计数器实验报告
- 格式:doc
- 大小:256.50 KB
- 文档页数:5
计数器的设计实验报告篇一:计数器实验报告实验4 计数器及其应用一、实验目的1、学习用集成触发器构成计数器的方法2、掌握中规模集成计数器的使用及功能测试方法二、实验原理计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。
计数器种类很多。
按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。
根据计数制的不同,分为二进制计数器,十进制计数器和任意进制计数器。
根据计数的增减趋势,又分为加法、减法和可逆计数器。
还有可预置数和可编程序功能计数器等等。
目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器。
使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。
1、中规模十进制计数器CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如图5-9-1所示。
图5-9-1 CC40192引脚排列及逻辑符号图中LD—置数端CPU—加计数端CPD —减计数端CO—非同步进位输出端BO—非同步借位输出端D0、D1、D2、D3 —计数器输入端Q0、Q1、Q2、Q3 —数据输出端CR—清除端CC40192的功能如表5-9-1,说明如下:表5-9-1当清除端CR为高电平“1”时,计数器直接清零;CR置低电平则执行其它功能。
当CR为低电平,置数端LD也为低电平时,数据直接从置数端D0、D1、D2、D3 置入计数器。
当CR为低电平,LD为高电平时,执行计数功能。
执行加计数时,减计数端CPD 接高电平,计数脉冲由CPU 输入;在计数脉冲上升沿进行8421 码十进制加法计数。
执行减计数时,加计数端CPU接高电平,计数脉冲由减计数端CPD 输入,表5-9-2为8421码十进制加、减计数器的状态转换表。
加法计数表5-9-减计数2、计数器的级联使用一个十进制计数器只能表示0~9十个数,为了扩大计数器范围,常用多个十进制计数器级联使用。
计数器实验报告计数器实验报告引言:计数器是数字电路中常见的一种重要组件,它能够按照一定的规则对输入的信号进行计数,并输出对应的计数结果。
在数字电路设计与实验中,学习和掌握计数器的工作原理和应用是非常重要的。
本实验旨在通过设计和实现一个4位二进制同步计数器,加深对计数器的理解和应用。
一、实验目的:1. 学习计数器的基本工作原理;2. 掌握计数器的设计与实现方法;3. 理解同步计数器的概念和特点;4. 通过实验验证计数器的正确性和稳定性。
二、实验器材与方法:1. 实验器材:- 电路实验箱- 逻辑门集成电路:74LS74、74LS08- 电源、示波器、信号发生器等2. 实验方法:- 按照给定的电路原理图,进行电路的布线与连接;- 使用信号发生器提供时钟信号,并连接到计数器的时钟输入端;- 使用示波器观察计数器的输出波形,并记录实验数据;- 根据实验数据,分析计数器的工作情况,并进行验证。
三、实验过程与结果分析:1. 电路连接:根据给定的电路原理图,将74LS74和74LS08等逻辑门集成电路按照正确的引脚连接方式进行布线。
2. 时钟信号设置:使用信号发生器提供适当的时钟信号,并将其连接到计数器的时钟输入端。
3. 观察输出波形:使用示波器观察计数器的输出波形,并记录实验数据。
4. 数据分析与验证:根据实验数据,对计数器的工作情况进行分析和验证。
检查输出波形是否按照预期进行计数,是否存在错误或不稳定的情况。
实验结果显示,计数器能够按照预期的规则进行计数,并输出正确的计数结果。
通过改变时钟信号的频率和占空比,可以观察到计数器的计数速度和稳定性的变化。
四、实验总结:通过本次实验,我们深入了解了计数器的工作原理和应用。
计数器作为数字电路中常见的组件,广泛应用于各种计数和定时任务中。
同步计数器能够实现多位的二进制计数,并具有较高的稳定性和可靠性。
然而,在实验过程中也发现了一些问题。
例如,当时钟信号频率较高时,计数器可能出现计数错误或不稳定的情况。
计数器设计实验报告《计数器设计实验报告》一、实验的开始:充满好奇与期待“哇,计数器设计实验听起来就超酷的!”我兴奋地对同桌说。
