光纤端面质量的光检测方法
- 格式:pdf
- 大小:431.92 KB
- 文档页数:5
一、外观检验: 二、组装性能:2.1插芯:突出长度正常,弹性良好,有明显倒角,表面无任何脏污、缺陷及其他不良。
2.2散件:各散件与适配器之间配合良好,无松脱现象,机械性能良好,有良好的活动性,表面无任何脏污、缺陷、破损、裂痕,颜色与产品要求相符,同批次产品无色差。
2.3压接:对光缆外皮及凯夫拉线的压接固定要牢固,压接金属件具有规则的压痕,无破损、弯曲,挤压光缆等不良。
三、端面标准:根据附录1《光纤连接器端面检验规范》检验。
四、插损、回损技术标准: 五、端面几何形状(3D)标准:六、合格品标识:合格产品标识包括:出厂编号(每个产品对应唯一的出厂编号,由生产任务计划号加流水号组成)、型号规格、条码标签(根据客户要求可选)、产品说明书(根据客户要求可选)、3D报告(根据客户要求可选)、环保标识(根据客户要求可选)、插/回损测试数据等。
七、产品包装:7.1产品基本包装是:将光纤连接器盘绕成15-18cm直径的圈,连接头两端用扎带固定于线圈的对称中部,根据产品的不同型号扎紧方式有“8”和“1”字型扎法,以不松脱为原则,不能在光缆上勒出痕迹,0.9光缆使用蛇形管绑扎。
特殊型号产品可根据相应《包装作业指导书》进行操作。
将绑扎好的连接器头朝下放入对应已贴好标识的包装袋中封好袋口,并将包装袋中的空气尽量排除但不能将连接器挤压变形。
7.2基本包装完成后以整数为单位装入包装箱内,包装箱内部用卡板或气泡袋或珍珠棉或其他防挤压保护辅料隔开,特殊型号产品可根据相应《包装作业指导书》进行操作。
包装箱外贴上装箱清单和其他产品标识后封箱打包并放置到指定成品区。
八、各零部件技术标准: 8.1插芯: 8.1.1产品符合以下标准:YDT 1198-2002 《光纤活动连接器插针体技术要求》Telcordia GR-326-CORE 8.1.2详细技术要求见附录2《常规插芯技术标准》。
8.2光纤/光缆: 8.2.1产品符合以下标准:YDT 1258.1-2003 《室内光缆系列第一部分总则》YDT 1258.2-2003 《室内光缆系列第二部分单芯光缆》YDT 1258.3-2003 《室内光缆系列第三部分双芯光缆》YDT 1258.4-2005 《室内光缆系列第四部分多芯光缆》YDT 1258.5-2005 《室内光缆系列第五部分光纤带光缆》YDT 1258.3-2009 《室内光缆系列第3部分:房屋布线用单芯和双芯光缆》YDT 908-2000 《光缆型号命名方法》 8.2.2性能、尺寸、材质、颜色、环保等符合国家相关行业标准。
光纤测试方案在现代通信领域中,光纤技术已经成为了网络连接的主要手段之一。
为了确保光纤网络的稳定性和高效性,需要进行光纤测试。
本文将介绍一种光纤测试方案,以保证光纤网络的质量和性能。
一、光纤测试的背景光纤是一种利用光的传输介质,具有高带宽、低延迟和较低的信号损耗等诸多优点。
然而,由于安装和使用不当、损耗等因素的影响,光纤网络的性能可能会受到影响。
因此,进行光纤测试是必不可少的。
二、光纤测试的目的光纤测试的目的在于检测光信号在光纤中的传输质量和性能,以确保光纤网络的正常运行。
通过测试,可以获取以下信息:1.光纤的传输损耗:用于评估光信号在传输过程中的损失程度,以确定网络中是否存在光信号丢失的问题。
2.光纤的反射损耗:用于评估光信号在光纤连接部分的反射情况,以确定光纤连接的质量。
3.光纤的衰减情况:用于评估光信号在光纤中的衰减程度,以确定是否需要增加信号放大器来增强信号。
4.光纤的带宽:用于评估光纤的传输能力,以确定光纤网络的最大传输速率。
三、1.选择合适的测试仪器:根据实际需求和预算,选择适合的光纤测试仪器。
常用的测试仪器包括OTDR(光时域反射仪)、光波长计、光功率计等。
2.准备测试环境:在进行光纤测试前,确保测试环境符合要求。
避免光纤连接部分存在灰尘、污垢等影响测试结果的因素。
3.进行光纤测试:根据需要,选择不同的测试方法和仪器进行光纤测试。
可以通过OTDR来检测光纤的传输损耗和衰减情况,通过光波长计来测量反射损耗和带宽。
4.分析测试结果:根据测试结果,分析光纤网络存在的问题,并采取相应的措施进行修复或优化。
例如,发现存在反射损耗过大的情况,可以重新清洁和连接光纤。
