考研数学二
- 格式:doc
- 大小:33.00 KB
- 文档页数:6
考研数学二知识点总结一、数列和数列的极限。
数列是指按照一定的顺序排列的一组数,数列的极限是指随着项数的增加,数列中的数值逐渐趋近于一个确定的值。
在考研数学二中,数列和数列的极限是一个重要的知识点,涉及到等差数列、等比数列、递推数列等内容,考生需要掌握数列的性质、求和公式、极限计算方法等。
二、函数与极限。
函数是数学中的一个重要概念,它描述了一个变量与另一个变量之间的对应关系。
在考研数学二中,函数与极限是一个重要的知识点,包括函数的性质、导数、极值、最值、函数的图像、函数的极限等内容,考生需要掌握函数的基本概念和计算方法。
三、微分与积分。
微分与积分是微积分学中的两个重要概念,微分描述了函数在某一点的变化率,积分描述了函数在一定区间内的累积效应。
在考研数学二中,微分与积分是一个重要的知识点,包括导数的计算、微分方程、不定积分、定积分等内容,考生需要掌握微分与积分的基本概念和计算方法。
四、概率与统计。
概率与统计是数学中的一个重要分支,它描述了随机事件的发生规律和数据的分布特征。
在考研数学二中,概率与统计是一个重要的知识点,包括随机变量、概率分布、统计量、参数估计、假设检验等内容,考生需要掌握概率与统计的基本概念和计算方法。
五、线性代数。
线性代数是数学中的一个重要分支,它描述了向量空间和线性变换的性质和规律。
在考研数学二中,线性代数是一个重要的知识点,包括矩阵、向量、矩阵的运算、矩阵的秩、特征值、特征向量等内容,考生需要掌握线性代数的基本概念和计算方法。
六、解析几何。
解析几何是数学中的一个重要分支,它描述了几何图形在坐标系中的性质和规律。
在考研数学二中,解析几何是一个重要的知识点,包括平面几何、空间几何、曲线方程、曲面方程等内容,考生需要掌握解析几何的基本概念和计算方法。
以上就是考研数学二的知识点总结,希望考生们能够认真复习,加强对重点知识的掌握,顺利通过考研数学二的考试。
祝各位考生取得优异的成绩!。
2024年数学二考研大纲
2024年考研数学二的考试大纲包括高等数学和线性代数两个科目,采用闭卷笔试形式,满分150分。
具体考试内容如下:
高等数学部分:
1. 函数、极限、连续
2. 一元函数微分学
3. 一元函数积分学
4. 向量代数与空间解析几何
线性代数部分:
1. 行列式
2. 矩阵
3. 向量
4. 线性方程组
5. 矩阵的特征值和特征向量
6. 二次型
此外,考生还需要掌握一些基本的数学概念和性质,以及能够运用数学知识解决实际问题。
考试大纲中还规定了各个知识点的考试要求,考生需要按照要求进行复习。
以上信息仅供参考,具体考试大纲和要求以教育部发布的官方文件为准。
试卷及解2024考研数学(二)真题析一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.函数1(1)(2)()x x f x x --=的第一类间断点的个数是A.3. B.2.C.1.D.0.1.【答案】C【解析】无定义点为12x x ==,对于()()()()()111lim1121211,lim ||ee x x x x x x x x x →⋅-----→===,故1x =是可去间断点.对于()()11222,lim ||x x x x x ---→==+∞,故2x =是第二类间断点另外,0x =是分段点,()()()011limln 12(12lim||ex xx x x x x x →⋅----→==+∞∣,故0x =是第二类间断点.因此只有一个第一类间断点2.设函数()y f x =由参数方程231,et x t y ⎧=+⎪⎨=⎪⎩确定,则2lim 2(2)x x ff x →+∞⎡⎤⎛⎫+-= ⎪⎢⎥⎝⎭⎣⎦A.2e.B.4e 3.C.2e3.D.e3.2.【答案】B【解析】()222lim22x f f x x→+∞⎛⎫+- ⎪⎝⎭=⋅原式()'22f +=1d d d d t y t x t==2212e 23tt t t==⋅4e 3=.3.设函数sin 30()sin d ,()()d ,xxf x t tg x f t t ==⎰⎰则A.()f x 是奇函数,()g x 是奇函数.B.()f x 是奇函数,()g x 是偶函数.C.()f x 是偶函数,()g x 是偶函数.D.()f x 是偶函数,()g x 是奇函数.3.【答案】D【解析】()sin 30sin d xf x t t =⎰,()3sin(sin )cos f x x x ='为奇函数.所以()f x 为偶函数,()()0d xg x f t t =⎰为奇函数.4.已知数列{}(0),n n a a ≠若{}n a 发散,则A.1n n a a ⎧⎫+⎨⎩⎭发散. B.1n n a a ⎧⎫-⎨⎬⎩⎭发散.C.1ee nn a a ⎧⎫+⎨⎬⎩⎭发散. D.1ee nn a a ⎧⎫-⎨⎬⎩⎭发散.4.【答案】D【解析】选项A :取=22n a 11,,, (22),112+.2n n a a +收敛到错误.选项B :取=1,1,1,1,,n a -- 10.n na a -收敛到错误.选项C :取=ln 2,ln 2,ln 2,ln 2,,n a -- 11e2e 2nna a ++收敛到错误.5.已知函数221()sin 0,(,)0,0,x y xy xy f x y xy ⎧+≠⎪=⎨⎪=⎩,则在点(0,0)处A.(,)f x y x ∂∂连续,(,)f x y 可微.B.(,)f x y x ∂∂连续,(,)f x y 不可微.C.(,)f x y x ∂∂不连续,(,)f x y 可微.D.(,)f x y x∂∂不连续,(,)f x y 不可微.5.【答案】C 【解析】()(()(,0,0,0,000limlimx y x y x y →→≠≠--⋅+⋅--⋅+⋅=或()(()(()22,0,0,0,000001sin0limlim0,x y x y x y x y x y xy→→≠≠≠≠+---⋅+⋅==且且则(),f x y 在(0,0)处可微.而()2221112sin cos ,0,(,)=0,0,x x y xy f x y xy xy x y x xy ⎧⎛⎫++-≠∂⎪ ⎪⎨⎝⎭∂⎪=⎩()()()()()()222,0,0,0,00000,11limlim 2sin cos x y x y x y x y x y f x y x xxy x y xy →→≠≠≠≠⎡⎤+∂⎢⎥=-∂⎢⎥⎣⎦且且不存在,从而(),f x y x∂∂在(0,0)处不连续.6.设(,)f x y 是连续函数,则12sin 6d (,)d xx f x y y ππ=⎰⎰A.1arcsin 126d (,)d .y y f x y x π⎰⎰B.121arcsin 2d (,)d .yy f x y x π⎰⎰C.1arcsin 206d (,)d .yy f x y x π⎰⎰D.122arcsin d (,)d .yy f x y x π⎰⎰6.【答案】A【解析】11arcsin 21sin 266d (,)d d (,)d .yxx f x y y y f x y x πππ==⎰⎰⎰⎰选A .7.设非负函数()f x 在∞[0,+)上连续.给出以下三个命题:①若20()d f x x +∞⎰收敛,则0()d f x x +∞⎰收敛;②若存在1,p >使得lim ()px x f x →+∞存在,则0()d f x x +∞⎰收敛;③若0()d f x x +∞⎰收敛,则存在1,p >使得lim ()p x x f x →+∞存在.其中真命题的个数为A.0.B.1.C.2.D.3.【答案】B【解析】①取()2011(),d 11f x x x x +∞=++⎰收敛,01d .1x x +∞+⎰发散,错误②极限比较判别法原话.正确.③极限比较判别法为充分不必要条件.错误.()()()201d 1,lim .1ln 1px x p x f x x x +∞→+∞>=∞++⎰取收敛,8.设A 为3阶矩阵,100010101⎛⎫ ⎪= ⎪ ⎪⎝⎭,P 若T 2200020a c c b c c +⎛⎫⎪= ⎪ ⎪⎝⎭,P AP 则=A A.0000.00c a b ⎛⎫⎪⎪ ⎪⎝⎭ B.0000.00b c a ⎛⎫⎪⎪ ⎪⎝⎭C.0000.00a b c ⎛⎫⎪⎪ ⎪⎝⎭D.0000.00c b a ⎛⎫⎪⎪ ⎪⎝⎭8.【答案】C【解析】()3T 212010000, 010120101a c c b c c +⎛⎫⎛⎫⎪ ⎪==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭且AP B P E P ,故()()()11112233T11T (1)(1)----⎡⎤==⎣⎦PA B P E B E 11131313131T3T131 (1)(1)(1)(1)(1)(1)---⎡⎤==---⎣⎦E BE E E BE E 0 10120100100010001001000120101101a c c b c c -+⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪⎪= ⎪⎪⎪⎪ ⎪⎪⎪⎪--⎝⎭⎝⎭⎝⎭⎝⎭ 0001001000000010010002010110100 a b b c c c ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪== ⎪⎪⎪ ⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭.9.设A 为4阶矩阵,*A 为A 的伴随矩阵,若*()=-A A A O 且*≠,A A 则()r A 取值为A.0或1.B.1或3.C.2或3.D.1或2.9.【答案】D【解析】由题意可知*()=-A A A O ,故()()*4r r +-≤A A A.()***,,1r ≠-≠-≥又故即A A A A A O A 因此() 3r ≤A .又()*2*22-=-=-==OA A AAAA A A E A ()()**2,0r r ⇒≤=⇒=此时OA A A 又()*1r ≠⇒≥A A A ,故()12r =或A .10.设,A B 为2阶矩阵,且=,AB BA 则“A 有两个不相等的特征值”是“B 可对角化”的A.充分必要条件.B.充分不必要条件.C.必要不充分条件.D.既不充分也不必要条件.10.【答案】B【解析】方法一充分性,A 有两个不相等的特征值,故A 必可相似对角化.又=,AB BA ,且A 有2个不同特征值,故A 的特征向量都是A 的特征向量.(利用线代9讲结论)又A 有2个线性无关特征向量,故B 有2个线性无关特征向量,故B 必可相似对角化.必要性,B 可相似对角化,不妨取,==B E A E ,则推翻.【解析】方法二因题知A 有两个不同特征值,不妨设为12λλ,且12λλ≠,则存在可逆阵P 使1121111111122 λλλλλλ-------⎛⎫⇒= ⎪⎝⎭=⇔=⎛⎫⎛⎫⇔= ⎪ ⎪⎝⎭⎝⎭又P AP AB BA P APP BP P BPP APP BP P BP B 可相似对角化1-⇔P BP 可相似对角化.12134121211343422111211221223241324 b b b b b b b b b b b b b b b b b b b b λλλλλλλλλλλλλλ-⎛⎫= ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⇔=≠ ⎪ ⎪⎝⎭⎝⎭设代入上式由P BP 122222313311140000b b b b b b b b λλλλ--⇒=⇒==⇒=⎛⎫⇒=⇒ ⎪⎝⎭可对角化P BP P BP ⇒可对角化B 以上推导均基于12λλ≠,反之 可对角化B 无法推出A 有两不同特征值,故A 有两个不同特征值为 B 可对角化的充分非必要条件.