,0),则F m ,12m ,G (m ,-m 2+3m +4),∴OF =m 2+12m 2=52m ,GF =-m 2+3m +4-12m =-m 2+52m +4,∵GF =5OF ,∴-m 2+52m +4=5×52m ,解得m =2或m =-2(舍去),∴G (2,6);(3)连接PQ 交直线OD 于K ,过Q 作QT ⊥x 轴于T ,如图:∵P (n ,0)关于直线对称点为Q ,∴OQ =OP =|n |,K 是PQ 中点,设Q (r ,s ),∴K n +r 2,s 2,∵K 在直线y =12x 上,∴s 2=12×n +r 2,整理得:n +r =2s ①,∵OT 2+QT 2=OQ 2,∴r 2+s 2=n 2,变形得:(n +r )(n -r )=s 2②,把①代入②得:2s (n -r )=s 2,∵s ≠0,∴n -r =s2③,由①③可得r =35n ,s =45n ,∴Q 35n ,45n ,∵Q 在抛物线y =-x 2+3x +4上,∴45n =-35n 2+3×35n +4,解得n =5或n =-209,答:n 的值为5或-209.【点评】本题考查一次函数、二次函数综合应用,涉及待定系数法,三角形面积,对称变换等知识,解题的关键是用含n 的代数式表示Q 的坐标.7(2023•邗江区校级一模)如图1,在平面直角坐标系中,直线l :y =-33x +43分别与x 轴、y 轴交于点A 点和B 点,过O 点作OD ⊥AB 于D 点,以OD 为边构造等边ΔEDF (F 点在x 轴的正半轴上).(1)求A 、B 点的坐标,以及OD 的长;(2)将等边ΔEDF ,从图1的位置沿x 轴的正方向以每秒1个单位的长度平移,移动的时间为t (s ),同时点P 从E 出发,以每秒2个单位的速度沿着折线ED -DF 运动(如图2所示),当P 点到F 点停止,ΔDEF 也随之停止.①t =3或6(s )时,直线l 恰好经过等边ΔEDF 其中一条边的中点;②当点P 在线段DE 上运动,若DM =2PM ,求t 的值;③当点P 在线段DF 上运动时,若ΔPMN 的面积为3,求出t 的值.【分析】(1)把x =0,y =0分别代入y =-33x +43,即可求出点A 、B 的坐标,求出∠BAO =30°,根据直角三角形的性质,即可得出OD =12OA =6;(2)①当直线l 分别过DE 、DF 、EF 的中点,分三种情况进行讨论,得出t 的值,并注意点P 运动的最长时间;②分点P 在直线l 的下方和直线l 上方两种情况进行讨论,求出t 的值即可;③分点P 在DN 之间和点P 在NF 之间两种情况进行讨论,求出t 的值即可.【解答】解:(1)令x =0,则y =43,∴点B 的坐标为(0,43),令y =0,则-33x +43=0,解得x =12,∴点A 的坐标为(12,0),∵tan ∠BAO =OB OA=4312=33,∴∠BAO =30°,∵OD ⊥AB ,∴∠ODA =90°,∴ΔODA 为直角三角形,∴OD =12OA =6;(2)①当直线l 过DF 的中点G 时,∵ΔDEF 为等边三角形,∴∠DFE =60°,∵∠BAO =30°,∴∠FGA =60°-30°=30°,∴∠FGA =∠BAO ,∴FA =FG =12DF =3,∴OF =OA -FA =9,∴OE =OF -EF =9-6=3,∴t =3;当l 过DE 的中点时,∵DE ⊥l ,DG =EG ,∴直线l 为DE 的垂直平分线,∵ΔDEF 为等边三角形,∴此时点F 与点A 重合,∴t =12-61=6;当直线l 过EF 的中点时,运动时间为t =12-31=9;∵点P 从运动到停止用的时间为:6+62=6,∴此时不符合题意;综上所述,当t =3s 或6s 时,直线l 恰好经过等边ΔEDF 其中一条边的中点,故答案为:3或6;②∵OE =t ,AE =12-t ,∠BAO =30°,∴ME =6-t2,∴DM =DE -EM =t2,∵EP =2t ,∴PD =6-2t ,当P 在直线l 的下方时,∵DM =23DP ,∴t 2=23(6-2t ),解得:t =2411;当P 在直线l 的上方时,∵DM =2DP ,∴t2=2(6-2t ),解得t =83;综上所述:t 的值为2411或83;③当3<t ≤6时,∵∠D =60°,∠DMN =90°,DM =t2,∴∠DNM =90°-60°=30°,∴MN =DM ×tan60°=32t ,DN =2DM =2×t2=t ,∵DP =2t -6,∴PN =DN -DP =t -(2t -6)=6-t ,∵∠DNM =30°,∴边MN 的高h =12PN =3-12t ,∵ΔPMN 的面积为3,∴12×32t 3-12t =3,整理得:t 2-6t +8=0,解得t =2(舍)或t =4当点P 在NF 之间时,∵∠D =60°,∠DMN =90°,DM =t2,∴∠DNM =90°-60°=30°,∴MN =DM ×tan60°=32t ,DN =2DM =2×t2=t ,∵DP =2t -6,∴PN =DP -DN =2t -6-t =t -6,∵∠DNM =30°,∴∠FNA =∠DNM =30°,∴边MN 的高h =12PN =12t -3,∵ΔPMN 的面积为3,∴12×32t 12t -3 =3,解得t =3+17(舍)或t =3-17(舍),综上所述,t 的值为4s .【点评】本题主要考查了一次函数的性质、等边三角形的性质、直角三角形的性质、利用三角函数解直角三角形,熟练掌握含30°的直角三角形的性质并注意进行分类讨论是解题的关键.8(2023•武进区校级模拟)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|;若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图1中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 交点).(1)已知点A -12,0,B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值;(2)已知C 是直线y =34x +3上的一个动点,①如图2,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图3,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 与点C 的坐标.【分析】(1)①根据点B 位于y 轴上,可以设点B 的坐标为(0,y ).由“非常距离”的定义可以确定|0-y |=2,据此可以求得y 的值;②设点B 的坐标为(0,y ).因为-12-0 ≥|0-y |,所以点A 与点B 的“非常距离”最小值为-12-0 =12;(2)①设点C 的坐标为x 0,34x 0+3 .根据材料“若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|”知,C 、D 两点的“非常距离”的最小值为-x 0=34x 0+2,据此可以求得点C 的坐标;②根据“非常距离”的定义,点E 在过原点且与直线y =34x +3垂直的直线上,且C 与E 的横纵坐标差相等时,点C 与点E 的“非常距离”取最小值,据此求出C 与E 的坐标及“非常距离”的最小值.【解答】解:(1)①∵B 为y 轴上的一个动点,∴设点B 的坐标为(0,y ).∵-12-0 =12≠2,∴|0-y |=2,解得,y =2或y =-2;∴点B 的坐标是(0,2)或(0,-2);②点A 与点B 的“非常距离”的最小值为12.(2)①如图2,当点C 与点D 的“非常距离”取最小值时,需要根据运算定义“若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|”解答,此时|x 1-x 2|=|y 1-y 2|.即AC =AD ,∵C 是直线y =34x +3上的一个动点,点D 的坐标是(0,1),∴设点C 的坐标为x 0,34x 0+3 ,∴-x 0=34x 0+2,此时,x 0=-87,∴点C 与点D 的“非常距离”的最小值为:|x 0|=87,此时C -87,157;②如图3,当点E 在过原点且与直线y =34x +3垂直的直线上,且CF =EF 时,点C 与点E 的“非常距离”最小,设E (x ,y )(点E 位于第二象限).则y x=-43x 2+y 2=1 ,解得x =-35y =45,故E -35,45.设点C 的坐标为x 0,34x 0+3 ,-35-x 0=34x 0+3-45,解得x0=-8 5,则点C的坐标为-8 5,95,点C与点E的“非常距离”的最小值为1.【点评】本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中的已知条件.本题中的“非常距离”的定义是正确解题的关键.9(2023•海安市一模)对于平面直角坐标系xOy中的图形W和点P,给出如下定义:F为图形W上任意一点,将P,F两点间距离的最小值记为m,最大值记为M,称M与m的差为点P到图形W的“差距离”,记作d(P,W),即d(P,W)=M-m,已知点A(2,1),B(-2,1)(1)求d(O,AB);(2)点C为直线y=-1上的一个动点,当d(C,AB)=1时,点C的横坐标是 (2-5)或(5-2,) ;(3)点D为函数y=x+b(-2≤x≤2)图象上的任意一点,当d(D,AB)≤2时,直接写出b的取值范围.【分析】(1)画出图形,根据点P到图形W的“差距离”的定义即可解决问题.(2)如图2中,设C(m,-1).由此构建方程即可解决问题.(3)如图3中,取特殊位置当b=6时,当b=-4时,分别求解即可解决问题.【解答】解:(1)如图1中,∵A(2,1),B(-2,1),∴AB⎳x轴,∴点O到线段AB的最小距离为1,最大距离为5,∴d(O,AB)=5-1.(2)如图2中,设C(m,-1).当点C在y轴的左侧时,由题意AC-2=1,∴AC=3,∴(2-m)2+22=9,∴m=2-5或2+5(舍弃),∴C(2-5,-1),当点C在y轴的右侧时,同法可得C(5-2,-1),综上所述,满足条件的点C的坐标为(2-5,-1)或(5-2,-1).故答案为:(2-5,-1)或(5-2,-1).(3)如图3中,当b=6时,线段EF:y=x+6(-2≤x≤2)上任意一点D,满足d(D,AB)≤2,当b=-4时,线段E′F′:y=x-4(-2≤x≤2)上任意一点D′,满足d(D′,AB)≤2,观察图象可知:当b≥6或b≤-4时,函数y=x+b(-2≤x≤2)图象上的任意一点,满足d(D,AB)≤2.【点评】本题属于一次函数综合题,考查了一次函数的性质,点P到图形W的“差距离”的定义等知识,解题的关键是理解题意,学会利用参数解决问题,学会寻找特殊位置解决问题,属于中考创新题型.10(2022•姑苏区校级模拟)平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C的“最佳三点矩形”.如图2,已知M(4,1),N(-2,3),点P(m,n).(1)①若m=2,n=4,则点M,N,P的“最佳三点矩形”的周长为18,面积为;②若m=2,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=-2x+5上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,当且仅当点M,N,P的“最佳三点矩形”面积为12时,-2≤m≤-1或1≤m≤3,直接写出抛物线的解析式.【分析】(1)①利用“最佳三点矩形”的定义求解即可,②利用“最佳三点矩形”的定义求解即可;(2)①利用“最佳三点矩形”的定义求得面积的最小值为12,②由“最佳三点矩形”的定义求得正方形的边长为6,分别将y=7,y=-3代入y=-2x+5,可得x分别为-1,5,点P的坐标为(-1,7)或(4,-3);(3)利用“最佳三点矩形”的定义画出图形,可分别求得解析式.【解答】解:(1)①如图,画出点M,N,P的“最佳三点矩形”,可知矩形的周长为6+6+3+3=18,面积为3×6=18;故答案为:18,18.②∵M(4,1),N(-2,3),∴|x M-x N|=6,|y M-y N|=2.又∵m=2,点M,N,P的“最佳三点矩形”的面积为24.∴此矩形的邻边长分别为6,4.∴n=-1或5.(2)如图,①由图象可得,点M,N,P的“最佳三点矩形”面积的最小值为12;分别将y=3,y=1代入y=-2x+5,可得x分别为1,2;结合图象可知:1≤m≤2;②当点M,N,P的“最佳三点矩形”为正方形时,边长为6,分别将y=7,y=-3代入y=-2x+5,可得x分别为-1,4;∴点P的坐标为(-1,7)或(4,-3);(3)设抛物线的解析式为y=ax2+bx+c,经过点(-1,1),(1,1),(3,3),∴a -b +c =1a +b +c =19a +3b +c =3,a =14b =0c =34,∴y =14x 2+34,同理抛物线经过点(-1,3),(1,3),(3,1),可求得抛物线的解析式为y =-14x 2+134,∴抛物线的解析式y =14x 2+34或y =-14x 2+134.