软件测试中如何编写单元测试用例(白盒测试)
- 格式:doc
- 大小:81.00 KB
- 文档页数:6
白盒测试的测试方法白盒测试是一种测试软件系统内部结构和实现细节的测试方法,也被称为结构测试或透明盒测试。
白盒测试的目标是验证软件系统是否按照设计要求正确地执行,并且对系统内部的各个组件和逻辑路径进行全面的测试。
白盒测试需要测试人员具备一定的编程和代码理解能力,因为测试人员需要分析系统的源代码、程序逻辑和内部数据结构来设计测试用例,并理解代码的执行过程和运行结果。
白盒测试的方法有很多,下面将介绍几种常用的白盒测试方法:1. 代码覆盖率分析:代码覆盖率是衡量测试用例对代码的覆盖程度的指标。
常见的代码覆盖率分析方法有语句覆盖、判定覆盖、条件覆盖和路径覆盖等。
通过分析代码的覆盖率,可以确定测试用例的完备性和测试效果。
2. 边界值分析:边界值分析是一种设计测试用例的方法,通过测试系统在各个边界条件下的行为来发现潜在的错误和异常情况。
常见的边界条件包括最小值、最大值、临界值和非法输入等。
3. 错误推测:错误推测是一种通过主动插入错误来测试系统对异常情况的处理能力的方法。
测试人员可以在系统的关键位置插入错误代码或输入错误数据,观察系统的反应和处理结果,从而验证系统的健壮性和容错性。
4. 数据流分析:数据流分析是一种分析程序中数据流动路径的方法,用于评估程序的正确性和性能。
通过分析数据在程序中的产生、传递和使用过程,可以找出数据依赖性、数据冗余和数据丢失等问题。
5. 代码审查:代码审查是一种通过对软件源代码进行逐行检查和评审的方法,以发现存在的错误、潜在的问题和不良的编程实践。
代码审查可以通过静态分析工具和人工审查相结合的方式进行。
6. 单元测试:单元测试是白盒测试的一种重要方法,用于对系统中最小可测试单元进行测试。
单元测试一般通过驱动程序或测试框架来调用被测单元,并对其进行输入和输出结果的验证。
7. 逻辑覆盖测试:逻辑覆盖测试是一种通过测试不同的逻辑路径来覆盖程序的所有可能执行路径的方法。
通过设计合适的测试用例,可以验证程序的各种条件判断、循环控制和算术运算等逻辑运算的正确性。
测试⽤例设计--⿊盒测试、⽩盒测试测试⽤例设计设计数据库测试⽤例就是针对数据库的功能和性能⽽设计的测试⽅案,并编⼊测试计划中。
测试⽤例的设计既要考虑正常情况,也应考虑极限情况以及字段取最⼤值和最⼩值等边界情况。
因为测试的⽬的是暴露数据库中隐藏的错误和缺陷,所以在设计测试⽤例时要充分考虑那些易于发现错误和缺陷的测试⽤例。
好的测试⽤例应该有较⾼的发现错误和缺陷的概率。
⽩盒测试的测试⽤例设计逻辑覆盖法和基本路径测试法是计算机软件⽩盒测试⽤例设计的两个重要⽅法。
这两个⽅法也适合存储过程、触发器、嵌⼊式SQL等数据库程序的测试。
语句覆盖语句覆盖语句覆盖是设计⾜够多的测试⽤例,运⾏所测程序,使得程序中每条可执⾏语句⾄少被执⾏⼀次。
不过,每条可执⾏语句⾄少执⾏⼀次是最基本的要求,但是它不能保证发现逻辑运算和程序逻辑错误,且并不是所有的分⽀被执⾏过。
例6-1 考虑图6-2,语句覆盖的测试⽤例如表6-1所⽰。
注意,该组测试⽤例不能覆盖判断E为假的分⽀。
⽽且,如果判断C误写为X>2 or Y>3,该组测试⽤例仍能够实现语句覆盖,因此该组测试⽤例发现不了这个错误。
测试⽤例⼀般不是唯⼀的。
例如,表6-2的测试⽤例也可以实现语句覆盖。
判定覆盖判定覆盖⼜称分⽀覆盖,是设计⾜够多的测试⽤例,运⾏所测程序,使得程序中每个判断的取真分⽀和取假分⽀分别⾄少执⾏⼀次。
例6-2 考虑图6-2,其中C、E为判断。
判定覆盖的测试⽤例如表6-3所⽰。
虽然判定覆盖能够保证所有判断的取真分⽀和取假分⽀执⾏⾄少⼀次,但判定覆盖不能保证发现条件表达式错误。
例如,如果语句C误写为X>2 or Y>3,表6-3给出的测试⽤例仍能够实现判定覆盖,因此该组测试⽤例发现不了这个错误。
条件覆盖条件覆盖是设计⾜够多的测试⽤例,运⾏所测程序,使得每个判断的每个条件成分取真值和假值分别⾄少执⾏⼀次。
例6-3 考虑图6-2。
⾸先对所有判断的条件成分取值进⾏标记:v条件覆盖的测试⽤例如表6-4所⽰。
白盒测试的主要步骤白盒测试是软件开发过程中的一种测试方法,通过查看和分析软件的内部结构和代码来评估其质量。
在进行白盒测试时,测试人员需要按照一系列步骤来完成这个过程,以确保软件系统的功能和性能符合预期。
下面是白盒测试的主要步骤:1. 确定测试的目标和范围在进行白盒测试之前,首先需要明确测试的目标和范围。
测试人员需要了解要测试的软件系统的功能和特性,并确定需要覆盖的代码范围和测试重点。
2. 分析需求和设计文档测试人员需要仔细分析软件系统的需求和设计文档,以了解系统的架构和功能。
这有助于测试人员确定哪些部分需要进行测试以及如何设计测试用例。
3. 编写测试用例根据需求和设计文档,测试人员编写白盒测试用例。
测试用例应涵盖不同的代码路径和边界条件,以确保软件系统的每个功能都得到充分测试。
4. 执行测试用例测试人员执行编写的测试用例,同时记录测试结果。
在执行测试用例的过程中,需要验证软件系统的功能是否按照需求文档的规范工作,同时检查是否存在潜在的缺陷和问题。
5. 分析测试结果一旦测试完成,测试人员需要分析测试结果并检查是否存在失败的测试用例。
通过分析测试结果,可以确定软件系统的稳定性和质量,并识别需要改进的地方。
6. 跟踪和修复缺陷测试人员应该跟踪所有发现的缺陷,并确保这些缺陷得到及时修复。
跟踪缺陷的过程可以协助开发团队更好地理解和解决问题,提高软件系统的质量。
结语白盒测试是软件开发过程中必不可少的一环,通过深入了解和分析软件系统的内部结构来确保其质量和可靠性。
遵循上述步骤可以帮助测试人员高效地完成白盒测试,并为软件系统的发布提供有力的支持。
白盒测试中的测试自动化如何实现自动化的白盒测试流程白盒测试是软件测试中的一种重要方法,旨在对软件系统的内部运行逻辑和结构进行检查和验证。