5.定期维护和测试:光纤网络在长期使用过程中可能会出现各种问题,因此需要进行定期的维护和测试,以保证网络的稳定性和可靠性。
四、光纤测试的意义1.确保网络质量:通过光纤测试,可以及时发现并解决网络中的问题,保证光纤网络的稳定性和高效性。
光纤检验标准光纤连接器作为一种重要的光纤通信部件,其质量与性能直接影响到整个通信系统的稳定性和可靠性。
因此,对光纤连接器进行严格的检验标准至关重要。
本文将对光纤检验标准进行详细介绍,以保证光纤连接器的性能和质量。
一、光纤连接器完整性检验标准完整性检验主要确保光纤连接器的各个零部件齐全,与相应的设计、制造要求一致,加工质量符合相关技术文件要求。
此外,测试数据、标贴、条码等也应无误。
二、光纤连接器外观检验标准1.各个部件平滑、洁净、无脏污及毛刺,无伤痕和裂痕,颜色鲜亮、一致性好。
2.各零部件组合严密、平整,连接头与适配器的插入和拔出平顺、轻巧,卡子有力、弹性好、插拔正常。
3.光缆外观平滑光亮,无杂质,无破损,印字清晰,颜色与产品要求相符。
三、光纤连接器性能检验标准1.插损:光纤连接器的插入损耗应符合相关技术标准,确保信号传输的稳定性。
2.回损:光纤连接器的回损应符合相关技术标准,保证信号的反射性能。
四、光纤连接器组装性能检验标准1.插芯:突出长度正常,弹性良好,有明显倒角,表面无任何脏污、缺陷及其他不良。
2.散件:各散件与适配器之间配合良好,无松脱现象,机械性能良好,有良好的活动性,表面无任何脏污、缺陷、破损、裂痕,颜色与产品要求相符,同批次产品无色差。
3.压接:对光缆外皮及凯夫拉线的压接固定要牢固,压接金属件具有规则的压痕,无破损、弯曲,挤压光缆等不良。
五、光纤连接器端面检验标准根据附录1《光纤连接器端面检验规范》进行检验,确保光纤连接器端面的质量和性能。
六、光纤连接器包装检验标准包装盒上应具备:产品名称、型号、生产批次、生产日期、公司注册商标、执行标准号、环保标识、产品说明书等。
包装要完整,不能有破损、挤压、变形、脏污等外观不良。
总之,光纤连接器的检验标准涵盖了完整性、外观、性能、组装性能、端面和包装等方面。
只有通过严格的检验,才能确保光纤连接器的质量和性能,为光纤通信系统提供稳定的保障。
在实际生产过程中,企业应根据这些检验标准进行生产,以满足市场需求和客户要求。
光纤端面检测仪操作维护规程一、操作规程:1.确保光纤端面检测仪处于稳定的工作环境中,远离尘埃和湿度较高的地方。
2.检查光纤端面检测仪是否连接到电源,确认电源线是否接地良好。
3.打开光纤端面检测仪的电源开关,并等待其启动完成。
4.将待检测光纤连接器的连接端面轻轻插入光纤端面检测仪的接口,并确保插入深度适中。
5.在设备显示屏上观察端面质量的评估结果,一般会显示清晰度、反射损耗、缺陷等指标。
6.若端面质量不达标,可进行再次清洁,并重新插入光纤端面检测仪进行检测,直至达到要求为止。
7.如果需要对检测结果进行记录,可以通过打印或保存图片的方式进行。
二、维护规程:1.定期清洁光纤端面检测仪的外表面和内部零部件,避免灰尘和污垢的积累影响检测结果。
2.在使用过程中,应避免剧烈震动和碰撞,避免对设备产生不可逆的损坏。
3.定期检查光纤端面检测仪的电源线是否有磨损或断裂情况,及时更换损坏的电源线。
4.对设备进行定期校准,以确保其测量结果的准确性。
校准方法一般可以参照设备说明书进行操作。
5.如果光纤端面检测仪长期不使用,应将其放置在干燥通风的地方,并在设备上盖上防尘罩,以防尘埃侵入。
三、注意事项:1.在光纤端面检测仪清洁光纤端面之前,应先清除它上面的灰尘和杂质,以免污染光纤。
2.不要用力过大地插入光纤连接器,以免造成损坏。
3.使用过程中不要将设备放在过于潮湿或温度过高的环境中,以免影响其正常工作。
4. 在端面清洁时,可使用75%的医用酒精擦拭 end 面,注意不要带来静电来吸附灰尘。
综上所述,光纤端面检测仪的操作和维护规程对于确保检测结果的准确性和设备的正常工作具有重要意义,务必正确操作和维护。
使用无损检测技术进行光纤连接器质量检测的方法光纤连接器是光通信系统中的重要组成部分,其质量直接影响着光信号的传输质量和稳定性。
为了确保光纤连接器的质量可靠,必须对其进行有效的无损检测。
本文将介绍一种使用无损检测技术进行光纤连接器质量检测的方法,以保证光纤连接器的性能和可靠性。
一、无损检测技术的基本原理无损检测技术是一种通过非破坏性的方法对材料或器件进行检测,并获取有关材料或器件内部结构、缺陷、杂质等信息的技术。
