全国名校高考数学专题训练07直线与圆(选择题)
- 格式:doc
- 大小:287.00 KB
- 文档页数:11
高考数学复习专题训练—直线与圆一、单项选择题1.(2021·全国甲,文5)点(3,0)到双曲线x 216−y29=1的一条渐近线的距离为()A.95B.85C.65D.452.(2021·湖南湘潭模拟)已知半径为r(r>0)的圆被直线y=-2x和y=-2x+5所截得的弦长均为2,则r的值为()A.54B.√2C.32D.√33.(2021·北京清华附中月考)已知点P与点(3,4)的距离不大于1,则点P到直线3x+4y+5=0的距离的最小值为()A.4B.5C.6D.74.(2021·江西鹰潭一中月考)已知点M,N分别在圆C1:(x-1)2+(y-2)2=9与圆C2:(x-2)2+(y-8)2=64上,则|MN|的最大值为()A.√7+11B.17C.√37+11D.155.(2021·湖北黄冈中学三模)已知直线l:mx+y+√3m-1=0与圆x2+y2=4交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=()A.2B.4√33C.2√3D.46.(2021·重庆八中月考)已知圆C:x2+y2-4x-2y+1=0及直线l:y=kx-k+2(k∈R),设直线l与圆C相交所得的最长弦为MN,最短弦为PQ,则四边形PMQN的面积为()A.4√2B.2√2C.8D.8√27.(2021·山西临汾适应性训练)直线x+y+4=0分别与x轴、y轴交于A,B两点,点P在圆(x-4)2+y2=2上,则△ABP面积的取值范围是()A.[8,12]B.[8√2,12√2]C.[12,20]D.[12√2,20√2]8.(2021·山东青岛三模)已知直线l:3x+my+3=0,曲线C:x2+y2+4x+2my+5=0,则下列说法正确的是()A.“m>1”是曲线C表示圆的充要条件B.当m=3√3时,直线l与曲线C表示的圆相交所得的弦长为1C.“m=-3”是直线l与曲线C表示的圆相切的充分不必要条件D.当m=-2时,曲线C与圆x2+y2=1有两个公共点9.(2021·河北邢台模拟)已知圆M:(x-2)2+(y-1)2=1,圆N:(x+2)2+(y+1)2=1,则下列不是M,N 两圆公切线的直线方程为()A.y=0B.4x-3y=0C.x-2y+√5=0D.x+2y-√5=0二、多项选择题10.(2021·广东潮州二模)已知圆C:x2-2ax+y2+a2-1=0与圆D:x2+y2=4有且仅有两条公共切线,则实数a的取值可以是()A.-3B.3C.2D.-211.(2021·海南三亚模拟)已知圆O1:x2+y2-2x-3=0和圆O2:x2+y2-2y-1=0的交点为A,B,则()A.圆O1和圆O2有两条公切线B.直线AB的方程为x-y+1=0C.圆O2上存在两点P和Q,使得|PQ|>|AB|D.圆O1上的点到直线AB的最大距离为2+√2三、填空题12.(2021·辽宁营口期末)若直线l1:y=kx+4与直线l2关于点M(1,2)对称,则当l2经过点N(0,-1)时,点M到直线l2的距离为.13.(2021·山东滨州检测)已知圆M:x2+y2-12x-14y+60=0,圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,则圆N的标准方程为.14.(2021·山东烟台二模)已知两条直线l1:y=2x+m,l2:y=2x+n与圆C:(x-1)2+(y-1)2=4交于A,B,C,D四点,且构成正方形ABCD,则|m-n|的值为.15.(2021·河北沧州模拟)已知圆C:x2+y2-4x+2my+1=0(m>0),直线l:y=kx+m与直线x+√3y+1=0垂直,则k=,直线l与圆C的位置关系为.答案及解析1.A 解析 由题意,双曲线的一条渐近线方程为y=34x ,即3x-4y=0,点(3,0)到该渐近线的距离为√32+(−4)2=95.故选A . 2.C 解析 直线y=-2x 和y=-2x+5截圆所得弦长相等,且两直线平行,则圆心到两条直线的距离相等且为两条平行直线间距离的一半,故圆心到直线y=-2x 的距离d=12×√4+1=√52,2√r2-d 2=2√r 2-54=2,解得r=32.3.B 解析 设点P (x ,y ),则(x-3)2+(y-4)2≤1,圆心(3,4)到3x+4y+5=0的距离为d=√32+42=6,则点P 到直线3x+4y+5=0的距离的最小值为6-1=5. 4.C 解析 依题意,圆C 1:(x-1)2+(y-2)2=9,圆心C 1(1,2),半径r 1=3.圆C 2:(x-2)2+(y-8)2=64,圆心C 2(2,8),半径r 2=8, 故|MN|max =|C 1C 2|+r 1+r 2=√37+11.5.B 解析 直线过定点(-√3,1),该点在圆上.圆半径为r=2,且|AB|=2,所以△OAB 是等边三角形,圆心O 到直线AB 的距离为√3,所以√3m-1|√1+m 2=√3,m=-√33,直线斜率为k=-m=√33,倾斜角为θ=π6, 所以|CD|=|AB|cosθ=2cosπ6=4√33. 6.A 解析 将圆C 的方程整理为(x-2)2+(y-1)2=4,则圆心C (2,1),半径r=2.将直线l 的方程整理为y=k (x-1)+2,则直线l 恒过定点(1,2),且(1,2)在圆C 内. 最长弦MN 为过(1,2)的圆的直径,则|MN|=4,最短弦PQ 为过(1,2),且与最长弦MN 垂直的弦,∵k MN =2−11−2=-1,∴k PQ =1.直线PQ 方程为y-2=x-1,即x-y+1=0. 圆心C 到直线PQ 的距离为d=√2=√2,|PQ|=2√r 2-d 2=2√4−2=2√2.四边形PMQN 的面积S=12|MN|·|PQ|=12×4×2√2=4√2.7.C 解析 直线x+y+4=0分别与x 轴、y 轴交于A ,B 两点,A (-4,0),B (0,-4),故|AB|=4√2.设圆心(4,0)到直线x+y+4=0的距离为d ,则d=√1+1=4√2.设点P 到直线x+y+4=0的距离为h ,故h max =d+r=4√2+√2=5√2,h min =d-r=4√2−√2=3√2,故h 的取值范围为[3√2,5√2],即△ABP 的高的取值范围是[3√2,5√2],又△ABP 的面积为12·|AB|·h ,所以△ABP 面积的取值范围为[12,20].8.C 解析 对于A,曲线C :x 2+y 2+4x+2my+5=0整理为(x+2)2+(y+m )2=m 2-1,曲线C 要表示圆,则m 2-1>0,解得m<-1或m>1,所以“m>1”是曲线C 表示圆的充分不必要条件,故A 错误;对于B,m=3√3时,直线l :x+√3y+1=0,曲线C :(x+2)2+(y+3√3)2=26, 圆心到直线l 的距离d=√3×(−3√3)+1|√1+3=5,所以弦长=2√r 2-d 2=2√26−25=2,故B错误;对于C,若直线l 与圆相切,圆心到直线l 的距离d=2√9+m 2=√m 2-1,解得m=±3,所以“m=-3”是直线l 与曲线C 表示的圆相切的充分不必要条件,C 正确;对于D,当m=-2时,曲线C :(x+2)2+(y-2)2=3,其圆心坐标为(-2,2),r=√3,曲线C 与圆x 2+y 2=1两圆圆心距离为√(-2-0)2+(2−0)2=2√2>√3+1,故两圆相离,不会有两个公共点,D 错误.9.D 解析 由题意,圆M :(x-2)2+(y-1)2=1的圆心坐标为M (2,1),半径为r 1=1,圆N :(x+2)2+(y+1)2=1的圆心坐标为N (-2,-1),半径为r 2=1.如图所示,两圆相离,有四条公切线.两圆心坐标关于原点O 对称,则有两条切线过原点O , 设切线l :y=kx ,则圆心M 到直线l 的距离为√1+k 2=1,解得k=0或k=43.故此时切线方程为y=0或4x-3y=0.另两条切线与直线MN 平行且相距为1,又由l MN :y=12x , 设切线l':y=12x+b ,则√1+14=1,解得b=±√52, 此时切线方程为x-2y+√5=0或x-2y-√5=0. 结合选项,可得D 不正确.10.CD 解析 圆C 方程可化为(x-a )2+y 2=1,则圆心C (a ,0),半径r 1=1;由圆D 方程知圆心D (0,0),半径r 2=2.因为圆C 与圆D 有且仅有两条公切线,所以两圆相交.又两圆圆心距d=|a|,有2-1<|a|<2+1,即1<|a|<3,解得-3<a<-1或1<a<3.观察4个选项,可知C,D两项中的a的取值满足题意.11.ABD解析对于A,因为两个圆相交,所以有两条公切线,故A正确;对于B,将两圆方程作差可得-2x+2y-2=0,即得公共弦AB的方程为x-y+1=0,故B正确;对于C,直线AB经过圆O2的圆心(0,1),所以线段AB是圆O2的直径,故圆O2中不存在比AB长的弦,故C错误;对于D,圆O1的圆心坐标为(1,0),半径为2,圆心到直线AB:x-y+1=0的距离为√2=√2,所以圆O1上的点到直线AB的最大距离为2+√2,D正确.12.√5解析因为直线l1:y=kx+4恒过定点P(0,4),所以P(0,4)关于点M(1,2)对称,所以P(0,4)关于点M(1,2)的对称点为(2,0),此时(2,0)和N(0,-1)都在直线l2上,可得直线l2的方程y-0-1-0=x-20−2,即x-2y-2=0,所以点M到直线l2的距离为d=√1+4=√5.13.(x-6)2+(y-1)2=1解析圆的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.14.2√10解析由题设知:l1∥l2,要使A,B,C,D四点构成正方形ABCD,正方形的边长等于.直线l1,l2之间的距离d,则d=√5若圆的半径为r,由正方形的性质知d=√2r=2√2,故=2√2,即有|m-n|=2√10.√515.√3相离解析x2+y2-4x+2my+1=0,即(x-2)2+(y+m)2=m2+3,圆心C(2,-m),半径r=√m2+3,)=-1,解得k=√3.因为直线l:y=kx+m与直线x+√3y+1=0垂直,所以k·√3=√3+m.直线l:y=√3x+m.因为m>0,所以圆心到直线l的距离d=√3+m+m|√3+1因为d2=m2+2√3m+3>m2+3=r2,所以d>r.所以直线l与圆C的位置关系是相离.。