随着软件开发行业和技术的不断进步,越来越多的测试工作开始采用自动化的方式来提高效率和准确性。
本文将探讨白盒测试中的测试自动化以及如何实现自动化的白盒测试流程。
一、白盒测试自动化的意义在传统的白盒测试中,测试人员需要手动编写测试用例、执行测试、记录结果等一系列操作。
这种方式不仅费时费力,还容易出现人为错误。
而通过测试自动化,可以将这些重复、规模庞大的任务交给计算机来完成,提高测试效率、减少错误和成本。
二、实现自动化的白盒测试流程1. 环境准备在进行白盒测试自动化之前,首先需要搭建好测试环境。
这包括安装测试工具、编写测试框架、配置测试环境等。
测试工具可以根据具体业务需求选择,常用的包括Selenium、JUnit、TestNG等。
测试框架则需要根据项目的特点和测试需求进行设计和搭建。
2. 制定测试计划测试计划是测试工作的重要组成部分,包括测试目标、测试策略、测试范围、测试资源等。
在进行白盒测试自动化时,需要针对自动化测试的特点进行相应的测试计划制定。
这包括确定测试的覆盖范围、编写测试用例、选择合适的自动化工具等。
3. 编写测试用例在自动化的白盒测试中,编写测试用例是至关重要的一步。
测试用例应该覆盖系统的各种业务逻辑和功能点,并针对每个功能点设计相应的测试场景。
测试用例需要准确明确地描述预期结果和输入条件,以便自动化工具可以进行匹配和验证。
4. 实施自动化测试一旦测试用例编写完成,就可以进行自动化测试的实施。
这包括使用自动化工具执行测试用例、记录测试结果、生成测试报告等。
在执行过程中,可以根据需要进行参数化、循环、分支等控制,以模拟各种测试场景。
5. 分析测试结果自动化测试完成后,就需要对测试结果进行分析和评估。
分析测试结果可以帮助找出系统的问题和缺陷,并进行相应的优化和改进。
白盒测试功能测试1. 介绍白盒测试是软件测试中的一种重要测试方法,旨在检查软件的内部结构和代码逻辑。
而在白盒测试中,功能测试则是其中的一个重要部分。
功能测试是验证软件系统的功能是否按照需求规格书中的描述正常工作的过程。
在本文中,我们将专注于讨论白盒测试中的功能测试。
2. 功能测试的定义功能测试是一种黑盒测试方法,可确保软件在用户操作下的正常工作。
在进行功能测试时,测试人员会根据需求规格书中的功能描述,校验软件是否符合预期的功能特性。
功能测试依赖于需求文档和用户场景,通过模拟用户操作来验证软件的功能。
3. 白盒测试中的功能测试流程在白盒测试中,功能测试主要包括以下几个步骤:•制定测试计划:确定测试的范围、测试的重点以及测试的时间安排。
•设计测试用例:根据功能需求书设计测试用例,覆盖主要的功能路径以及边界条件。
•执行测试用例:按照设计的测试用例逐一执行测试,记录测试结果和发现的问题。
•缺陷跟踪和修复:将测试中发现的问题记录在缺陷跟踪系统中,并协助开发人员修复问题。
•测试报告编写:整理测试过程中的执行结果和问题汇总,编写测试报告。
4. 功能测试的目标功能测试的主要目标是验证软件的功能是否正确实现,包括以下几个方面:•功能完整性:确保软件的功能完全实现,不缺失任何功能。
•功能正确性:验证软件的功能按照需求规格书中的描述正确执行。
•边界条件处理:测试软件在各种边界条件下的处理能力。
•用户友好性:验证软件的用户界面是否友好并易于操作。
•性能:对功能进行性能测试,确保软件在一定负载下稳定运行。
5. 功能测试的优势功能测试在白盒测试中具有以下几个优势:•覆盖面广:功能测试能够覆盖软件的主要功能,在用户角度上进行验证。
•易于理解:功能测试基于需求文档进行设计,易于理解和执行。
•发现问题及时:通过功能测试能够及时发现软件的功能问题,提高软件质量。
6. 总结在白盒测试中,功能测试是一个非常重要的测试环节,通过对软件功能的验证,可以确保软件的功能实现正确且完整。
1.白盒测试方法语句覆盖语句覆盖就是设计若干个测试用例, 运行所测程序,使得每一可执行语句至少执行一次. 对上面例子, 正好所有的可执行语句都在路径L1上, 所以选择路径L1来设计测试用例,就可覆盖所有的可执行语句.测试用例的设计格式如下:[输入(A,B,X), 预期的输出(A,B,X)]可设计出满足语句覆盖的测试用例是:[(2,0,4), (2,0,3)], 覆盖ace [L1]从每个执行语句都得到执行这一点来看, 语句覆盖的方法似乎能够比较全面地经验每个可执行语句. 但实际上并非如此.不足:假如该程序段中的两个逻辑运算有问题, 例如, 第一个判断中的逻辑运算符"∧"错写成了"∨", 或者第二个判断中的逻辑运算符"∨"错写成了"∧", 利用上面的测试用例, 仍然可覆盖所有4个可执行语句. 这说明虽然做到了语句覆盖测试, 但可能发现不了判断中逻辑运算中出现的错误.语句覆盖是最弱的逻辑覆盖准则.判定覆盖判定覆盖就是设计若干个测试用例, 运行所测程序, 使得程序中每个判断的取TURE分支和取FALSE分支至少经历一次. 判断覆盖又称分支覆盖.根据定义,可分别选择路径L1 和L2 或路径L3和L4设计测试用例.如果选择路径L1 和L2, 可得到满足要求的测试用例:[(2,0,4), (2,0,3)], 覆盖ace[L1][(1,1,1), (1,1,1)], 覆盖abd[L2]如果选择路径L3和L4, 可设计另一组测试用例:[(2,1,1), (2,1,2)], 覆盖abe[L3][(3,0,3), (3,1,1)], 覆盖acd[L4]可看出,测试用例的选择不唯一.不足: 假如第二个判断中的条件x>1被错写成了x<1, 利用上面两组测试用例, 仍能得到同样的结果. 这表明, 只是判断覆盖, 还不能保证一定能查出在判断的条件中存在的错误. 条件覆盖条件覆盖就是设计若干个测试用例, 运行所测程序, 使得程序中每个判断的每个条件的可能取值至少执行一次. 