【点评】本题主要考查了一次函数的综合题,涉及点的坐标,正方形及矩形的面积及待定系数法求函数解析式等知识,解题的关键是理解运用好“最佳三点矩形”的定义.11(2022•太仓市模拟)如图①,动点P 从矩形ABCD 的顶点A 出发,以v 1的速度沿折线A -B -C 向终点C 运动;同时,一动点Q 从点D 出发,以v 2的速度沿DC 向终点C 运动,当一个点到达终点时,另一个点也停止运动.点E 为CD 的中点,连接PE ,PQ ,记ΔEPQ 的面积为S ,点P 运动的时间为t ,其函数图象为折线MN -NF 和曲线FG (图②),已知,ON =3,NH =1,点G 的坐标为(6,0).(1)点P 与点Q 的速度之比v 1v 2的值为 32 ;AB :AD 的值为;(2)如果OM =2.①求线段NF 所在直线的函数表达式;②是否存在某个时刻t ,使得S ≥23?若存在,求出t 的取值范围;若不存在,请说明理由.【分析】(1)由函数图象可知t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,则Q 的速度v 2=DE 3,P 的速度v 1=AB4,从而得出答案;(2)①当t =0时,P 与A 重合,Q 与D 重合,此时S ΔADE =2,可得AD =BC =DE =2,AB =CD =2AD =4,从而得出点P 与Q 的速度,即可得出点F 的坐标,利用待定系数法可得答案;②利用待定系数法求出直线MN 的函数解析式,当S =23时,可得t 的值,根据图象可得答案.【解答】解:(1)∵ON =3,NH =1,G (6,0),∴N (3,0),H (4,0),由图象可知:t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,∴Q 的速度v 2=DE 3,P 的速度v 1=AB4,∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∵E 为CD 的中点,∴DE =12CD =12AB ,∴v 1v 2=AB4DE 3=AB 4⋅3DE =AB 4⋅312AB =32,∵P 从A 到B 用了4秒,从B 到C 用了2秒,∴AB =4v 1,BC =2v 1,∴AB =2BC ,∴AB :AD 的值为2,故答案为:32,2;(2)①∵OM =2,∴M (0,2),由题知,t =0时,P 与A 重合,Q 与D 重合,∴S ΔEPQ =12AD ⋅DE =2,∵AB :AD =2,∴AD =DE =12AB ,∴12AD 2=2,∴AD =BC =DE =2,AB =CD =2AD =4,∴v 2=DE 3=23,当t =4时,DQ =v 2t =23×4=83,∴QE =DQ -DE =83-2=23,此时P 与B 重合,∴S ΔEPQ =12EQ ⋅BC =12×23×2=33,∴F 4,23,设直线NF 的解析式为S =kx +b (k ≠0),将N (3,0)与F 4,23 代入得:3k +b =04k +b =23 ,∴k =23b =-2,∴线段NF 所在直线的函数表达式为S =23x -2(3<x ≤4);②存在,分情况讨论如下:当Q 在DE 上,P 在AB 上时,∵直线MN 经过点M (0,2),N (3,0),同理求得直线MN 的解析式为S =-23x +2(0≤x ≤3),当s =23时,-23x +2=2,∴x =2,∵s随x的增大而减小,∴当0≤x≤2时,S≥23,当Q在CE上,P在AB上时,直线NF的解析式为S=23x-2(3<x≤4),由F4,2 3知:当x=4时,S=23,当Q在CE上,P在BC上时,SΔEPQ=12EQ⋅CP,∵DQ=v2t=23t,∴EQ=DQ-DE=23t-2,∵v1=AB4=44=1,∴AB+BP=v1t=t,∵AB+BC=4+2=6,∴CP=6-t,∴S=1223t-2(6-t)=-13t2+3t-6(4<x≤6),当S=23时,-13t2+3t-6=23,∴t=4或5,由图象知:当4<x≤5时,S≥2 3,综上,S≥23时,x的取值范围为0≤x≤2或4≤x≤5.【点评】本题是一次函数综合题,主要考查了待定系数法求函数解析式,三角形的面积,矩形的性质等知识,理解函数图象中每一个拐点的意义是解题的关键.12(2022•邗江区校级一模)在平面直角坐标系xOy中,对于点P和线段ST,我们定义点P关于线段ST的线段比k=PSST(PS<PT)PTST(PS≥PT) .(1)已知点A(0,1),B(1,0).①点Q(2,0)关于线段AB的线段比k= 22 ;②点C(0,c)关于线段AB的线段比k=2,求c的值.(2)已知点M(m,0),点N(m+2,0),直线y=x+2与坐标轴分别交于E,F两点,若线段EF上存在点使得这一点关于线段MN的线段比k≤14,直接写出m的取值范围.【分析】(1)①求出QA、QB、AB,根据线段比定义即可得到答案;②方法同①,分c>0和c≤0讨论;(2)分两种情况,画出图象,根据线段比定义,分别在M(N)为“临界点”时列出不等式,即可得到答案.【解答】解:(1)①∵A(0,1),B(1,0),Q(2,0),∴AB=2,QA=5,QB=1,根据线段比定义点Q(2,0)关于线段AB的线段比k=QBAB=22;故答案为:22;②∵A (0,1),B (1,0),C (0,c ),∴AB =2,AC =|1-c |,BC =1+c 2,AC 2=1+c 2-2c ,BC 2=1+c 2,当c >0时,AC 2<BC 2,即AC <BC ,由C (0,c )关于线段AB 的线段比k =2可得:|1-c |2=2,解得c =3或c =-1(舍去),∴c =3,当c ≤0时,AC 2≥BC 2,即AC ≥BC ,由C (0,c )关于线段AB 的线段比k =2可得:1+c 22=2,解得c =3(舍去)或c =-3,∴c =-3,综上所述,点C (0,c )关于线段AB 的线段比k =2,c =3或c =-3;(2)∵直线y =x +2与坐标轴分别交于E ,F 两点,∴E (-2,0),F (0,2),∵点M (m ,0),点N (m +2,0),∴MN =2,N 在M 右边2个单位,当线段EF 上的点到N 距离较小时,分两种情况:①当M 、N 在点E 左侧时,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴NE MN≤14,即-2-(m +2)2≤14,解得:m ≥-92,②当N 在E 右侧,M 在E 左侧时,过M 作MG ⊥EF 于G ,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴GM MN ≤14,即GM 2≤14,∴GM ≤12,而E (-2,0),F (0,2),∴∠FEO =45°,∴ΔHEM 时等腰直角三角形,∴GM =22EM ,∴22EM ≤12,即22[(m +2)-(-2)]≤12,解得m ≤-4+22,∴线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,线段EF 上的点到N 距离较小时,-92≤m ≤-4+22,当线段EF 上的点到M 距离较小时,也分两种情况:①当N 在E 右侧,M 在E 左侧时,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴ME MN≤14,即-2-m 2≤14,解得m ≥-52,②当M 、N 在点E 右侧时,过M 作MH ⊥EF 于H ,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴HM MN ≤14,即HM 2≤14,∴HM ≤12,而E (-2,0),F (0,2),∴∠FEO =45°,∴ΔHEM 时等腰直角三角形,∴HM =22EM ,∴22EM ≤12,即22[m -(-2)]≤12,解得:m ≤-2+22,∴线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,线段EF 上的点到M 距离较小时,-52≤m ≤-2+22,综上所述,线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,则-92≤m ≤-4+22或-52≤m ≤-2+22.【点评】本题考查一次函数应用,解题的关键是读懂线段比的定义,找出“临界点”列不等式.13(2022•泰州)定义:对于一次函数y 1=ax +b 、y 2=cx +d ,我们称函数y =m (ax +b )+n (cx +d )(ma +nc ≠0)为函数y 1、y 2的“组合函数”.(1)若m =3,n =1,试判断函数y =5x +2是否为函数y 1=x +1、y 2=2x -1的“组合函数”,并说明理由;(2)设函数y 1=x -p -2与y 2=-x +3p 的图像相交于点P .①若m +n >1,点P 在函数y 1、y 2的“组合函数”图像的上方,求p 的取值范围;②若p ≠1,函数y 1、y 2的“组合函数”图像经过点P .是否存在大小确定的m 值,对于不等于1的任意实数p ,都有“组合函数”图像与x 轴交点Q 的位置不变?若存在,请求出m 的值及此时点Q 的坐标;若不存在,请说明理由.【分析】(1)由y =5x +2=3(x +1)+(2x -1),可知函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”;(2)①由y =x -p -2y =-x +3p得P (2p +1,p -1),当x =2p +1时,y =m (2p +1-p -2)+n (-2p -1+3p )=(p-1)(m +n ),根据点P 在函数y 1、y 2的“组合函数”图象的上方,有p -1>(p -1)(m +n ),而m +n >1,可得p <1;②由函数y 1、y 2的“组合函数” y =m (x -p -2)+n (-x +3p )图象经过点P ,知p -1=m (2p +1-p -2)+n (-2p -1+3p ),即(p -1)(1-m -n )=0,而p ≠1,即得n =1-m ,可得y =(2m -1)x +3p -(4p +2)m ,令y =0得(2m -1)x +3p -(4p +2)m =0,即(3-4m )p +(2m -1)x -2m =0,即可得m =34时,“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0).【解答】解:(1)函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”,理由如下:∵3(x +1)+(2x -1)=3x +3+2x -1=5x +2,∴y =5x +2=3(x +1)+(2x -1),∴函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”;(2)①由y =x -p -2y =-x +3p得x =2p +1y =p -1 ,∴P (2p +1,p -1),∵y 1、y 2的“组合函数”为y =m (x -p -2)+n (-x +3p ),∴x =2p +1时,y =m (2p +1-p -2)+n (-2p -1+3p )=(p -1)(m +n ),∵点P 在函数y 1、y 2的“组合函数”图象的上方,∴p -1>(p -1)(m +n ),∴(p -1)(1-m -n )>0,∵m +n >1,∴1-m -n <0,∴p -1<0,∴p <1;②存在m =34时,对于不等于1的任意实数p ,都有“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0),理由如下:由①知,P (2p +1,p -1),∵函数y 1、y 2的“组合函数”y =m (x -p -2)+n (-x +3p )图象经过点P ,∴p -1=m (2p +1-p -2)+n (-2p -1+3p ),∴(p -1)(1-m -n )=0,∵p ≠1,∴1-m -n =0,有n =1-m ,∴y =m (x -p -2)+n (-x +3p )=m (x -p -2)+(1-m )(-x +3p )=(2m -1)x +3p -(4p +2)m ,令y =0得(2m -1)x +3p -(4p +2)m =0,变形整理得:(3-4m )p +(2m -1)x -2m =0,∴当3-4m =0,即m =34时,12x -32=0,∴x =3,∴m =34时,“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0).