全国高考数学试题汇编——直线与圆的方程一、选择题:1.(全国Ⅱ卷文科3)原点到直线052=-+y x 的距离为( D )A .1B .3C .2D .52.(福建文科2)“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的( C )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.(四川理科4文科6)将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所得到的直线为( A )A .1133y x =-+B .113y x =-+C .33y x =-D .113y x =+解析:本题有新意,审题是关键.旋转90︒则与原直线垂直,故旋转后斜率为13-.再右移1得1(1)3y x =--. 选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换.4.(全国I 卷理科10)若直线1x ya b+=通过点(cos sin )M αα,,则 ( B )A .221a b +≤B .221a b +≥C .22111a b+≤D .22111a b +≥ 5.(重庆理科7)若过两点P 2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12PP 所成的 比λ的值为( A )A .-13B .-15C .15D .13(重庆文科4)若点P 分有向线段AB 所成的比为-13,则点B 分有向线段PA 所成的比是( A )A .-32B .-12C .12D .36.(安徽理科8文科10)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( C )A .[B .(C .[D .( 7.(辽宁文、理科3)圆221x y +=与直线2y kx =+没有..公共点的充要条件是 ( C )A .(k ∈B .(,)k ∈-∞⋃+∞C .(k ∈D .(,)k ∈-∞⋃+∞8.(陕西文、理科5)0y m -+=与圆22220x y x +--=相切,则实数m 等于( C )A B . C .- D .-9.(安徽文科11)若A为不等式组0,0,2xyy x⎧⎪⎨⎪-⎩≤≥≤表示的平面区域,则当a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为( C )A.34B.1C.74D.210.(湖北文科5)在平面直角坐标系xOy中,满足不等式组,1x yx⎧⎪⎨<⎪⎩≤的点(,)x y的集合用阴影表示为下列图中的( C )11.(辽宁文科9)已知变量x、y满足约束条件10,310,10,y xy xy x+-⎧⎪--⎨⎪-+⎩≤≤≥则z=2x+y的最大值为( B ) A.4 B.2 C.1 D.-412.(北京理科5)若实数x,y满足10x yx yx-+⎧⎪+⎨⎪⎩≥≥≤,则z=3x+y的最小值是( B )A.0 B.1 C.3D.9(北京文科6)若实数x,y满足10x yx yx-+⎧⎪+⎨⎪⎩≥≥≤,则z=x+2y的最小值是( A )A.0 B.21C.1 D.213.(福建理科8)若实数x、y满足错误!,则错误!的取值范围是( C )A.(0,1) B.(0,1]C.(1,+∞) D.[1,+∞)(福建文科10)若实数x、y满足20,0,2,x yxx-+⎧⎪>⎨⎪⎩≤≤则yx的取值范围是( D )A.(0,2)B.(0,2)C.(2,+∞) D.[2,+∞)14.(天津理科2文科3)设变量y x ,满足约束条件0121x y x y x y -⎧⎪+⎨⎪+⎩≥≤≥,则目标函数y x z +=5的最大值为A .2B .3C .4D .5 ( D )15.(广东理科4)若变量x 、y 满足24025000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,则32z x y =+的最大值是( C )A .90B .80C .70D .4016.(湖南理科3)已知变量x 、y 满足条件1,0,290,x x y x y ⎧⎪-⎨⎪+-⎩≥≤≤则x+y 的最大值是( C )A .2B .5C .6D .8(湖南文科3)已知变量x 、y 满足条件120x y x y ⎧⎪⎨⎪-⎩≥≤≤,,,则x +y 是最小值是( C )A .4B .3C .2D .117.(全国Ⅱ卷理科5文科6)设变量x ,y 满足约束条件:,22,2y x x y x ⎧⎪+⎨⎪-⎩≥≤≥则y x z 3-=的最小值为( D )A .-2B 。
高中直线与圆练习题一、选择题1. 在平面直角坐标系中,直线l的方程为y = 2x + 1,圆C的方程为(x 1)² + (y + 2)² = 16,则直线l与圆C的位置关系是:A. 相离B. 相切C. 相交D. 无法确定2. 已知直线y = kx + b与圆(x 2)² + (y + 3)² = 1相交于A、B两点,若|AB| = 2,则k的值为:A. 0B. 1C. 2D. 33. 直线y = 3x 2与圆x² + y² = 9的位置关系是:A. 相离B. 相切C. 相交D. 无法确定二、填空题1. 已知直线l:2x 3y + 6 = 0,圆C:(x 1)² + (y + 2)² = 25,则直线l与圆C的交点坐标为______。
2. 圆(x 3)² + (y + 4)² = 16的圆心坐标为______,半径为______。
3. 若直线y = kx + 1与圆x² + y² = 4相交,则k的取值范围是______。
三、解答题1. 已知直线l:x + 2y 5 = 0,圆C:(x 2)² + (y + 3)² = 16,求直线l与圆C的交点坐标。
2. 设直线l的方程为y = kx + b,圆C的方程为(x 1)² + (y +2)² = 9,若直线l与圆C相切,求k和b的值。
3. 已知直线l:y = 2x + 3,圆C:(x 2)² + (y + 1)² = 25,求直线l与圆C的公共弦长。
4. 在平面直角坐标系中,直线l的方程为y = kx + 1,圆C的方程为(x 3)² + (y + 4)² = 16,若直线l与圆C相交,求k的取值范围。
5. 已知直线l:2x y + 3 = 0,圆C:(x 2)² + (y + 1)² = 9,求直线l与圆C的交点坐标及弦心距。
高三数学训练题(七) 直线和圆(时间:100分钟 满分100分)一、选择题:本大题共12小题,每小题4分,共48分.在每个小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案填入下面的表格内.(1)下列命题不正确的是A 、若直线l 1∥l 2,则k 1 = k 2B 、若直线l 1⊥l 2,则k 1·k 2 =-1C 、若k 1 = k 2,则l 1∥l 2D 、若k 1·k 2 =-1,则l 1⊥l 2(2)直线l 1:2x + (m + 1)y + 4 = 0与直线l 2:mx + 3y -2 = 0平行,则m 的值为 A 、2 B 、-3 C 、2或-3 D 、-2或-3 (3)已知直线3ax -y = 1与直线1)32(-=+-y x a 垂直,则a 的值为 A 、-1或31 B 、1或31 C 、-31或-1 D 、-31或1 (4)以A(1,-1),B(-2,0)为端点的线段的垂直平分线的方程是A 、3x + y -4 = 0B 、3x + y + 4 = 0C 、3x -y + 1 = 0D 、3x -y -1 = 0(5)直线x + y -1 = 0到直线x ·sin )24(01cos παπαα<<=-∙+y 的角是A 、4πα-B 、απ-4C 、43πα-D 、απ-45 (6)已知直线l 1:的值是则的夹角为与m y mx l y x ,303:132π=-+=-A 、3-B 、3或0C 、3或3-D 、3或3-或0 (7)在直线l :3x -4y -27 = 0上到点P(2,1)距离最近的点的坐标是A 、(5,-3)B 、(9,0)C 、D 、(-5,3) (8)m ,n ∈R ,直线0)2()3(=-++-n y n m x n m 过定点 A 、(-1,3) B 、)23,21(-C 、)53,51(-D 、)73,71(- (9已知直线mx + 4y -2 = 0与2x -5y + n = 0垂直,垂足为(1,P),则m -n + p 的值为A 、24B 、20C 、0D 、-4 (10)点(0,2)关于直线x + 2y -1 = 0的对称点是A 、(-2,0)B 、(,0)C 、(0,-1)D 、)52,56(-- (11)若点(4,a)到直线4x -3y = 1的距离不大于3,则a 的取值范围是A 、[0,10]B 、(0,10)C 、]133,131[D 、),10[]0,(+∞-∞ (12)入射光线在直线l 1:2x -y -3 = 0上,经过x 轴反射,反射光线在直线l 2上,再经过y 轴反射到直线l 3上,则直线l3的方程为A 、x -2y + 3 = 0B 、2x -y + 3 = 0C 、2x + y -3 = 0D 、2x -y + 6 = 0二、填空题:本大题共4小题,每小题3分,共12分。