二、填空题:11~16小题,每小题5分,共30分.11.曲线2y x =在点(0,0)处的曲率圆方程为.11.221124x y ⎛⎫-+= ⎪⎝⎭【答案】【解析】由图像可转化为2y x =处且()()3221y k y '''=+()0,020,2y xy ==''='12,2k R ==,2211(0)24x y ⎛⎫-+-= ⎪⎝⎭,即221124x y ⎛⎫-+= ⎪⎝⎭.12.函数324(,)2961224f x y x x y x y =--++的极点是.12.【答案】(1,1)【解析】由23618120,24240,x y f x x f y '⎧=-+=⎪⎨'=-+=⎪⎩解得驻点为(1,1),(2,1).又21218,0,72,xxxy yy A f x B f C f y ''''''==-====-代入点(1,1)得24320,6,AC B A -=>=-故(1,1)是极大值点.代入点(2,1)得24320,AC B -=-<故(2,1)不是极值点.13.微分方程21()y x y '=+满足条件(1)0y =的解为.13.【答案】()π arctan 4x y y +=+【解析】方程化为2d ()d xx y y=+d d1d d x u u x y y y=+=-令则即2d 1d uu y=+则21d d 1u y u ⎰=⎰+arctan u y c=+代1,0,1x y u ===.得π 4c =得()πarctan 4x y y +=+14.已知函数2()(e 1)xf x x =+,则(5)(1)f =.14.【答案】31e 【解析】()()()52e 1x x +()()()(5)(4)22e 15e 1x x x x '=++⋅+⋅()()(5)225e 1''x C x ++2e 5e 210e 2x x x x x =⋅+⋅⋅+⋅⋅,则(5)e 10e 20e 31e(1)f++==15.某物体以速度()sin πv t t k t =+作直线运动.若它从0t =到3t =的时间段内平均速度是52,则k =.15.【答案】3π2【解析】30(sin )2πd 53t k t t+=⎰,则3015(sin )2πd t k t t +=⎰,30915cos 22k t -π=π915(11)22k ---=π,则3π2k =.16.设向量1231111,,,1111a ab a ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα若123,,ααα线性相关,且其中任意两个向量均线性无关,则ab =.16.【答案】4-【解析】由()22123211111111011011,,1101101111011002a a a a a a a a b b a b a a a a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪==→→⎪ ⎪ ⎪--+-+- ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭A ααα由()123,,2r ≤ααα且()(),2i j r i j =≠αα故()123,,2r =ααα1当1a =时,1α与3α相关,不满足题意2当1a ≠时,()()1231111011011,,0110012002002a aa ab a b a a a ⎛⎫⎛⎫⎪ ⎪++⎪ ⎪→→ ⎪ ⎪+--+- ⎪ ⎪++⎝⎭⎝⎭ααα故要满足题意,则20a +=且()120b a -+-=242a ab b =-⎧⇒⇒=-⎨=⎩三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.设平面有界区域D 位于第一象限由曲线1,33xy xy ==与直线1,3y x =3y x =围成,计算()1d d Dx y x y +-⎰⎰.17.【解】令yu xy v x==,,(1)x y ⎧=⎪⎨⎪=⎩(2)12J v ∂x ∂x==∂u∂y ∂v ∂y 故∂u∂v1331331d 1d 2u v v ⎛=+⋅ ⎝⎰⎰原式8ln33=.18.设()y x 为微分方程290,x y xy y '''+-=满足条件112,6x x y y =='==的解.(1)利用变换e tx =将上述方程化为常系数线性方程,并求();y x(2)计算21(.y x x ⎰解:(1)290,x y xy y '''+-=令e tx =,则222222d d d d 1d d 1d 1,,d d d d d d d y y t y y y y x t x t x x t x t x ⎛⎫⎛⎫===+- ⎪ ⎪⎝⎭⎝⎭则2222d d d d 90,90d d d d y y y y y y t t t t-+-=-=即,()()()()3332121123221124e e ,1=233,1336,t t C y C C y x C x y C C x C y x C x y C C x -=+=+=+''=-=-=,,①②从而()312=2=0=2.C C y x x ,,则(2)2211(2y x x x x=⎰⎰3222226624352sin16sin4cos d64(1cos)cos d(cos)cos1164)d6435116464.38532816055x tt t t t t tt uu u u u uππππ==--⎛=-=-⎝⎛⎛=-==⎝⎭⎝⎭⎰⎰令令19.设0,t>平面有界区域D由曲线xy-=与直线,2x t x t==及x轴围成,D绕x轴旋转一周所成旋转体的体积为()V t,求()V t的最大值.19.【解】222222π()π()dπe d(21)e4tt t x xt ttV t y x x x x x--===-+⎰⎰42π(41)e(21)e(0)4t tt t t--⎡⎤=-+-+>⎣⎦()42π1()16e4e0,ln4ln242t tV t t t t'--=--+===,(0,ln2),t∈maxπ3π()0,(ln2,),()0,ln2,[()]ln21664V t t V t t V t''>∈+∞<==+20.已知函数(,)f u v具有2阶连续偏导数,且函数(,)(2,3)g x y f x y x y=+-满足222226 1.g g gx x y y∂∂∂+-=∂∂∂∂(1)求2;fu v∂∂∂(2)若2(,0)1e,(0,)1,50uf u u f v vu-∂==-∂求(,)f u v的表达式.20.【解】(1)23g f fx u v∂∂∂=+∂∂∂2222222222222 2233234129g f f f f f f fx u u v u v v u u v v ⎛⎫⎛⎫∂∂∂∂∂∂∂∂=⋅+⋅++⋅=++⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭,2gx y ∂∂∂222222222222(1)31)23f f f f f f f u u v u v v u u v v ⎛⎫⎛⎫∂∂∂∂∂∂∂=+⋅-++-=+- ⎪ ⎪∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭,g f f y u v∂∂∂=-∂∂∂,()()2222222222222112g f f f f f f fy u u v u v v u u v v ⎛⎫∂∂∂∂∂∂∂∂=+⋅--+-=-+ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭,代回原式得,2 251f u v∂=∂∂,故2125f v v ∂=∂∂(2)()111d 2525f v v c u u ∂=⎰=+∂,()()1,0e e u uf u u c u u u --∂==∂代得,1e 25u f u v u -∂=+∂故,则()()()211,e d 1e 2525u u f u v u v u u uv c v --⎛⎫=⎰+=-+++ ⎪⎝⎭.代()210,150f v v =-得()22150c v v =综上:()()211,12550uf u v u e uv v -=-+++.21.设函数()f x 具有2阶导数,且()()()01, 1.f f f x ''''=≤证明:(1)当()0,1x ∈时,()()()()()1011;2x x f x f x f x ----≤(2)()()()1011d .212f f f x x +-≤⎰21.证明:(1)()12()(0)(0)2f f x f f x x ξ'''=++①()()22()(1)(1)1(1)2f f x f f x x ξ'''=+-+-②()1x x⋅-+⋅①②()()()()()12221()(0)(1)(1)(0)1(1)1(1)22f f f x f x f x f x x f x x x x xx ξξ''''''⇒=-++-+-+--+,21111()(0)(1)(1)(1)(1)(1)(1)(1).222 2f x f x f x x x x x x x x x x x ----+-=-+-=- (2)[]02111(1)1()(0)(1)(1)d ()d (0)(1)22x f x f x f x x f x x f f ----=-⋅-⋅⎰⎰1100(0)(1)(1)1()d d .22 12f f x x f x x x +-=-=⎰⎰ 22.设矩阵1101,11,1012a b ⎛⎫⎛⎫ ⎪== ⎪ ⎪⎝⎭ ⎪⎝⎭A B 二次型T123(,,)f x x x =x BAx .已知方程组=0Ax 的解均是T =0B x 的解,但这两个方程组不同解.(1)求,a b 的值;(2)求正交变换=x Qy 将123(,,)f x x x 化为标准形.22.【解】(1)由题意可知,=0Ax 的解均是T=0B x 的解故()r r ⎛⎫=⎪⎝⎭T A A B ,且()2r =A 011011011010101 11011001112011001a a a b b b a a ⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎛⎫ ⎪ ⎪ ⎪=→→⎪ ⎪ ⎪ ⎪---⎝⎭ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭T 又A B 故1,2a b ==(2)111120111111210122224⎛⎫⎛⎫⎛⎫ ⎪ ⎪=== ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭BA CT T 112112224f ⎛⎫⎪== ⎪ ⎪⎝⎭x BAx x x由()()12310,tr 6r λλλ=⇒====C C 当120λλ==时,得到线性无关的特征向量为12111,101⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ξξ,单位化为12,0⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎪ =-= ⎪ ⎪ - ⎪⎪ ⎝⎭⎝η η当36λ=时,得到线性无关的特征向量为3112⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ,单位化为2112⎛⎫⎪=⎪⎪⎭η()123 ,,0⎛ ==-⎝故令Q ηηη则23T6f ===x Qyx Cx y。