【点评】本题考查一次函数综合应用,涉及新定义,函数图象上点坐标的特征,一次函数与一次方程的关系等,解题的关键是读懂“组合函数“的定义.14(2024•钟楼区校级模拟)在同一平面内,具有一条公共边且不完全重合的两个全等三角形,我们称这两个三角形叫做“共边全等”.(1)下列图形中两个三角形不是“共边全等”是③;AB,点E、F分别在AC、BC边(2)如图1,在边长为6的等边三角形ABC中,点D在AB边上,且AD=13上,满足ΔBDF和ΔEDF为“共边全等”,求CF的长;(3)如图2,在平面直角坐标系中,直线y=-3x+12分别与直线y=x、x轴相交于A、B两点,点C是OB 的中点,P、Q在ΔAOB的边上,当以P、B、Q为顶点的三角形与ΔPCB“共边全等”时,请直接写出点Q 的坐标.【分析】(1)由于第③个图不符合共边要求,所以图③即为答案;(2)DF为两个全等三角形的公共边,由于F点在BC边上,E在AC边上,两个三角形的位置可以如图②,在公共边异侧,构成一个轴对称图形,也可以构成一个平行四边形(将图③的两条最长边重合形成),分两类讨论,画出图形,按照图②构图,会得到一个一线三等角模型,利用相似,列出方程来解决,按照平行四边形构图,直接得到ΔADE为等边三角形,计算边长即可求得;(3)由题目要求,可以知道两个全等三角形的公共边为PB边,由于要构成ΔPCB,所以P点只能在OA和OB边上,当P在OA边上,两个三角形可以在PB同侧,也可以在PB异侧,当在PB异侧构图时,可以得到图3和图4,在图3中,当在PB同侧构图时,可以得到图6,当P在OB边上时,Q只能落在OA上,得到图7,利用已知条件,解三角形,即可求出Q点坐标.【解答】解:(1)①②均符合共边全等的特点,只有③,没有公共边,所以③不符合条件,∴答案是③;(2)①如图1,当ΔBDF≅ΔEFD,且是共边全等时,∠BFD=∠EDF,∴DE⎳BC,∵ΔABC是等边三角形,∴ΔADE是等边三角形,AB=2,∵AD=13∴DE=AE=BF=2,∴CF=BC-BF=4,②如图2,当ΔBDF≅ΔEDF,且是共边全等时,BD=DE=6-AD=4,∠DEF=∠B=60°,EF=BF,∴∠AED+∠FEC=120°,又∠AED+∠EDA=120°,。
中考数学复习《函数压轴题》经典题型及测试题(含答案)阅读与理解函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数关系式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.类型一 动点函数图象问题此类问题一般是通过分析动点在几何图形边上的运动情况,确定出有关动点函数图象的变化情况.分析此类问题,首先要明确动点在哪条边上运动,在运动过程中引起了哪个量的变化,然后求出在运动过程中对应的函数关系式,最后根据函数关系式判断图象的变化.例1 (2016·济南) 如图,在四边形ABCD 中,AB ∥CD ,∠B =90°,AB =AD =5,BC =4,M 、N 、E 分别是A B 、AD 、CB 上的点,AM =CE =1,AN =3,点P 从点M 出发,以每秒1个单位长度的速度沿折线MB -BE 向点E 运动,同时点Q 从点N ,以相同的速度沿折线ND -DC -CE 向点E 运动,设△APQ 的面积为S ,运动的时间为t 秒,则S 与t 函数关系的大致图象为( )【分析】 由点Q 从点N 出发,沿折线NDDCCE 向点E 运动,确定出点Q 分别在ND ,DC ,CE 运动时对应的t 的取值范围,再根据t 所在的取值范围分别求出其对应的函数关系式,最后根据函数关系式确定对应的函数图象.【自主解答】过点D 作DF ⊥AB 于点F (如图1),则DF =BC =4.第15题图 A BCDM N Q∵AD =5,DF =4,∴AF =3.∴sin ∠A=DF AD =45,MF =3-1=2,BF =AB -AF =5-3=2,DC =BF =2.∵AD =5,AN =3,∴ND =5-3=2.(1)当0≤t ≤2时,点P 在MF 上,点Q 在ND 上(如图2),此时AP =AM +MP =1+t ,AQ =AN +NQ =3+t .∴S =12AP •AQ •sin ∠A =12(1+t )(3+t )×45=25(t +2)2―25.当0≤t ≤2时,S随t 的增大而增大,且当t =2时,S =6.由此可知A 、B 选项都不对.(2)当t =5时,点P 在MF 上,点Q 在ND 上(如图3),此时BP =1,PE =BC -BP -CE =4-1-1=2.∴S =12AB •PE =12×5×2=5.∵6>5,∴选项D 正确.变式训练1.如图,△ABC 是等腰直角三角形,∠C =90°,AC =BC ,AB =4,D 为AB 上的动点,DP ⊥AB 交折线A -C -B 于点P.设AD =x ,△ADP 的面积为y ,则y 与x 的函数图象正确的是( )2.(2016·烟台)如图,⊙O 的半径为1,AD ,BC 是⊙O 的两条相互垂直的直径,图1 DC B A E M N QP F 图2 A B C D E M N Q P F 图3 A B C D E (Q )M N F P点P从点O出发(P点与O点不重合),沿OCD的路线运动.设AP=x,sin∠APB =y,那么y与x之间的关系图象大致是()类型二二次函数的实际问题解答此类问题时,首先要构建合理的坐标系,并写出对应的函数解析式,并利用二次函数的性质求解后续的问题.一般来说,选择的坐标系不同,得出的解析式必然不同,因此解答此类问题时,选择最恰当的坐标系往往显得尤为重要.例2 (2017·金华) 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.【分析】(1)①将点P(0,1)代入y=﹣(x﹣4)2+h即可求得h;②求出x=5时,y的值,与1.55比较即可得出判断;(2)将(0,1)、(7,)代入y=a(x﹣4)2+h代入即可求得a、h.【自主解答】解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣×16+h=1,解得:h=;②把x=5代入y=﹣(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,∵1.625>1.55,∴此球能过网;(2)把(0,1)、(7,)代入y=a(x﹣4)2+h,得:,解得:,∴a=﹣.变式训练3.(2017·沈阳)某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售单价是_____元时,才能在半月内获得最大利润.4、(2017•青岛)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数100日总收入(元)2400040000(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?【分析】(1)根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;(2)根据题意可以求得总收入和上涨价格之间的函数解析式,然后化为顶点式即可解答本题.【自主解答】解:(1)设淡季每间的价格为x元,酒店豪华间有y间,,解得,,∴x+x=600+=800,答:该酒店豪华间有50间,旺季每间价格为800元;(2)设该酒店豪华间的价格上涨x元,日总收入为y元,y=(800+x)(50﹣)=42025,∴当x=225时,y取得最大值,此时y=42025,答:该酒店将豪华间的价格上涨225元时,豪华间的日总收入最高,最高日总收入是42025元.类型三二次函数的综合题二次函数作为整套试卷的压轴题,往往会命制三个小问题,其中第一问求解二次函数的解析式,此问题往往利用待定系数法便可解决;第二、三问往往涉及动点问题及存在点问题,此问题需要利用全等三角形、相似三角形、平行四边形、圆等知识综合解答,计算量很大,且题目较为综合.例3 (2017·泰安) )如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为直线x=1,与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P,Q的坐标;若不存在,说明理由.【分析】(1)已知抛物线的对称轴,因而可以设出顶点式,利用待定系数法求函数解析式;(2)首先求得B和C的坐标,易证△OBC是等腰直角三角形,过点N作NH⊥y 轴,垂足是H,设点N纵坐标是(a,﹣a2+2a+3),根据CH=NH即可列方程求解;(3)四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,即可求解.【自主解答】解:(1)设抛物线的解析式是y=﹣(x﹣1)2+k.把(﹣1,0)代入得0=﹣(﹣1﹣1)2+k,解得k=4,则抛物线的解析式是y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中令x=0,则y=3,即C的坐标是(0,3),OC=3.∵B的坐标是(3,0),∴OB=3,∴OC=OB,则△OBC是等腰直角三角形.∴∠OCB=45°,过点N作NH⊥y轴,垂足是H.∵∠NCB=90°,∴∠NCH=45°,∴NH=CH,∴HO=OC+CH=3+CH=3+NH,设点N纵坐标是(a,﹣a2+2a+3).∴a+3=﹣a2+2a+3,解得a=0(舍去)或a=1,∴N的坐标是(1,4);(3)∵四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,则﹣t2+2t+3=(t+1)+,整理,得2t2﹣t=0,解得t=0或.∴﹣t2+2t+3的值为3或.∴P、Q的坐标是(0,3),(1,3)或(,)、(,).变式训练5.(2016·襄阳) 如图,已知点A的坐标为(﹣2,0),直线y=﹣x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点.(1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP 为平行四边形,求点P的坐标;(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC 于点N,点Q从点B出发,以每秒1个单位长度的速度沿线段BA 向点A运动,运动时间为t(秒),当t(秒)为何值时,存在△QMN 为等腰直角三角形?解:(1)令x=0代入y=﹣x+3∴y=3,∴C(0,3),令y=0代入y=﹣x+3∴x=4,∴B(4,0),设抛物线的解析式为:y=a(x+2)(x﹣4),把C(0,3)代入y=a(x+2)(x﹣4),∴a=﹣,∴抛物线的解析式为:y=(x+2)(x﹣4)=﹣x2+x+3,∴顶点D的坐标为(1,);(2)当DP∥BC时,此时四边形DEFP是平行四边形,设直线DP的解析式为y=mx+n,∵直线BC的解析式为:y=﹣x+3,∴m=﹣,∴y=﹣x+n,把D(1,)代入y=﹣x+n,∴n=,∴直线DP的解析式为y=﹣x+,∴联立,解得:x=3或x=1(舍去),∴把x=3代入y=﹣x+,y=,∴P的坐标为(3,);(3)由题意可知:0≤t≤6,设直线AC的解析式为:y=m1x+n1,把A(﹣2,0)和C(0,3)代入y=m1x+n1,得:,∴解得,∴直线AC的解析式为:y=x+3,由题意知:QB=t,如图1,当∠NMQ=90°,∴OQ=4﹣t,令x=4﹣t代入y=﹣x+3,∴y=t,∴M(4﹣t,t),∵MN∥x轴,∴N的纵坐标为t,把y=t代入y=x+3,∴x=t﹣2,∴N(t﹣2,t),∴MN=(4﹣t)﹣(﹣2)=6﹣t,∵MQ∥OC,∴△BQM∽△BOC,∴,∴MQ=t,当MN=MQ时,∴6﹣t=t,∴t=,此时QB=,符合题意,如图2,当∠QNM=90°时,∵QB=t,∴点Q的坐标为(4﹣t,0)∴令x=4﹣t代入y=x+3,∴y=9﹣t,∴N(4﹣t,9﹣t),∵MN∥x轴,∴点M的纵坐标为9﹣t,∴令y=9﹣t代入y=﹣x+3,∴x=2t﹣8,∴M(2t﹣8,9﹣t),∴MN=(2t﹣8)﹣(4﹣t)=3t﹣12,∵NQ∥OC,∴△AQN∽△AOC,∴=,∴NQ=9﹣t,当NQ=MN时,∴9﹣t=3t﹣12,∴t=,∴此时QB=,符合题意如图3,当∠NQM=90°,过点Q作QE⊥MN于点E,过点M作MF⊥x轴于点F,设QE=a,令y=a代入y=﹣x+3,∴x=4﹣,∴M(4﹣a,a),令y=a代入y=x+3,∴x=﹣2,∴N(﹣2,0),∴MN=(4﹣a)﹣(a﹣2)=6﹣2a,当MN=2QE时,∴6﹣2a=2a,∴a=,∴MF=QE=,∵MF∥OC,∴△BMF∽△BCO,∴=,∴BF=2,∴QB=QF+BF=+2=,∴t=,此情况符合题意,综上所述,当△QMN为等腰直角三角形时,此时t=或或6.(2017·潍坊) 如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P在直线l上方抛物线上一动点,设点P的横坐标为t(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF =S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴=,即=,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.。