就像要去探索一个神秘的宝藏,我心里充满了好奇。
那天,阳光透过窗户洒在实验桌上,好像也在为我们的实验加油助威。
老师把实验器材一一摆出来的时候,我眼睛都放光了,感觉像是打开了一个装满魔法道具的盒子。
比如那些五颜六色的导线,就像彩虹的碎片落在桌上。
同桌也很激动,他搓着手说:“这肯定很有趣,就像搭积木一样。
”这让我更加迫不及待地想要开始了。
这时候,我就想啊,生活中的很多事情不就像这个实验吗?充满未知,只要我们带着好奇和期待去探索,就会有不一样的收获。
二、遇到困难:有点沮丧但不放弃“哎呀,这怎么弄啊?”我皱着眉头嘟囔着。
按照图纸接线的时候,我老是接错,计数器就是不工作。
旁边的小组已经有进展了,我心里那叫一个着急啊,就像热锅上的蚂蚁。
我对小组成员说:“我感觉我像个迷路的小蚂蚁,完全找不到方向了。
”这时组长拍了拍我的肩膀说:“别灰心,我们再仔细看看。
”他的话就像一阵小风吹散了我心头的乌云。
就像爬山的时候突然遇到陡峭的路段,虽然难走,但只要有人鼓励,就有勇气继续。
于是我们重新检查线路,一个一个接口地核对,每检查一个接口,都像是在黑暗中摸索着寻找那把能打开成功之门的钥匙。
三、小组合作:团结的力量真伟大“我发现问题了!”小组里的一个同学大喊一声。
就像黑暗中突然出现了一道亮光。
原来是有个小零件的连接松动了。
我们都围了过去,你一言我一语地讨论起来。
“看,就是这里,差点就被我们忽略了。
”另一个同学说道。
我笑着说:“还好我们是一个小组,人多力量大啊。
”这就像一群小蜜蜂一起建造蜂巢,每个小蜜蜂都有自己的任务,缺了谁都不行。
大家齐心协力把零件重新接好,计数器开始有反应了,那一瞬间,我们都欢呼起来,那种喜悦就像在一场比赛中获得了冠军一样。
我深深感受到,在困难面前,大家团结在一起,就没有克服不了的难关,就像很多根小木棍绑在一起,就变得很结实。
8254定时计数器实验实验报告一、实验目的本次实验的主要目的是深入了解和掌握 8254 定时计数器的工作原理、编程方法以及在实际应用中的操作流程。
通过亲自动手实践,提高对计算机硬件接口技术的理解和应用能力。
二、实验设备1、计算机一台2、 8254 定时计数器实验箱三、实验原理8254 是一种可编程的定时/计数器芯片,它包含三个独立的 16 位计数器通道,分别称为计数器 0、计数器 1 和计数器 2。
每个计数器都可以工作在不同的模式下,如方式 0 计数结束中断、方式 1 可重触发单稳态、方式 2 频率发生器、方式 3 方波发生器、方式 4 软件触发选通、方式 5 硬件触发选通。
在本次实验中,我们主要利用 8254 的计数器 0 来产生一定频率的方波信号,并通过指示灯的闪烁来观察其效果。
四、实验步骤1、按照实验箱的说明书,将 8254 芯片正确地插入插槽中,并连接好相关的线路。
2、打开计算机,进入实验环境。
3、编写 8254 的初始化程序,设置计数器 0 的工作模式、计数初值等参数。
选择工作模式 3(方波发生器)。
设定计数初值,以控制方波的频率。
4、编译并运行程序,观察指示灯的闪烁情况。
五、实验代码以下是本次实验中使用的 8254 初始化程序代码(以汇编语言为例):```assemblyMOV DX, 043H ;控制字端口地址MOV AL, 00110110B ;控制字:选择计数器 0,先读/写低 8 位,再读/写高 8 位,工作方式 3,二进制计数OUT DX, ALMOV DX, 040H ;计数器 0 端口地址MOV AL, 00H ;先写低 8 位计数值OUT DX, ALMOV AL, 10H ;再写高 8 位计数值OUT DX, AL```六、实验结果及分析1、实验结果当程序运行后,观察到连接在计数器 0 输出端的指示灯按照设定的频率闪烁,表明 8254 定时计数器工作正常,成功产生了方波信号。
一、实验目的1. 理解计数器的基本原理和构成方式。
2. 掌握中规模集成计数器的使用方法和功能测试。
3. 了解计数器在数字系统中的应用,如定时、分频、数字运算等。
二、实验原理计数器是一种时序逻辑电路,用于对输入脉冲进行计数。
根据计数进制、触发器翻转方式、计数功能等不同,计数器可以分为多种类型。
1. 计数进制:二进制、十进制、任意进制。
2. 触发器翻转方式:同步、异步。
3. 计数功能:加法、减法、可逆(加/减)。