常用的无损检测技术包括X射线检测技术、超声波检测技术、红外热像技术等。
在光纤连接器质量检测中,主要采用了光学显微镜检测、红外热像技术和光学衰减测试等无损检测技术。
二、使用无损检测技术进行光纤连接器质量检测的方法1. 光学显微镜检测光学显微镜是一种常用的无损检测设备,可用于检测光纤连接器的外部表面质量。
首先,将待检测的光纤连接器放置在显微镜下,通过放大、聚焦的方式观察连接器表面是否有划痕、气泡、裂纹等表面缺陷。
同时,还可以通过显微镜观察光纤连接器的内部结构和精确组装情况,确保光纤端面与连接器孔内对齐精准度。
2. 红外热像技术红外热像技术是一种利用物体的热辐射能发现和显示目标物体温度分布的技术。
通过红外热像仪扫描光纤连接器表面,可以检测连接器是否存在脱焦、过热、温度异常等问题。
这些问题可能导致光纤连接器的性能下降甚至损坏。
红外热像技术可以在较短的时间内对连接器进行快速定性的检测,减少了人工检测的工作量,并提高了检测的准确性和可靠性。
3. 光学衰减测试光学衰减测试是一种用于检测光纤连接器连接端的光学性能的方法。
该方法主要通过测量光纤连接器失效时信号的衰减程度来判断其质量。
具体步骤为:首先,将检测仪器连接到光纤接收机并设置合适的测试参数。
然后,将待检测的光纤连接器连接到测试仪器上,并发送标准光信号。
最后,测量光信号的输出功率,如果连接器的衰减超过允许范围,说明连接器质量不符合要求。
光学衰减测试方法可以实现对光纤连接器连接端的快速且精确的定量测试。
光纤测试参数光纤测试是一种用于评估光纤链路性能的测量过程。
它可以帮助识别和诊断故障,确保光纤链路正常运行。
光纤测试通常包括以下几个步骤:1. 光纤端面检查:检查光纤端面是否有划痕、污渍等缺陷,确保光纤端面清洁无损。
2. 光功率测量:测量光纤链路中光信号的功率,以评估光纤链路的损耗和衰减。
3. 光回损测量:测量光纤链路中反射光信号的功率,以评估光纤链路的回波损耗。
4. 光时域反射(OTDR)测量:使用OTDR仪器测量光纤链路中光脉冲的传播时间和幅度,以评估光纤链路的长度、损耗、故障点等信息。
5. 光谱分析(OSA)测量:使用OSA仪器测量光纤链路中光信号的光谱,以评估光纤链路的色散和非线性等信息。
光纤测试参数是指在光纤测试过程中需要测量的各种指标,包括:光功率:光纤链路中光信号的功率,单位为毫瓦(mW)或分贝毫瓦(dBm)。
光回损:光纤链路中反射光信号的功率,单位为分贝(dB)。
光损耗:光纤链路中光信号在传输过程中损失的功率,单位为分贝(dB)。
光纤长度:光纤链路的物理长度,单位为米(m)或公里(km)。
光纤衰减:光纤链路中光信号在传输过程中每单位长度损失的功率,单位为分贝每公里(dB/km)。
光纤色散:光纤链路中光信号在传输过程中由于光纤材料的不同折射率而引起的脉冲展宽现象,单位为皮秒每公里(ps/km)。
光纤非线性:光纤链路中光信号在传输过程中由于光纤材料的非线性特性而引起的各种非线性效应,如四波混频、参量放大等。
光纤测试参数可以帮助评估光纤链路的性能和质量,确保光纤链路正常运行。
光纤测试通常由专业人员使用专门的仪器设备进行,以确保测试结果的准确性和可靠性。
光纤端面处理工艺流程一、光纤端面清洁光纤通常在使用前需要进行清洁处理,以去除表面的污物和油脂,同时保证光纤端面的光滑度。
清洁工艺主要包括以下几个步骤:1.使用洗涤剂和去离子水混合液将光纤浸泡片刻;2.使用柔软的刷子轻轻刷拭光纤表面;3.用去离子水冲洗光纤,彻底去除洗涤剂和污物;4.用氮气吹干光纤表面。
二、光纤端面打磨光纤端面的平整度对光纤连接的稳定性和传输性能有着重要影响,因此需要使用研磨片对光纤端面进行打磨。
打磨工艺主要包括以下几个步骤:1.使用粗砂砂纸对光纤端面进行初步打磨,大约需要10-15分钟;2.使用细砂砂纸进一步细化打磨,大约需要10-15分钟;3.使用液体研磨剂和研磨片对光纤端面进行最终的打磨,直到达到光滑平整的效果。
三、光纤端面清洁二次处理光纤端面在打磨后可能会留下一些细微的划痕和残留,因此需要进行清洁二次处理,以保证端面的光滑度和洁净度。
清洁二次处理工艺主要包括以下几个步骤:1.使用洗涤剂和去离子水混合液将光纤浸泡片刻;2.使用柔软的刷子轻轻刷拭光纤表面;3.用去离子水冲洗光纤,彻底去除洗涤剂和污物;4.用氮气吹干光纤表面。