因此首先要对所有的条件加以标记:对第一个判断: 条件A>1 取TURE 时为T1, 取FALSE时为F1条件B=0 取TURE 时为T2, 取FALSE时为F2 对第二个判断: 条件A=2 取TURE 时为T3, 取FALSE时为F3条件x>1 取TURE 时为T4, 取FALSE时为F4根据这8个条件取值, 可分别设计如下两组测试用例:表1(第一组):表2(第二组)从表1和2可看出, 两组测试用例都满足了条件覆盖, 即覆盖了所有的条件取值.不足: 第一组测试用例不满足判定(分支)覆盖要求.判定-条件覆盖判定-条件覆盖就是设计足够的测试用例,使得判断中每个条件的所有可能取值至少执行一次,同时每个判断的所有可能判断结果至少执行一次. 也就是说要求各个判断的所有可能的条件取值组合至少执行一次.根据判定-条件覆盖的定义,只需设计下面两个测试用例便可覆盖例子的8个条件取值以及4个判断分支.不足: 表面来看, 判断-条件覆盖测试了所有条件的取值, 但实际上并非如此, 而是某些条件掩盖了另一些条件(由于多重条件判定). 例如, 对条件表达式(A>1) AND (B=0) 来说, 若(A>1)的测试结果为FALSE 时, 可以立即确定表达式的结果为FALSE, 这时往往就不再测试(B=0)的取值了, 因此, 条件(B=0)就没有被检查. 同样, 对条件表达式(A=2) OR (x>1)来说, 若(A=2)的测试结果为TURE时, 就立即确定表达式的结果为TURE, 这时, 条件(x>1)就没有被检查.因此, 采用判定-条件覆盖测试, 逻辑表达式中的错误不一定能够查得出来.条件组合覆盖条件组合覆盖就是实际足够得测试用例, 运行所测程序, 使得每个判断得所有可能得条件取值组合至少执行一次.针对上面的例子, 先对各个判断的条件取值组合加以标记:对每个判断,要求所有可能的条件取值的组合都必须取到. 每个判断各有两个条件, 所以各有4个条件取值的组合. 注: 这里没有要求第一个判断的4个组合再与第二个判断的4 个组合进行组合(16).设计4个测试用例, 就可覆盖上面8种条件组合.这些测试用例覆盖了所有条件的可能取值的组合, 覆盖了所有判断的可取分支.不足: 没有覆盖路径L4, 这样测试还不完全.路径覆盖路径测试就是设计足够的测试用例, 覆盖程序中所有可能的路径. 可设计下面的4个测试用例覆盖全部4条路径.不足: 没有全部覆盖判断的条件取值的组合. 如②③⑥测试用例的组合和优化对该例子, 采用逻辑覆盖方法中的一种,都不能满足所有需求, 如果每种方法都采用, 又有测试用例的重复. 如何用最少的测试例而实现最多的需求? 在测试设计中, 是一个值得考虑和解决的问题. 对本例子, 我们采用条件组合覆盖和路径覆盖两种方法设计测试用例, 并进行优化, 可得采用上面的6个测试用例, 可满足所有逻辑覆盖测试.注1:基本路径测试: 实际中, 一个模块中的路径可能非常多, 由于时间和资源, 不可能一一测试到. 这就需要把测试所有可能路径的目标减少到测试足够多的路径以获得对于模块的信心. 要测试的最小路径集--基本测试路径集要保证: ①每个确定语句的每一个方向要测试到;②每条语句最少执行一次.由于时间, 有关基本路径测试的方法这里省略.注2: 循环测试: 测试循环是一种特殊的路径测试. 因为循环比其他语句都复杂一些,循环测试值得一提.循环中错误的发生机会比其他代码构成部分都多.因此对于任何给定的循环的测试应该包括测试下面每一个条件的测试用例:①循环不执行;②执行一次循环;③执行两次循环;④反映执行典型的循环的执行次数;⑤如果有最大循环次数,最大循环次数减一;⑥最大循环次数;⑦大于最大循环次数. 对于增量和减量不是 1 的FOR 语句,要特别注意, 因为程序员习惯1 增量.注3: 循环嵌套: 循环嵌套使逻辑的次数呈几何级数增长. 设计测试嵌套循环的测试用例应该包括的测试条件有: ①把外循环设置为最小值并运行内循环所有可能的情况;②把内循环设置为最小值并运行外循环所有可能的情况;③把所有的循环变量都设置为最小值运行;④把所有的循环变量都设置为最大值运行;⑤把外循环设置为最大值并运行内循环所有可能的情况;⑥把内循环设置为最大值并运行外循环所有可能的情况.注4: 边界值测试: 是指专门设计用来测试当条件语句中引用的值处在边界或边界附近时系统反映的测试. 被测试语句的最好的例子就是"IF--THEN...ELSE-ENDIF"部分.这样语句的例子如:IF a<=123 THENb=1ELSEIF a>=123 THENb=2ELSEb=31ENDIF上面例子的边界值测试用例应该至少包括a的以下值: 122,123,124. 当A=123时, b=1还是2?.2.黑盒测试规范(规格)导出法规范导出的测试是根据相关的规范描述来设计测试用例。
一、白盒测试概念1、定义白盒测试又称结构测试、透明盒测试、逻辑驱动测试、基于代码的测试。
盒子指被测试的软件,白盒指盒子是可视的。
白盒测试是一种测试用例设计方法,测试人员依据程序内部逻辑结构相关信息,设计或选择测试用例。
白盒测试主要针对被测程序的源代码,主要用于软件验证,不考虑软件的功能实现,只验证内部动作是否按照设计说明书的规定进行。
2、目的我们一方面注重软件功能需求的实现,另一方面还要注重程序逻辑细节,主要是因为软件自身的缺陷,具体如下:1)逻辑错误和不正确假设与一条程序路径被运行的可能性成反比。
日常处理往往被很好地了解,而“特殊情况”的处理则难于发现。
2)我们经常相信某逻辑路径不可能被执行,而事实上,它可能在正常的基础上被执行。
程序的逻辑流有时是违反直觉的,只有路径测试才能发现这些错误。
3)代码中的笔误是随机且无法杜绝的。
笔误出现在主流上和不明显的逻辑路径上的机率是一样的。
很多被语法检查机制发现,但是其他的会在测试开始时才会被发现。
4)功能测试本身的局限性。
如果程序实现了没有被描述的行为,功能测试是无法发现的,例如病毒,而白盒测试很容易发现它。
3、目标采用白盒测试必须遵循以下几条原则,才能达到测试的目标:1)保证一个模块中的所有独立路径至少被测试一次。
2)所有逻辑值均需测试真(true) 和假(false) 两种情况。
3)检查程序的内部数据结构,保证其结构的有效性。