中考数学二次函数和几何综合汇编经典和答案解析1一、二次函数压轴题1.如图,在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++>与x 轴相交于()()1, 0, 3, 0A B -两点,点C 为抛物线的顶点.点(0,)M m 为y 轴上的动点,将抛物线绕点M 旋转180︒,得到新的抛物线,其中B C 、旋转后的对应点分别记为’'B C 、.(1)若1a =,求原抛物线的函数表达式;(2)在(1)条件下,当四边形''BCB C 的面积为40时,求m 的值;(3)探究a 满足什么条件时,存在点M ,使得四边形' 'BCB C 为菱形?请说明理由.2.综合与探究如图,抛物线26y ax bx =+-与x 轴相交于A ,B 两点,与y 轴相交于点C ,()2,0A -,()4,0B ,直线l 是抛物线的对称轴,在直线l 右侧的抛物线上有一动点D ,连接AD ,BD ,BC ,CD .(1)求抛物线的函数表达式:(2)若点D 在x 轴的下方,当BCD △的面积是92时,求ABD △的面积;(3)在直线l 上有一点P ,连接AP ,CP ,则AP CP 的最小值为______;(4)在(2)的条件下,点M 是x 轴上一点,点N 是抛物线上一动点,是否存在点N ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.3.如图1,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (﹣12,0),B (2,0)两点,与y 轴交于点C (0,1).(1)求抛物线的函数表达式;(2)如图1,点D 为第一象限内抛物线上一点,连接AD ,BC 交于点E ,求DEAE的最大值;(3)如图2,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第四象限内是否存在这样的点P ,使△BPQ ∽△CAB .若存在,请直接写出所有符合条件的点P 的坐标,若不存在,请说明理由.4.如图,抛物线y =x 2﹣2x ﹣8与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q . (1)求A ,B ,C 三点的坐标;(2)试探究在点P 运动的过程中,是否存在这样的点Q ,使得以A 、C 、Q 为顶点的三角形是等腰三角形?若存在,请求出此时点Q 的坐标;若不存在,请说明理由.5.小明结合自己的学习经验,对新函数y =21b kx +的解析式、图象、性质及应用进行探究:已知当x =0时,y =2;当x =1时,y =1.(1)函数解析式探究:根据给定的条件,可以确定由该函数的解析式为: . (2)函数图象探究:①根据解析式,补全如表,则m = ,n = .②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象. x …… ﹣4 ﹣3 ﹣2 ﹣1 ﹣12 0121 2 n 4 ……y……21715 25m85285 12515 217…… (3)函数性质探究:请你结合函数的解析式及所画图象,写出该函数的一条性质: .(4)综合应用:已知函数y =|715x ﹣815|的图象如图所示,结合你所画的函数图象,直接写出不等式|715x ﹣815|≤21bkx +.6.如果抛物线C 1:2y ax bx c =++与抛物线C 2:2y ax dx e =-++的开口方向相反,顶点相同,我们称抛物线C 2是C 1的“对顶”抛物线.(1)求抛物线247y x x =-+的“对顶”抛物线的表达式;(2)将抛物线247y x x =-+的“对顶”抛物线沿其对称轴平移,使所得抛物线与原抛物线247y x x =-+形成两个交点M 、N ,记平移前后两抛物线的顶点分别为A 、B ,当四边形AMBN 是正方形时,求正方形AMBN 的面积.(3)某同学在探究“对顶”抛物线时发现:如果抛物线C 1与C 2的顶点位于x 轴上,那么系数b 与d ,c 与e 之间的关系是确定的,请写出它们之间的关系.7.某校九年级数学兴趣社团的同学们学习二次函数后,有兴趣的在一起探究“函数2||y x x =-的有关图象和性质”.探究过程如下:(1)列表:问m =______. x …3- 2- 1- 0 1 2 122…y (6)20 0 2 m…(2)请在平面直角坐标系中画出图象.(3)若方程2||x x p -=(p 为常数)有三个实数根,则p =______.(4)试写出方程2||x x p -=(p 为常数)有两个实数根时,p 的取值范围是______. 8.定义:如果一条直线把一个封闭的平面图形分成面积相等的两部分,我们把这条直线称为这个平面图形的一条中分线.如三角形的中线所在的直线是三角形的一条中分线.(1)按上述定义,分别作出图1,图2的一条中分线.(2)如图3,已知抛物线2132y x x m =-+与x 轴交于点(2,0)A 和点B ,与y 轴交于点C ,顶点为D .①求m 的值和点D 的坐标;②探究在坐标平面内是否存在点P ,使得以A ,C ,D ,P 为顶点的平行四边形的一条中分线经过点O .若存在,求出中分线的解析式;若不存在,请说明理由.9.已知抛物线()2n n n y x a b =--+(n 为正整数,且120n a a a ≤<<<)与x 轴的交点为(0,0)A 和()1,0,2n n nn A c c c -=+.当1n =时,第1条抛物线()2111=--+y x a b 与x 轴的交点为(0,0)A 和1(2,0)A ,其他以此类推. (1)求11,a b 的值及抛物 线2y 的解析式.(2)抛物线n y 的顶点n B 的坐标为(_______,_______);以此类推,第(1)n +条抛物线1n y +的顶点1n B +的坐标为(______,_______);所有抛物线的顶点坐标(,)x y 满足的函数关系式是_________. (3)探究以下结论:①是否存在抛物线n y ,使得△n n AA B 为等腰直角三角形?若存在,请求出抛物线n y 的解析式;若不存在,请说明理由.②若直线(0)=>x m m 与抛物线n y 分别交于点12,,,n C C C ,则线段12231,,,n n C C C C C C -的长有何规律?请用含有m 的代数式表示.10.如图1,在平面直角坐标系中,已知抛物线y=a x 2+b x+3经过A(1,0) 、B(-3,0)两点,与y 轴交于点C .直线BC 经过B 、C 两点.(1)求抛物线的解析式及对称轴;(2)将△COB 沿直线 BC 平移,得到△C 1O 1B 1,请探究在平移的过程中是否存在点 O 1落在抛物线上的情形,若存在,求出点O 1的坐标,若不存在,说明理由;(3)如图2,设抛物线的对称轴与x 轴交于点E ,连结AC ,请探究在抛物线上是否存在一点F ,使直线EF ∥AC ,若存在,求出点F 的坐标,若不存在,说明理由.二、中考几何压轴题11.如图(1),已知点G 在正方形ABCD 的对角线AC 上,,GE BC ⊥垂足为点,E GF CD ⊥,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形;②推断:AGBE的值为_ _; (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转a 角)045(a ︒<<︒,如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由;(3)拓展与运用:若24AB EC ==,正方形CEGF 在绕点C 旋转过程中,当A E G 、、三点在一条直线上时,则BE = .12.我们定义:连结凸四边形一组对边中点的线段叫做四边形的“准中位线”.(1)概念理解:如图1,四边形ABCD 中,F 为CD 的中点,90ADB ∠=︒,E 是AB 边上一点,满足DE AE =,试判断EF 是否为四边形ABCD 的准中位线,并说明理由.(2)问题探究:如图2,ABC ∆中,90ACB ∠=︒,6AC =,8BC =,动点E 以每秒1个单位的速度,从点A 出发向点C 运动,动点F 以每秒6个单位的速度,从点C 出发沿射线CB 运动,当点E 运动至点C 时,两点同时停止运动.D 为线段AB 上任意一点,连接并延长CD ,射线CD与点,,,A B E F 构成的四边形的两边分别相交于点,M N ,设运动时间为t .问t 为何值时,MN 为点,,,A B E F 构成的四边形的准中位线.(3)应用拓展:如图3,EF 为四边形ABCD 的准中位线,AB CD =,延长FE 分别与BA ,CD 的延长线交于点,M N ,请找出图中与M ∠相等的角并证明. 13.几何探究: (问题发现)(1)如图1所示,△ABC 和△ADE 是有公共顶点的等边三角形,BD 、CE 的关系是_______(选填“相等”或“不相等”);(请直接写出答案)(类比探究)(2)如图2所示,△ABC 和△ADE 是有公共顶点的含有30角的直角三角形,(1)中的结论还成立吗?请说明理由; (拓展延伸)(3)如图3所示,△ADE 和△ABC 是有公共顶点且相似比为1 : 2的两个等腰直角三角形,将△ADE 绕点A 自由旋转,若22BC =,当B 、D 、E 三点共线时,直接写出BD 的长.14.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.(问题理解)(1)如图1,点A 、B 、C 在⊙O 上,∠ABC 的平分线交⊙O 于点D ,连接AD 、CD . 求证:四边形ABCD 是等补四边形;(拓展探究)(2)如图2,在等补四边形ABCD 中,AB =AD ,连接AC ,AC 是否平分∠BCD ?请说明理由; (升华运用)(3)如图3,在等补四边形ABCD 中,AB =AD ,其外角∠EAD 的平分线交CD 的延长线于点F .若CD =6,DF =2,求AF 的长. 15.综合与实践 操作探究(1)如图1,将矩形ABCD 折叠,使点A 与点C 重合,折痕为EF ,AC 与EF 交于点G .请回答下列问题:①与AEG △全等的三角形为______,与AEG △相似的三角形为______.并证明你的结论:(相似比不为1,只填一个即可):②若连接AF 、CE ,请判断四边形AFCE 的形状:______.并证明你的结论; 拓展延伸(2)如图2,矩形ABCD 中,2AB =,4BC =,点M 、N 分別在AB 、DC 边上,且AM NC =,将矩形折叠,使点M 与点N 重合,折痕为EF ,MN 与EF 交于点G ,连接ME .①设22m AM AE =+,22n ED DN =+,则m 与n 的数量关系为______; ②设AE a =,AM b =,请用含a 的式子表示b :______; ③ME 的最小值为______.16.综合与实践.特例感知.两块三角板△ADB 与△EFC 全等,∠ADB =∠EFC =90°,∠B =45°,AB =6.将直角边AD 和EF 重合摆放.点P 、Q 分别为BE 、AF 的中点,连接PQ ,如图1.则△APQ 的形状为 .操作探究(1)若将△EFC 绕点C 顺时针旋转45°,点P 恰好落在AD 上,BE 与AC 交于点G ,连接PF ,如图2. ①FG :GA = ;②PF 与DC 的位置关系为 ; ③求PQ 的长; 开放拓展(2)若△EFC 绕点C 旋转一周,当AC ⊥CF 时,∠AEC 为 . 17.综合与实践动手实践:一次数学兴趣活动,张老师将等腰Rt AEF 的直角顶点A 与正方形ABCD 的顶点A 重合(AE AD >),按如图(1)所示重叠在一起,使点E 在CD 边上,连接BF .则可证:ADE ≌△△______,______三点共线;发现问题:(1)如图(2),已知正方形ABCD ,E 为DC 边上一动点,DC nDE =,AF AE ⊥交CB 的延长线于F ,连结EF 交AB 于点G .若2n =,则AG BG =______,AGE BGFS S =△△______; 尝试探究:(2)如图(3),在(1)的条件下若3n =,求证:5AG GB =;拓展延伸:(3)如图(4),在(1)的条件下,当n =______时,AG 为GB 的6倍(直接写结果,不要求证明). 