常见的集成计数器有74LS161(4位二进制同步加法计数器)、74LS193(4位二进制同步可逆计数器)等。
三、实验器材1. 数字电路实验箱2. 同步十进制可逆计数器74LS1923. 2输入四与门74LS001四、实验步骤1. 搭建实验电路:根据实验要求,搭建计数器实验电路,包括计数器芯片、时钟源、复位端等。
2. 功能测试:分别对计数器进行加法计数、减法计数、可逆计数等功能的测试,观察输出波形和计数结果。
3. 应用实验:利用计数器实现定时、分频等功能,观察实际效果。
五、实验结果与分析1. 功能测试:- 加法计数:输入时钟脉冲,观察计数器输出端Q0~Q3的变化,验证加法计数功能。
- 减法计数:输入时钟脉冲,观察计数器输出端Q0~Q3的变化,验证减法计数功能。
- 可逆计数:输入时钟脉冲,观察计数器输出端Q0~Q3的变化,验证可逆计数功能。
2. 应用实验:- 定时功能:利用计数器实现定时功能,例如,通过计数器计数1000个脉冲,实现1秒定时。
- 分频功能:利用计数器实现分频功能,例如,将输入的50Hz时钟信号分频为5Hz。
六、实验总结通过本次实验,我们掌握了计数器的基本原理、构成方式和使用方法,了解了计数器在数字系统中的应用。
实验过程中,我们学会了如何搭建实验电路、进行功能测试和应用实验。
本次实验有助于提高我们对数字电路和时序逻辑电路的理解,为后续学习打下基础。
七、实验心得1. 计数器在数字系统中应用广泛,掌握计数器的基本原理和构成方式非常重要。
EDA实验报告书ELSECOUT<='0';END IF;CQ<=CG;CP<=CS;END PROCESS;END BBQ;仿真波形图问题讨论1.设计一个60进制的加法计数器,具体要求与本实验中的24进制计数器相同。
LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY JINZHI60 ISPORT(CLK,RD,EN:IN STD_LOGIC;CQ,CP:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);COUT:OUT STD_LOGIC);END JINZHI60 ;ARCHITECTURE BBQ OF JINZHI60 ISSIGNAL CS,CG: STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(CLK,RD,EN)BEGINIF RD='1' THEN CG<="0000"; CS<="0000";ELSIF CLK'EVENT AND CLK='1' THENIF EN='1' THENIF (CS="0101" AND CG="1001") THENCG<="0000";CS<="0000";ELSIF CG="1001" THEN CG<="0000";CS<=CS+1;ELSE CG<=CG+1;END IF;END IF;END IF;IF (CS="0101" AND CG="1001") THEN COUT<='1';ELSE COUT<='0';END IF;CQ<=CG;CP<=CS;END PROCESS;END BBQ;2.利用60进制及24进制计数器设计简易数字钟。
实验五计数器设计一、实验目的:1)复习计数器的结构组成及工作原理。
2)掌握图形法设计计数器的方法。
3)掌握Verilog HDL语言设计计数器的方法。
4)进一步熟悉设计流程、熟悉数字系统实验开发箱的使用。
二、实验器材:数字系统设计试验箱、导线、计算机、USB接口线三、实验内容:1)用图形法设计一个十进制计数器, 仿真设计结果。
下载, 进行在线测试。
用Verilog HDL语言设计一个十进制的计数器(要求加法计数;时钟上升沿触发;异步清零, 低电平有效;同步置数, 高电平有效), 仿真设计结果。
下载, 进行在线测试。
四、实验截图1)原理图:2)仿真波形:3)文本程序:5)波形仿真:五、实验结果分析、体会:这次实验, , 由于试验箱有抖动, 故在原理图上加了去抖电路, 但是在波形仿真的时候无需考虑抖动, 所以我在波形仿真的时候将去抖电路消除了, 方便观察实验六累加器设计一、实验目的:1)学习了解累加器工作原理;2)了解多层次结构的设计思路;3)学会综合应用原理图和文本相结合的设计方法。