4)在上下边界及可操作范围内运行所有循环。
4、黑白灰区别黑盒测试技术:也称功能测试或数据驱动测试,只关注规格说明中的功能,测试者在程序接口对软件界面和软件功能进行测试,它只检查实现了的功能是否按照“用户需求说明书”的规定正常使用,程序是否能适当地接收输入数据而产生正确的输出信息,并且保持外部信息(如数据库或文件)的完整性。
主要用于软件确认测试,结合兼容、性能测试等方面,但黑盒测试不能保证已经实现的各个部分都被测试到。
黑盒测试适用于各阶段测试。
软件单元测试计划引言软件单元测试是软件开发过程中的一个重要环节,通过对软件的各个单元进行测试,可以提高软件的质量、稳定性和可靠性。
本文档旨在制定软件单元测试计划,明确测试的目的、测试环境、测试方法和测试计划。
测试目的软件单元测试的主要目的是验证软件各个单元的功能正确性和稳定性,同时提前发现并纠正潜在的缺陷。
通过单元测试,可以提高代码的可读性和可维护性,减少后期调试和修复的成本。
此外,单元测试还可以帮助开发人员理解代码的行为和逻辑。
测试环境在软件单元测试的环境中,需要具备以下条件和资源:•操作系统:Windows 10•开发环境:Visual Studio 2019•测试框架:NUnit•版本控制工具:Git•测试数据:根据测试用例准备相应的测试数据•资源要求:具备足够的计算机性能和存储空间测试方法软件单元测试可采用以下方法进行:1.黑盒测试:根据需求和功能描述,设计测试用例进行功能验证。
主要验证软件的输入输出是否符合预期。
2.白盒测试:通过检查代码的逻辑路径和条件覆盖,设计测试用例进行代码覆盖率验证。
主要验证代码的执行路径和边界条件。
3.单元测试框架:使用NUnit框架进行单元测试的自动化执行和管理,提高测试效率和可维护性。
4.手动测试:通过手动操作和观察,验证软件的交互和界面。
主要验证用户操作的正确性和友好性。
测试计划软件单元测试计划的具体步骤如下:1.确定测试范围:根据软件功能和需求,确定需要测试的各个单元。
2.设计测试用例:根据单元的功能和预期结果,设计相应的测试用例。
3.准备测试数据:根据测试用例准备相应的测试数据。
4.编写测试代码:根据测试用例编写相应的测试代码。
5.执行测试:使用NUnit框架执行测试代码,记录测试结果和代码覆盖率。
6.分析测试结果:根据测试结果分析并处理潜在的缺陷,修复代码中的问题。
7.生成测试报告:根据测试结果和分析,生成测试报告并记录测试覆盖率。
8.提交代码:根据测试结果和分析,将修复后的代码提交到版本控制工具。
白盒测试包括哪些测试方法和步骤白盒测试是软件测试中一种重要的测试方式,通过检查程序内部结构、逻辑、代码等来评估系统的正确性和质量。
在进行白盒测试时,测试人员需要使用多种测试方法和步骤来确保软件程序没有隐藏的错误或漏洞。
常见的白盒测试方法1.语句覆盖(Statement Coverage): 这是最基本的白盒测试方法之一,通过执行所有的程序语句至少一次来检查测试用例的完成程度。
2.判定覆盖(Decision Coverage): 确保每个条件语句的每个判定结果都被覆盖到,以充分验证程序的逻辑分支。
3.条件覆盖(Condition Coverage): 确保每个条件的True和False都至少被执行一次,进一步测试程序的逻辑路径。
4.路径覆盖(Path Coverage): 确保程序的所有可能路径都被覆盖到,以检查程序流程的完整性。
5.循环覆盖(Loop Coverage): 针对程序中的循环结构,测试循环的执行次数、边界条件等,确保循环逻辑正确。
白盒测试的基本步骤1.制定测试计划: 确定测试的目标、范围和方法,制定详细的测试计划,明确测试资源和时间。
2.编写测试用例: 根据需求和设计文档编写测试用例,涵盖语句覆盖、分支覆盖等各种覆盖要求。
3.执行测试用例: 按照测试计划执行编写好的测试用例,并记录测试结果,包括通过和失败的情况。
4.分析测试结果: 对测试结果进行分析,查找失败的用例产生的原因,定位问题的根源。
5.修改代码: 根据测试结果对代码进行修改和调试,修复出现的错误或漏洞。
6.重新测试: 在修改代码后重新执行相应的测试用例,确认问题是否已经解决。
7.结束测试: 当所有测试用例都通过,确认软件符合要求时,测试即可结束。
总的来说,白盒测试是一种全面、细致的测试方式,需要结合多种测试方法和步骤来保证软件质量和稳定性。
通过充分的白盒测试,可以有效减少软件在生产环境中出现的问题,提高软件的可靠性和性能。
白盒测试白盒测试(White-box Testing,又称逻辑驱动测试,结构测试)是把测试对象看作一个打开的盒子。
利用白盒测试法进行动态测试时,需要测试软件产品的内部结构和处理过程,不需测试软件产品的功能。
白盒测试又称为结构测试和逻辑驱动测试。
白盒测试法的覆盖标准有逻辑覆盖、循环覆盖和基本路径测试。
其中逻辑覆盖包括语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、条件组合覆盖和路径覆盖。
六种覆盖标准:语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、条件组合覆盖和路径覆盖发现错误的能力呈由弱至强的变化。
语句覆盖每条语句至少执行一次。
判定覆盖每个判定的每个分支至少执行一次。
条件覆盖每个判定的每个条件应取到各种可能的值。
判定/条件覆盖同时满足判定覆盖条件覆盖。
条件组合覆盖每个判定中各条件的每一种组合至少出现一次。
路径覆盖使程序中每一条可能的路径至少执行一次。
白盒测试也称结构测试或逻辑驱动测试,它是知道产品内部工作过程,可通过测试来检测产品内部动作是否按照规格说明书的规定正常进行,按照程序内部的结构测试程序,检验程序中的每条通路是否都有能按预定要求正确工作,而不顾它的功能,白盒测试的主要方法有逻辑驱动、基路测试等,主要用于软件验证。
"白盒"法全面了解程序内部逻辑结构、对所有逻辑路径进行测试。