四、光纤端面镀金为了提高光纤连接的接触稳定性和传输性能,光纤端面通常需要进行镀金处理。
镀金工艺主要包括以下几个步骤:1.在光纤端面涂覆一层镀金溶液,保持一定的时间;2.使用高温加热炉将镀金溶液加热,使其固化成金属膜;3.将光纤端面放入水中冷却;4.用洗净剂和去离子水清洗光纤端面,去除多余的镀金溶液。
五、光纤端面检测经过以上工艺处理后,需要对光纤端面进行检测,以确保质量符合要求。
端面检测主要包括以下几个项目:1.使用显微镜检查光纤端面表面是否光滑、无划痕;2.使用光源照射光纤端面,观察是否有明显光损失;3.使用光功率计测量光纤端面的传输功率;4.使用衰减测试仪测试光纤端面的衰减值。
以上就是光纤端面处理的工艺流程,通过正确的端面处理工艺可以提高光纤连接的稳定性和传输性能,从而保证光纤通信的质量。
对光纤参数的测试方法参照国标中相关的试验方法进行,下面列举出一些光纤基本参数的测试方法。
光纤的特性参数中,几何特性参数对光纤的包层直径、包层不圆度、芯/包层同心度误差的测试方法做出相关说明;光学特性参数对模场直径、单模光纤的截止波长、成缆单模光纤的截止波长的测试方法做出相关说明;传输特性参数对光纤的衰减、波长色散的测试方法做出相关说明。
2.1、光纤几何特性参数测试光纤的折射率分布、包层直径、包层不圆度、芯/包层同心度误差的测试方法。
测量包层直径、包层不圆度、芯/包层同心度误差的测试方法是折射近场法、横向干涉法和近场光分布法(横截面几何尺寸测定)。
光纤的折射率分布、包层直径、包层不圆度、芯/包层同心度误差的测试方法有三种。
●折射近场法折射近场法是多模光纤和单模光纤折射率分布测定的基准试验方法(RTM),也是多模光纤尺寸参数测定的基准试验方法和单模光纤尺寸参数测定的替代试验方法(ATM)。
折射近场测量是一种直接和精确的测量。
它能直接测量光纤(纤芯和包层)横截面折射率变化,具有高分辨率,经定标可给出折射率绝对值。
由折射率剖面图可确定多模光纤和单模光纤的几何参数及多模光纤的最大理论数值孔径。
●横向干涉法横向干涉法是折射率剖面和尺寸参数测定的替代试验方法(ATM)。
横向干涉法采用干涉显微镜,在垂直于光纤试样轴线方向上照明试样,产生干涉条纹,通过视频检测和计算机处理获取折射率剖面。
●近场光分布法这种方法是多模光纤几何尺寸测定的替代试验方法(ATM)和单模光纤几何尺寸(除模场直径)测定的基准试验方法(RTM)。
通过对被测光纤输出端面上近场光分布进行分析,确定光纤横截面几何尺寸参数。
可以采用灰度法和近场扫描法。
灰度法用视频系统实现两维(x-y)近场扫描,近场扫描法只进行一维近场扫描。
由于纤芯不圆度的影响,近场扫描法与灰度法得出的纤芯直径可能有差别。
纤芯不圆度可以通过多轴扫描来确定。
一般商用仪表折射率分布的测试方法是折射近场法。
光纤测试标准光纤测试是指对光纤通信系统中的光纤进行测试和评估,以保证系统的正常运行和性能稳定。
光纤测试标准是对光纤测试过程中的各项指标和要求进行规范和统一,以便于不同厂家和用户之间进行交流和比较。
本文将介绍光纤测试标准的相关内容,包括测试项目、测试方法和测试要求等。
一、测试项目。
光纤测试标准中的测试项目包括但不限于以下几个方面:1. 光纤衰减测试,衡量光信号在光纤中传输过程中的衰减程度,通常使用光功率计进行测试。
2. 光纤连接损耗测试,测试光纤连接头的插入损耗和回波损耗,评估连接质量和性能。
3. 光纤折射率测试,测量光纤的折射率,判断光信号在光纤中的传输性能。
4. 光纤色散测试,评估光纤中信号传输的色散情况,判断传输性能和带宽特性。
5. 光纤端面质量测试,检测光纤端面的光滑度和清洁度,评估连接质量和性能。
二、测试方法。
针对以上测试项目,光纤测试标准中规定了相应的测试方法和步骤,以确保测试结果的准确性和可比性。
常用的测试方法包括:1. 直接测量法,通过直接连接测试仪器和被测光纤,进行实时测量和记录。
2. 反射法,利用反射原理进行测试,适用于光纤连接损耗和端面质量测试。
3. 比较法,将被测光纤与标准光纤进行比较,评估其性能和质量。
4. 数字化测试法,利用数字化测试仪器进行测试,提高测试效率和准确性。
三、测试要求。
光纤测试标准对测试过程中的各项要求进行了详细规定,以确保测试结果的真实可靠性。
主要包括以下几个方面:1. 测试环境要求,测试环境应保持干净、安静、无干扰的状态,以确保测试结果的准确性。