2023年全国硕士研究生统一入学考试数学(二)试题解析一、选择题:1-10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项是符合要求的请将所选项前的字母填在答题纸指定位置上.1.【答案】:B【解析】:1ln()11lim lim limln(11x x x x e y x k e x x x)11lim()lim[ln()]lim [ln()1]11x x x b y kx x e x x e x x 11lim ln[1]lim (1)(1)x x x x e x e x e所以斜渐近线方程为:1y x e2.【答案】:D 【解析】:当0x时1()ln(f x dx x C 当0x 时()(1)cos (1)sin sin f x dx x xdx x x xdx2(1)sin cos x x x C 原函数在(,) 内连续,则在0x处1122lim ln(,lim(1)sin cos 1x x x C C x x x C C所以121C C ,令2C C ,则11C C,故ln(1,0()(1)sin cos ,0x C x f x dx x x x C x结合选项,令0C ,则()f x的一个原函数为ln(1,0()()(1)sin cos ,0x x f x dx F x x x x x3.【答案】:B【解析】:在(0,2 中,2sin x x 故12sin n n nx x x112n n y y111112()()2444n nn n n n n n y yy y x x x xlim0nn ny x,故n y 是n x 的高阶无穷小4.【答案】:C【解析】:微分方程"'0y ay by 的特征方程为20a b ,当240a b 时,特征方程有2个不同的实数根12, ,则12, 至少有一个不等于零,若12,C C 都不为零,则微分方程的解1212xx y C eC e 在(,) 无界当240a b ,特征方程有2个相等的实根,1,22a若20C ,则微分方程的解212()ax y C C x e 在(,) 无界当240a b时,特征方程的根为1,222a i则通解为:212(cos sin )22ax y e C C 5.【答案】:C【解析】1)当0t 时,3sin cos ,sin 3x t dy t t ty t t dx;当0t 时,,sin sin sin x t dyt t t y t t dx;当0t 时,因为'00()(0)sin (0)lim lim 03x t f x f t tf x t'00()(0)sin (0)lim lim 0x t f x f t tf x t所以'(0)0f 2)0sin cos lim '()lim 0'(0)3x t t t t f x f;'00sin cos lim '()lim 0(0);3x t t t t f x f所以0lim '()'(0)0x f x f ,所以'()f x 在0x 处连续3)当0t 时,因为"00'()'(0)sin cos 2(0)lim lim 339x t f x f t t t f xt"00'()'(0)sin cos (0)lim lim 2x t f x f t t tf x t所以"(0)f 不存在6.【答案】:A【解析】当0 时,21211111()|(ln )(ln )(ln 2)f dx x x x所以211ln(ln 2)1111'()(ln ln 2)0(ln 2)(ln 2)(ln 2)f ,即01ln(ln 2)7.【答案】:C 【解析】方法一:已知 f x 没有极值点,等价于 '0fx 至多一个解, '220x f x x x a e 至多一个解即是:220x x a 至多一个解,那么判别式:4401a a ,另外曲线 y f x 有拐点,则等价于 ''2420x f x x x a e 有解,即是:164802a a ,则a 的取值范围是:12a 8.【答案】:D【解析】110000A E A E A E A E A B B B B B,另外:1234000X X A E E X X B E,解出111121340X X A A B X X B,则:0A E B****0B A A B A B9.【答案】:B【解析】:令:11221333y x x y x x y x ,22222212312121274,,4333y f x x x y y y y y y,可见规范形为2212y y 10.【答案】:D 【解析】根据题意,即是存在1234,,,k k k k ,使得11223344k k k k ,等价于求解12123434(,,,)0k k k k ,得到通解:12343111k k k k k,代入34,k k k k ,得到:15,8k k R二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.【解析】:注意到22220ln 1ln 11limlim1cos 11cos x x x x ax bx x x x bx x a e xe x,首先得到:1a ,另外根据等价无穷小替换, 2222001ln 12lim lim 1311cos 2x x x b x x x bx x e x,得到:2b ,则2ab 12.【解析】:根据230t x ,则弧长计算为:s,进行换元:2sin t ,原积分为: 23344cos 3s d13.【解析】:两边同时对想求导两次得式子222220zz z z z z z e e x x x x x x 将x=1,y=1,z=0带入,223=-2|z x 1,114.【解析】两边分别对x 求导,可得'911y ,所以'911y,所以法线斜率为11915.【解析】32323112122121111u+2u+21=++2=++x =2f x dx f x dx f x dx f x dx f d f x dx f x dx f x dx f x dx dx 16.【解析】:由已知(A)(A,b)34r r ,故A,b 0,即14440111101110A,b 1(1)122(1)11012001202a a a a a a a a baa b所以111280a a a b三、解答题:17~22小题,共70分.请将解答写在答题纸指定位置上,解答应写出文字说明、证明过程或演算步骤.17.【解析】:(1)曲线L 在点 x,y P 处的切线方程为'y=y (X -x)Y ,令X=0,切线在y 轴上的截距为'Y y xy ,即'11y y x,解得 ln y x x c x ,由经过点 2,0e ,所以c=2,2ln y x x x 设曲线L 在点x,x(2lnx) 处的切线与坐标所围面积最小,此时切线方程为2ln =1-lnx (X -x)Y x x ,故切线与两坐标所围三角形面积为22ln 1x s x x令 3'20,s x x e ,由单调性知,最小值在32x e处取得,332s e e18.【解析】'cos 1'cos (,)0(((,)sin 0yx yy f x y e x x e x e k k f x y x ye y k y k 为奇数),为偶数),则''''cos ''cos 2(,)1(,)sin (,)(cos sin )xx y xy y yyf x y f x y yef x y xe y y ,代入1(,)e k 得2210,0A B AC B C e 故1(,)e k 不是极值点,代入(,)e k 得2210,0A B AC B C e且0A 故极小值为2(,)2e f e k ,其中k 为偶数.19.【解析】(1)由题设条件可知面积2111S (1)D x21112ln 1x t)(2)2222211111111arctan 11(14V dx dx dx x x x x x x20.【解析】332222002333222220011ln 33cos sin 11ln 2ln 21ln 2cos 3cos sin 223cos sin 23tan Ddxdy d r x y d dd3 21.【证明】(1)22111''()''()()(0)'(0)'(0),022f f f x f f x x f x x 介于与之间,则222''()()'(0),(0,)2f f a f a a a ,233''()()'(0),,0)2f f a f a a a (-,则223()()''()''()2a f a f a f f ,由()f x 在 ,a a 上具有2阶连续导数,故()f x 在 32, 上具有2阶连续导数,所以()f x 在 32, 上必存在最大值M 和最小值m ,使得 231''()''()2m f f M 由介值定理存在存在 32,(,)a a ,使得 23211''()''()''()()()2f f f f a f a a,得证.(2)设()f x 在x x 点处取得极值,则0'()0f x ,221100000010''()''()()()'()())()(),22f f f x f x f x x x x x f x x x x x介于与之间,220020''()()()(),,2f f a f x a x a x (),230030''()()()(),,2f f a f x a x a x (),222232003020''()''()1|()()||()()||''()|()|''()|()222f f f a f a a x a x f a x f a x 32(,),''()max{|''()|,|''()|}a a f f f ,故223020222001|()()||''()|()|''()|()2|''()|[()()]2|''()|2f a f a f a x f a x f a x a x a f命题得证。
且喜平常度,切忌神慌乱。
畅游题海后,金榜题君名。
考试在即,祝你成功。