直线与圆的方程训练题一、选择题:1.直线1x =的倾斜角和斜率分别是( )A .B .C . ,不存在D . ,不存在 2.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a3.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 5.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( )A .平行B .垂直C .斜交D .与的值有关 6.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4 BCD7.如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )A .-13B .3-C .13D .38.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23 B .32 C .32- D . 23-9.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( ) A .360x y +-= B .320x y -+= C .320x y +-= D .320x y -+=10.若 为 圆的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB. 032=-+y xC. 01=-+y x D . 052=--y x11.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .221+D .221+ 12.在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( )0135,1-045,10900180,,a b θ(2,1)P -22(1)25x y -+=A .1条B .2条C .3条D .4条 13.圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A .023=-+y xB .043=-+y xC .043=+-y xD .023=+-y x14.直线032=--y x 与圆9)3()2(22=++-y x 交于,E F 两点,则∆EOF (O 是原点)的面积为( ) A.23 B.43C.52 D.55615.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y x B .0422=++x y xC .03222=-++x y xD .0422=-+x y x16.若过定点)0,1(-M 且斜率为k 的直线与圆05422=-++y x x 在第一象限内的部分有交点,则k 的取值范围是( )A. 50<<k B. 05<<-k C. 130<<k D. 50<<k 17.圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是( ) A.30x y ++= B .250x y --= C .390x y --= D .4370x y -+=18.入射光线在直线1:23l x y -=上,经过x 轴反射到直线2l 上,再经过y 轴反射到直线3l 上,若点P是1l 上某一点,则点P 到3l 的距离为( )A .6 B .3 C D 二、填空题:19.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________; 若4l 与1l 关于x y =对称,则4l 的方程为___________;20.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.21.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。
第七章直线与圆基础练习一、选择题1. 直线0=++c by ax 同时要经过第一、第二、第四象限,则c b a 、、应满足( ) A . 0,0<>bc ab B . 0,0ab bc <> C . 0,0>>bc abD . 0,0<<bc ab2. 如果直线02012=-+=++y x y ax 与直线互相垂直,那么a 的值等于( )A . 1B . 31-C . 32-D .2-3. 若直线023022=--=++y x y ax 与直线 平行,那么系数a 等于( )A . 3-B . 6-C . 23-D .32 4. 点P(5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是( )A . 113a <B . 1-13a >C . 11-1313a << D . 113a <或1-13a > 5. 点P 在直线x +y -4=0上,O 为原点,则|OP|的最小值是( )A . 2B . 6C . 22D . 106. 圆x 2+y 2-4x +2y +c =0与y 轴交于A 、B 两点,圆心为P ,若∠APB=900,则c 的值是( )A . -3B . 3C . 22D . 8二、填空题7. 过点(1,3)-且平行于直线032=+-y x 的直线方程为 . 8. 方程x 2+y 2-x +y +k =0表示一个圆,则实数k 的取值范围为 . 9. 直线(2)(21)(34)0m x m y m +----=,不管m 怎样变化恒过点 .10. 已知(1P -是圆{cos sin x r y r θθ==(θ为参数,02)θπ≤<上的点,则圆的普通方程为 .过P 点的圆的切线方程是 . 三、解答题11. 求直线()23--=x y 截圆422=+y x 所得的弦长.12. 求半径为1,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.13. 已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,O 是坐标原点,向量OA →、OB →满足OA OB OA OB +=-,求实数a 的值.14. 圆()2211y x +=-被直线0x y -=分成两段圆弧,求较短弧长与较长弧长之比.15. 平行于直线2x+5y-1=0的直线l与坐标轴围成的三角形面积为5,求直线l的方程.巩固提高题一、选择题1. 点)5,0(到直线x y 2=的距离为()A .25B .5C .23D .25 2. 三直线102,1034,082=-=+=++y x y x y ax 相交于一点,则a 的值是()A .2-B .1-C .0D .13. 直线0943=--y x 与圆422=+y x 的位置关系是() A .相交且过圆心 B .相切C .相离D .相交但不过圆心4. 若过点(4,0)的直线l 与曲线22+y -4+3=0x x 有公共点,则直线l 的斜率的取值范围为( )A. ]3333-[, B .(-∞,33]∪,33[+∞)C .(3333-,) D . -,-33∞⋃∞()()5. 若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0距离等于1,则半径r 取值范围是()A .(4,6)B .[4,6)C .(4,6]D .[4,6] 6. 过点A (1,4),且横纵截距的绝对值相等的直线共有( )A .1条B .2条C .3条D .4条 二、填空题7. 设直线1:60l x my ++=和2:(2)320l m x y m -++=,当m =_______时1l ∥2l ;当m =________时1l ⊥2l ;当m _________时1l 与2l 相交;当m =_________时1l 与2l重合.8. 圆12222=+y x 与直线sin 10(,2x y R πθθθ+-=∈≠k π+,)k z ∈的位置关系为 .9. 若直线30ax by +-=与圆22410x y x ++-=切于点(1,2)P -,则ab 的值____. 10. 点A(4,5)关于直线l 的对称点为B(-2,7),则l 的方程是 . 三、解答题11. 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.12. 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.13. 已知圆C :22(1)5x y +-=,直线l :10mx y m -+-=.①求证:对m R ∈,直线l 与圆C 总有两个不同的交点;②设l 与圆C 交于A 、B 两点,若AB =l 的斜率.14. (1)求经过点A(5,2),B(3,2),圆心在直线2x-y-3=0上圆方程;(2)设圆上的点A(2,3)关于直线x+2y=0的对称点仍在这个圆上,且与直线x-y+1=0相交的弦长为22,求圆方程.15. 在直角坐标系xOy 中,以坐标原点为圆心的圆与直线:4x =相切。