2. 测试仪器要求,测试仪器应符合相关标准和规定,且经过校准和检定,保证测试结果的可靠性和准确性。
3. 测试人员要求,测试人员应具备相关的专业知识和技能,能够熟练操作测试仪器和进行测试过程。
4. 测试报告要求,测试结果应及时记录和整理成测试报告,报告内容应真实、准确、完整。
总结。
光纤测试标准的制定和执行,对于保证光纤通信系统的正常运行和性能稳定具有重要意义。
光纤测试方法光纤是一种用于传输光信号的细长柔软的玻璃或塑料纤维。
在现代通信和数据传输中,光纤扮演着至关重要的角色。
为了确保光纤传输系统的正常运行,我们需要对光纤进行测试,以便发现潜在的问题并及时进行修复。
本文将介绍光纤测试的方法和步骤,以帮助您更好地了解光纤测试的重要性和实施过程。
首先,我们需要了解光纤测试的基本原理。
光纤测试的主要目的是检测光纤传输系统中的信号损耗、反射损耗、色散、偏振相关问题等。
在进行光纤测试之前,我们需要准备好相应的测试设备,如光源、光功率计、光谱分析仪、OTDR(光时域反射仪)等。
其次,我们需要进行光纤测试的准备工作。
首先,清洁光纤连接头,确保光纤连接的质量良好。
其次,连接测试设备,设置好测试参数。
接下来,我们可以开始进行光纤测试了。
在进行光纤测试时,我们需要注意以下几点。
首先,保持光纤连接的稳定性,避免外界干扰。
其次,记录测试数据,包括光纤长度、光功率损耗、反射损耗等。
最后,对测试数据进行分析,找出问题所在并及时进行修复。
在实际的光纤测试中,有几种常用的测试方法。
首先是光功率测试,用于检测光信号在光纤传输过程中的功率损耗情况。
其次是反射损耗测试,用于检测光信号在光纤连接头处的反射情况。
此外,还有色散测试、偏振相关测试等。
除了常规的光纤测试方法外,还有一些高级的测试技术,如OTDR测试。
OTDR是一种通过发送和接收脉冲光信号来检测光纤中的反射和衰减情况的测试设备。
通过OTDR测试,我们可以更准确地定位光纤中的问题,并对光纤进行精细的检测和分析。
总之,光纤测试是保证光纤传输系统正常运行的关键步骤。
通过合理的测试方法和设备,我们可以及时发现和解决光纤传输中的问题,确保数据和信号的准确传输。
希望本文所介绍的光纤测试方法能够对您有所帮助,使您能够更好地理解和实施光纤测试工作。
光缆中继段测试内容一、概述光缆中继段测试是指对光缆中继段进行各项参数的测试和评估,以确保光缆传输性能的稳定和可靠。
该测试内容主要包括光纤衰耗测试、端面质量测试、插损测试等。
二、光纤衰耗测试光纤衰耗是指光信号在传输过程中的损失,主要受到光纤本身的衰减和尾波损耗的影响。
光纤衰耗测试可以通过OTDR(光时域反射仪)来进行。
具体测试步骤如下:1.准备好测试所需的光缆段和OTDR设备;2.连接OTDR设备和被测光缆的一端;3.设置测试参数,包括波长、脉冲宽度等;4.启动测试,OTDR发送光脉冲通过光缆,并记录返回的光信号;5.根据返回的光信号分析光纤衰耗情况,包括衰耗值、衰耗系数等。
通过光纤衰耗测试,可以评估光缆中继段中各个连接点的质量,并及时发现和定位潜在的故障点。
三、端面质量测试端面质量是指光纤连接器和适配器的端面平整度和清洁度,对光缆传输性能起着重要的影响。
端面质量测试主要通过光源和光功率计来进行,具体测试步骤如下:1.准备好测试所需的光缆连接器和适配器,以及光源和光功率计;2.清洁被测光缆连接器和适配器的端面,确保清洁度;3.连接光源和光功率计,通过光缆连接器和适配器进行测试;4.记录连接损耗、反射损耗等参数。
通过端面质量测试,可以评估光缆中继段中各个连接点的质量,及时发现清洁度不达标和连接损耗过高的情况。
四、插损测试插损是指光缆连接点的连接器和适配器引起的光信号损耗。
插损测试主要通过光源和光功率计来进行,具体测试步骤如下:1.准备好测试所需的光缆连接器和适配器,以及光源和光功率计;2.清洁被测光缆连接器和适配器的端面,确保清洁度;3.连接光源和光功率计,通过光缆连接器和适配器进行测试,记录光功率值;4.拆下连接器或适配器,再次测试光功率值;5.计算插损值,即两次测试的光功率值的差。
通过插损测试,可以评估光缆中继段中各个连接点的质量,并及时发现插损过大的情况。
五、其他测试内容除了上述测试内容外,光缆中继段测试还包括以下内容:1.反射损耗测试:通过光源和光功率计测试光缆连接点的反射损耗,以评估连接点的质量。