2023年考研数学二真题及答案一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1. 1ln(e )1y x x =+- 的斜渐近线为( ) A.e y x =+ B.1e y x =+ C.y x = D.1ey x =- 【答案】B.【解析】由已知1ln e 1y x x ⎛⎫=+⎪-⎝⎭,则 1limlim ln e ln e 11x x y x x →∞→∞⎛⎫=+== ⎪-⎝⎭, 11lim lim ln e lim ln e 111x x x y x x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦ 1lim ln e ln e 1x x x →∞⎡⎤⎛⎫=+- ⎪⎢⎥-⎝⎭⎣⎦ 1lim ln 1e(1)x x x →∞⎡⎤=+⎢⎥-⎣⎦1lime(1)ex x x →∞==-,所以斜渐近线为1ey x =+.故选B. 2.函数0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( ).A.)ln ,0()(1)cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B.)ln 1,0()(1)cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C.)ln ,0()(1)sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D.)ln 1,0()(1)sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【答案】D.【解析】由已知0lim ()lim ()(0)1x x f x f x f +-→→===,即()f x 连续. 所以()F x 在0x =处连续且可导,排除A ,C.又0x >时,[(1)cos sin ]cos (1)sin cos (1)sin x x x x x x x x x '+-=-+-=-+, 排除B.故选D.3.设数列{},{}n n x y 满足111111,sin ,22n n n n x y x x y y ++====,当n →∞时( ). A.n x 是n y 的高阶无穷小 B.n y 是n x 的高阶无穷小 C.n x 是n y 的等价无穷小D.n x 是n y 的同阶但非等价无穷小 【答案】B. 【解析】在0,2π⎛⎫ ⎪⎝⎭中,2sin x x π>,从而12sin n n n x x x π+=>.又112n n y y +=,从而 1111122444n nn n nn n n y y y y x x x x ππππ++⎛⎫⎛⎫<=<<= ⎪ ⎪⎝⎭⎝⎭L , 所以11lim0n n n y x +→∞+=.故选B. 4. 若0y ay by '''++=的通解在(,)-∞+∞上有界,这( ).A.0,0a b <>B.0,0a b >>C.0,0a b =<D.0,0a b =>【答案】D【解析】微分方程0y ay by '''++=的特征方程为20r ar b ++=.①若240a b -<,则通解为212()e(cos sin )22a x y x C x C x -=+;②若240a b ->,则通解为2212()eea a x x y x C C ⎛⎛ -- ⎝⎭⎝⎭=+;③若240a b -=,则通解为212()()e a x y x C C x -=+.由于()y x 在(,)-∞+∞上有界,若02a ->,则①②③中x →+∞时通解无界,若02a-<,则①②③中x →-∞时通解无界,故0a =.0a =时,若0b > ,则1,2r =,通解为12()()y x C C =+,在(,)-∞+∞上有界.0a =时,若0b <,则1,2r =12()e y x C C =+,在(,)-∞+∞上无界.综上可得0a =,0b >.故选D.5. 设函数()y f x =由参数方程2||||sin x t t y t t =+⎧⎨=⎩确定,则( ).A.()f x 连续,(0)f '不存在B.(0)f '存在,()f x '在0x =处不连续C.()f x '连续,(0)f ''不存在D.(0)f ''存在,()f x ''在0x =处不连续【答案】C【解析】0lim lim ||sin 0(0)x t y t t y →→===,故()f x 在0x =连续.0()(0)||sin (0)limlim 02||x t f x f t tf x t t →→-'===+. sin cos ,03()()00()sin cos 0t t tt y t f x t x t t t t t +⎧>⎪⎪''===⎨'⎪--<⎪⎩0t =时,0x =;0t >时,0x >;0t <时,0x <,故()f x '在0x =连续.00sin cos 0()(0)23(0)lim lim 39x t t t tf x f f x t +++→→+-''-''===, 00()(0)sin cos 0(0)lim lim 2x t f x f t t t f x t---→→''----''===-,故(0)f ''不存在.故选C.6. 若函数121()(ln )αα+∞+=⎰f dx x x 在0=αα处取得最小值,则0=α( ) A.1ln(ln 2)-B.ln(ln 2)-C.1ln 2- D.ln 2【答案】A. 【解析】已知112221d(ln )111()d (ln )(ln )(ln )(ln 2)a a a ax f a x x x x x aa +∞+∞+∞-++===-=⎰⎰,则 2111ln ln 2111()ln ln 2(ln 2)(ln 2)(ln 2)a a af a a a a a ⎛⎫'=--=-+ ⎪⎝⎭, 令()0f a '=,解得01.ln ln 2a =-故选A.7.设函数2()()e x f x x a =+.若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( ). A.[0,1)B.[1,)+∞C.[1,2)D. [2,)+∞【答案】C.【解析】由于()f x 没有极值点,但曲线()y f x =有拐点,则2()(2)e x f x x x a '=++有两个相等的实根或者没有实根,2()(42)e x f x x x a ''=+++有两个不相等的实根.于是知440,164(2)0,a a -≤⎧⎨-+>⎩解得12a ≤<.故选C. 8. ,A B 为可逆矩阵,E 为单位阵,*M 为M 的伴随矩阵,则*⎛⎫= ⎪⎝⎭A E O BA.****||||⎛⎫- ⎪⎝⎭A B B A O B AB.****||||⎛⎫- ⎪⎝⎭B A A B O A B C.****||||⎛⎫- ⎪⎝⎭B A B A O A BD.****|||⎛⎫- ⎪⎝⎭A B A B O B |A【答案】B 【解析】由于*||||||||⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A E A E A E E O AB O O B O B O B O E O A B ,故*1||||||||-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E A E A B O O B O B OA B1111||||||||----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭A B O A A B O A B O B 1111||||||||||||----⎛⎫-= ⎪⎝⎭A A B A A B B O B A B ****||||⎛⎫-= ⎪⎝⎭A B A B OB A . 故选B. 9.222123121323(,,)()()4()f x x x x x x x x x =+++--的规范形为A.2212y y +B.2212y y -C.2221234y y y +-D.222123y y y +-【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++--222123121323233228x x x x x x x x x =--+++,二次型的矩阵为211134143⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,211210||134(7)131143141λλλλλλλ---=--=+-----A E210(7)210(7)(3)0141λλλλλλ-=+-=-+-=-, 1233,7,0λλλ==-=,故规范形为2212y y -,故选B.10.已知向量组121212212,1,5,03191⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ααββ ,若γ 既可由12,αα 线性表示,又可由12,ββ线性表示,则=γ( )A.33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭B.35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭C.11,2k k R -⎛⎫ ⎪∈ ⎪ ⎪⎝⎭D.15,8k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭【答案】D【解析】设11223142k k k k =+=+γααββ,则11223142k k k k +--=0ααββ,对关于1234,,,k k k k 的方程组的系数矩阵作初等变换化为最简形,121212211003(,,,)2150010131910011--⎛⎫⎛⎫ ⎪ ⎪=--=-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A ααββ,解得T T T T1234(,,,)(3,1,1,1)(3,1,1,0)(33,1,1,)k k k k C C C C C =--+-=--+-,故=γ11221211(33)(1)5(1)5,8(1)8C k k C C C k k R C -⎛⎫⎛⎫ ⎪ ⎪+=-+-=-=∈ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭αααα.故选D.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上. 11.当0x →时,2()ln(1)f x ax bx x =+++与2()e cos x g x x =-是等价无穷小,则ab =________.【答案】2-【解析】由题意可知,2200()ln(1)1lim lim ()e cos x x x f x ax bx x g x x →→+++==-222022221()2lim 11+()[1()]2x ax bx x x o x x o x x o x →++-+=+--+ 220221(1)()()2lim 3()2x a x b x o x x o x →++-+=+,于是1310,22a b +=-=,即1,2a b =-=,从而2ab =-. 12.曲线y =⎰的孤长为_________.【答案】43π【解析】曲线y =⎰的孤长为x x ==2= 2sin 233022cos d2sin 8cos d x tt t t t ππ==⎰⎰31cos 282tdt π+=⎰ 3014sin 22t t π⎛⎫=+ ⎪⎝⎭43π=+13. 设函数(,)z z x y =由方程e 2zxz x y +=-确定,则22(1,1)xz∂=∂_________.【答案】32-【解析】将点(1,1)带入原方程,得0z =. 方程e 2z xz x y +=-两边对x 求偏导,得e2zz zz x x x∂∂++=∂∂, 两边再对x 求偏导,得22222e e 20zz z z z z x x x x x ∂∂∂∂⎛⎫+++= ⎪∂∂∂∂⎝⎭,将1,1,0x y z ===代入以上两式,得(1,1)1z x ∂=∂,22(1,1)32xz∂=-∂.14. 曲线35332x y y =+在1x =对应点处的法线斜率为_________. 【答案】119-【解析】当1x =时,1y =.方程35332x y y =+两边对x 求导,得2429(56)x y y y '=+,将1x =,1y =代入,得9(1)11y '=.于是曲线35332x y y =+在1x =对应点处的法线斜率为119-. 