高三数学《直线与圆》专题测试题含答案第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.“C =5”是“点(2,1)到直线3x +4y +C =0的距离为3”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件2.直线l 过点(2,2),且点(5,1)到直线l 的距离为10,则直线l 的方程是( ) A .3x +y +4=0 B .3x -y +4=0 C .3x -y -4=0 D .x -3y -4=03.圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( ) A .-43B .-34C.3D .24.过点P (-2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( )A .3条B .2条C .1条D .0条5.已知圆(x -2)2+(y +1)2=16的一条直径通过直线x -2y +3=0被圆所截弦的中点,则该直径所在的直线方程为( )A .3x +y -5=0B .x -2y =0C .x -2y +4=0D .2x +y -3=0 6.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .x -y +1=0 B .x -y =0C .x +y +1=0 D .x +y =07.已知三点A (1,0),B (0,3),C (2,3),则△ABC 外接圆的圆心到原点的距离为( ) A.53B.213 C.253 D.438.圆心在曲线y =2x (x >0)上,与直线2x +y +1=0相切,且面积最小的圆的方程为( )A .(x -2)2+(y -1)2=25B .(x -2)2+(y -1)2=5C .(x -1)2+(y -2)2=25D .(x -1)2+(y -2)2=59.已知圆O :x 2+y 2=4上到直线l :x +y =a 的距离等于1的点至少有2个,则a 的取值范围为( )A .(-32,32)B .(-∞,-32)∪(32,+∞)C .(-22,22)D .[-32,3 2 ]10.已知点P 的坐标(x ,y )满足⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,过点P 的直线l 与圆C :x 2+y 2=14相交于A ,B 两点,则|AB |的最小值是( )A .26B .4 C.6D .211.已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离12.已知两圆x 2+y 2+2ax +a 2-4=0和x 2+y 2-4by -1+4b 2=0恰有三条公切线,若a ∈R ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为( )A .1B .3 C.19D.49第Ⅱ卷(非选择题 共90分)二、填空题:本大题共四小题,每小题5分。
2012高考试题分类汇编:7:直线与圆一、选择题1.【2012高考山东文9】圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为 (A)内切 (B)相交 (C)外切 (D)相离 【答案】B【解析】两圆的圆心分别为)0,2(-,)1,2(,半径分别为2=r ,3=R 两圆的圆心距离为17)10()22(22=-+--,则r R r R +<<-17,所以两圆相交,选B.2.【2012高考安徽文9】若直线01-+-y x 与圆2)(22=+-y a x 有公共点,则实数a 取值范围是(A ) [-3,-1] (B )[-1,3] (C ) [ -3,1] (D )(-∞,-3]U[1,+∞) 【答案】C【解析】圆22()2x a y -+=的圆心(,0)C a 到直线10x y -+=的距离为d ,则 1231d r a a ≤=⇔≤⇔+≤⇔-≤≤。
3.【2012高考重庆文3】设A ,B 为直线y x =与圆221x y += 的两个交点,则||AB =(A )1 (B (C (D )2 【答案】D【解析】直线y x =过圆221x y +=的圆心(0,0)C ,则AB 为圆的直径,所以||AB =2,选D.4.【2012高考浙江文4】设a ∈R ,则“a =1”是“直线l 1:ax+2y=0与直线l 2 :x+(a+1)y+4=0平行的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件 【答案】A【解析】当121a a =+,解得1a =或2a =-.所以,当a =1是,两直线平行成立,因此是充分条件;当两直线平行时,1a =或2a =-,不是必要条件,故选A.5.【2012高考陕西文6】已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则( ) A.l 与C 相交 B. l 与C 相切 C.l 与C 相离 D. 以上三个选项均有可能 6.【答案】A.【解析】圆的方程可化为4)2(22=+-y x ,易知圆心为)0,2(半径为2,圆心到点P 的距离为1,所以点P 在圆内.所以直线与圆相交.故选A.6.【2012高考辽宁文7】将圆x 2+y 2-2x-4y+1=0平分的直线是 (A )x+y-1=0 (B ) x+y+3=0 (C )x-y+1=0 (D )x-y+3=0 【答案】C【解析】圆心坐标为(1,2),将圆平分的直线必经过圆心,故选C 【点评】本题主要考查直线和圆的方程,难度适中。
直线与圆的位置关系一.选择题(共16小题)1.(2015•重庆)已知直线10x ay +-=是圆22:4210C x y x y +--+=的对称轴,过点(4,)A a -作圆C 的一条切线,切点为B ,则||(AB = )A .2B .6C .D .2.(2014•全国)若直线21y x =+与圆222(3)(2)x y r -+-=相切,则2(r = )A .8B .5C .D3.(2014•福建)已知直线l 过圆22(3)4x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是( ) A .20x y +-=B .20x y -+=C .30x y +-=D .30x y -+=4.(2014•北京)已知圆22:(3)(4)1C x y -+-=和两点(,0)A m -,(B m ,0)(0)m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( )A .7B .6C .5D .45.(2014•安徽)过点(P 1)-的直线l 与圆221x y +=有公共点,则直线l 的倾斜角的取值范围是( ) A .(0,]6πB .(0,]3πC .[0,]6πD .[0,]3π6.(2014•浙江)已知圆22220x y x y a ++-+=截直线20x y ++=所得弦的长度为4,则实数a 的值是( ) A .2-B .4-C .6-D .8-7.(2014•江西)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( )A .45πB .34πC .(6π-D .54π8.(2013•重庆)设P 是圆22(3)(1)4x y -++=上的动点,Q 是直线3x =-上的动点,则||PQ 的最小值为( ) A .6B .4C .3D .29.(2013•陕西)已知点(,)M a b 在圆22:1O x y +=外,则直线1ax by +=与圆O 的位置关系是( ) A .相切B .相交C .相离D .不确定10.(2013•江西)过点引直线l 与曲线y =A ,B 两点,O 为坐标原点,当ABO ∆的面积取得最大值时,直线l 的斜率等于( )A B .C . D . 11.(2013•天津)已知过点(2,2)P 的直线与圆22(1)5x y -+=相切,且与直线10ax y -+=垂直,则(a = ) A .12-B .1C .2D .1212.(2013•安徽)直线250x y +-=被圆22240x y x y +--=截得的弦长为( )A .1B .2C .4 D.13.(2012•天津)设m ,n R ∈,若直线(1)(1)20m x n y +++-=与圆22(1)(1)1x y -+-=相切,则m n +的取值范围是( )A.[11+ B .(-∞,1[13+,)+∞C.[2-2+D .(-∞,2[222-+,)+∞14.(2012•重庆)对任意的实数k ,直线1y kx =+与圆222x y +=的位置关系一定是( ) A .相离B .相切C .相交但直线不过圆心D .相交且直线过圆心15.(2012•陕西)已知圆22:40C x y x +-=,l 为过点(3,0)P 的直线,则( ) A .l 与C 相交 B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能16.(2012•安徽)若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是( ) A .[3-,1]-B .[1-,3]C .[3-,1]D .(-∞,3][1-,)+∞二.填空题(共10小题)17.(2018•天津)已知圆2220x y x +-=的圆心为C,直线13x y ⎧=-⎪⎪⎨⎪=-⎪⎩,(t 为参数)与该圆相交于A ,B 两点,则ABC ∆的面积为 .18.(2017•全国)直线20x -=被圆2220x y x +-=截得的线段长为 .19.(2017•上海)若P 、Q 是圆222440x y x y +-++=上的动点,则||PQ 的最大值为 .20.(2016•上海)在平面直角坐标系xOy 中,点A ,B 是圆22650x y x +-+=上的两个动点,且满足||AB =则||OA OB +的最小值为 .21.(2014•湖北)直线1:l y x a =+和2:l y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b += . 22.(2014•上海)已知曲线:C x =,直线:6l x =,若对于点(,0)A m ,存在C 上的点P 和l 上的Q 使得0AP AQ +=,则m 的取值范围为 .23.(2014•江苏)在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为 . 24.(2013•湖北)已知圆22:5O x y +=,直线:cos sin 1(0)2l x y πθθθ+=<<.设圆O 上到直线l 的距离等于1的点的个数为k ,则k = .25.