光纤跳线端面的检测与清洁方法光纤跳线端面指的是光纤跳线两头具有不同种形状结构的连接头最末端的平整截面,是一个往往比较容易被忽视的地方,由于不规范操作,很容易被污染。
由光学原理可知,这样会引起光信号衰减增大,造成网络故障。
例如,在一次间断性丢包的网络故障排查过程中,使用OTDR检查光路状态的时候,发现其中一芯的中间跳点衰减很大,在1300mm波长时达到2.2db。
经过检查该处衰减异常是由于光纤跳线端面不洁造成,经过清洁后光路衰减值恢复正常,顺利通过OTDR的测试,原故障的间断丢包现象消失,网络通信恢复正常。
图2和图3是该故障时,有问题的光纤跳线端面清洁前和清洁后用OTDR测试的光路对比图,左边图是清洁前,右边图是清洁后。
通过以上故障案例可以让我们充分了解到光纤端面洁净的重要性,在日常对光路的操作及维护中,应该严格执行操作规范,确保光纤跳线端面的清洁度。
如果光纤端面被污染了,就要按规范的程序进行清理。
下面就来谈谈如何检查光纤跳线端面清洁度和清理方法。
1,端面污垢检查方法●目测检查断开设备后拿起光纤跳线对着光线,通过观察端面对光线的折射是否明亮来检测端面是否洁净和平滑。
通过观察,如果端面对光线的反射为平滑明亮则认为是比较洁净的,如果端面对光线的反射不太明亮和不够平滑,很有可能是有污垢存在或者端面上有刮痕,这样的端面将严重影响光传输的质量。
当然借助仪器对端面进行检查能更加全面地了解端面上的细节问题。
●仪器检查目前针对光纤端面的检查工具仪器比较多,其中光纤显微镜是使用最广泛的专业检查仪器。
一般情况下用于多模的光纤显微镜显示倍率为200倍,而用于单模的光纤显微镜显示倍率为400倍。
2,端面污垢清洁方法●在无专业工具辅助下清洁端面在无工具辅助的情况下需要准备无水酒精,清洁棉球,镜头纸。
清洁步骤如下。
(1)一手拿着清洁棉球,然后把无水酒精滴在棉球上,酒精不宜滴得过多。
(2)用带有无水酒精的棉球顺着同一方向擦拭端面,次数根据端面污垢的程度而定。
光纤端面检验资料用光纤放大镜检查光纤连接器端面 1﹑目的1.1 介绍采用光纤放大镜检查光纤连接器的方法﹐并对各种检查结果作出分析,提出相应的改进措施。
1.2 使用光纤放大镜来检查光纤连接器的插针端面是否符合产品等级要求。
2﹑检测用器材及物料2.1 200倍或400倍的光纤放大器(根据检验规范确定)。
2.2 根据要检查的连接器类型选配适当的适配器。
2.3 纯酒精(酒精含量不低于98﹪)。
2.4 无尘纸(无毛软纸)。
2.5 光源3﹑操作重点3.1 如果在放大镜视野内不能看到插针端面,则调整放大镜的位置调整旋钮,直到插针端面的图形全部进入视野内并使得插针的端面图形达到最清晰。
3.1.1 插针端面调整到最清晰状态后应最少观察端面1秒钟以上,以便有足够的时间对于所看到的图像进行分析,防止出现漏看现象。
当端面上有异常现象时一定要进行确认,不可盲目的流向下工序。
纤芯(ø62.5μ) 包层(ø125μ) 纤芯(ø9μ) 包层(ø125μ)3.2 检查插针端面,对于研磨效果很好的连接器。
其端面应该是圆形的,很光洁,光纤芯与插针的端面齐平,并呈现同心圆环形状;3.2.1 在连接头放入到检测设备之前应先在干的无尘纸上擦拭端面,如果端面有污物(或斑点),则用无尘纸沾纯酒精擦拭,直到表面没有污物(或可以看到清晰的斑点)。
不允许一开始就采用沾有酒精的无尘纸擦拭端面。
3.2.1 擦拭端面时应注意选用无尘纸上没有擦拭过的干净区域﹐擦拭的时候应该以插芯端面垂直于无尘纸朝一个方向划过去约10mm左右﹐力度不可太大﹐绝对不允许在同一地点来回擦拭,或是作曲线、折线运动。
3.2.2 当有难以去除的污渍时可在无尘纸的小块区域内沾上少许酒精再擦拭插芯端面﹐在用酒精擦拭过后一定要在干的无尘纸上擦拭后再看端面。
3.2.3 切记不可用力压住连接头进行擦拭。
3.2.4 连接头插入适配器时要用手拿住连接头的尾部,不可只拿住光缆将连接头送入到适配器中,以免当连接头在适配器内受力时尾部产生光纤的折损。
光纤通断测量方法光纤通断测量是一种用于检测光纤连接状态的测试方法,广泛应用于光通信、数据中心和网络设备维护等领域。
本文将介绍几种常见的光纤通断测量方法,包括人工检测、光源检测和OTDR测量。
一、人工检测人工检测是最简单直接的光纤通断测量方法之一。
使用这种方法时,操作人员通过观察光纤连接处的裸光纤端面,判断光纤是否通断。