15. 设连续函数()f x 满足(2)()f x f x x +-=,20()d 0f x x =⎰,则31()d f x x =⎰_________.【答案】12【解析】3323121111()d ()d ()d ()d ()d ()d f x x f x x f x x f x x f x x f x x =-=--⎰⎰⎰⎰⎰⎰312()d ()d f x x f x x=-⎰⎰111201(2)d ()d d 2x tf t t f x x x x -=+-==⎰⎰⎰. 16. 13123123121,0,20,2ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩ 有解,其中,a b 为常数,若0111412a a a = ,则11120a a ab =________. 【答案】8【解析】方程组有解,则0111101110||12211012001202a a a a a a a ab aa b ==-+=A ,故111280a a ab =.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)设曲线):(e ()L y y x x =>经过点2(e ,0),L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距,(Ⅰ)求()y x ;(Ⅱ)在L 上求一点,使该点的切线与两坐标轴所围三角形面积最小,并求此最小面积. 【解】(Ⅰ)曲线L 在点(,)P x y 处的切线方程为()()Y y y x X x '-=-,令0X =,则切线在y 轴上的截距为()Y y xy x '=-,则()x y xy x '=-,即11y y x'-=-,解得()(ln )y x x C x =-,其中C 为任意常数.又2(e )0y =,则2C =,故()(2ln )y x x x =-.(Ⅱ)设曲线L 在点(,(2ln ))x x x -处的切线与两坐标轴所围三角形面积最小,此时切线方程为(2ln )(1ln )()Y x x x X x --=--.令0Y =,则ln 1xX x =-;令0X =,则Y x =.故切线与两坐标轴所围三角形面积为211()22ln 12(ln 1)x x S x XY x x x ==⋅⋅=--, 则2(2ln 3)()2(ln 1)x x S x x -'=-.令()0S x '=,得驻点32e x =. 当32e e x <<时,()0S x '<;当32e x >时,()0S x '>,故()S x 在32e x =处取得极小值,同时也取最小值,且最小值为332(e )e S =.18.(本题满分12分)求函数2cos (,)e2yx f x y x =+的极值. 【解】由已知条件,有cos (,)e y x f x y x '=+,cos (,)e (sin )y y f x y x y '=-.令(,)0,(,)0x y f x y f x y ''==,解得驻点为1,e k π⎛⎫- ⎪⎝⎭,其中k 为奇数;(e,)k π-,其中k 为偶数.(,)1xxf x y ''=,cos (,)e (sin )y xy f x y y ''=-,cos 2cos (,)e sin e cos y y yy f x y x y x y ''=-. 在点1,e k π⎛⎫- ⎪⎝⎭处,其中k 为奇数,1,1e xx A f k π⎛⎫''=-= ⎪⎝⎭,1,0e xy B f k π⎛⎫''=-= ⎪⎝⎭,21,e e yy C f k π-⎛⎫''=-= ⎪⎝⎭, 由于20AC B -<,故1,e k π⎛⎫- ⎪⎝⎭不是极值点,其中k 为奇数.在点(e,)k π-处,其中k 为偶数,(e,)1xxA f k π''=-=,(e,)0xyB f k π''=-=,2(e,)e yyC f k π-''=-=,由于20AC B ->,且0A >,故(e,)k π-为极小值点,其中k 为偶数,且极小值为2e (e,)2f k π-=-.19.(本题满分12分)已知平面区域(,)|01D x y y x ⎧⎫=≤≤≥⎨⎬⎩⎭, (1)求平面区域D 的面积S .(2)求平面区域D 绕x 一周所形成的旋转体的体积.【解】(1)222144sec 1d d tan sec sin t S x t t t t tππππ+∞===⎰⎰⎰222244sin 1d d cos sin 1cos t t t t tππππ==--⎰⎰241cos 11ln2cos 12t t ππ-==+. (2) 222211111d d 1(1)14V x x x x x x ππππ+∞+∞⎛⎫⎛⎫==-=- ⎪ ⎪++⎝⎭⎝⎭⎰⎰.20.(本题满分12分)设平面区域D 位于第一象限,由曲线221x y xy +-=,222x y xy +-=与直线,0y y ==围成,计算221d d 3Dx y x y +⎰⎰.【解】221d d 3Dx y x y +⎰⎰30d d πθρ=⎰32201d sin 3cos πθρθθ=+⎰322011ln 2d 2sin 3cos πθθθ=+⎰ 32011ln 2d tan 2tan 3πθθ=+⎰==.21.(本题满分12分)设函数()f x在[,]a a-上有二阶连续导数.(1)证明:若(0)0f=,存在(,)a aξ∈-,使得21()[()()]f f a f aaξ''=+-;(2)若()f x在(,)a a-上存在极值,证明:存在(,)a aη∈-,使得21|()||()()|2f f a f aaη''≥--.【证明】(1)将()f x在x=处展开为22()()()(0)(0)(0)2!2!f x f xf x f f x f xδδ''''''=++=+,其中δ介于0与x之间.分别令x a=-和x a=,则21()()(0)()2!f af a f aξ'''-=-+,1aξ-<<,22()()(0)()2!f af a f aξ'''=+,20aξ<<,两式相加可得212()()()()2f ff a f a aξξ''''+-+=,又函数()f x在[,]a a-上有二阶连续导数,由介值定理知存在ξ∈12[,](,)a aξξ⊂-,使得12()()()2f ffξξξ''''+=,即21()[()()]f f a f aaξ=-+.(2)设()f x在x处取得极值,则()0f x'=.将()f x在x处展开为22000000()()()() ()()()()()2!2!f x x f x xf x f x f x x x f xδδ''''--'=+-+=+,其中δ介于0x与x之间.分别令x a =-和x a =,则2100()()()()2!f a x f a f x η''+-=+,10a x η-<<, 2200()()()()2!f a x f a f x η''-=+,02x a η<<, 两式相减可得222010()()()()()()22f a x f a x f a f a ηη''''-+--=-, 所以222010()()()()|()()|22f a x f a x f a f a ηη''''-+--=-221020|()|()|()|()22f a x f a x ηη''''+-≤+220012|()|[()()](|()|max(|()|,|()|))2f a x a x f f f ηηηη''''''''≤++-= 2200|()|[()()]2|()|2f a x a x a f ηη''''≤++-=,即21|()||()()|2f f a f a aη''≥--.22.(本题满分12分)设矩阵A 满足对任意的123,,x x x 均有112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A .(1)求A(2)求可逆矩阵P 与对角阵Λ,使得1-=P AP Λ.【解】(1)由112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A ,得112233*********x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭A ,即方程组123111211011x x x ⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪--=⎢⎥ ⎪ ⎪⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦0A 对任意的123,,x x x 均成立,故111211011⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A . (2)111101||211(2)20011011λλλλλλλλ---=--=+-----A E ,(2)(2)(1)0λλλ=-+-+=,特征值为1232,2,1λλλ=-==-.3111002211011011000⎛⎫⎛⎫ ⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,1011⎛⎫ ⎪=- ⎪ ⎪⎝⎭α;1111042231013013000--⎛⎫⎛⎫ ⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A E ,2431⎛⎫ ⎪= ⎪ ⎪⎝⎭α;211201************⎛⎫⎛⎫ ⎪ ⎪+=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,3102-⎛⎫ ⎪= ⎪ ⎪⎝⎭α,令123041(,,)130112-⎛⎫⎪==- ⎪⎪⎝⎭P ααα ,则1200020001--⎛⎫ ⎪== ⎪ ⎪-⎝⎭P AP Λ.。
考研数学二的考试范围概述考研数学二是研究生入学考试中的一门重要科目。
考生在准备考研数学二时,首先要了解考试的范围,以确定复习的重点和方向。
本文将介绍考研数学二的考试范围,帮助考生更好地备考。
一、高等数学1.极限与连续–数列极限与数列的收敛性–函数极限、连续的概念与性质–间断点与间断类型2.导数与微分–函数的导数与导数的概念与性质–可导函数与常用导数公式–高阶导数、隐函数与参数方程的微分3.微分中值定理与高阶导数的应用–罗尔定理、拉格朗日中值定理和柯西中值定理–泰勒公式与用泰勒公式解题4.幂级数与泰勒展开–幂级数收敛域、和函数性质以及收敛半径计算–函数的泰勒展开与用泰勒公式计算函数值5.重积分–二重积分与累次积分–二重积分的计算与应用–三重积分概念与计算方法6.曲线积分与曲面积分–第一类曲线积分与第一类曲面积分–第二类曲线积分与第二类曲面积分–曲线积分与曲面积分的计算与应用二、线性代数1.线性方程组–线性方程组的概念、解的充要条件以及解的表示–线性方程组解的结构性质–线性方程组的参数化表示2.矩阵与行列式–矩阵的基本概念与运算–矩阵的秩、逆矩阵与伴随矩阵–行列式的定义与性质3.线性空间–线性空间的定义与性质–子空间、维数与基–线性空间的同构与线性变换4.线性方程组的特殊解与通解–齐次线性方程组的解的结构–非齐次线性方程组的特殊解与通解5.特征值与特征向量–特征值、特征向量与特征方程–对角化与相似矩阵–线性变换的标准形三、概率论与数理统计1.随机事件与概率–随机事件的概念与运算–概率的公理化定义与性质–条件概率与乘法定理2.随机变量与概率分布–随机变量的概念与分类–离散型随机变量与连续型随机变量–二维随机变量与边缘分布3.随机变量的数字特征–数学期望与方差–协方差与相关系数–极限定理与大数定律4.抽样分布与中心极限定理–抽样分布的基本概念与性质–样本均值与样本方差的抽样分布–中心极限定理及其应用5.统计推断的基本方法–点估计与区间估计–假设检验基本原理与步骤–单总体参数检验6.多样本与拟合优度检验–多样本检验与方差分析–拟合优度检验与独立性检验总结考研数学二的考试范围主要包括高等数学、线性代数和概率论与数理统计三个部分。