"白盒"法是穷举路径测试。
在使用这一方案时,测试者必须检查程序的内部结构,从检查程序的逻辑着手,得出测试数据。
贯穿程序的独立路径数是天文数字。
但即使每条路径都测试了仍然可能有错误。
第一,穷举路径测试决不能查出程序违反了设计规范,即程序本身是个错误的程序。
第二,穷举路径测试不可能查出程序中因遗漏路径而出错。
第三,穷举路径测试可能发现不了一些与数据相关的错误。
白盒测试六种覆盖方法摘要:白盒测试作为测试人员常用的一种测试方法,越来越受到测试工程师的重视。
白盒测试并不是简单的按照代码设计用例,而是需要根据不同的测试需求,结合不同的测试对象,使用适合的方法进行测试。
第三章JUnit单元测试实验1 开始使用JUnit实验目的1、学习使用进行单元测试;2、掌握编写测试代码的方法;3、应用JUnit进行单元测试,掌握最佳实践编写测试代码.实验环境1、Windows环境,MyEclipse或Eclipse,.2、每个学生操作1台电脑.实验原理JUnit是一个开源的Java编程语言的单元测试框架,最初由 Erich Gamma 和 Kent Beck 编写.Junit测试是一种白盒测试工具.JUnit是一套框架,继承TestCase类,就可以用Junit进行自动测试了.具有JUnit经验对于应用“测试驱动开发TDD”的程序开发模型是非常重要的.JUnit本质上是一套框架,即开发者制定了一套条条框框,遵循这此条条框框要求编写测试代码,如继承某个类,实现某个接口,就可以用JUnit进行自动测试了.由于JUnit相对独立于所编写的代码,可以测试代码的编写可以先于实现代码的编写,XP 中推崇的 test first design的实现有了现成的手段:用JUnit写测试代码,写实现代码,运行测试,测试失败,修改实现代码,再运行测试,直到测试成功.以后对代码的修改和优化,运行测试成功,则修改成功.Java 下的 team 开发,采用 cvs版本控制 + ant项目管理 + JUnit 集成测试的模式时,通过对ant的配置,可以很简单地实现测试自动化.实验内容根据下面的实验步骤完成实验.1、JUnit包下载.1 从下载Junit,打开该链接,会有一个下载链接,下载,保存在用户机的文件系统中.2 解包,得到如图3-1的解包文件.图1 Junit解包文件表1 Junit文件说明文件/目描述录JUnit框架结构、扩展和测试运行器的二进制发布JUnit的源代码,包括一个Ant 的buildfile文件junit是个目录,内有JUnit自带的用JUnit编写的测试示例程序javadoc JUnit完整的API文档doc一些文档和文章,包括“Test Infected: Programmers Love Writing Tests”和其它一些资料,可以帮助我们入门.3 配置以JUnit4.8.2为例.步骤如下:①右击“我的电脑”-“属性”-高级-环境变量;②在系统变量中选择“CLASSPATH”如果没有则新建一个,变量名CLASSPATH,变量值d:\junit4.8.2\如果有CLASSPATH,将d:\junit4.8.2\加入到变量值即可,多个中间需用;隔开.图2 Junit配置成功4 检验:运行中输入cmd输入命令:java 配置成功,如图2所示.2、编写JUnit测试用例.使用JUnit 的最佳实践:(1)新建一个名为test的source folder,用于存放测试类源代码;(2)目标类与测试类应该位于同一个包下面,这样测试类中就不必导入源代码所在的包,因为他们位于同一个包下面;(3)测试类的命名规则:假如目标类是Calculator,那么测试类应该命名为TestCalculator或者是CalculatorTest.下面将以一个具体的实例进行说明.1 新建一Java Project.图3 新建Java Project2 配置构建路径.图4 配置构建路径 3 Add Library-JUnit 4.图5 Add Library图6 选择JUnit 41图7 选择JUnit 424 建一个包并在此包下建一个除法类:Divide.图8 类DivideDivide类的程序源代码如下所示:package ;public class Divide {private static int result;public void divide int num{result/=num;}public int getResult{return result;}public void setResult int result代码编写完成后,进行调试编译,确保没有语法错误.5 右键Divide类.图9 新建JUnit Test Case1图10 新建JUnit Test Case2图11 新建JUnit Test Case3MyEclipse会自动为测试类取名:被测试类+Test,单击Next就可以了.根据图12选择需要进行测试的方法.注意:测试类之所以使用“Test”开头或“Test”结尾,是为了更好的区分测试类与被测试类.图12 选择需要测试的方法6 创建测试用例.首先创建一个默认的测试用例.图13 产生默认的测试用例7 执行测试用例.如图14所示.测试结果:红色,测试失败.图14 运行测试用例图15 测试结果所有类测试结果8 修改测试用例:.具体代码如图16所示.新测试用例运行后的测试结果如图17所示.注意:测试方法必须使用注解修饰. 测试方法必须使用 public void 修饰,而且不能带有任何参数.测试方法在中没有要求,但是为了使得命名意义,一般推荐采用“test”+“被测试方法”的命名规则.assertEquals 是由JUnit 提供的一系列判断测试结果是否正确的静态断言方法位于类中之一,我们使用它将执行结果 result 和预期值“result”进行比较,来判断测试是否成功.图16 修改后的测试用例图17 修改后的测试用例的测试结果绿色的进度条提示我们,测试运行通过了.但现在就宣布代码通过了单元测试还为时过早.