(2013•浙江)直线23y x =+被圆22680x y x y +--=所截得的弦长等于 . 26.(2013•山东)过点(3,1)作圆22(2)(2)4x y -+-=的弦,其中最短的弦长为 . 三.解答题(共4小题)27.(2017•上海)某景区欲建造两条圆形观景步道1M 、2M (宽度忽略不计),如图所示,已知AB AC ⊥,60AB AC AD ===(单位:米),要求圆1M 与AB 、AD 分别相切于点B 、D ,圆2M 与AC 、AD 分别相切于点C 、D ;(1)若60BAD ∠=︒,求圆1M 、2M 的半径(结果精确到0.1米)(2)若观景步道1M 与2M 的造价分别为每米0.8千元与每米0.9千元,如何设计圆1M 、2M 的大小,使总造价最低?最低总造价是多少?(结果精确到0.1千元)28.(2015•陕西)如图,AB 切O 于点B ,直线AO 交O 于D ,E 两点,BC DE ⊥,垂足为C . (Ⅰ)证明:CBD DBA ∠=∠;(Ⅱ)若3AD DC =,BC =,求O 的直径.29.(2013•江苏)在平面直角坐标系xOy 中,点(0,3)A ,直线:24l y x =-,设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线3y x =-上,过点A 作圆C 的切线,求切线方程; (2)若圆C 上存在点M ,使||2||MA MO =,求圆心C 的横坐标的取值范围.30.(2013•四川)已知圆C 的方程为22(4)4x y +-=,点O 是坐标原点.直线:l y kx =与圆C 交于M ,N 两点. (Ⅰ)求k 的取值范围;(Ⅱ)设(,)Q m n 是线段MN 上的点,且222211||||||OQ OM ON =+.请将n 表示为m 的函数.直线与圆的位置关系参考答案与试题解析一.选择题(共16小题)1.(2015•重庆)已知直线10x ay +-=是圆22:4210C x y x y +--+=的对称轴,过点(4,)A a -作圆C 的一条切线,切点为B ,则||(AB = )A .2B .6C .D .【解答】解:圆22:4210C x y x y +--+=,即22(2)(1)4x y -+-=, 表示以(2,1)C 为圆心、半径等于2的圆.由题意可得,直线:10l x ay +-=经过圆C 的圆心(2,1), 故有210a +-=,1a ∴=-,点(4,1)A --.(AC ==2CB R ==,∴切线的长||6AB ===.故选:B .2.(2014•全国)若直线21y x =+与圆222(3)(2)x y r -+-=相切,则2(r = )A .8B .5C .D【解答】解:直线21y x =+与圆222(3)(2)x y r -+-=相切,∴圆心(3,2)C 到直线的距离d r ===,25r ∴=.故选:B .3.(2014•福建)已知直线l 过圆22(3)4x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是( ) A .20x y +-=B .20x y -+=C .30x y +-=D .30x y -+=【解答】解:由题意可得所求直线l 经过点(0,3),斜率为1, 故l 的方程是30y x -=-,即30x y -+=, 故选:D .4.(2014•北京)已知圆22:(3)(4)1C x y -+-=和两点(,0)A m -,(B m ,0)(0)m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( )A .7B .6C .5D .4【解答】解:圆22:(3)(4)1C x y -+-=的圆心(3,4)C ,半径为1, 圆心C 到(0,0)O 的距离为5,∴圆C 上的点到点O 的距离的最大值为6.再由90APB ∠=︒可得,以AB 为直径的圆和圆C 有交点,可得12PO AB m ==,故有6m , 故选:B .5.(2014•安徽)过点(P 1)-的直线l 与圆221x y +=有公共点,则直线l 的倾斜角的取值范围是( )A .(0,]6πB .(0,]3πC .[0,]6πD .[0,]3π【解答】解:由题意可得点(P 1)-在圆221x y +=的外部,故要求的直线的斜率一定存在,设为k ,则直线方程为1(y k x +=,即10kx y -+-=.1,即22311k k -++,解得03k ,故直线l 的倾斜角的取值范围是[0,]3π,故选:D .6.(2014•浙江)已知圆22220x y x y a ++-+=截直线20x y ++=所得弦的长度为4,则实数a 的值是( ) A .2-B .4-C .6-D .8-【解答】解:圆22220x y x y a ++-+= 即22(1)(1)2x y a ++-=-,故弦心距d =再由弦长公式可得224a -=+,4a ∴=-, 故选:B .7.(2014•江西)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( )A .45πB .34πC .(6π-D .54π【解答】解:如图,设AB 的中点为C ,坐标原点为O ,圆半径为r ,由已知得||||OC CE r ==,过点O 作直线240x y +-=的垂直线段OF , 交AB 于D ,交直线240x y +-=于F ,则当D 恰为OF 中点时,圆C 的半径最小,即面积最小 此时圆的直径为(0,0)O 到直线240x y +-=的距离为:d ==此时12r d ==∴圆C 的面积的最小值为:245min S ππ=⨯=. 故选:A .8.(2013•重庆)设P 是圆22(3)(1)4x y -++=上的动点,Q 是直线3x =-上的动点,则||PQ 的最小值为( ) A .6B .4C .3D .2【解答】解:过圆心A 作AQ ⊥直线3x =-, 与圆交于点P ,此时||PQ 最小, 由圆的方程得到(3,1)A -,半径2r =, 则||||624PQ AQ r =-=-=. 故选:B .9.(2013•陕西)已知点(,)M a b 在圆22:1O x y +=外,则直线1ax by +=与圆O 的位置关系是( ) A .相切B .相交C .相离D .不确定【解答】解:(,)M a b 在圆221x y +=外, 221a b ∴+>,∴圆(0,0)O 到直线1ax by +=的距离1d r <=,则直线与圆的位置关系是相交. 故选:B .10.(2013•江西)过点引直线l 与曲线y =A ,B 两点,O 为坐标原点,当ABO ∆的面积取得最大值时,直线l 的斜率等于( )A B .C . D .【解答】解:由y =221(0)x y y +=.所以曲线y =x 轴上方的部分(含与x 轴的交点), 设直线l 的斜率为k ,要保证直线l 与曲线有两个交点,且直线不与x 轴重合,则10k -<<,直线l 的方程为0(y k x -=-,即0kx y -=.则原点O 到l 的距离d =,l则2211ABO k S k ∆-==+==令211t k =+,则ABO S ∆=34t =,即21314k =+时,ABOS ∆有最大值为12.此时由21314k =+,解得k = 故选:D .11.(2013•天津)已知过点(2,2)P 的直线与圆22(1)5x y -+=相切,且与直线10ax y -+=垂直,则(a = ) A .12-B .1C .2D .12【解答】解:因为点(2,2)P 满足圆22(1)5x y -+=的方程,所以P 在圆上, 又过点(2,2)P 的直线与圆22(1)5x y -+=相切,且与直线10ax y -+=垂直, 所以切点与圆心连线与直线10ax y -+=平行, 所以直线10ax y -+=的斜率为:20221a -==-. 故选:C .12.(2013•安徽)直线250x y +-=被圆22240x y x y +--=截得的弦长为( )A .1B .2C .4D .【解答】解:由22240x y x y +--=,得22(1)(2)5x y -+-=,所以圆的圆心坐标是(1,2)C ,半径r =圆心C 到直线250x y +-+=的距离为1d ===.所以直线直线250x y +-=被圆22240x y x y +--=截得的弦长为4. 故选:C .13.(2012•天津)设m ,n R ∈,若直线(1)(1)20m x n y +++-=与圆22(1)(1)1x y -+-=相切,则m n +的取值范围是( )A .[11+B .(-∞,1[13+,)+∞C .[2-2+D .(-∞,2[222-+,)+∞【解答】解:由圆的方程22(1)(1)1x y -+-=,得到圆心坐标为(1,1),半径1r =, 直线(1)(1)20m x n y +++-=与圆相切,∴圆心到直线的距离1d ==,整理得:21()2m n m n mn +++=, 设m n x +=,则有214x x +,即2440x x --,2440x x --=的解为:12x =+22x =-∴不等式变形得:(220x x ---+,解得:222x +或222x -,则m n +的取值范围为(-∞,2[222-+,)+∞. 故选:D .14.(2012•重庆)对任意的实数k ,直线1y kx =+与圆222x y +=的位置关系一定是( ) A .相离B .相切C .相交但直线不过圆心D .相交且直线过圆心【解答】解:对任意的实数k ,直线1y kx =+恒过点(0,1),且斜率存在 (0,1)在圆222x y +=内∴对任意的实数k ,直线1y kx =+与圆222x y +=的位置关系一定是相交但直线不过圆心故选:C .15.