2023年全国硕士研究生招生考试考研《数学二》真题及详解【完整版】一、选择题:1〜10小题,每小题5分,共50分。
在每小题给出的四个选项中, 合题目要求的,请将所选项前的字母填在答题纸指定位置上。
只有一个选项是最符1.曲线y = xln (e^-LA 的渐近线方程为()。
A. y=x+eB. y=x+l/eC. y=xD. y=x —1/e【试题答案】B【试题解析】由已知y = xln (e^ —\ JC 1xlnyk = lim — = lim ----X —00JQXTOO,则可得:limln e +X —00 I1=1b = lim (y-Ax) = lim XT8 ' / XToox-1扁仁上、—X=limxL|' 1、e +--------1_ l X-lyX —>00、x — l)1lim xln XToo1+limXToo所以斜渐近线方程为y=x+l/e 。
2.__,x<0函数 x/l +、2[(x + l)cosx,x > 0的原函数为(A.尸("In +— jv ) jv < 0(x + l)cos x - sin x, x > 0B.尸("In ^/1 + %2 —1, x V 0(x + l)cos x - sin x, x > 0C.In ^/1 + x 2 + x) x V 0(x + l)sin x + cos >In^|/1+%2+x1,jv V0D.F(x)=<(x+l)sin x+cos>0【试题答案】D【试题解析】当xWO时,可得:当x〉0时,可得:j f(x)ch=j(x+l)cos xdx=j(x+l)dsinx=(x+l)sin x-j sin xdx=(x+l)sin x+cos x+C2在x=O处,有:lim In@+J1+工2>G=G,lim(x+l)sin%+cos%+C2=1+C2由于原函数在(一8,+8)内连续,所以Ci=l+C2,令C2=C,则C1=1+C,故In1+%2+x1+C,x V0j/(x)dx=<(x+l)sin x+cos x+C,x>0In+x2+1,x<0令C=0,则f(x)的一个原函数为F(x)=<(x+l)sin x+cos>03.设数列{Xn},{yn}满足xi=yi=l/2,x n+i=sinx n,yn+i=y「,当n—8时()。
考研数学二知识点数学二是考研数学的一部分,它涵盖了许多重要的知识点。
作为考生,我们需要熟练掌握这些知识点,以便在考试中取得好成绩。
下面将介绍一些数学二的重要知识点。
一、线性代数线性代数是数学中的一个重要分支,它研究向量空间和线性变换等概念。
在考研数学二中,我们经常会接触到矩阵、向量、行列式等内容。
矩阵运算是线性代数的基础,我们需要掌握矩阵的加法、减法、乘法等运算规则。
此外,行列式是解线性方程组的有力工具,我们需要熟悉行列式的性质和计算方法。
二、概率论与数理统计概率论与数理统计是应用数学中的重要学科,它研究随机现象的规律和统计方法。
在考研数学二中,我们需要掌握概率论的基本概念和常见概率分布,如二项分布、正态分布等。
此外,数理统计是数据处理和分析的重要工具,我们需要掌握抽样、参数估计和假设检验等统计方法。
三、微分方程微分方程是数学中的重要分支,它研究函数与其导数之间的关系。
在考研数学二中,我们需要熟悉一阶和二阶常微分方程的解法,如分离变量法、齐次线性微分方程的解法等。
此外,线性微分方程和常系数线性微分方程也是考研的重点内容,我们需要熟悉它们的解法和性质。
四、数学分析数学分析是数学的基础学科,它研究极限、连续和导数等概念。
在考研数学二中,我们需要掌握函数的极限和连续性,了解函数的导数和不定积分的定义和计算方法。
此外,泰勒展开式和微分中值定理也是考研的重点内容,我们需要熟悉它们的应用和证明方法。
总结起来,数学二是考研数学的一部分,它涵盖了线性代数、概率论与数理统计、微分方程和数学分析等内容。
我们需要熟练掌握这些知识点,以便在考试中取得好成绩。
掌握矩阵运算和行列式的性质,理解概率分布和统计方法,熟练解常微分方程和线性方程组,了解函数的极限和连续性,这些都是取得好成绩的关键。
所以,我们要利用考前的时间,加强对这些知识点的复习和巩固,不断提高自己的数学水平。
只有做到理论联系实际,灵活运用所学知识,我们才能在考试中取得优异的成绩。
考研数学2真题及答案一.选择题1. 方程y = 3x - 2的图象是:A. 一条直线B. 一条抛物线C. 一个圆D. 一个椭圆解析:选项A2. 函数y = x^3的图象经过点(1, 1),那么函数y = x^3 - 1的图象经过的点是:A. (1, 1)B. (1, 0)C. (0, -1)D. (-1, 0)解析:选项D二.填空题1. 已知A为5阶矩阵,B为5元向量,则对于线性方程组Ax = B,以下哪项是其解集:A. 只有零解B. 唯一解C. 无穷解D. 既有零解又有无穷解解析:选项C2. 设f(x) = e^x,那么f'(x) = ?解析:f'(x) = e^x三.计算题1. 设a = (2, -1, 3),b = (1, 4, -2),则a与b的数量积为:解析:a · b = 2 * 1 + (-1) * 4 + 3 * (-2) = 2 - 4 - 6 = -82. 已知三阶行列式D = |1 2 3||2 3 1||3 1 2|计算D的值:解析:D = 1 * 3 * 2 + 2 * 1 * 3 + 3 * 2 * 1 - 3 * 3 * 3 - 2 * 1 * 1 - 1 * 2 * 2 = 6 + 6 + 6 - 27 - 2 - 4 = -15四.证明题证明:存在一个无穷多项式f(x),其中f(1) = 1,且对于任意正整数n,f(n) = n。
证明过程:考虑多项式f(x) = x,则显然满足f(1) = 1。
对于任意正整数n,有f(n) = n,因此f(x)满足题设条件。
综上所述,我们证明了存在一个无穷多项式f(x),其中f(1) = 1,且对于任意正整数n,f(n) = n。
以上是考研数学2真题及答案的相关内容,希望对您的学习有所帮助。
加油!。
2023年全国硕士研究生入学统一考试数学(二)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线1ln()1yx e x =+−的斜渐近线方程为( ) (A)y x e =+ (B)1y x e=+(C)y x = (D)1y x e=−【答案】B 【解析】1limlimln()11x x y ke x x →∞→∞==+=−,11lim()lim()lim[ln(]lim [ln(ln ]11x x x x b y kx y x x e x x e e x x →∞→∞→∞→∞=−==−=+−=+−−−111lim ln(1lim (1)(1)x x x x e x e x e→∞→∞=+==−−,所以渐进线方程为1y x e =+,答案为B(2)设0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( )(A)),0()(1)cos sin ,0x x F x x x x x ⎧⎪−≤=⎨+−>⎪⎩(B))1,0()(1)cos sin ,0x x F x x x x x ⎧⎪−+≤=⎨+−>⎪⎩(C)),0()(1)sin cos ,0x x F x x x x x ⎧⎪+≤=⎨++>⎪⎩(D))1,0()(1)sin cos ,x x F x x x x x ⎧⎪++≤=⎨++>⎪⎩【答案】D【解析】根据原函数的连续性,可排除(A)(C);再根据原函数的可导性,可排除选项(B),答案为(D) (3)已知{}n x ,{}n y 满足1112x y ==,1sin n n x x +=,21(1,2,)n n y y n +== ,则当n →∞时( )(A)n x 是n y 的高阶无穷小(B)n y 是n x 的高阶无穷小(C)n x 与n y 是等价无穷小(D)n x 与n y 是同阶但不等价的无穷小【答案】B【解析】由已知可得,{}n x ,{}n y 均单调递减,且12n y ≤,又因为sin x x 在(0,2π上单调递减,故2sin 1x x π<<,所以2sin x x π>,所以21112sin sin 24n n n n nn n n n n ny y y y y y x x x x x ππ++==≤=,依次类推可得,111100()444n nn n n n y y y n x x x πππ++⎛⎫⎛⎫≤≤≤≤=→→∞ ⎪ ⎪⎝⎭⎝⎭,故n y 是n x 的高阶无穷小,答案为B (4)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A)0,0a b <>(B)0,0a b >>(C)0,0ab =>(D)0,0ab =<【答案】C 【解析】0y ay by ′′′++=的解一共三种情形:①240a b Δ=−>,1212x xy C e C e λλ=+,但此时无论12,λλ取何值,y 在(,)−∞+∞上均无界;②240a b Δ=−=,12()xy C C x eλ=+,但此时无论λ取何值,y 在(,)−∞+∞上均无界;③240a b Δ=−<,12(cos sin )xy e C x C x αββ=+,此时若y 在(,)−∞+∞上有界,则需满足0α=,所以0,0a b =>,答案为(C)(5)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( ) (A)()f x 连续,(0)f ′不存在(B)(0)f ′不存在,()f x ′在0x =处不连续(C)()f x ′连续,(0)f ′′不存在(D)(0)f ′′存在,()f x ′′在0x =处不连续【答案】C 【解析】当0t =时,有0x y ==①当0t>时,3sin x t y t t=⎧⎨=⎩,可得sin 33x xy =,故()f x 右连续;②当0t<时,sin x ty t t=⎧⎨=−⎩,可得sin y x x =−,故()f x 左连续,所以()f x 连续;因为0sin 033(0)lim 0x x x y x ++→−′==;0sin 0(0)lim 0x x x y x −−→−−′==,所以(0)0f ′=;③当0x >时,1sin sin cos 333393x x x x x y ′⎛⎫′==+ ⎪⎝⎭,所以0lim ()0x y x +→′=,即()f x ′右连续;④当0x <时,()sin sin cos y x x x x x ′′=−=−−,所以0lim ()0x y x −→′=,即()f x ′左连续,所以()f x ′连续;考虑01sin cos 23393(0)lim 9x x x xf x ++→+′′==;0sin cos (0)lim 2x x x x f x −−→−−′′==−,所以(0)f ′′不存在,答案为C(6)若函数121()(ln )f dx x x αα+∞+=⎰在0αα=处取得最小值,则0α=( ) (A)1ln(ln 