18.综合与实践数学活动课上,老师让同学们结合下述情境,提出一个数学问题:如图1,四边形ABCD 是正方形,四边形BEDF 是矩形.探究展示:“兴趣小组”提出的问题是:“如图2,连接CE .求证:AE ⊥CE .”并展示了如下的证明方法:证明:如图3,分别连接AC ,BD ,EF ,AF .设AC 与BD 相交于点O . ∵四边形ABCD 是正方形,∴OA =OC =12AC ,OB =OD =12BD ,且AC =BD . 又∵四边形BEDF 是矩形,∴EF经过点O,∴OE=OF=1EF,且EF=BD.2∴OE=OF,OA=OC.∴四边形AECF是平行四边形.(依据1)∵AC=BD,EF=BD,∴AC=EF.∴四边形AECF是矩形.(依据2)∴∠CEA=90°,即AE⊥CE.反思交流:(1)上述证明过程中“依据1”“依据2”分别是什么?拓展再探:(2)“创新小组”受到“兴趣小组”的启发,提出的问题是:“如图4,分别延长AE,FB交于点P,求证:EB=PB.”请你帮助他们写出该问题的证明过程.(3)“智慧小组”提出的问题是:若∠BAP=30°,AE=31,求正方形ABCD的面积.请你解决“智慧小组”提出的问题.19.(1)问题发现如图1,△ABC与△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,直线BD,CE交于点F,直线BD,AC交于点G.则线段BD和CE的数量关系是,位置关系是;(2)类比探究如图2,在△ABC和△ADE中,∠ABC=∠ADE=α,∠ACB=∠AED=β,直线BD,CE交于点F,AC与BD相交于点G.若AB=kAC,试判断线段BD和CE的数量关系以及直线BD和CE相交所成的较小角的度数,并说明理由;(3)拓展延伸如图3,在平面直角坐标系中,点M的坐标为(3.0),点N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转90得到线段MP,连接NP,OP.请直接写出线段OP 长度的最小值及此时点N的坐标.20.如图,已知ABC和ADE均为等腰三角形,AC=BC,DE=AE,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ;(2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由; (3)解决问题:如图③,90ACB AED ∠∠︒==,25AC =,AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.【参考答案】***试卷处理标记,请不要删除一、二次函数压轴题1.B解析:(1)2 23;y x x =--(2)416m m ==-或;(3)3a ≥M ,使得四边形''BCB C 为菱形,理由见解析【分析】(1)因为1a =,所以2y x bx c =++,将()()1, 0, 3, 0A B -代入得关于b 和c 的二元一次方程组,解方程组得到b 和c 即可求得原抛物线的解析式;(2)连接','CC BB ,延长BC 与y 轴交于点E ,根据题(1)可求出点B 、C 的坐标,继而求出直线BC 的解析式及点E 的坐标,根据题意易知四边形''BCB C 是平行四边形,继而可知()1312BCM MBE MCE S S S ME ME ∆∆∆=-=⨯-⨯=,由此可知ME =10,继而即可求解点M 的坐标;(3)如图,过点C 作CD y ⊥轴于点D ,当平行四边形''BCB C 为菱形时,应有MB MC ⊥,故点M 在,O D 之间,继而可证MOB CDM ∆∆,根据相似三角形的性质可得MO MD BO CD •=•代入数据即可求解.【详解】解:(1)∵1a =,∴2y x bx c =++将()()1, 0, 3, 0A B -代入得:10930b c b c -+=⎧⎨++=⎩解得:23b c =-⎧⎨=-⎩∴原抛物线的函数表达式为:2 23y x x =--;(2)连接','CC BB ,并延长BC 与y 轴交于点E ,二次函数2 23y x x =--的项点为(1,4,)-()1,4,C ∴-()3, 0,B∴直线BC 的解析式为: 2 6.y x =--()0,6E ∴-抛物线绕点M 旋转180︒','MB MB MC MC ==∴四边形''BCB C 是平行四边形,()1312BCM MBE MCE S S S ME ME ∆∆∆∴=-=⨯-⨯= 10ME416m m ∴==-或(3)如图,过点C 作CD y ⊥轴于点D当平行四边形''BCB C 为菱形时,应有MB MC ⊥,故点M 在,O D 之间,当MB MC ⊥时,MOB CDM ∆∆,MO BO CD MD∴= 即MO MD BO CD •=•二次函数()()13y a x x =+-的顶点为()()()1,4,0,,3,0a M m B - 1,,4,3CD MO m MD m a ON ∴==-=+=,()43m m a ∴-+=,∴2430m am ,216120,0a a ∆-≥>a ∴≥所以a ≥M ,使得四边形''BCB C 为菱形.【点睛】本题考查二次函数的综合应用,涉及到平行四边形的性质、菱形的性质,难度较大,解题的关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质及二次函数的性质,注意挖掘题目中的隐藏条件.2.A解析:(1)233642y x x =--;(2)454;(3)134)存在,点N 的坐标为:15114,4⎛⎫ ⎪⎝⎭或15114,4⎛⎫ ⎪⎝⎭或151,4⎛⎫-- ⎪⎝⎭ 【分析】(1)把A 、B 两点坐标代入26y ax bx =+-可得关于a 、b 的二元一次方程组,解方程组求出a 、b 的值即可得答案;(2)过D 作DG x ⊥轴于G ,交BC 于H ,根据抛物线解析式可得点C 坐标,利用待定系数法可得直线BC 的解析式,设233,642D x x x ⎛⎫-- ⎪⎝⎭,根据BC 解析式可表示出点H 坐标,即可表示出DH 的长,根据△BCD 的面积列方程可求出x 的值,即可得点D 坐标,利用三角形面积公式即可得答案;(3)根据二次函数的对称性可得点A 与点B 关于直线l 对称,可得BC 为AP +CP 的最小值,根据两点间距离公式计算即可得答案;(4)根据平行四边形的性质得到MB //ND ,MB =ND ,分MB 为边和MB 为对角线两种情况,结合点D 坐标即可得点N 的坐标.【详解】(1)∵抛物线26y ax bx =+-与x 轴相交于A ,B 两点,()2,0A -,()4,0B ,∴426016460a b a b --=⎧⎨+-=⎩, 解得:3432a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线的解析式为:233642y x x =--. (2)如图,过D 作DG x ⊥轴于G ,交BC 于H ,当0x =时,6y =-,∴()0,6C -,设BC 的解析式为y kx b =+,则640b k b =-⎧⎨+=⎩, 解得326k b ⎧=⎪⎨⎪=-⎩, ∴BC 的解析式为:362y x =-, 设233,642D x x x ⎛⎫-- ⎪⎝⎭,则3,62H x x ⎛⎫- ⎪⎝⎭, ∴2233336632424DH x x x x x ⎛⎫=----=-+ ⎪⎝⎭, ∵BCD △的面积是92, ∴1922DH OB ⨯=, ∴213943242x x ⎛⎫⨯⨯-+= ⎪⎝⎭, 解得:1x =或3,∵点D 在直线l 右侧的抛物线上,∴153,4D ⎛⎫- ⎪⎝⎭, ∴ABD △的面积11154562244AB DG ⨯=⨯⨯=;(3)∵抛物线26y ax bx =+-与x 轴相交于A ,B 两点,∴点A 与点B 关于直线l 对称,∴BC 为AP +CP 的最小值,∵B (4,0),C (0,-6),∴AP +CP 的最小值=BC =2246+=213. 故答案为:213(4)①当MB 为对角线时,MN //BD ,MN =BD ,过点N 作NE ⊥x 轴于E ,过当D 作DF ⊥x 轴于F ,∵点D (3,154-), ∴DF =154, 在△MNE 和△BDF 中,NEM DFB NMB DBF MN BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△MNE ≌△BDF ,∴DF =NE =154, ∵点D 在x 轴下方,MB 为对角线,∴点N 在x 轴上方,∴点N 纵坐标为154, 把y =154代入抛物线解析式得:215336442x x =--, 解得:1114x =-,2114x =+, ∴1N (114-,154),2N (114+,154)如图,当BM 为边时,MB //ND ,MB =ND ,∵点D (3,154-), ∴点N 纵坐标为154-, ∴233156424x x --=-, 解得:11x =-,23x =(与点D 重合,舍去),∴3N (1-,154-),综上所述:存在点N ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,点N 的坐标为:15114,4⎛⎫ ⎪⎝⎭或15114,4⎛⎫ ⎪⎝⎭或151,4⎛⎫-- ⎪⎝⎭. 【点睛】本题考查的是二次函数的综合,首先要掌握待定系数法求解析式,其次要添加恰当的辅助线,灵活运用面积公式和平行四边形的判定和性质,应用数形结合的数学思想解题. 3.A解析:(1)2312y x x =-++;(2)DE AE 的最大值为45;(3)914511924145(P -+-+或9177317()P --+ 【分析】(1)用待定系数法求出函数解析式即可;(2)构造出△AGE ∽△DEH ,可得DE DH AE AG=,而DE 和AG 都可以用含自变量的式子表示,最后用二次函数最大值的方法求值.(3)先发现△ABC 是两直角边比为2:1的直角三角形,由△BPQ ∽△CAB ,构造出△BPQ ,表示出Q 点的坐标,代入解析式求解即可.【详解】解:(1)分别将C (0,1)、A (﹣12,0)、B (2,0)代入y =ax 2+bx +c 中得110424201a b c a b c c ⎧++=⎪⎪++=⎨⎪=⎪⎩, 解得:1321a b c =-⎧⎪⎪=⎨⎪=⎪⎩,∴抛物线的函数表达式为2312y x x =-++. (2)过A 作AG ∥y 轴交BC 的延长线于点G ,过点D 作DH ∥y 轴交BC 于点H ,∵B (2,0)C (0,1),∴直线BC :y =12x +1,∵A (-12,0),∴G (-12,54), 设D (23,12m m m -++),则H (1,12m m -+), ∴DH =(2312m m -++)﹣(112m -+), =﹣m 2+2m ,∴AG=54, ∵AG ∥DH , ∴()2224415554DE DH m m m AE AG -+===--+,∴当m =1时,DE AE 的最大值为45. (3)符合条件的点P 914511924145-+-+9177317--+ ∵l ∥BC , ∴直线l 的解析式为:y =-12x ,设P (n ,-12n ),∵A (-12,0),B (2,0),C (0,1),∴AC 2=54,BC 2=5,AB 2=254.∵AC 2+BC 2=AB 2,∴∠ACB =90°.∵△BPQ ∽△CAB , ∴12BP AC BQ BC ==, 分两种情况说明:①如图3,过点P 作PN ⊥x 轴于N ,过点Q 作QM ⊥x 轴于M .∵∠PNB =∠BMQ =90°, ∠NBP +∠MBQ =90°,∠MQB +∠MBQ =90°,∴∠NBP =∠MQB .∴△NBP ∽△MQB ,∴12PN NB BM MQ ==, ∵1,2P n n ⎛⎫- ⎪⎝⎭, ∴1,2PN n ON n ==, ∴BN =2﹣n ,∴BM =2PN =n ,QM =2BN =4﹣2n ,∴OM =OB +BM =2+n ,∴Q (2+n ,2n ﹣4),将Q 的坐标代入抛物线的解析式得:()()23221242n n n -++++=-, 2n 2+9n ﹣8=0, 解得:)1291459145n n -+--==舍∴P (914511924145,416-+-+). ②如图4,过点P 作PN ⊥x 轴于N ,过点Q 作QM ⊥x 轴于M .∵△PNB ∽△BMQ ,又∵△BPQ ∽△CAB ,∴2BC QM AC BN==, ∵1,2P n n ⎛⎫- ⎪⎝⎭, ∴Q (2﹣n ,4﹣2n ),将Q 的坐标代入抛物线的解析式得:()()23221422n n n --+-+=-, 化简得:2n 2﹣9n +8=0, 解得:)12917917n n -+==舍, ∴P 9177317--+. 