记住:你的单元测试代码不是用来证明你是对的,而是为了证明你没有错.因此单元测试的范围要全面,比如对边界值、正常值、错误值得测试;对代码可能出现的问题要全面预测,而这也正是需求分析、详细设计环节中要考虑的.3、应用JUnit对类WordDealUtil编写测试代码.(1)被测试程序说明:对名称、地址等字符串格式的内容进行格式检查.将Java对象名称每个单词的头字母大写按照数据库命名的习惯进行格式化格式化后的数据import 对名称、地址等字符串格式的内容进行格式检查或者格式化的工具类/public class WordDealUtil {/将Java对象名称每个单词的头字母大写按照数据库命名的习惯进行格式化格式化后的数据为小写字母,并且使用下划线分割命名单词例如:employeeInfo 经过格式化之后变为employee_infoparam name Java对象名称/public static String wordFormat4DBString name{Pattern p = "A-Z";Matcher m = name;StringBuffer sb = new StringBuffer;while{sb, "_"+;}return sb.toString.toLowerCase;}}//测试wordFormat4DB正常运行的情况Test public void wordFormat4DBNormal{String target = "employeeInfo";String result = target;assertEquals"employee_info", result;}}推荐每编写完一个测试方法,则执行”run”,看测试结果,结果应该是通过的.测试结果通过:(3)继续添加测试代码,并运行看测试结果.public class TestWordDealUtil {//测试 null 时的处理情况Test public void wordFormat4DBNull{String target = null;String result = target;assertNullresult;}//测试空字符串的处理情况Test public void wordFormat4DBEmpty{ String target = "";String result = target;assertEquals"", result;}//测试当首字母大写时的情况Test public void wordFormat4DBegin{ String target = "EmployeeInfo";String result = target;assertEquals"employee_info", result;}//测试当尾字母为大写时的情况Test public void wordFormat4DBEnd{ String target = "employeeInfoA";String result = target;assertEquals"employee_info_a", result;再次运行测试.很遗憾,JUnit 运行界面提示我们有两个测试情况未通过测试——当首字母大写时得到的处理结果与预期的有偏差,造成测试失败failure;而当测试对null 的处理结果时,则直接抛出了异常——测试错误error.显然,被测试代码中并没有对首字母大写和 null 这两种特殊情况进行处理.图18 JUnit测试运行结果(4)修改测试代码,直到测试通过.修改以后的代码:测试结果:实验小结通过本次实验掌握了Junit单元测试的环境配置,以及基本操作步骤,学习到了JInit单元测试的作用以及如何修改错误,对以后进行软件测试方面收获非常大.经过这次理论学习,明白了要求掌握的知识对于我今后的作用.这让我明确了以后学习的目标,在不断学习软件编程的同时,也应该继续软件测试的深入学习.。
实训白盒测试用例设计实训1、实训目的1、掌握白盒测试用例的设计方法。
2、综合运用所学的白盒测试方法设计测试用例。
2、实训准备1、白盒测试用例的设计方法。
2、测试用例模板。
3、实训内容3.1基本训练实验一:下面是快速排序算法中的一趟划分算法,其中datalist是数据表,它有两个数据成员:一是元素类型为Element的数组V,另一个是数组大小n。
算法中用到两个操作,一是取某数组元素V[i]的关键码操作getKey( ),一是交换两数组元素内容的操作Swap( ):int Partition ( datalist &list, int low, int high ) {//在区间[ low, high ]以第一个对象为基准进行一次划分,k返回基准对象回放位置。
int k = low; Element pivot = list.V[low]; //基准对象for ( int i = low+1; i <= high; i++ ) //检测整个序列,进行划分if ( list.V[i].getKey ( ) < pivot.getKey( ) && ++ k != i ) Swap ( list.V[k], list.V[i] ); //小于基准的交换到左侧去Swap ( list.V[low], list.V[k] ); //将基准对象就位return k; //返回基准对象位置}(1)试画出它的程序流程图;(2)试利用路径覆盖方法为它设计足够的测试用例(循环次数限定为0次,1次和2次)。
实验二:下面是选择排序的程序,其中datalist是数据表,它有两个数据成员:一是元素类型为Element的数组V,另一个是数组大小n。
算法中用到两个操作,一是取某数组元素V[ i]的关键码操作getKey ( ),一是交换两数组元素内容的操作Swap( ):void SelectSort ( datalist & list ) {//对表list.V[0]到list.V[n-1]进行排序,n是表当前长度。