通常,正常的光纤连接处会呈现出光线的亮光,而断开的光纤连接处则没有光线透过。
然而,人工检测存在一些局限性。
首先,这种方法需要操作人员具备一定的经验和技巧,对于初学者来说可能不够准确。
其次,人工检测无法提供具体的光损耗值和光纤连接质量信息,仅能判断光纤是否通断。
二、光源检测光源检测是一种利用光源发出的光信号来检测光纤通断的方法。
这种方法适用于光纤连接处未暴露的情况下,通过连接光源和光纤,观察接收端的光功率来判断光纤是否通断。
在光源检测中,操作人员需要将光源和光纤连接,然后在接收端使用光功率计测量光纤连接处的光功率。
如果测量到的光功率为零,即表示光纤连接断开;如果测量到的光功率为正常值,即表示光纤连接正常。
光源检测方法相对于人工检测来说更加准确和可靠,能够提供具体的光功率数值,帮助操作人员评估光纤连接的质量。
然而,这种方法仍然需要操作人员进行手动操作,且无法提供光纤连接的具体损耗值和距离信息。
三、OTDR测量OTDR(Optical Time Domain Reflectometer)测量是一种利用光脉冲的反射信号来检测光纤通断、判断光纤连接质量的方法。
OTDR测量通过发射脉冲光信号,观察光纤连接处的反射信号强度和时间延迟,来确定光纤连接的状态和性能。
在OTDR测量中,操作人员需要连接OTDR设备和被测光纤,设定合适的测试参数,然后启动测量。
OTDR设备会发射脉冲光信号,通过测量光脉冲的反射信号强度和时间延迟,来分析光纤连接的通断情况、损耗值和长度等信息。
相比于人工检测和光源检测,OTDR测量方法具有更高的精度和可靠性。
光纤端面等级验收标准
光纤端面等级验收标准是光通信行业中的一项重要标准,用于评估光纤连接器端面表面质量的好坏。
以下是光纤端面等级验收标准的主要内容:
1. UPC(Ultra Physical Contact)等级:UPC系列连接器端面
要求光纤端面碳化度达到0.5μm以下,表面光滑度要求较高,光纤连接时能提供较好的插入和回拉力,使多模光纤的回波损耗在0.3dB以下,单模光纤的回波损耗在0.2dB以下。
2. APC(Angled Physical Contact)等级:APC系列连接器端
面要求光纤端面采用8度抛光,形成较小的倾斜角度,避免反射损失。
APC连接器端面较适用于单模光纤系统,连接器端
面的反射损耗应在60dB以上。
3. PC(Physical Contact)等级:PC系列连接器端面光纤端面
碳化度达到0.5 ~ 1.5μm之间,表面光滑度较好,插入和回拉
力较大,适用于多模光纤传输系统,连接器端面的回波损耗应在0.5dB以下。
根据实际场景和应用需求,选择合适的光纤连接器端面等级,能够保证信号传输的质量和速度。
光纤端面质量的光检测方法
光纤连接处出现问题是网络故障的主要原因,因此光纤端面的检测至关重要。
本文讨论了3种主要的端面检测方法。
光纤端面加工质量对光纤通信系统的整体性能影响较大,据估计,网络中半数以上的损耗是由光纤连接不理想造成的。
光纤端面检测技术可以查出两类主要的加工问题:几何问题和清洁问题。
几何问题通常是在抛光或处理的过程中造成的,光纤工作时其影响不会发生变化。
该问题可以通过光干涉显微镜和执行端面检测程序的专门软件探测出来,实现干涉检测过程的硬件和软件现在已经比较完善,遵循一系列业内广泛接受的标准。
“清洁”一词则被广泛用于描述光纤端面永久性损伤(例如划伤、裂痕或凹点)和临时性污染(污垢、油渍、水或清洗剂的残留)。
保持连接头的清洁是光纤生产整个过程中都需要注意的问题,在装配过程中的任意环节都有可能对接头造成损害和污染。
由于缺乏相应的标准,加上主观认知差异、测试的准确性低,以及没有可重复的测试方法,想要确定可以接受的端面污染程度十分困难。
然而额外的损伤可能导致数据丢失,破环网络连接性,端面检测对于通信和数据应用非常关键。
如果是高功率应用,这些损伤可能带来灾难性的后果,严重的会造成连接头完全失效。
本文将介绍目前生产、研发和终端用户实现清洁检测的不同方法,讨论3种2D光检测技术能够多大程度地评估端面加工质量,比较了每种方法的优势和不足之处。
这3种方法包括操作者通过显微镜的人工检测,操作者借助“辅助”软件操作显微镜的半人工检测,以及全自动的检测系统。
检测的内容、时间和地点
端面检测(EFI)需要应用在整个供应链系统的各个环节。
光缆生产过程通常有如下几个检测点:抛光过程结束后,中间测试的过程中,以及最终测试。