【点睛】本题考查待定系数法求抛物线解析式,平行线分线段成比例,利用二次函数求线段比的最大值,勾股定理逆定理,相似三角形判定与性质,抛物线与一元二次方程,掌握待定系数法求抛物线解析式,平行线分线段成比例,利用二次函数求线段比的最大值,勾股定理逆定理,相似三角形判定与性质,抛物线与一元二次方程的关系是解题关键.4.A 解析:(1)A (﹣2,0),B (4,0),C (0,﹣8);(2)存在,Q 点坐标为124(85,858)55Q ,21722(,)77Q . 【分析】(1)解方程2280x x --=,可求得A 、B 的坐标,令0x =,可求得点C 的坐标;(2)利用勾股定理计算出AC =BC 的解析式为28y x =-,可设Q (m ,2m ﹣8)(0<m <4),分三种情况讨论:当CQ =AC 时,当AQ =AC 时,当AQ =QC 时,然后分别解方程求出m 即可得到对应的Q 点坐标.【详解】(1)当0y =,2280x x --=,解得x 1=﹣2,x 2=4,所以(2,0)A -,(4,0)B ,x =0时,y =﹣8,∴(0,8)C -;(2)设直线BC 的解析式为y kx b =+,把(4,0)B ,(0,8)C -代入解析式得:408k b b +=⎧⎨=-⎩,解得28k b =⎧⎨=-⎩, ∴直线BC 的解析式为28y x =-,设Q (m ,2m ﹣8)(0<m <4),当CQ =CA 时,22(288)68m m +-+=,解得,1m =2m =∴Q 8), 当AQ =AC 时,22(2)(28)68m m ++-=,解得:128m 5=(舍去),m 2=0(舍去); 当QA =QC 时,2222(2)(28)(2)m m m m ++-=+,解得177m =, ∴Q 1722(,)77-.综上所述,满足条件的Q 点坐标为18)Q ,21722(,)77Q -. 【点睛】 本题考查了二次函数,熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质,会利用待定系数法求函数解析式,理解坐标与图形性质,会利用勾股定理表示线段之间的关系,会运用分类讨论的思想解决数学问题.5.(1) y=221x +;(2)m=1,n=3;(3) 函数存在最大值,当x=0是,y 取得最大值2.(4)-1≤x≤2 【分析】(1)待定系数法求解函数解析式(2)分别将m,n 代入函数解析式,求出对应的横纵坐标即可求解(3)观察图像即可,答案不唯一(4)观察图像选择曲线在上方的区域即可.【详解】解(1)将(0,2),(1,1)代入解析式得20111b b k ⎧=⎪⎪+⎨⎪=⎪+⎩ 解得:12k b =⎧⎨=⎩ ∴函数的解析式为y =221x + (2) ①令x =-1, 则y=1, ∴m =1令y =15,则x =±3,∵2<n <4, ∴n =3②(3)函数存在最大值,当x =0是,y 取得最大值2. (4)直接观察图象可知,当|715x ﹣815|≤时,-1≤x ≤2 【点睛】本题考查了用待定系数法求函数的解析式,函数的图象和性质,根据函数图象求解不等式等问题,综合性强,熟悉函数的图象和性质是解题关键.6.C解析:(1)241y x x =-+-;(2)2;(3)b dc e =-⎧⎨=-⎩【分析】(1)先求出抛物线C 1的顶点坐标,进而得出抛物线C 2的顶点坐标,即可得出结论; (2)设正方形AMBN 的对角线长为2k ,得出B (2,3+2k ),M (2+k ,3+k ),N (2−k ,3+k ),再用点M (2+k ,3+k )在抛物线y =(x −2)2+3上,建立方程求出k 的值,即可得出结论;(3)先根据抛物线C 1,C 2的顶点相同,得出b ,d 的关系式,再由两抛物线的顶点在x 轴,求出c ,e 的关系,即可得出结论. 【详解】解:(1)解:(1)∵y =x 2−4x +7=(x −2)2+3, ∴顶点为(2,3),∴其“对顶”抛物线的解析式为y =−(x −2)2+3, 即y =−x 2+4x −1; (2)如图,由(1)知,A (2,3), 设正方形AMBN 的对角线长为2k ,则点B (2,3+2k ),M (2+k ,3+k ),N (2−k ,3+k ), ∵M (2+k ,3+k )在抛物线y =(x −2)2+3上, ∴3+k =(2+k −2)2+3, 解得k =1或k =0(舍);∴正方形AMBN 的面积为12×(2k )2=2;(3)根据抛物线的顶点坐标公式得,抛物线C 1:y =ax 2+bx +c 的顶点为(2b a-,244ac b a-),抛物线C 2:y =−ax 2+dx +e 的顶点为(2d a ,244ae d a---),∵抛物线C 2是C 1的“对顶”抛物线, ∴22b d a a-=, ∴=-b d ,∵抛物线C 1与C 2的顶点位于x 轴上,∴224444ac b ae d a a ---=-, ∴c e =-,即b d c e =-⎧⎨=-⎩. 【点睛】此题主要考查了抛物线的顶点坐标公式,正方形的性质,理解新定义式解本题的关键. 7.(1)154m =;(2)见解析;(3)0p =;(4)14p =-或0p >.【分析】(1)把x=122代入解析式,计算即可;(2)按照画图像的基本步骤画图即可;(3)一个方程有两个不同实数根,另一个方程有两个相等的实数根和两个方程都有两个不同的实数根,但是有一个公共根;(4)结合函数的图像,分直线经过顶点和在x 轴上方两种情形解答即可. 【详解】(1)当x=122时,2||y x x =-=25)2|(|52- =154, ∴154m =; (2)画图像如下;(3)当x≥0时,函数为2y x x ;当x <0时,函数为2y x x =+;∵方程2||x x p -=(p 为常数)有三个实数根, ∴两个方程有一个公共根,设这个根为a , 则22a a a a -=+, 解得a=0, 当a=0时,p=0, 故答案为:p=0;(4)∵方程2||x x p -=(p 为常数)有两个实数根, ∴p >0; 或△=0 即1+4p=0, 解得14p =-.综上所述,p 的取值范围是14p =-或0p >. 【点睛】本题考查了二次函数图像,二次函数与一元二次方程的关系,熟练掌握抛物线与一元二次方程的关系,灵活运用分类思想,数形结合思想是解题的关键. 8.(1)见解析;(2)①4m =,1(3,)2D -;②存在,76y x =或2y x =或110y x =-【分析】(1)对角线所在的直线为平行四边形的中分线,直径所在的直线为圆的中分线; (2)①将(2,0)A 代入抛物线2132y x x m =-+,得143202m ⨯-⨯+=,解得4m =,抛物线解析式2211134(3)222y x x x =-+=--,顶点为1(3,)2D -;②根据抛物线解析式求出(2,0)A ,(4,0)B ,(0,4)C ,当A 、C 、D 、P 为顶点的四边形为平行四边形时,根据平行四边形的性质,过对角线的交点的直线将该平行四边形分成面积相等的两部分,所以平行四边形的中分线必过对角线的交点.Ⅰ.当CD 为对角线时,对角线交点坐标为37(,)24,中分线解析式为76y x =;Ⅱ.当AC 为对角线时,对角线交点坐标(1,2).中分线解析式为2y x =;Ⅲ.当AD 为对角线时,对角线交点坐标为51(,)24-,中分线解析式为110y x =-. 【详解】解:(1)如图,对角线所在的直线为平行四边形的中分线, 直径所在的直线为圆的中分线,(2)①将(2,0)A 代入抛物线2132y x x m =-+,得 143202m ⨯-⨯+=, 解得4m =,∴抛物线解析式2211134(3)222y x x x =-+=--,∴顶点为1(3,)2D -;②将0y =代入抛物线解析式21342y x x =-+,得 234201x x -+=, 解得2x =或4,(2,0)A ∴,(4,0)B , 令0x =,则4y =,(0,4)C ∴,当A 、C 、D 、P 为顶点的四边形为平行四边形时,根据平行四边形的性质,过对角线的交点的直线将该平行四边形分成面积相等的两部分, 所以平行四边形的中分线必过对角线的交点. Ⅰ.当CD 为对角线时,对角线交点坐标为14032(,)22-+,即37(,)24,中分线经过点O ,∴中分线解析式为76y x =;Ⅱ.当AC 为对角线时,对角线交点坐标为2004(,)22++,即(1,2). 中分线经过点O ,∴中分线解析式为2y x =;Ⅲ.当AD 为对角线时,对角线交点坐标为10232(,)22-+,即51(,)24-, 中分线经过点O ,∴中分线解析式为110y x =-, 综上,中分线的解析式为式为76y x =或为2y x =或为110y x =-.【点睛】本题考查了二次函数,熟练运用二次函数的性质与平行四边形的性质是解题的关键.9.C解析:(1)1111a b =⎧⎨=⎩ ;y 2 =−(x−2)2+4;(2)(n ,n 2 );[(n +1),(n +1)2 ];y =x 2;(3)①存在,理由见详解;②C 1n -C n =2m . 【分析】(1)1(2,0)A ),则1c =2,则2c =2+2=4,将点A 、1A 的坐标代入抛物线表达式得:()2112110=-0(-2-)a b a b ⎧-+⎪⎨=-+⎪⎩,解得:1111a b =⎧⎨=⎩ ,则点2A (4,0),将点A 、2A 的坐标代入抛物线表达式,同理可得:2a =2,2b =4,即可求解;(2)同理可得:3a =3,3b =9,故点n B 的坐标为(n ,2n ),以此推出:点1n B +[(n +1),(n +1)2],故所有抛物线的顶点坐标满足的函数关系式是:y =2x ,即可求解; (3)①△AAnBn 为等腰直角三角形,则AAn 2 =2ABn 2,即(2n )2=2(n 2+4n ),即可求解;②y 1n c -=−(m−n +1)2+(n−1)2,y n c =−(m−n )2+n 2,C 1n -C n = y n c −y 1n c -,即可求解. 【详解】解:(1)1(2,0)A ,则1c =2,则2c =2+2=4,将点A 、1A 的坐标代入抛物线表达式得:2112110=()0(2)a b a b ⎧--+⎨=---+⎩,解得:1111a b =⎧⎨=⎩, 则点2A (4,0),将点A 、2A 的坐标代入抛物线表达式,同理可得:2a =2,2b =4; 故y 2 =−(x−2a )2+2b =−(x−2)2+4;(2)同理可得:3a =3,3b =9,故点n B 的坐标为(n ,2n ),以此推出:点1n B + [(n +1),(n +1)2],故所有抛物线的顶点坐标满足的函数关系式是:y =2x ; 故答案为:(n ,n 2 );[(n +1),(n +1)2];y =x 2; (3)①存在,理由:点A (0,0),点An (2n ,0)、点n B (n ,n 2 ),△AAnBn 为等腰直角三角形,则AAn 2 =2ABn 2,即(2n )2=2(n 2 +n 4), 解得:n =1(不合题意的值已舍去), 抛物线的表达式为:y =−(x−1)2 +1; ②y 1n c -=−(m−n +1)2+(n−1)2, y n c =−(m−n )2+n 2,C 1n -C n =y n c −y 1n c -=−(m−n )2+n 2 +(m−n +1)2−(n−1)2=2m . 【点睛】本题考查的是二次函数综合运用,这种找规律类型题目,通常按照题设的顺序逐次求解,通常比较容易.10.F解析:(1)223y x x =--+,1x =-;(2)O 1)3)满足条件的点F 的坐标为F 1(-2,3),F 2(3,-12). 【分析】(1)把A (1,0),B (-3,0)代入y=ax 2+bx+3即可求解;(2)先求出直线OO 1的解析式为y x =,再根据223x x x --+=,求解即可或是根据23(23)3x x x +---+=得出x 的值,再根据直线OO 1的解析式为y x =求解;(3)先求出直线EF 解析式为 33y x =--,再根据22333x x x --+=--求解即可. 