白盒测试有哪些测试方法和方法白盒测试是软件测试中一种非常重要的测试方法,它主要是针对软件内部结构,通过对代码逻辑和内部数据的分析来进行测试,以确保软件系统的质量和稳定性。
在进行白盒测试时,测试人员需要深入了解软件的内部结构和实现细节,以便正确编写测试用例和进行有效的测试。
白盒测试通常由开发人员或专门的测试人员来执行,下面将介绍一些常见的白盒测试方法和技巧。
1. 代码覆盖率测试代码覆盖率测试是一种常见的白盒测试方法,它通过分析测试用例执行时代码的覆盖情况来评估测试的完整性和覆盖范围。
常见的代码覆盖率测试包括语句覆盖、分支覆盖、路径覆盖等。
2. 数据流测试数据流测试是一种通过分析程序中数据的传递路径和变换关系来进行测试的方法。
通过对程序中的数据流进行分析,可以发现潜在的数据异常和错误处理逻辑不完整的问题。
3. 边界值分析边界值分析是一种针对输入和输出数据的边界值进行测试的方法。
通过在边界值附近设计测试用例,可以有效地发现输入输出边界值处理不当或越界错误的问题。
4. 条件测试条件测试是一种通过设计测试用例来覆盖程序中各种条件分支和逻辑判断的测试方法。
通过对不同条件下的程序执行路径进行测试,可以检查条件处理逻辑是否正确和完整。
5. 控制流测试控制流测试是一种通过对程序控制流程进行测试的方法,主要是检查程序执行路径的正确性和逻辑的完整性。
通过设计测试用例来覆盖不同的控制流程,可以有效地发现程序中的逻辑错误。
总的来说,白盒测试是一种通过分析软件内部结构和实现细节来进行测试的方法,它可以帮助发现程序中的逻辑错误和潜在的问题,提高软件系统的质量和稳定性。
通过合理使用上述的测试方法,可以更加全面地进行白盒测试,确保软件系统的质量和可靠性。
以上就是关于白盒测试的一些常见的测试方法和技巧,希望对您有所帮助。
如果您有任何问题或需要进一步了解,欢迎随时与我们联系。
软件测试中如何编写单元测试用例(白盒测试)测试用例(Test Case)是为某个特殊目标而编制的一组测试输入、执行条件以及预期结果,以便测试某个程序路径或核实是否满足某个特定需求。
测试用例(Test Case)目前没有经典的定义。
比较通常的说法是:指对一项特定的软件产品进行测试任务的描述,体现测试方案、方法、技术和策略。
内容包括测试目标、测试环境、输入数据、测试步骤、预期结果、测试脚本等,并形成文档。
不同类别的软件,测试用例是不同的。
不同于诸如系统、工具、控制、游戏软件,管理软件的用户需求更加不统一,变化更大、更快。
笔者主要从事企业管理软件的测试。
因此我们的做法是把测试数据和测试脚本从测试用例中划分出来。
测试用例更趋于是针对软件产品的功能、业务规则和业务处理所设计的测试方案。
对软件的每个特定功能或运行操作路径的测试构成了一个个测试用例。
随着中国软件业的日益壮大和逐步走向成熟,软件测试也在不断发展。
从最初的由软件编程人员兼职测试到软件公司组建独立专职测试部门。
测试工作也从简单测试演变为包括:编制测试计划、编写测试用例、准备测试数据、编写测试脚本、实施测试、测试评估等多项内容的正规测试。
测试方式则由单纯手工测试发展为手工、自动兼之,并有向第三方专业测试公司发展的趋势。
要使最终用户对软件感到满意,最有力的举措就是对最终用户的期望加以明确阐述,以便对这些期望进行核实并确认其有效性。
测试用例反映了要核实的需求。
然而,核实这些需求可能通过不同的方式并由不同的测试员来实施。
例如,执行软件以便验证它的功能和性能,这项操作可能由某个测试员采用自动测试技术来实现;计算机系统的关机步骤可通过手工测试和观察来完成;不过,市场占有率和销售数据(以及产品需求),只能通过评测产品和竞争销售数据来完成。
既然可能无法(或不必负责)核实所有的需求,那么是否能为测试挑选最适合或最关键的需求则关系到项目的成败。
选中要核实的需求将是对成本、风险和对该需求进行核实的必要性这三者权衡考虑的结果。
确定测试用例之所以很重要,原因有以下几方面。
测试用例构成了设计和制定测试过程的基础。
测试的“深度”与测试用例的数量成比例。
由于每个测试用例反映不同的场景、条件或经由产品的事件流,因而,随着测试用例数量的增加,您对产品质量和测试流程也就越有信心。
判断测试是否完全的一个主要评测方法是基于需求的覆盖,而这又是以确定、实施和/或执行的测试用例的数量为依据的。
类似下面这样的说明:“95 % 的关键测试用例已得以执行和验证”,远比“我们已完成95 % 的测试”更有意义。
测试工作量与测试用例的数量成比例。
根据全面且细化的测试用例,可以更准确地估计测试周期各连续阶段的时间安排。
测试设计和开发的类型以及所需的资源主要都受控于测试用例。
测试用例通常根据它们所关联关系的测试类型或测试需求来分类,而且将随类型和需求进行相应地改变。
最佳方案是为每个测试需求至少编制两个测试用例:·一个测试用例用于证明该需求已经满足,通常称作正面测试用例;·另一个测试用例反映某个无法接受、反常或意外的条件或数据,用于论证只有在所需条件下才能够满足该需求,这个测试用例称作负面测试用例。
前段时间公司进行有关测试的培训,集成测试,性能测试,压力测试说了很多。
由于本人还处于Coder阶段,只是对单元测试有了些了解。
写下来怕以后自己忘记了。
都是些自己的看法,不一定准确,欢迎高手指教。
一、单元测试的概念单元通俗的说就是指一个实现简单功能的函数。
单元测试就是只用一组特定的输入(测试用例)测试函数是否功能正常,并且返回了正确的输出。
测试的覆盖种类1.语句覆盖:语句覆盖就是设计若干个测试用例,运行被测试程序,使得每一条可执行语句至少执行一次。
2.判定覆盖(也叫分支覆盖):设计若干个测试用例,运行所测程序,使程序中每个判断的取真分支和取假分支至少执行一次。
3.条件覆盖:设计足够的测试用例,运行所测程序,使程序中每个判断的每个条件的每个可能取值至少执行一次。
4.判定——条件覆盖:设计足够的测试用例,运行所测程序,使程序中每个判断的每个条件的每个可能取值至少执行一次,并且每个可能的判断结果也至少执行一次。