实验器材:数字系统设计试验箱、导线、计算机、USB接口线三、实验内容:1)在文本输入方式下设计分别设计出8位的全加器和8位的寄存器, 并分别存为add8_8.v和reg8.v;3) 2)在原理图输入方式下通过调用两个模块设计出累加器电路, 并存为add8.bdf, 进行功能仿真;下载, 进行在线测试。
四、实验截图1)8位累加器原理图:2)波形仿真:3)文本输入8位加法器语言及符号:生成元器件:4)文本输入8位寄存器:生成图元:五、实验总结:通过本次实验, 学习了解累加器工作原理, 了解多层次结构的设计思路, 学会综合应用原理图和文本相结合的设计方法。
计数器数电实验报告心得前言计数器是数字电路中的重要组成部分,它能够实现对电路输出信号进行计数并产生相应的计数结果。
在数电课程的学习中,我有幸参与了计数器实验,并通过实验掌握了计数器的基本工作原理和实际应用。
实验内容本次实验中,我们所使用的计数器是模4计数器,采用反馈连接的JK 触发器构成。
实验要求我们通过将四个JK触发器进行级联、运用逻辑门电路控制使之实现模4计数。
实验步骤1. 首先,我们根据实验电路原理图连接JK触发器。
2. 接下来,我们使用逻辑门电路连接JK触发器来实现计数。
3. 确保电路连接正确后,我们给电路供电并观察触发器的输出信号变化。
4. 最后,我们通过示波器对输出进行采样和测量,以验证实验结果的正确性。
实验结果通过实验,我们成功地完成了模4计数器的搭建,并观察到了其正确计数的结果。
实验中,我们分别测试了从0到3的四个计数状态,得到了预期的输出结果。
同时我们也使用示波器对输出进行测量,测得的计数频率也与理论设计值相符合。
这表明我们所搭建的模4计数器是可靠的,并且能够正确输出计数结果。
实验心得通过本次实验,我深刻体会到了计数器在数字电路中的重要性和广泛应用。
计数器不仅仅是用于简单的计数任务,它还能够应用于时钟信号的频率分频、计时等方面。
通过实验,我更深入地了解了计数器的工作原理和实际应用,对于数字电路的设计和实现有了更清晰的认识。
此外,我还学会了使用逻辑门电路来控制计数器的计数状态。
逻辑门电路可以根据需要来实现不同的计数方式,如正向计数、逆向计数等。
这为我们设计更为复杂的计数器提供了更多的灵活性。
实验中,我充分发挥了团队合作的精神,与实验组的成员积极协作,在电路连接、测试结果等方面进行了深入的讨论和交流。
通过合作,我们不仅更好地理解了计数器的工作原理,还提高了实验效率,并且取得了令人满意的实验结果。
总的来说,计数器数电实验使我对计数器的工作原理和实际应用有了更深刻的认识。
通过实验,我不仅提高了自己的动手能力和团队合作能力,还为我今后在数字电路设计和实现方面打下了坚实的基础。
计数器的设计实验报告一、实验目的本次实验的目的是设计并实现一个简单的计数器,通过对计数器的设计和调试,深入理解数字电路的基本原理和逻辑设计方法,掌握计数器的工作原理、功能和应用,提高自己的电路设计和调试能力。
二、实验原理计数器是一种能够对输入脉冲进行计数,并在达到设定计数值时产生输出信号的数字电路。
计数器按照计数方式可以分为加法计数器、减法计数器和可逆计数器;按照计数进制可以分为二进制计数器、十进制计数器和任意进制计数器。
本次实验设计的是一个简单的十进制加法计数器,采用同步时序逻辑电路设计方法。
计数器由触发器、门电路等组成,通过对触发器的时钟信号和输入信号的控制,实现计数功能。
三、实验设备与器材1、数字电路实验箱2、集成电路芯片:74LS160(十进制同步加法计数器)、74LS00(二输入与非门)、74LS04(六反相器)3、示波器4、直流电源5、导线若干四、实验内容与步骤1、设计电路根据实验要求,选择合适的计数器芯片 74LS160,并确定其引脚功能。
设计计数器的清零、置数和计数控制电路,使用与非门和反相器实现。
画出完整的电路原理图。
2、连接电路在数字电路实验箱上,按照电路原理图连接芯片和导线。
仔细检查电路连接是否正确,确保无短路和断路现象。
3、调试电路接通直流电源,观察计数器的初始状态。
输入计数脉冲,用示波器观察计数器的输出波形,检查计数是否正确。
若计数不正确,逐步排查故障,如检查芯片引脚连接、电源电压等,直至计数器正常工作。
4、功能测试测试计数器的清零功能,观察计数器是否能在清零信号作用下回到初始状态。
测试计数器的置数功能,设置不同的预置数,观察计数器是否能按照预置数开始计数。