【详解】解:(1)将点A (1, 0),B (-3, 0)代入抛物线解析式y=a x 2+b x+3 得:{309330a b a b ++=-+=解得:{12a b =-=-∴抛物线解析式为 223y x x =--+ ∴2(1)4y x =++ ∴1x =-(2)∵点C 为223y x x =--+与y 轴的交点∴C (0,3) ∵B(-3,0)∴OB =OC ∴ ∠CBO=45° ∵将△COB 沿直线 BC 平移,得到△C 1O 1B 1 ∴直线OO 1∥BC ∴ ∠O 1OA=45° ∴直线OO 1的解析式为y x = 根据题意 得 223x x x --+= 整理得 2330x x +-=解得 1x =2x =∴O 1 )或)解法2 ∵点C 为223y x x =--+与y 轴的交点∴C (0,3)∴OC=3 ∵将△COB 沿直线 BC 平移,得到△C 1O 1B 1 01C 1=3 ∴23(23)3x x x +---+= 整理得 2330x x +-= 解得 13212x -+=23212x --= ∵B(-3,0)∴OB =OC ∴ ∠CBO=45° ∵将△COB 沿直线 BC 平移,得到△C 1O 1B 1 ∴直线OO 1∥BC ∴ ∠O 1OA=45° ∴直线OO 1的解析式为y=x ∴O 1(3212-+,3212-+ )或(3212--,3212--)(3)∵抛物线对称轴与x 轴交于点E,则点E 的坐标为E(-1,0),过点C 作CF ∥x 轴 根据抛物线的对称性得F 的坐标为F(-2,3) ∴AE=CF=2 ∵CF ∥AE ∴四边形CFEA 为平行四边形 ∴EF ∥CA设直线EF 的解析式为y kx b =+ 得:{320k bk b =-+=-+ 解得:{33k b =-=-∴直线EF 解析式为 33y x =-- 根据题意 得 22333x x x --+=-- 解得12x =- 23x =满足条件的点F 的坐标为F 1(-2,3),F 2(3,-12). 【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,平行线的判定和性质,解题的关键是学会利用参数构建方程组解决问题,学会用转化的思想思考问题.二、中考几何压轴题11.(1)证明见解析;;(2)线段与之间的数量关系为;(3)或 【分析】(1)①由、结合可得四边形CEGF 是矩形,再由即可得证;②由正方形性质知、,据此可得、,利用平行线分线段成比例定理可得; (2解析:(1)①证明见解析;2)线段AG 与BE 之间的数量关系为AG =;(3【分析】(1)①由GE BC ⊥、GF CD ⊥结合BCD 90∠=可得四边形CEGF 是矩形,再由ECG 45∠=即可得证;②由正方形性质知CEG B 90∠∠==、ECG 45∠=,据此可得CGCE=GE //AB ,利用平行线分线段成比例定理可得; (2)连接CG ,只需证ACG BCE 即可得;(3)由(2)证出ACGBCE 就可得到BE AG =,再根据A E G 、、三点在同一直线上分在CD 左边和右边两种不同的情况求出AG 的长度,即可求出BE 的长度. 【详解】(1)①证明:四边形ABCD 是正方形,90,45BCD BCA ∴∠=︒∠=︒ ,,GE BC GF CD ⊥⊥90,CEG CFG ECF ∴∠=∠=∠=︒∴四边形CEGF 是矩形,45,CGE ECG ∠=∠=︒,EG EC ∴=∴四边形CEGF 是正方形;②解:由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴CGCE=,GE ∥AB ,∴AG CGBE CE==(2)如下图所示连接,CG 由旋转性质知,BCE ACG a ∠=∠=在Rt CEG △和Rt CBA 中,45CE cos CG =︒=45CB cos CA =︒=CG CACE CB∴== ,ACGBCE ∴AG CABE CB∴==∴线段AG 与BE 之间的数量关系为2AG BE =;(3)解:①当正方形CEGF 在绕点C 旋转到如下图所示时: 当A E G 、、三点在一条直线上时, 由(2)可知ACG BCE ,2AG CABE CB∴==, 22BE AG ∴=∠CEG=∠CEA=∠ABC=90°,24AB EC ==,222224432AC AB BC ∴=+=+=42AC ∴=22222(42)228AE AC CE ∴=-=-=27AE ∴=272AG AE EG ∴=+=+22(272)14222BE AG ∴==⨯+=+②当正方形CEGF 在绕点C 旋转到如下图所示时:当A E G 、、三点在一条直线上时, 由(2)可知ACG BCE ,2AG CA BE CB∴==, 2BE AG ∴=∠CEA=∠ABC=90°,24AB EC ==,222224432AC AB BC ∴=+=+= 42AC ∴=22222(42)228AE AC CE ∴=-=-= 27AE ∴=272AG AE EG ∴=-=-22(272)14222BE AG ∴==⨯-=-142142【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.12.(1)是,理由见解析;(2)或或;(3),证明见解析.【分析】(1)证明,可得,又点F 为CD 中点,即可得出结论;(2)当为点构成的四边形的准中位线.则M 、N 一定是中点,再分两种情况讨论:和,根解析:(1)是,理由见解析;(2)1211t =或2t =或4t =;(3)M CNF ∠=∠,证明见解析.【分析】(1)证明EDB ABD ∠=∠,可得DE BE AE ==,又点F 为CD 中点,即可得出结论; (2)当MN 为点,,,A B E F 构成的四边形的准中位线.则M 、N 一定是中点,再分两种情况讨论:BE AF 和EF AB ∥,根据平行线分线段成比例列方程即可求解;(3)连接BD ,取BD 的中点H ,连接EH ,FH 得两条中位线,根据中位线定理,得平行,可找到相等角和线段,从而可得EFH △是等腰三角形,进而可得M HEF HFE CNF ∠=∠=∠=∠.【详解】解:(1)EF 是四边形ABCD 的准中位线,理由如下:∵DE AE =,。
专题18二次函数与几何交点间题1.(2023·黑龙江大庆中考真题)如图,二次函数y = a:x.2+bx+c的图象与X轴交千A,B两点,且自变量X 的部分取值与对应函数值Y如下表:XL -]。
I2 34L yL。
-3-4-3。
5Ly y备用图备用图(I)求二次函数y=ax 2+bx+c的表达式;(3)若将线段A B 先向上平移3个单位长度,再向右平移l 个单位长度,得到的线段与二次函数y =一(釭2+bx+c)的图象只有一个交点,其中(为常数,请直接写出t的取值范围2.(2023四川德阳中考真题)已知:在平面直角坐标系中,抛物线与x轴交于点A(-4,0)'B (2,0),与y 轴交千点C (O,-4).1付l(I)求抛物线的解析式;E -阳2(2)如图1,如果把抛物线x 轴下方的部分沿x 轴翻折180°,抛物线的其余部分保持不变,得到一个新图象.当平面内的直线y=妇+6与新图象有三个公共点时,求k的值;3.(2023山东济南中考真题)在平面直角坐标系xOy 中,正方形ABCD 的顶点A,B 在X轴上,C(2,3),D(-1,3) 抛物线y =成-2少+c(a«))与X 轴交于点E(-2,0)和点Fy y(1)如图l ,若抛物线过点C,求抛物线的表达式和点F 的坐标;(2)如图2,在(I)的条件下,连接CF,作直线CE,平移线段CF,使点C 的对应点P落在直线CE 上,点F 的对应点Q落在抛物线上,求点Q的坐标;(3)若抛物线y=ax 2-2ax+c(a<0)与正方形ABCD 恰有两个交点,求(1的取值范围,4.(2023山东日照中考真题)在平面百角坐标系xOy 内,抛物线y =动X江女仄+2(a>0)交y轴于点C ,过点C作x轴的平行线交该抛物线千点D.l `一-x(1)求点C,D的坐标;(3)坐标平面内有两点£(�.a +1} F (5,a + I ),以线段EF 为边向上作正方形EFGH.@若a=l,求正方形EFGH 的边与抛物线的所有交点坐标;@当正方形EFGH 的边与该抛物线有且仅有两个交点,且这两个交点到x 轴的距离之差为-5时,求a的值5.(2022吉林长春中考真题)在平面直角坐标系中,抛物线y = x 1-bx (b是常数)经过点(2,0)点A在抛物线上,且点A的横坐标为m(m;1:0)以点A为中心,构造正方形PQMN, P Q=2|『111,且PQ.lx轴.(l)求该抛物线对应的函数表达式:(2若点B是抛物线上一点,且在抛物线对称轴左侧.过点B作x轴的平行线交抛物线千另一点C,连按BC.当BC=4时,求点B的坐标:(3若m>O,当抛物线在正方形内部的点的纵坐标y随x的增大而增大时,或者y随x的增大而减小时,求m的取值范围:3(4)当抛物线与正方形PQMN的边只有2个交点,且交点的纵坐标之差为一时,且接写出m4的值6.(2022湖南永州中考真题)已知关于X的函数y= ax2 +bx+c(1)若a.=l,函数的图象经过点(1,-4)和点(2,I),求该函数的表达式和最小值;(2)若a=l,b=-2, c=m十l时,函数的图象与X轴有交点,求m的取值范围.(3)阅读下面材料:设a>0,函数图象与X轴有两个不同的交点A,B,若A,8两点均在原点左侧,探究系数a, b, c应满足的条件,根据函数图像,思考以下三个方面:@因为函数的图象与X轴有两个不同的交点,所以6.=b2 -4ac> 0:@因为A,8两点在原点左侧,所以x=O对应图象上的点在X轴上方,即c>O:@上述两个条件还不能确保A,8两点均在原点左侧,我们可以通过抛物线的对称轴位置来b进一步限制抛物线的位置:即需-一又0.2a综上所述,系数a,b, c应满足的条件可归纳为:请根据上面阅谅材料,类比解决下而问题:a>O tJ.=li-4ac>0c>Ob -—<02a若函数y= ax2 -2x+3的图象在直线x=1的右侧与人轴有且只有一个交点,求U的取值范围.7.(2022湖南衡阳中考真题)如图,已知抛物线y=x'-x-2交X轴千A、B两点,将该抛物线位千X轴下方的部分沿X轴翻折,其余部分不变,得到的新图象记为“图象W",图象W交Y轴千点c.` ` \ `x, I I、一,,(])写出图象W位于线段AB上方部分对应的函数关系式:(2)若直线y=-x+b与图象W有三个交点,请结合图象,直按写出b的值:(3)p为X轴正半轴上一动点,过点P作PM ff y轴交直线BC千点M,交图象W于点N,是否存在这样的点P,使..CMN与60BC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.专题18二次函数与几何交点间题1.(2023·黑龙江大庆中考真题)如图,二次函数y = a:x .2+bx+c的图象与X轴交千A,B两点,且自变量X 的部分取值与对应函数值Y如下表:X L -]。
二次函数与几何综合二次函数与三角形综合【例1】. (2012 武汉中考)如图1,点A 为抛物线C1:y= x2﹣2 的顶点,点B 的坐标为(1,0)直线AB 交抛物线C1于另一点C(1)求点C 的坐标;(2)如图1,平行于y 轴的直线x=3 交直线AB 于点D,交抛物线C1于点E,平行于y 轴的直线x=a 交直线AB 于F,交抛物线C1于G,若FG:DE=4:3,求a 的值;(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x 轴于点M,交射线BC 于点N.NQ⊥x 轴于点Q,当NP 平分∠MNQ 时,求m 的值.考点:二次函数综合题。
解答:解:(1)当x=0时,y=﹣2;∴A(0,﹣2).设直线AB 的解析式为y=kx+b,则:,解得∴直线AB 解析式为y=2x﹣2.∵点C 为直线y=2x﹣2 与抛物线x2﹣2 的交点,则点C 的横、纵坐标满足:,解得、(舍)∴点C的坐标为(4,6).(2)直线x=3 分别交直线AB 和抛物线C1于D.E 两点.∴y D=4,y E=,∴DE=.∵FG=DE=4:3,∴FG=2.∵直线x=a 分别交直线AB 和抛物线C1于F、G 两点.∴y F=2a﹣2,y G=a2﹣2∴FG=|2a﹣a2|=2,解得,a3=2﹣2.(3)设直线MN 交y 轴于T,过点N 做NH⊥y 轴于点H;设点M的坐标为(t,0),抛物线C2的解析式为y=x2﹣2﹣m;∴0=﹣t2﹣2﹣m,∴﹣2﹣m=﹣t2.∴y=x2﹣t2,∴点P坐标为(0,﹣t2).∵点N 是直线AB 与抛物线x2﹣t2 的交点,则点N 的横、纵坐标满足:,解得、(舍)∴N(2﹣t,2﹣2t).NQ=2﹣2t,MQ=2﹣2t,∴MQ=NQ,∴∠MNQ=45°.∴△MOT、△NHT 均为等腰直角三角形,∴MO=OT,HT=HN∴OT=4,NT=﹣,NH= t2.∵PN 平分∠MNQ,∴PT=NT,∴﹣t+t2=(2﹣t),∴t1=﹣2 ,t2=2(舍)﹣2﹣m=﹣t2=﹣(﹣2 )2,∴m=2.【例2】.(2011武汉中考)如图1,抛物线y=a x2+b x+3经过A(-3,0),B (-1 ,0 )两点.(1 )求抛物线的解析式;(2 )设抛物线的顶点为M ,直线y= - 2 x + 9 与y 轴交于点C ,与直线O M 交于点D. 现将抛物线平移,保持顶点在直线OD 上. 若平移的抛物线与射线CD(含端点C )只有一个公共点,求它的顶点横坐标的值或取值范围;(3 )如图2 ,将抛物线平移,当顶点至原点时,过Q (0 ,3 )作不平行于x轴的直线交抛物线于E,F两点.问在y轴的负半轴上是否存在点P,使△PE F 的内心在y 轴上. 若存在,求出点P 的坐标;若不存在,请说明理由.2 1112 22 2 2【例 3】. (2010 武汉中考)如图,拋物线 y =ax 2-2ax +b 经过 A(-与 x 轴交于另一点 B ; (1) 求此拋物线的解析式;1,0),C(2, 3 2)两点, (2) 若拋物线的顶点为 M ,点 P 为线段 OB 上一动点(不与点 B 重合),点 Q 在线段 MB 上移动,且∠MPQ=45︒,设线段 OP=x ,MQ= y ,求 y 与 x 的函数关系式,并直接写 2出自变量 x 的取值范围;(3) 在同一平面直角坐标系中,两条直线 x=m ,x=n 分别与拋物线交于点 E ,G ,与(2)中的函数图像交于点 F ,H 。