(2012•陕西)已知圆22:40C x y x +-=,l 为过点(3,0)P 的直线,则( ) A .l 与C 相交 B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能【解答】解:将圆的方程化为标准方程得:22(2)4x y -+=,∴圆心(2,0)C ,半径2r =,又(3,0)P与圆心的距离12d r ==<=,∴点P 在圆C 内,又直线l 过P 点,则直线l 与圆C 相交. 故选:A .16.(2012•安徽)若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是( ) A .[3-,1]-B .[1-,3]C .[3-,1]D .(-∞,3][1-,)+∞【解答】解:直线10x y -+=与圆22()2x a y -+=有公共点∴圆心到直线10x y -+=2|1|2a ∴+31a ∴-故选:C .二.填空题(共10小题)17.(2018•天津)已知圆2220x y x +-=的圆心为C,直线13x y ⎧=-⎪⎪⎨⎪=-⎪⎩,(t 为参数)与该圆相交于A ,B 两点,则ABC ∆的面积为12. 【解答】解:圆2220x y x +-=化为标准方程是22(1)1x y -+=,圆心为(1,0)C ,半径1r =;直线13x y ⎧=-⎪⎪⎨⎪=-⎪⎩化为普通方程是20x y +-=,则圆心C到该直线的距离为d ==弦长||22AB =⨯=, ABC ∴∆的面积为111||2222S AB d ==⨯=. 故答案为:12. 18.(2017•全国)直线20x -=被圆2220x y x +-=【解答】解:圆2220x y x +-=化为22(1)1x y -+=,设直线20x --=与圆22(1)1x y -+=的交点为A 、B ,圆心为(1,0)O , 线段AB 的中点为D ,半径为1r =则由圆的几何性质可知,OD AB ⊥,且1||2OD ==,||1OA r ==,||2||AB AD ∴===19.(2017•上海)若P 、Q 是圆222440x y x y +-++=上的动点,则||PQ 的最大值为 2 . 【解答】解:圆222440x y x y +-++=,可化为22(1)(2)1x y -++=,P 、Q 是圆222440x y x y +-++=上的动点,||PQ ∴的最大值为2,故答案为2.20.(2016•上海)在平面直角坐标系xOy 中,点A ,B 是圆22650x y x +-+=上的两个动点,且满足||AB =则||OA OB +的最小值为 4 .【解答】解:设1(A x ,1)y ,2(B x ,2)y ,AB 中点(,)M x y ''. 122x x x +'=,122y y y +'=, ∴12(OA OB x x +=+,12)2y y OM +=,圆22:650C x y x +-+=,22(3)4x y ∴-+=,圆心(3,0)C ,半径2CA =.点A ,B 在圆C 上,AB = 2221()2CA CM AB ∴-=,即1CM =.点M 在以C 为圆心,半径1r =的圆上.312OM OC r ∴-=-=.||2OM ∴,∴||4OA OB +,∴||OA OB +的最小值为4.故答案为:4.21.(2014•湖北)直线1:l y x a =+和2:l y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b += 2 . 【解答】解:由题意可得,圆心(0,0)到两条直线的距离相等,且每段弧长都是圆周的14,∴cos 452==︒=,222a b ∴+=, 故答案为:2.22.(2014•上海)已知曲线:C x =,直线:6l x =,若对于点(,0)A m ,存在C 上的点P 和l 上的Q 使得0AP AQ +=,则m 的取值范围为 [2,3] .【解答】解:曲线:C x =,是以原点为圆心,2 为半径的圆,并且[2P x ∈-,0], 对于点(,0)A m ,存在C 上的点P 和l 上的Q 使得0AP AQ +=, 说明A 是PQ 的中点,Q 的横坐标6x =, 6[22Px m +∴=∈,3]. 故答案为:[2,3].23.(2014•江苏)在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为 . 【解答】解:圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径2r =, 点C 到直线直线230x y +-=的距离d ,∴根据垂径定理,得直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为==. 24.(2013•湖北)已知圆22:5O x y +=,直线:cos sin 1(0)2l x y πθθθ+=<<.设圆O 上到直线l 的距离等于1的点的个数为k ,则k = 4 .【解答】解:由圆的方程得到圆心(0,0)O ,半径r =圆心O 到直线l 的距离1d ==,且11r d d -=->=,∴圆O 上到直线l 的距离等于1的点的个数为4,即4k =.故答案为:425.(2013•浙江)直线23y x =+被圆22680x y x y +--=所截得的弦长等于 【解答】解:圆22680x y x y +--=的圆心坐标(3,4),半径为5,=因为圆心距,半径,半弦长满足勾股定理,所以直线23y x =+被圆22680x y x y +--=所截得的弦长为:2=故答案为:26.(2013•山东)过点(3,1)作圆22(2)(2)4x y -+-=的弦,其中最短的弦长为 【解答】解:根据题意得:圆心(2,2),半径2r =,2,(3,1)∴在圆内,圆心到此点的距离d ,2r =,∴最短的弦长为=故答案为:三.解答题(共4小题)27.(2017•上海)某景区欲建造两条圆形观景步道1M 、2M (宽度忽略不计),如图所示,已知AB AC ⊥,60AB AC AD ===(单位:米),要求圆1M 与AB 、AD 分别相切于点B 、D ,圆2M 与AC 、AD 分别相切于点C 、D ;(1)若60BAD ∠=︒,求圆1M 、2M 的半径(结果精确到0.1米)(2)若观景步道1M 与2M 的造价分别为每米0.8千元与每米0.9千元,如何设计圆1M 、2M 的大小,使总造价最低?最低总造价是多少?(结果精确到0.1千元)【解答】解:(1)1M 半径60tan3034.6=︒≈,2M 半径60tan1516.1=︒≈; (2)设2BAD α∠=,则总造价0.8260tan 0.9260tan(45)y παπα=+︒-, 设1tan x α+=,则1812(817)84y x x ππ=+-,当且仅当32x =,1tan 2α=时,取等号,1M ∴半径30,2M 半径20,造价263.8千元.28.(2015•陕西)如图,AB 切O 于点B ,直线AO 交O 于D ,E 两点,BC DE ⊥,垂足为C . (Ⅰ)证明:CBD DBA ∠=∠;(Ⅱ)若3AD DC =,BC =,求O 的直径.【解答】证明:(Ⅰ)DE 是O 的直径, 则90BED EDB ∠+∠=︒, BC DE ⊥,90CBD EDB ∴∠+∠=︒,即CBD BED ∠=∠,AB 切O 于点B ,DBA BED ∴∠=∠,即CBD DBA ∠=∠;(Ⅱ)由(Ⅰ)知BD 平分CBA ∠, 则3BA ADBC CD ==, 2BC =AB ∴=4AC =,则3AD =,由切割线定理得2AB AD AE =,即26AB AE AD==,故3DE AE AD =-=, 即可O 的直径为3.29.(2013•江苏)在平面直角坐标系xOy 中,点(0,3)A ,直线:24l y x =-,设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线3y x =-上,过点A 作圆C 的切线,求切线方程; (2)若圆C 上存在点M ,使||2||MA MO =,求圆心C 的横坐标的取值范围.【解答】解:(1)由题设,圆心C 在3y x =-上,也在直线24y x =-上,设切点的横坐标为a , 243a a -=-,1a ∴=,(1,2)C ∴-.22:(1)(2)1C x y ∴-++=,由题,当斜率存在时,过A 点切线方程可设为3y kx =+,即30kx y -+=1=,解得:125k =-,⋯(4分)又当斜率不存在时,也与圆相切,∴所求切线为0x =或1235y x =-+, 即0x =或125150x y +-=;(2)设点(,)M x y ,由||2||MA MO =,化简得:22(1)4x y ++=,∴点M 的轨迹为以(0,1)-为圆心,2为半径的圆,可记为圆D ,又点M 在圆C 上,∴圆C 与圆D 的关系为相交或相切,1||3CD ∴,其中||CD221(23)3a a ∴+-,解得:1205a. 30.(2013•四川)已知圆C 的方程为22(4)4x y +-=,点O 是坐标原点.直线:l y kx =与圆C 交于M ,N 两点. (Ⅰ)求k 的取值范围;(Ⅱ)设(,)Q m n 是线段MN 上的点,且222211||||||OQ OM ON =+.请将n 表示为m 的函数. 【解答】解:(Ⅰ)将y kx =代入22(4)4x y +-=中,得:22(1)8120(*)k x kx +-+=,根据题意得:△22(8)4(1)120k k =--+⨯>,即23k >, 则k 的取值范围为(-∞,⋃,)+∞;(Ⅱ)由M 、N 、Q 在直线l 上,可设M 、N 坐标分别为1(x ,1)kx ,2(x ,2)kx ,2221||(1)OM k x ∴=+,2222||(1)ON k x =+,22222||(1)OQ m n k m =+=+,代入222211||||||OQ OM ON =+得:22222212211(1)(1)(1)k m k x k x =++++, 即21212222221212()2211x x x x m x x x x +-=+=, 由(*)得到12281kx x k +=+,122121x x k =+, 代入得:222222824()211144(1)k kk m k -++=+,即223653m k =-, 点Q 在直线y kx =上,n km ∴=,即n k m =,代入223653m k =-,化简得225336n m -=, 由223653m k =-及23k >,得到203m <<,即(m ∈0)(0⋃, 根据题意得点Q 在圆内,即0n >,n ∴=则n 与m的函数关系式为(n m =∈0)(0⋃.。