5.条件组合测试:设计足够的测试用例,运行所测程序,使程序中每个判断的所有条件取值组合至少执行一次。
6.路径测试:设计足够的测试用例,运行所测程序,要覆盖程序中所有可能的路径。
用例的设计方案主要的有下面几种:条件测试,基本路径测试,循环测试。
通过上面的方法可以实现测试用例对程序的逻辑覆盖,和路径覆盖。
二、开始测试前的准备在开始测试时,要先声明一下,无论你设计多少测试用例,无论你的测试方案多么完美,都不可能完全100%的发现所有BUG,我们所需要做的是用最少的资源,做最多测试检查,寻找一个平衡点保证程序的正确性。
穷举测试是不可能的。
所以现在进行单元测试我选用的是现在一般用的比较多的基本路径测试法。
三、开始测试基本路径测试法:设计出的测试用例要保证每一个基本独立路径至少要执行一次。
函数说明:当i_flag=0;返回i_count+100当i_flag=1;返回i_count *10否则返回i_count *20输入参数:int i_count ,int i_flag输出参数:int i_return;代码:1 int Test(int i_count, int i_flag)2 {3 int i_temp = 0;4 while (i_count>0)5 {6 if (0 == i_flag)7 {8 i_temp = i_count + 100;9 break;10 }11 else12 {13 if (1 == i_flag)14 {15 i_temp = i_temp + 10;16 }17 else18 {19 i_temp = i_temp + 20;20 }21 }22 i_count--;23 }24 return i_temp;25 }1.画出程序控制流程图图例:事例程序流程图:圈中的数字代表的是语句的行号,也许有人问为什么选4,6,13,8......作为结点,第2行,第3行为什么不是结点,因为选择结点是有规律的。
让我们看程序中;第2行,第3行是按顺序执行下来的。
直到第4行才出现了循环操作。
而2,3行没有什么判断,选择等分支操作,所以我们把2,3,4全部合并成一个结点。
其他的也是照这个规则合并,然后就有了上面的流程图。
2.计算圈复杂度有了图以后我们要知道到底我们有写多少个测试用例,才能满足基本路径测试。
这里有有了一个新概念——圈复杂度圈复杂度是一种为程序逻辑复杂性提供定量测试的软件度量。
将该度量用于计算程序的基本独立路径数目。
为确保所有语句至少执行一次的测试数量的上界。
公式圈复杂度V(G)=E+N+2,E是流图中边的数量,N是流图中结点的数量。
公式圈复杂度V(G)=P+1 ,P是流图G中判定结点的数量。
通俗的说圈负责度就是判断单元是不是复杂,是不是好测试的标准。
一般来说如果圈复杂度如果大于20就表示这个单元的可测试性不好,太复杂(也许有人觉得无所谓,但是如果你们公司实行了CMMI5的话,对这个是有规定的)。
从图中我们可以看到,V(G)=10条边-8结点+2=4V(G)=3个判定结点+1=4上图的圈复杂图是4。
这个结果对我们来说有什么意义呢?它表示我们只要最多4个测试用例就可以达到基本路径覆盖。
3.导出程序基本路径。
现在我们知道了起码要写4个测试用例,但是怎么设计这4个测试用例?导出程序基本路径,根据程序基本路径设计测试用例子。
程序基本路径:基本独立路径就是从程序的开始结点到结束可以选择任何的路径遍历,但是每条路径至少应该包含一条已定义路径不曾用到的边。
(看起来不好理解,让我们看例子)。
让我们看上面的流程图:从结点4到24有几条路径呢?1 B(4,24)2 C,E,J(4,6,8,24)3 C,D,F,H,A,B(4,6,13,15,22,4,24)4 C,D,G,I,A,B(4,6,13,19,22,4,24)还有吗??5 C,D,C,I,A,C,E,J(4,6,13,19,22,4,6,8,24)算吗?不算,为什么?因为上面的4条路径已经包括了所有的边。
第5条路径已经不包含没有用过的边了。
所有的路径都遍历过了。
好了,现在我们有了4条基本独立路径根据独立路径我们可以设计测试用例。
1 B(4,24)输入数据:i_flag=0,或者是i_flag<0的某一个值。
预期结果:i_temp=0.2 C,E,J(4,6,8,24)输入数据:i_count =1;i_flag=0预期结果:i_temp=101.3 C,D,F,H,A,B(4,6,13,15,22,4,24)输入数据:i_count =1;i_flag=1预期结果:i_temp=10.4 C,D,G,I,A,B(4,6,13,19,22,4,24)输入数据:i_count =1;i_flag=2预期结果:i_temp=20.这里的输入数据是有路径和程序推论出来的。
而要注意的是预期结果是从函数说明中导出,不能根据程序结构中导出。
为什么这么说?让我们看程序中的第3行。
int i_temp=0;假如开发人员一不小心写错了,变成了int i_temp=1;根据程序导出的预期结果就会是一个错误的值,但是单元测试不出来问题。
那单元测试就失去了意义。
有人也许会问这么简单的函数就有4个测试用例,如果还复杂一些的怎么办?上面的测试用例还可以简化吗?答案是可以。
我们来看路径1 B(4,24)和 4 C,D,G,I,A,B(4,6,13,19,22,4,24),路径1是路径4的真子集,所以1是可以不必要的。
上图的圈复杂度是4。
这个结果对我们来说有什么意义呢?它表示我们只要最多4个测试用例就可以达到基本路径覆盖。
所以说圈复杂度标示是最多的测试用例个数,不是一定要4个测试用例才可以。
不过有一点要申明的是测试用例越简化代表你的测试越少,这样程序的安全性就越低了。
四、完成测试接下来根据测试用例使用工具测试NUNIT,VS2005都可以。
接下来根据测试结果编写测试报告,测试人,时间,结果,用例,是否通过,格式网上一大把,每个公司的格式也不一样就不说了。