专题复习:中考函数与几何综合压轴题 ——唯一性、存在性的开放性问题(方法与技能学习)●教学目标(一)知识与技能目标1.掌握根据图中几何信息求解二次函数的解析式; 2.掌握三角形、四边形的综合几何证明; 3.掌握利用全等变换进行拼图. (二)过程与方法目标1.经历不同数学问题的思考方法渗透,逐步养成学生按“四六步骤”进行思考的习惯,提高学生思考问题的能力;2.经历全等变换拼图的过程,渗透存在性问题中的拼图分类思想. (三)情感、态度与价值观目标1.进一步培养学生严谨的科学态度:分类标准要统一,且不重复、不遗漏;推理中要言之有理落笔有据;2.通过透视压轴题,养成学生在解题中进行反思的习惯,从类型上形成解题的方法和经验。
●教学重点与难点 重点:(1)逐步养成学生按“四六步骤”进行思考的习惯;(2)形成解答新编函数与几何综合的唯一性、存在性开放性问题的方法。
难点:(1)调用“联想转化、选择试解”所具备的知识和经验;(2)分类拼图的不遗漏. ●学生对象:中考优生●课前准备:学生独立完成学案中的内容 ●教学过程 一、引言:百尺午头,更进一步.在中考即将来临之时,我要与大家一起再次走进中考函数与几何综合压轴专题,希望通过本专题复习,同学们能在思考问题的方法与解决问题的技能方面都有所增长,有信心吗?二、课前自查第(1)问反馈,提炼思考问题的步骤. 1.请看自查问题1(课件展示):自查问题1:(见学案) 如图,在梯形ABC D 中,AB D C ∥,90BCD ∠= ,且1AB =,2B C =,tan 2AD C ∠=.(1)以DC 所在直线为x 轴,过点A 的直线为y 轴建立如图所示的坐标系.在OA 上取一点Q ,使32=AQ ,求过D 、Q 、C 三点的抛物线的解析式;(2)若E 是梯形内一点,F 是梯形外一点,且ED C FBC ∠=∠,DE BF =,则图中EC F △是等腰直角三角形吗?若是,请证明;若不是,请说明理由.2.(1)小问提前完成的请举手,很好,非常自觉.答案是什么?请你说说?与他答案相同的请举手,有不同意见吗?(请看正确答案:同学们答案正确,得分,把掌声送给自已);3.有答案说明有思考,有好的思考,才会有好的解法.怎样才会有好的思考呢? 4.老师是这样做的:(边课件展示,边简述)师:课件展示(1)小问题的思维流程图如下:师:简述思考过程如下 (1)上图问题条件⇒⎭⎬⎫(如图所示) (2)根据问题,联想所求解析式的特征是不含待定系数,从而将问题转化为⇒求解析式中的待定系数; 联想求解析式中待定系数的方法,将问题转化为⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⇒⇒−−→−⎪⎩⎪⎨⎧).()();()(;)()(;*第四步答第三步组解方程第二步坐标求异于顶点的另一点的组列方程第一步求顶点坐标顶点式设未知系数的解析式为交点式顶点式一般式设解析式选择(3)根据设解析式,联想解析式的表达式有一般式、顶点式、补充的交点式三种,产生多种思路,因此选择试解。
根据所求函数经过的三点中有顶点,而顶点坐标根据已知可直接求得,因此老师选择了顶点式,从而将问题转化为⇒设解析式为顶点式k h x a y +-=2)(⇒求顶点坐标(h ,k )。
顶点坐标求出后,再根据列方程(组),联想所设的顶点式中待定系数的个数(除顶点外,只有1个待定系数a )和函数问题中常用的列方程的等量关系(函数所经过的点的坐标满足该函数解析式),从而将问题转化为⇒求异于顶点的一点的坐标。
(为什么是异于顶点的一点呢?因为顶点代入后,不能得到关于a 的方程,也就是用顶点坐标设了解析式,就不能再用顶点坐标求的该解析式中的待定系数,一个条件只能作用于一个等式一次,多次是循环的,无效)列出关于a 的方程后,解所列方程,得待定系数a 的值。
将所求出的待定系数a 的值,代入所设解析式(顶点式)得解答。
(4)梳理步骤为:①求顶点坐标,设解析式为顶点式;②求异于顶点的一点的坐标,代坐标到所设顶点式,列方程; ③解方程,得待定系数的值;④代所求出的待定系数到所设顶点式,得结论。
5.同学们,老师是怎样思考的呢?请帮助老师提炼一下思考步骤?(课件展示,生说师展示) 思考步骤:(1)条件问题上图;(2)问题联想转化;(3)选择思路试解(思路试解优化);(4)梳理解答步骤.(注意:联想转化是关键,一定要会联想转化).6.从问题出发,不断联想转化,是思考问题的一种分析法。
为了便于称呼和记忆,我们约定以上步骤为“四六步骤”好不好。
按四六步骤思考问题,不仅条理清晰,而且体现了思维的发散与优化,因此算一种好的思考方法,同意吗?需要说明的是第二步与第三步经常是交叉进行。
三、(2)小问题反馈,引导学生按“四六步骤”重新思考(2)小问,进一步理解“四六步骤”。
1.下面,请看(2)小问,提前完成的请举手,你们是按上面的步骤思考的吗?刀不磨不亮,脑不用不活,下面我们一起按四六步骤,重新思考(2)小问好不好.(师边提问,生边作答,边课件展示思考过程)师:课件展示(2)小问题的思维流程图如下:师:按“四六步骤”思考(2)小问题的提问如下: (1)上图问题条件⇒⎭⎬⎫:你条件问题上图了吗? (2)问题联想转化、(3)选择思路试解同进进行: 根据问题本身的含义,将问题转化为根据证两边等,联想到什么?(联想到三角形两边等有三种情况存在,由于此题是证明是等边三角形,⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⇒∆⇒∠=∠⇒︒=∠︒=∠⇒︒∆⇒⇒=⇒−−→−⎪⎪⎪⎩⎪⎪⎪⎨⎧∆−−→−⎪⎪⎩⎪⎪⎨⎧∆∆=−−→−⎪⎩⎪⎨⎧===.)90(9090)2(;,,,,)1(计算边长证边等全等证证的关系找与已知计算两边夹角为数建立方程利用勾股定理或三角函作辅助线构造的长求全等线段相等长度值相等全等对应边等中两个等角对等边中一个两边等证选择选择选择BCF DCE BCD ECF Rt CD CB CD SAS HLSSSASA AAS SASCF CE EF CF EF CE CF CE因此只要证到一种情形即可。
根据图形,选择证明CE=CF)。
又联想证明CE=CF的方法:(有三种思路),产生多种思路,因此选择试证。
根据已知,你选择了什么?(选择△全等),从而将问题转化为什么?(证△全等)根据证△≌△,联想到什么?产生多种思路,因此选择试证。
根据已知,你选择什么?(选择证SAS)从而将问题转化为什么?(证CD=CB)根据证CD=CB,联想到什么?产生多种情况,因此选择试证。
根据已知,你选择什么?(长度值相同,线段相等)从而将问题转化为什么?(计算CD的长,联想求线段长的方法,将问题转化为构造Rt △,利用三角函数求解或勾股定理求解,根据已知,选择三角函数)根据上面所证的两边为CE=CF,从而将证两边夹角为︒∠90ECF,根据此问,联想90,转化为证︒=已知中有︒∠90BCD的关系,从而将问题转化为证=BCD,将问题转化为找与已知︒=∠90∠。
(根据计算得边等和已知,得全等,从而得角等。
)=BCFDCE∠(4)梳理解答步骤:①求线段长,证边等:②由边等,证全等;③由全等,推边等;④由证角等,等量加等量证角为︒90;(5)综上所述,得三解形为等腰Rt∆2.下面,请同桌交换题单,按以上梳理的解答步骤,互批(2)小问的解答。
有错吗?错了的同学下来一定要弄清楚自已的错点,及时修正。
3.这里需要提醒的是:(2)小问作答时,一定要先回答“是”或者“不是”.若回答是,则证明;若回答不是,则举反例或反证.初中阶段一般都是回答“是”.像(2)小问这样的问题,叫唯一性的开放性问题.4.另外,请同学们注意:(2)小问的条件与问题,由于都与坐标系、抛物线无关.因此思考时,可以先隐去坐标系、抛物线或将问题从坐标系、抛物线中提取出来,这样会感觉简单些.当然不是所有函数与几何综合的问题都与坐标系、抛物线无关.建议同学们在思考函数与几何综合问题时,采用先独立、再综合的思考策略,清楚了吗.四、变式精析,让学生用“四六步骤”思考问题2的(3)小问题,并用议一议的问题来反馈思考过程,抓住关键,突出重点,解决难点。
1.按四六步骤思考问题,会让你在解答问题一时没有思路时,慢慢的产生思路,让你有一种柳暗花明又一春的感受.愿意感受一下吗?问题2:在问题1的基础上增加如下问题作为(3)小问,并将图1变为图2(3)作△ADO的中位线MN,并将△AMN进行平移、旋转、翻折(无任何限制),使它与四边形MNOD拼成特殊四边形(面积不变),则(1)中抛物线上是否存在点P,使它成为所拼特殊四边形异于M、N、O、D四点的顶点.若存在,请求出P点坐标;若不存在,请说明理由.问题2是在问题(1)的基础上增加了(3)小问,图随之有点改变.请大家按“四六步骤”,先独立思考,再四人一组议一议:联想转化中,首先将原问题转化成了哪几个新问题?其关键性问题是什么?解决它的方法是什么?为什么?3.请议完了的小组举手?请你们小组的代表上来讲讲你们议的结果,其它小组有不同意见吗?请你补充.4.请看老师的思考过程? (边课件展示,边口述) 师:课件展示(3)小问题的思维流程图如下:师:口述如下:①上图问题条件⇒⎭⎬⎫(如图所示) ②③问题联想转化、选择思路试解同时进行: 根据原问题所表达的含义,将原问题转化为④梳理解答步骤:第一步:拼特殊四边形,并画出所拼特殊四边形;第二步:标出所有P 点,并求所有P 点坐标;第三步:分别代所有P 点的坐标到(1)中解析式,判断解析式是否成立; 第四步:下结论,并写了符合题意的P 点的坐标。
5.通过同学们的议和老师的展示,同学们能很快拼并画出特殊四边形了吗?请你上来画画.对不对,很好.6.下面,再请同学们看看老师的拼图过程及拼图结果.(课件展示)⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧======⇒⎩⎨⎧⇒答并写代并断标并求分类有序重合讨论把相等相等有序重合找相等线段拼并画ODANDO AN ON AN NO AN MD AM DM AM7.谁愿意上来标并求出P点坐标.8.通过以上思考,能完成(3)小问的解答吗?请同学们在题单上完整的写出解答过程.9.请对照老师的解答过程,判断自已的解答是否正确.若有错,错在什么地方.(课件出示老师解答过程)五、整体透视问题2,养成学生在解题中进行反思的习惯,从类型上掌握的解题方法和经验。
1.同学们,(3)小问这种问题,我们把它叫做存在性问题的开放题,解答时一般都需要分类讨论.请同学们思考,今天(3)小问这样的存在性问题,与以前我们接触的存在性问题有什么异同?相同点:是都要分类讨论;不同点:一是数学载体不同.以前多数是以动点问题为载体,而今天是以拼图问题为载体;二是分类标准不同.今天这种分类拼图,是根据要减少边来确定的分类标准,就是按相等线段有序重合来进行分类.注意:只有按统一的标准去分类拼图,才不会重复、遗漏.清楚了吗.2.问题2是我今年新编的一类压轴题,希望大家一定要高度重视.(1)(2)(3)小问中的条件只限于每一个小问.解题时,可以抽取出来思考.另外,(2)小问与以前也有所不同,它与函数、坐标无任何关系,是独立的几何唯一性证明问题.六、透视了问题2这种新编中考压轴题,下面我们对本节课作一小结.(师边启发,生边回答,师边整理)师:启发如下:1.万丈高楼平地起,基础是基石,只有基石牢固了,才能筑建起高楼.本课基础知识与技能有哪些呢?请说说.还有吗?非常好.2.方法是打开思维大门的钥匙,只有掌握了方法,才能触类旁通,点石成金.本课思考与解决问题的方法有哪些呢?请说说.还有吗?非常好.(3)知己知彼,百战不殆.明确了中考压轴题特点,必须还要清楚自己解压轴题的错点,请你说说你的错点是什么?非常好.师:整理如下:七、今天的作业是变式与精练题中的问题3.问题3(压轴题):如图,A B C⊥于D,B E平分A B C∠,∠=°,C D ABBC,45△中,2=A B C且BE AC,是B C边的中点,连⊥于E,与C D相交于点F H Array结D H与B E相交于点G.以点H为原点,BC所在直线为x轴建立如图所示的坐标系.(1)一条抛物线经过D、B、C三点,求这条抛物线的解析式;(2)线段BG与CE之间存在数量关系B G2=C E吗?若存在,请证明;若不存在,请说明理由;(3)将△DHC进行平移、旋转、翻折(次数不限),使它与△BDH拼成特殊四边形.(1)中抛物线上是否存在点P,使它成为所拼特殊四边形异于B、H、D三点的顶点.若存在,请求出P点坐标;若不存在,请说明理由.八、下课,祝同学们心想事成.。