全国名校高考数学专题训练07直线与圆(选择题)1、(广东省广州执信中学、中山纪念中学、深圳外国语学校三校期末联考)如图,目标函数u=ax -y 的可行域为四边形OACB(含边界).若点24(,)35C 是该目标函数的最优解,则a 的取值范围是 ( )A .]125,310[--B .]103,512[--C .]512,103[D .]103,512[-答案:B2、(广东省广州执信中学、中山纪念中学、深圳外国语学校三校期末联考)若函数1()ax f x e b=-的图象在x =0处的切线l 与圆C:221x y +=相离,则P(a ,b)与圆C 的位置关系是 ( ) A .在圆外 B .在圆内C .在圆上D .不能确定答案:B3、(江苏省启东中学高三综合测试三)实数x 、y 满足不等式组⎪⎩⎪⎨⎧≥-≥≥001y x y x ,则W=x y 1-的取值范围是A .[-1,0]B .(-∞,0]C .[-1,+∞)D .[-1,1)答案:D4、(安徽省皖南八校2008届高三第一次联考)已知x ,y 满足⎪⎩⎪⎨⎧≤++≤+≥041c by ax y x x 且目标函数y x z +=2的最大值为7,最小值为1,则=++acb a ( ) A.-2; B.2; C.1; D.-1; 答案:A5、(四川省巴蜀联盟2008届高三年级第二次联考)已知点A (3,2),B (-2,7),若直线y=ax-3与线段AB 的交点P 分有向线段AB 的比为4:1,则a 的值为A .3B .-3C .9D .-9 答案:D 6、(四川省成都市新都一中高2008级12月月考)设E 为平面上以 (4,1),(1,6),(3,2)A B C ---为顶点的三角形区域(包括边界 ),则Z =4x -3y 的最大值和最小值分别为( )A 、14 , -18B 、-14 , -18C 、18 , 14D 、18 ,-14 本题主要考查简单线性规划解析:画出示意图,易知:当动直线过B 时,Z 取最大值;当动直线过C 时,z 取最小值.答案:A7、(北京市东城区2008年高三综合练习一)实数y x z y x y x y x y x -=⎪⎩⎪⎨⎧≥≥≥+-≤-+则满足条件,0,0,022,04,的最大值为( ) A .—1 B .0C .2D .4答案:D8、(北京市丰台区2008年4月高三统一练习一)由直线1y x =+上的点向圆22(3)(2)1x y -++= 引切线,则切线长的最小值为(A(B) (C(D)答案:A9、(北京市西城区2008年4月高三抽样测试)设不等式组123350x a y x y ≥⎧⎪≥⎨⎪+-≤⎩,,表示的平面区域是W ,若W 中的整点(即横、纵坐标均为整数的点)共有91个,则实数a 的取值范围是( ) A.(21]--, B.[10)-, C. (01], D. [12), 答案:C10、(北京市西城区2008年5月高三抽样测试)圆()2211y x +=-被直线0x y -=分成两段圆弧,则较短弧长与较长弧长之比为 ( )A .1∶2B .1∶3C .1∶4D .1∶5 答案:B 11、(北京市西城区2008年5月高三抽样测试)设定点A (0,1),动点(),P x y 的坐标满足条件0,,x y x ≥⎧⎨≤⎩则PA 的最小值是( ) A .22 B .32C .1D . 2 答案:A12、(四川省成都市2008届高中毕业班摸底测试)直线2)1(0122=+-=++y x y x 与圆的位置关系是( )A .相切B .相交C .相离D .不能确定答案:A13、(四川省成都市2008届高中毕业班摸底测试)设实数y x ,满足线性约束条件⎪⎩⎪⎨⎧≥≥-≤+013y y x y x ,则目标函数y x z +=2的最大值为( )A .-4B .313 C .3 D .6答案:D14、(东北区三省四市2008年第一次联合考试)直线()23--=x y 截圆422=+y x 所得的劣弧所对的圆心角为A .π3B .π6C .2π3D .5π3答案:A15、(东北区三省四市2008年第一次联合考试)已知点()y x P ,在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-0220102y x y x 表示的平面区域内运动,则y x z -=的取值范围是A .[]1,2--B .[]1,2-C .[]2,1-D .[]2,1答案:C 16、(东北师大附中高2008届第四次摸底考试)双曲线x 2-y 2=4的两条渐进线和直线x =2围成一个三角形区域(含边界),则该区域可表示为( )A .⎪⎩⎪⎨⎧≥≤-≥+200x y x y xB .⎪⎩⎪⎨⎧≤≥-≥+200x y x y xC .⎪⎩⎪⎨⎧≤≥-≤+200x y x y xD .⎪⎩⎪⎨⎧≤≤-≤+200x y x y x答案:B17、(福建省南靖一中2008年第四次月考)已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,O 是坐标原点,向量、满足|+|=|-|,则实数a 的值是( )A. 2B. -2C. 6或- 6D. 2或-2 答案:D18、(福建省仙游一中2008届高三第二次高考模拟测试)已知直线02 :=+-m y x l 按向量)3 2(-=,a 平移后得到的直线1l 与圆5)1()2(22=++-y x 相切,那么m 的值为( ) A.9或-1 B.5或-5 C.-7或7 D.3或13 答案:A19、(福建省仙游一中2008届高三第二次高考模拟测试)当x 、y 满足条件1<+y x 时,变量3-=y xu 的取值范围是( )A.)3 3(,-B.)31 31(,- C.]31 31[,- D. )310(0) 31(,, -答案:B20、(福建省漳州一中2008年上期期末考试)已知O 为坐标原点,(, )OP x y = ,(1, 1)OA = ,(2, 1)OB =,若2OA OP ⋅≤ ,且0, 0x y >>,则2PB 的取值范围为A. 2⎣B. 1, 52⎡⎫⎪⎢⎣⎭C. [)1, 2D. [)1, 4答案:B21、(福建省漳州一中2008年上期期末考试)若直线:10 (0,0)l ax by a b ++=>>始终平分圆M :228210x y x y ++++=的周长,则14a b+的最小值为A.8B.12C.16D.20答案:C22、(甘肃省河西五市2008年高三第一次联考)若直线2y x c =+按向量a=(1,-1)平移后与圆225x y +=相切,则c 的值为 ( ) A . 8或-2 B .6或-4 C .4或-6 D .2或-8答案:A23、(甘肃省兰州一中2008届高三上期期末考试)直线经过点A (2,1),B (1,m 2)两点(m ∈R ),那么直线l 的倾斜角取值范围是( ) A .),0[π B .),2(]4,0[πππ⋃C .]4,0[πD .),2()2,4[ππππ⋃ 答案:B24、(广东省2008届六校第二次联考)已知,x y 满足约束条件50,0,3,x y x y x -+≥⎧⎪+≥⎨⎪≤⎩则2z x y =+的最小值为( )A. 3-B. 3C. 5-D. 5答案:A 25、(广东省佛山市2008年高三教学质量检测一)设O 为坐标原点,点M 坐标为)1,2(,若点(,)N x y 满足不等式组:430,2120,1,x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩则使OM ON 取得最大值的点N 的个数是( ) . A .1 B .2 C .3 D .无数个 答案:D26、(广东省揭阳市2008年高中毕业班高考调研测试)若不等式组0024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩表示的平面区域是一个三角形,则s 的取值范围是A.0s <≤2或s ≥4 B.0s <≤2 C.2≤s ≤4 D.s ≥4 答案:如图:易得答案选A.27、(四川省成都市高2008届毕业班摸底测试)设实数y x ,满足线性约束条件⎪⎩⎪⎨⎧≥≥-≤+01y y x y x ,则目标函数y x z +=2的最大值为 ( )A .-4B .313 C .3 D .6答案:D28、(广东省汕头市潮阳一中2008年高三模拟)圆014222=+-++y x y x 关于直线),(022b a by ax ∈=+-对称,则ab 的取值范围是( )A .]41,(-∞B .]41,0(C .)0,41(-D .)41,(-∞答案:A29、(广东省汕头市澄海区2008年第一学期期末考试)直线y x b =+平分圆228280x y x y +-++=的周长,则b =( ) A .3 B .5 C .-3 D .-5答案:D30、(广东省深圳市2008年高三年级第一次调研考试)如图,已知(4,0)A 、(0,4)B ,从点(2,0)P 射出的光线经直线AB 反向后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是 ( )A.B .6C.D.答案:A31、(广东实验中学2008届高三第三次段考)若ax -y 在区域错误!处取得最大值的最优解有无穷多个,则该最大值为( ) A 、-1 B 、1 C 、0 D 、0或±1 答案:C32、(广东省四校联合体第一次联考)已知x 、y 满足约束条件22,022011y x y x y x x +⎪⎩⎪⎨⎧≤+--≥+-≤则的最小值为 ( )A . 