2)−(B)ln(ln 2)− (C)1ln 2(D)ln 2【答案】A 【解析】当0α>时,121()(ln )f dx x x αα+∞+=⎰收敛, 此时21122111111()ln (ln )(ln )(ln )(ln 2)f dx d x x x x x ααααααα+∞+∞+∞++===−=⎰⎰,故211111ln ln 2()(ln 2)(ln 2)(ln 2)f ααααααα′⎡⎤−′==−⎢⎥⎣⎦,令()0f α′=,解得0α=1ln(ln 2)−(7)设函数2()()x f x x a e =+,若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( )(A)[0,1)(B)[1,)+∞(C)[1,2)(D)[2,)+∞【答案】C 【解析】2()()x f x x a e =+,2()(2)x f x x x a e ′=++,2()(42)x f x x x a e ′′=+++,因为()f x 没有极值点,所以440a −≤;又因为曲线()y f x =有拐点,所以164(2)0a −+>,联立求解得:[1,2)a ∈(8)设A ,B 为n 阶可逆矩阵,*M 为矩阵M 的伴随矩阵,则*A E OB ⎛⎫= ⎪⎝⎭( ) (A)****A B B A O B A ⎛⎫−⎪⎝⎭(B)****B A A B O A B ⎛⎫−⎪⎝⎭(C)****B A B A OA B ⎛⎫−⎪⎝⎭(D)****A B A B OB A ⎛⎫−⎪⎝⎭【答案】B【解析】*11111A E A E A E A AB A B O B O B O B O B −−−−−⎛⎫−⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111***1*A B A A B A B B A A B O A B B OA B −−−−⎛⎫⎛⎫−−== ⎪ ⎪⎝⎭⎝⎭,答案为B (9)二次型222123121323(,,)()()4()f x x x x x x x x x =+++−−的规范形为( )(A)2212y y +(B)2212y y −(C)2221234y y y +−(D)222123y y y +−【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++−−222123121323233228x x x x x x x x x =−−+++二次型矩阵为211134143A ⎛⎫⎪=− ⎪ ⎪−⎝⎭,211134(7)(3)143E A λλλλλλλ−−−−=−+−=+−−−+ 故答案为B(10)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫ ⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A)33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭ (B)35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭ (C)11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D)15,8k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭【答案】D 【解析】令γ11221122k k l l ααββ=+=+,则有112211220k k l l ααββ+−−=,即12121212(,)0k k l l ααββ⎛⎫ ⎪ ⎪−−= ⎪ ⎪⎝⎭而121212211003(,)2150010131910011ααββ−−⎛⎫⎛⎫ ⎪ ⎪−−=−→− ⎪ ⎪⎪ ⎪−−⎝⎭⎝⎭所以1212(,,,)(3,1,1,1),TT k k l l c c R =−−∈,所以12(1,5,8)(1,5,8),T T c c c k k R γββ=−+=−=∈,答案为D二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =−是等价无穷小,则ab =________【答案】2−【解析】由已知可得:2222200022221(())()ln(1)2lim lim lim 1()cos (1())(1())2x x x x ax bx x x o x f x ax bx x g x e x x o x x o x →→→++−++++==−++−−+220221(1)(()2lim 13()2x a x b x o x x o x →++−+==+所以1310,22a b +=−=,即1,2a b =−=,所以2ab =−(12)曲线y =⎰的弧长为________43π【解析】由题意可得函数定义域为[x ∈,根据公式可得:2302sin 24cos L x t tdtπ====⎰304(1cos 2)t dt π=+=⎰43π+(13)设函数(,)z z x y =由2ze xz x y +=−确定,则2(1,1)2zx∂=∂_________【答案】32−【解析】代入(1,1)点可得,0z =,先代入1y =,可得21z e xz x +=−,两边对x 求导,2z e z z xz ′′++=,得(1)1z ′=两边再对x 求导,20z ze z e z z z xz ′′′′′′′++++=,代入(1,1)及0z =,(1)1z ′=得2(1,1)232zx∂=−∂(14)曲线35332x y y =+在1x =对应点处的法线斜率为________【答案】119−【解析】代入1x =得到1y =,两边对x 求导,242956x y y y y ′′=+,代入1x =,1y =可得:911y ′=,故1x =对应点处的法线斜率为1119y −=−′(15)设连续函数()f x 满足:(2)()f x f x x +−=,2()0f x dx =⎰,则31()f x dx =⎰_______【答案】12【解析】323211121()()()()(2)f x dx f x dx f x dx f x dx f x dx=+=++⎰⎰⎰⎰⎰[]2121111()()()022f x dx f x x dx f x dx xdx =++=+=+=⎰⎰⎰⎰(16)已知线性方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩有解,其中,a b 为常数,若0111412a a a =,则11120a a ab =_______【答案】8【解析】由题意可得:方程组系数矩阵秩为3,可得增广矩阵的秩也为3,即011110012002a a a ab =按照第四列进行行列式展开可得:144411011(1)122(1)11012a a a a a b a ++⋅−+⋅−⋅=所以111280a a ab =三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线:()()L y y x x e =>经过点2(,0)e ,L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距(1)求()y x ;(2)在L 上求一点,使得该点处的切线与两坐标轴所围三角形的面积最小,并求此最小面积【答案】(1)()(2ln )y x x x =− (2)33221(,)2e e ,最小面积是3e 【解析】(1)曲线L 上任一点(,)P x y 处的切线方程为()Y y y X x ′−=−,令0X =,则y 轴上的截距为Y y xy ′=−,则有x y xy ′=−,即11y y x′−=−,解得(ln )y x C x =−,其中C 为任意常数,代入2(,0)e 可得2C =,故()(2ln )y x x x =−(2)该点设为000(,(2ln ))x x x −,切线方程为0000(2ln )(1ln )()Y x x x X x −−=−− 令0X =,解得0Y x =;令0Y =,解得00ln 1x X x =−;所以该点处的切线与两坐标轴所围三角形的面积为:200011()22ln 1x S x XY x ==−求导00020(2ln 3)()2(ln 1)x x S x x −′=−,令0()0S x ′=,解得320x e =且为最小值点,最小面积为332()S e e =(18)(本题满分12分) 求函数2cos (,)2yx f x y xe=+的极值【答案】极小值为21(,2)2f e k e π−=−(k Z ∈) 【解析】先求驻点cos cos 0(sin )0y xy y f e x f xe y ⎧′=+=⎪⎨′=−=⎪⎩,解得驻点为1(,(21))e k π−−+和(,2)e k π−,其中k Z∈下求二阶偏导数,cos cos 2cos 1(sin )sin cos xx yxy y y yy f f e y f xe y xe y ⎧′′=⎪⎪′′=−⎨⎪′′=−⎪⎩代入1(,(21))e k π−−+(k Z ∈),解得210xxxy yy A f B f C f e −⎧′′==⎪⎪′′==⎨⎪′′==−⎪⎩,20AC B −<,故1(,(21))e k π−−+不是极值点; 代入(,2)e k π−(k Z ∈),解得210xxxy yy A f B f C f e ⎧′′==⎪⎪′′==⎨⎪′′==⎪⎩,20AC B −>且0A >,故(,2)e k π−是极小值点,其极小值为21(,2)2f e k e π−=−(k Z ∈) (19)(本题满分12分)已知平面区域{(,)01}D x y y x =≤≤≥(1)求D 的面积(2)求D 绕x 轴旋转所成旋转体的体积【答案】(1)ln(1S = (2)24V ππ=−【解析】(1)222214441tan sec csc ln csc cot tan sec D S x t tdt tdt t tt t ππππππ+∞====−⎰⎰⎰ln(1=+;(2)22222111111(1)1x V dx dx dx x x x x πππ+∞+∞+∞⎛⎫===− ⎪++⎝⎭⎰⎰⎰11arctan x x π+∞⎛⎫=−− ⎪⎝⎭24ππ=−(20)(本题满分12分)设平面有界区域D 位于第一象限,由曲线221x y xy +−=,222x y xy +−=与直线y =,0y =围成,计算2213Ddxdy x y +⎰⎰【解析】本题采用极坐标计算,322013Ddxdy d x y πθ=+⎰⎰⎰333222222000111ln 3cos sin 3cos sin 3cos sin d r d d πππθθθθθθθθθ===+++⎰⎰332220011111ln 2ln 2tan ln 22(3tan )cos 23tan 2d d ππθθθθθ=⋅=⋅==++⎰⎰(21)(本题满分12分) 设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a aη′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;【解析】(1)在0x =处泰勒展开,22()()()(0)(0)(0)2!2!f c f c f x f f x x f x x ′′′′′′=++=+, 其中c 介于0与x 之间;代入两个端点有:211()()(0),(0,)2!f