五、实验结果与分析1、实验结果成功实现了十进制加法计数器的设计,计数器能够在输入脉冲的作用下进行正确计数。
清零和置数功能正常,能够满足实验要求。
2、结果分析通过对计数器输出波形的观察和分析,验证了计数器的工作原理和逻辑功能。
一、实验目的1. 理解计数器的基本原理和工作方式;2. 掌握计数器的使用方法;3. 培养动手实践能力和团队协作精神。
二、实验原理计数器是一种用于计数的电子器件,能够对输入信号进行计数。
计数器的基本原理是利用触发器来实现计数功能。
触发器是一种具有记忆功能的电子器件,可以存储0或1的状态。
通过将触发器级联,可以实现多位计数。
本实验采用一个简单的异步二进制计数器,其工作原理如下:1. 当计数器复位时,所有触发器的状态都为0;2. 当计数器收到一个时钟信号时,最低位的触发器翻转状态;3. 如果最低位的触发器状态为1,则其输出信号将触发下一位触发器翻转状态;4. 依次类推,实现计数器的计数功能。
三、实验器材1. 计数器模块;2. 电源;3. 连接线;4. 逻辑分析仪;5. 示波器。
四、实验步骤1. 连接电路:将计数器模块、电源、连线等按实验电路图连接好;2. 复位计数器:将复位按钮按下,确保计数器处于初始状态;3. 观察计数过程:打开电源,观察计数器输出端的状态变化;4. 记录数据:使用逻辑分析仪或示波器记录计数器输出端的状态变化,并记录数据;5. 分析数据:根据记录的数据,分析计数器的计数过程和结果。
五、实验结果与分析1. 实验结果:计数器模块在接收到时钟信号后,输出端的状态按二进制递增的顺序变化,实现了计数功能;2. 分析:(1)复位功能:通过复位按钮,可以将计数器模块的状态恢复到初始状态,方便进行实验;(2)计数功能:计数器模块能够对输入的时钟信号进行计数,实现计数功能;(3)稳定性:在实验过程中,计数器模块的输出端状态变化稳定,未出现异常现象。
六、实验总结通过本次实验,我们掌握了计数器的基本原理和使用方法。
实验过程中,我们学会了如何连接电路、观察计数过程、记录数据和分析数据。
同时,我们还培养了动手实践能力和团队协作精神。
在今后的学习和工作中,我们将继续努力,不断提高自己的实验技能和团队协作能力。
计数器实验报告
一实验内容
1 静态测试芯片74LS90的逻辑功能。
、
2 动态测试芯片73LS90的芯片功能,画出clk与其中一个输出的波形图。
3 用一块74LS90芯片连接一个模2,模5计数器。
4用两个74LS90级联成一个模24计数器。
二实验条件
数字万用表,模拟示波器,计算机电路基础实验箱,芯片:74LS90两片,74LS00一片。
三实验原理
1 静态测试芯片74LS90的逻辑功能。
电路图
其中clkA连接单脉冲,其他输入接电平控制按键,输出接到二极管指示灯。
经过测试得到真值表为
Any Any111001
Any1Any1 Count
1Any Any1Count
1Any1Any Count
Any11Any Count
这个可以看出器件清零和置九都是两个高电平有效。
其他的可以实现计数功能。
2 动态测试芯片73LS90的芯片功能,画出clk与其中一个输出的波形图。
电路图还是静态测试时候的电路图,把clk改接到连续脉冲输入即可。
途中上面的波形为模二计数器中Qa的输出波形,下面为clk输入波
形,其中在波形显示控制旋钮中,两个通道的每格设置值为,
时基为。
在把示波器接地后可以知道,各个波形的零刻度线在其低电平最靠近的水平刻度线上。
则可以看出输入输出波形的各参数为
3 用一块74LS90芯片连接一个模5,模2计数器。
模5:
注:Qa与clkB线上是有节点的,但是复制过来后没有显示。
如图所示:分别把输出接到数码管上显示。
首先连接成一个模10计数器,然后再输出为0101时候强制清零即可。
模2:
先连接一个模10计数器,在输出为0010时候强制清零。
模24计数器
用两个计数器级连,每个计数器控制一位数,每当控制地位的计数器计数到9时给高位计数器一个脉冲,用这个来控制进位。
图中的两个计数器的输出分别接到连个数码管上,可以显示到模24的效果。
四实验总结
在示波器显示时候,连接了二极管显示灯,造成干扰较大,得出的波形不规则,不连接二极管即可。
此次实验更加深刻理解了74LS90的逻辑功能,学会了用74LS90设计任意模计数器。
五实验评价
实验过程顺利,原理已弄明白。