5B .255C .1D .52答案:B33、(安徽省合肥市2008年高三年级第一次质检)把直线20x y λ-+=按向量(2,0)a =平移后恰与224220x y y x +-+-=相切,则实数λ的值为A .2B .C .2或2-D .2-答案:C34、(河北省正定中学2008年高三第四次月考)已知直线420mx y +-=与250x y n -+=互相垂直,垂足为()1,p p ,则m n p -+的值是( ) A .24 B .20C . 0D .-4答案:B35、(河北衡水中学2008年第四次调考)已知三角形ABC三个顶点为(1,1),(1(13A B C --,则角A 的内角平分线所在的直线方程为( )A .0x y -=B.1y x =+ C .0x y -=或20x y +-= D .20x y +-=答案:A36、(河北省正定中学2008年高三第四次月考)实数x ,y 满足不等式组x y W y x y x 1,0,0,1-=⎪⎩⎪⎨⎧≥-≥≥则的取值范围是( )A .)1,1[-B .)2,1[-C .()21-,D .[]11-, 答案:A37、(河北省正定中学2008年高三第五次月考)圆422=+y x 被直线0323=-+y x 截得的劣弧所对的圆心角的大小为 ( )Aπ3 B π6 C π4 D π2答案:A38、(河南省开封市2008届高三年级第一次质量检)圆4)1(22=++y x 上的动点P 到直线x+y -7=0的距离的最小值等于 ( )A .224-B .24C .424-D . 224+答案:A39、(河南省濮阳市2008年高三摸底考试)在平面直角坐标系中,点A(1,2)、点B(3,1)到直线l 的距离分别为1和2,则符合条件的直线条数为( )A .3B .2C .4D .1 答案:B40、(河南省上蔡一中2008届高三月考)将直线20x y λ-+=沿x 轴向左平移1个单位,所得直线与圆22240x y x y ++-=相切,则实数λ的值为A .-3或7B .-2或8C .0或10D .1或11答案:A41、(河南省许昌市2008年上期末质量评估)直线x +y =k 与x -y =的交点A .在直线上B .在圆上C .在椭圆上D .在双曲线上 答案:D42、(黑龙江省哈尔滨三中2008年高三上期末)已知两条直线2121//,08)5(2:,0534)3(:l l y m x l m y x m l =-++=-+++,则直线l 1的一个方向向量是( )A .(1,-12)B .(-1,-1)C .(1,-1)D .(-1,-12)答案:B43、(黑龙江省哈尔滨三中2008年高三上期末)若动点P 的横坐标x ,纵坐标y 使lgy ,lg|x|,2lg xy -成等差数列,则点P 的轨迹图形为( )答案:C44、(湖北省八校高2008第二次联考)已知,x y 满足约束条件0,344,0,x x y y ⎧⎪+⎨⎪⎩≥≥≥则222x y x ++的最小值是( )A .25B1 C .2425D .1答案:D 45、(湖北省鄂州市2008年高考模拟)设全集}06208201243|),{(,},|),{(⎪⎩⎪⎨⎧≥+-≤-->-+=∈∈=y x y x y x y x P R y R x y x U ,},|),{(222+∈≤+=R r r y x y x Q ,若⊆Q C U P 恒成立,则实数r 最大值是( ) A .165 C . 145 C . 512 75答案:C 作出集合P 表示的平面区域,易知为使⊆Q C U P 恒成立,必须且只需r ≤原点O 到直线3x+4y-12=0的距离.【总结点评】本题主要考查简单的线性规划知识,集合的有关概念,数形结合的思想方法,数学语言的灵活转换能力.46、(湖北省黄冈中学2008届高三第一次模拟考试)已知2()2f x x x =-,则满足条件()()0()()0f x f y f x f y +⎧⎨-⎩≤≥的点(x,y )所形成区域的面积为( ) A .πB .32πC .2πD .4π答案:A47、(湖北省黄冈市2007年秋季高三年级期末考试)实数,x y 满足不等式组⎩⎪⎨⎪⎧y ≥0x -y ≥02x -y -2≥0,则11y t x -=+的取值范围是A 1[1,]3- B 11[,]23- C 1[,)2-+∞ D 1[,1)2- 答案:D48、(湖北省荆门市2008届上期末)如果直线y =kx +1与圆0422=-+++my kx y x 交于M 、N 两点,且M 、N 关于直线x y -= 对称,则不等式组⎪⎩⎪⎨⎧≥≤-≥+-0,0,01y m y kx y kx 表示的平面区域的面积是( )A .1B .2C .21 D .41 答案:D49、(湖北省荆州市2008届高中毕业班质量检测)若圆的方程为2240x y ax by ++++=,则直线80(,)ax by a b ++=为非零常数与圆的位置关系是.A 相交 .B 相切 .C 相离 .D 不能确定答案:A50、(湖北省荆州市2008届高中毕业班质量检测)设,x y 满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则231x y x +++取值范围是.A [1,5] .B [2,6] .C [3,10] .D [3,11]答案:D51、(湖北省武汉市武昌区2008届高中毕业生元月调研测试)圆心在抛物线22x y =()0x >上,并且与抛物线的准线及y 轴都相切的圆的方程是( ).A. 041222=+--+y x y x B. 01222=+--+y x y x C. 041222=+--+y x y x D . 041222=+--+y x y x答案:D52、(湖北省武汉市武昌区2008届高中毕业生元月调研测试)定义{}⎩⎨⎧<≥=ba b ba ab a ,,,max ,设实数y x ,满足约束条件{},3,2max ,22y x y x z y x +-=⎩⎨⎧≤≤则z 的取值范围是( ) .A.[-5,6] B.[-3,6] C.[-5,8] D.[-8,8]答案:C53、(湖南省岳阳市2008届高三第一次模拟)在平面直角坐标系中, 不等式组⎩⎪⎨⎪⎧x +y ≥0x -y +4≥0x ≤a(a 为常数)表示的平面区域面积是9, 那么实数a 的值为( )A . 32+2B . -32+2C . -5D .1 答案:D54、(吉林省实验中学2008届高三年级第五次模拟考试)m =-1是直线mx +(2m -1)y +1=0和直线3x +my +3=0垂直的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 答案:A55、(吉林省实验中学2008届高三年级第五次模拟考试)直线1-=x y 上的点到圆042422=+-++y x y x 上的点的最近距离是( ) A .22 B .12-C .122-D .1答案:C56、(吉林省实验中学2008届高三年级第五次模拟考试)若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是 ( )A .34≥a B .10≤<a C .341≤≤a D .3410≥≤<a a 或 答案:D57、(江苏省盐城市2008届高三六校联考)设x ,y 满足约束条件021x x y x y ≥⎧⎪≥⎨⎪-≤⎩,则z=3x +2y 的最大值是( )A 、4B 、5C 、6D 、9答案:B58、(江西省鹰潭市2008届高三第一次模拟)实数420520402,-+=⎪⎩⎪⎨⎧≤--≥-+≥+-y x z y x y x y x y x ,则满足条件的最大值为( )A .18B .19C .20D .21答案:D59、(宁夏区银川一中2008届第六次月考)圆心在Y 轴上且通过点(3,1)的圆与X 轴相切,则该圆的方稆是 ( )A .x 2+y 2+10y=0B .x 2+y 2-10y=0C .x 2+y 2+10x=0D .x 2+y 2-10x=0 答案:B60、(宁夏区银川一中2008届第六次月考)设y x ,满足约束条件⎪⎩⎪⎨⎧≥≤≤+,0,2,3y x y y x 则目标函数y x z +=2的最大值是( ) A .3 B .4C .5D .6答案:D61、(山东省济南市2008年2月高三统考)如果实数x 、y 满足条件101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩,那么2x y -的最大值为A .2B .1C .2-D .3-答案:B62、(山东省聊城市2008届第一期末统考)以点(2,-2)为圆心并且与圆014222=+-++y x y x 相外切的圆的方程是( ) A .9)2()2(22=+++y x B .9)2()2(22=++-y xC .16)2()2(22=-+-y xD .16)2()2(22=++-y x答案:B63、(山东省实验中学2008届高三第三次诊断性测试)已知直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为( )A .12B .-12C .2D .-2答案:A64、(山东省郓城一中2007-2008学年第一学期期末考试)已知满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则yx z 42+=的最小值是( )A .5B .-6C .10D .-10 答案:B65、(山东省郓城一中2007-2008学年第一学期期末考试)设A 、B 是x 轴上的两点,点P 的横坐标为2,且||||PB PA =,若直线PA 的方程为01=+-y x ,则直线PB 的方程是( )A .05=-+y xB .012=--y xC .042=--y xD .072=-+y x 答案:A。