f a f a a a ξξ′′′=+∈222()()(0)(),(,0)2!f f a f a a a ξξ′′′−=−+∈−两式相加可得:212()()()()2f f f a f a a ξξ′′′′++−=即122()()1[()()]2f f f a f a a ξξ′′′′++−=因为()f x 在[,]a a −上具有2阶连续导数,所以()f x ′′存在最大值M 与最小值m , 根据连续函数的介值性定理可得,12()()2f f m M ξξ′′′′+≤≤,所以存在(,)a a ξ∈−,使得12()()()2f f f ξξξ′′′′+′′=,即21()[()()]f f a f a aξ′′=+−成立;(2)若()f x 在(,)a a −内取得极值,不妨设0x 为其极值点,则由费马引理可得,0()0f x ′=将()f x 在0x 处泰勒展开,22000000()()()()()()()()()2!2!f d f d f x f x f x x x x x f x x x ′′′′′=+−+−=+−其中d 介于0x 与x 之间;代入两个端点有:210010()()()(),(,)2!f f a f x a x x a ηη′′=+−∈ 220020()()()(),(,)2!f f a f x a x a x ηη′′−=+−−∈−两式相减可得:221200()()()()()()22f f f a f a a x a x ηη′′′′−−=−−−−所以22120022()()11()()()()2222f f f a f a a x a x a a ηη′′′′−−=−−−− 22102021[()()()()]4f a x f a x aηη′′′′≤−++,记112()max[(),()]f f f ηηη′′′′′′=, 又因为22220000()()[()()]4a x a x a x a x a −++≤−++=,所以21()()()2f a f a f aη′′−−≤成立 (22)(本题满分12分)设矩阵A 满足对任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪⎪ ⎪−⎝⎭⎝⎭(1)求A(2)求可逆矩阵P 与对角矩阵Λ,使得1P AP −=Λ【答案】(1)111211011A ⎛⎫⎪=− ⎪⎪−⎝⎭11 /11 (2)401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭【解析】(1)因为任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭,即112233*********x x A x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭故可分别取单位向量100010001⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,可得100111100010211010001011001A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭所以111211011A ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭(2)111101101211221(2)2110110(2)1011E A λλλλλλλλλλλ−−−−−−−−=−+−=−+−=+−−−+−++−+101(2)211(2)(2)(1)20λλλλλλ−−=+−−=+−+− 所以A 的特征值为21,2−−,,下求特征向量: 当2λ=−时,解方程组(2)0E A x −−=,可得基础解系为1(0,1,1)T ξ=−;当1λ=−时,解方程组()0E A x −−=,可得基础解系为2(1,0,2)Tξ=−当2λ=时,解方程组(2)0E A x −=,可得基础解系为3(4,3,1)T ξ=令401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,有1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭成立。
考研数学数二满分经验分享
研究生考试网更新:2011-11-25 编辑:静子
发现论坛考数学一的还是比较多的,因为考的是数学二,概率、高数跟向量有关的等等都不涉及,所以从现在看,总体而言,数学二还是比较简单的,至少复习量没有那么大。
大家刚复习时,都把章节、大纲给定好了,但是起点都差不多一样,所以刚开始复习没有所谓的数学几比较难。
我相信,如果我当初要考数学一的话,花费的时间也不会比现在多多少,而掌握的程度也差不多了,所以,大家也不要歧视数学二。
因为很喜欢学数学,所以大一大二学数学还是比较用功的,不过学的程度当然不高了,很久没有接触数学,难免生疏不少,尽管有兴趣但是刚复习难度真不小,尤其是下册,其实有一份对数学兴趣还是很不错了,至少你很乐意去学习。
从暑假之前书本基本大致看完了,不算太早,当然,最初就是看课本了,那时候什么也不懂,就是看书,看定义,做课后练习题,我同学和我都是按同样的步骤,我复习时有个特点,就是不太乐意对答案,一方面是没有答案在手,不愿意买,也懒得对,另一方面是莫名奇妙的自信,总觉得自己写的都是对的,当然不会的题目还是想办法参考一下的。
不过我建议大家最好找到答案,看过程,看精确度,等到复习最后才发现,其实不会的真不多,而错误的原因很大程度上在于准确度不高,粗心等毛病,所以准确度和细心是整个复习过程中贯彻始终的,无论是刚开始还是复习的最后,这点我深有感悟,你会再多,算错了,抄错了,最后和你不会结果
是一样的,所以,千万要有耐心,你差的不是时间,而是克服你的惰性,不要眼高手低,养成勤于动手的习惯,久而久之,你会发现它的用处的。
其实第一次看书,可能觉得很难,也算是比较新的东西了,不过不用害怕,这是第一次你要克服的东西,需要掌握的东西一定想法弄懂(顺便说下,其实我用大纲解析的唯一目的是确定考试范围,至于什么要掌握,什么要理解我没有在意,毕竟刚开始都是一视同仁的,刚开始不用区分的太开,第一次是要尽量去理解的,而至于什么掌握啊,到后来你买些复习资料,做些题目,哪块特别重要,你会明白的),尽量不要把它撇开,不过之前你也可以大概过一下定义,知道你要面对的是什么,然后再开始第一轮复习。
看定义,看定理,看什么?要看定义使用的前提,使用的条件,这样你看完后以后碰到题很容易明白它要考察的是哪块内容,数学复习最高境界就是看到题目,你知道出题人考察的是哪块内容,他设置了怎样的陷阱,你怎样去避开它,看出出题人的心思,这与清楚明白定义是分不开的,所谓打基础就是这个意思。
就比如定积分的定义这个例子,你可能觉得定义复杂苦涩,但是如果你明白它就是一个一个小长方形面积的极限和,既然是极限那么它肯定跟求极限也能拉上关系,不就是明显一种思路吗?例子呢就是给你解题的步骤和思路,怎样解,怎样写参考的是例子,而且有时候一个简单的例子给你提供解题思路,让你开眼界,之后就是课后题目了,你定义理解的如何,
怎样应用,就在于这些题目,如果你没有举一反三还有记性特别好的话,尽量多练习,加深理解,一定不要懒惰哦。
很多人对于书本上的定理证明过程有疑问,到底有没有必要掌握,哪一年的数二真题不就是拿拉格朗日中值定理作文章,直接证明定理。
我同学有问:泰勒公式可以证明吗?柯西中值定理呢?当然不行了,你可以用它们去理解,但是考察的不还是书上证明吗?从另外想,知道它的思路既可以加深理解也可以用于其他方面,比如线性代数中
R(AB)<=min(R(A),R(B)),如果你掌握了这个证明你还可以得到,AB列向量是A列向量的线性表示,AB行向量是B行向量的线性表示,等等,足见掌握定理证明的作用了,不过可能你一时老忘记,等你做题你会明白的,
到时可以加强巩固。
看书本不要担心看的慢,不用害怕别人超过你,只有基础打牢了,你以后才能更占优势,‘让子弹飞一会’。
过完一遍,尽管你做了很多,但是不理解的还是很多,不会用的还是很多,你可以第二轮了。
我呢,看第二遍也就没有怎么再做课后题了,就是那些不会的,感觉不错的看看,这一遍要加强巩固,你时间也花了不少,忘记的也不少,这次在上次基础上更加注重理解,课后题目不用再做一遍,觉得掌握的还可以的可以找几道练练,我相信肯定没有第一次那么生了,你要还没掌握好的多做几道,还是注意精确和细心,勤动手。
还要多和同学讨论,看看别人怎么掌握的,不要自侍自己复习不错,每个人都有自己的有点,有些东西是你看书不能明白的。
至于其他练习题目嘛!你可以买本,但我记得当时我就看书了,看完书没敢看真题,那时候对真题什么难度不知道,听说很难,难就难在,应用强,技巧强,这是一般人看书看不出来的,需要复习资料。
当时也好像没出书,就到图书馆借书看了,说实话我看过一眼真题,只记得第一道题目是考察求极限时不能用加减直接无穷小代换,这是第一次感觉难度还有掌握方法与技巧的重要性,于是换了本书,不记得是哪个复习班的书目,2006年出的,有点老了,不过我可没有嫌弃,那个时候因为大三下学期,专业课不少,所以有时候到图书馆看两眼,那个时候有点心不在焉的感觉,后来就是这本书下定决心看的,看书的时候,我只知道,是不断从里面学东西,有时候感觉都看了书怎么还都是不会的,不过我也是很可以接受的,感受一下真正的数学,印象最深的就是数列证极限的方法,求极限的方法,还有变限积分,这些似乎都是新的,这个时候不会的越多反而会兴奋,因为学的空间有很大。
到最后你会发现剩下能学的东西不多了,只剩下重复的练习。
后来复习全书出了,当时没打算买,本想就这本书了,后来发现课后题目不会的很多,这就是我在数学论坛第一个帖子关于无界和导数那块,记得是战地黄花老师的解答让我恍然大悟,开始在数学版驻扎的,看了战地老师的讲座真是如获至宝,强烈推荐,暑假期间看了,对书本上那些定义的理解和深度应用更是掌握很多,不过后来买了复习全书,虽然书上没有掌握的不少,但是完全不同的高度看待问题,理解的深了,当然看书没那么难了,暑假匆匆看了这本书。
再说660〔数二内容少只有四百多〕题,第一次看是很早了,同学早买的,只知道了那个时候,不是看题而是看答案把选择题看完的,那时候真的觉得除了打击没别的了,后来看完复习全书再做的时候也不敢保证都掌握的不错,所以这本书真是查漏补缺的,要深层理解定义,这本书还是比较好的。
这期间在论坛学到不少,虽然数二的内容比较少,但好多东西还是相同的,大家相互学习氛围还是比较好了。
后来就是直接模拟题了,十月到十一月吧,400题,确实有难度,那个时候对数学还是比较有感觉的,说实话400题3个小时做完真不容易的,复习到现在算是有点小成了,不过遇到困难要心态好,不会的就把它看作自己缺的那块,补补,越往后一是数学没有了当时的激情,能学的空间不大了,可能有倦怠的感觉,这时候即便觉得数学不错,仍不要放弃,复习以前忘记的,这时候主要不是复习数学了,十二月中每天做套真题,因为之前动手不好,导致真题错误大都是粗心导致的错误,所以我一直强调要勤动手,细心,做真题你就有感觉的,剩下的就是练习准确度还有温习以往的。
如果大家觉得我复习太快没时模拟的多做真题,每一年真题就相当于把书本过了一遍。
最后几天把合工大几套题匆匆做了一遍,卡的时间,时间还可以吧。
大家要把握好时间,我感觉数学时间用的很多〔我用的有点多,来源于喜欢数学〕,大家一定要斟酌,英语每天都要进行,政治在以后一段每天都要看,专业课程因为书多,所以暑假就开始了,以后或多或少都看点。
总之,数学要打好基础,细心。
功到自然成。