QA部门需要在污点检测、新流程或产品研发、认证或常规维护过程中应用EFI。
最终用户则在QA、常规维护和可靠性测试环节应用EFI。
光纤接头的端面缺陷包括划伤、凹点、裂痕、松脱或固定的污染,典型地可分为划伤和颗粒污染两大类。
擦伤的定义是比端面直径大得多的损伤(通常>30:1),所有其它损伤统一定义为颗粒污染或损伤。
擦伤通常是抛光过程中形成的,但在光纤插拔等在线业务操作过程中也有可能产生。
在给定焦距下的某一画面中凭肉眼观察很难区分擦伤和裂痕,凹点则是永久的、不规则的材料损伤,通常是因为不规范的操作导致,或是在生产和接头插拔过程中产生。
接头端面的潜在永久性损坏是业内工程标准流程在光接头连接之前的清洁和检测过程需要考虑的首要问题。
暂时性的污染如污垢、灰尘、油渍或其它材料污染可以通过一系列清洁流程去除,而永久性的污染(定义为无法去除的污染,除非重新抛光)包括环氧材料残余、污垢或是内嵌的颗粒杂质。
检测准则
检测准则最初由光系统厂商自己研发,最近被接受为IPC-8497-1国际标准。
这些准则有着各自的目标,区别在于测试通过与否的指标不同。
检测准则定义了一系列以光纤核心为圆心的区域,不同区域的重要性各不相同。
区域的数目和具体的直径数值取决于光纤(单模或多模)和套管的类型。
最靠近纤芯的区域是最关键的,标准规定了单模光纤这一区域不能存在可见的擦痕,多模光纤也只允许极少量的小擦痕。
这样的损伤已经被证明带来了更大的插入损耗,减少了反射,从而降低了光链路传输质量。
IPC标准对于其它3个区域的限制有所放松,即被覆层、环氧层和针对陶瓷等套管式连接单模光纤的接触层,对于这些区域损伤进行规范的原则更多地和通过连接头连接时给纤芯带来的损耗多少有关,而加工质量的影响变得次要。
有一个公认的结论是较大的颗粒杂质很可能导致连接头匹配不当,从而使得反射损耗指标下降。
在特定的情况下,特别是高功率应用中的标准更加苛刻,从而防止热量累积带来的接头失效。
此时,检查所有区域的颗粒杂质的可靠的检测机制至关重要。
这些应用就需要借助相应的工业和用户自定的标准。
人工、半自动和自动检测
人工检测是目前最常用的检测手段,这也是因为传统的PC系统没有足够的软硬件能力,缺乏行之有效的算法来准确地检测和区分细小的瑕疵,尤其是很浅的划痕。
许多人认为人工检测依然是目前大多数应用性价比最高的可行方案,检测过程简便快捷,尽管需要耗费一定的人力,检测结果主观性很强,检测人员需要接受较高级别的培训才能获得可重复的检测结果。
人工检测需要用到一架视频光纤显微镜、一套接头固定装置和一台视频监控器。
显微镜将光纤端面的图像放大并显示到监控器上,其典型的测试环境如照片1所示。
照片1:人工光纤检测。
一旦接头被人工安装好,检测人员就按照以下几个步骤执行检测过程:1.调整焦距;2.识别损伤;3.确定每一区域损伤的大小和数量;4.判断检测通过与否。
在现场或管线环境中将采用探测式的显微镜,而非上述台式显微镜。
尽管有聚酯薄膜的帮助,不断重复地判断每个瑕疵的尺寸和位置对于操作人员来说是非常困难的。
检测效果与焦距(由操作者主观设定)、显微镜的分辨率以及用于显示的视频监视器的对比度有关。
上述因素加上缺乏详尽的检测记录通常导致供应链各个环节的不同检测者之间的低效率重复劳动。
有研究表明重复劳动的比例占到了约60%。
近10年中,一些半自动或称为“软件辅助”的测试手段逐渐成熟商用。
半自动测试所用的显微镜与人工测试一样,不同之处在于借助了计算机图像处理软件来对光纤端面进行分析。
与基于模拟照相机的设备相比,数字相机多数配置USB或FireWire接口,省去了帧捕捉器的成本。
与人工检测类似,半自动方法同样需要操作者将接头插入固定测试平台中,定位待测光纤(采用MPO这样的多纤连接头)并调整显微镜焦距。
一旦得到了满意的图像,操作者即启动软件捕获图像并进行分析。
EFI软件收集端面图像,执行检查、分类、测量和判断损伤位置的操作,并与软件预设的标准指标进行比较,从而定量地确定区域信息,判断该接头合格与否。
半自动方法的检测效果与软件的能力、显微镜性能以及操作人员对焦和定位图像的技能有关,已经证明了其准确性、可重复性和再现性等方面优于人工检测。
该方案可以提供检测结果的具体记录,包括端面图像和损伤检测数据等。
照片2展示了一个检测到划痕的光纤端面。
照片2:有缺陷的端面图像显示出了检测到的擦痕。
完全自动的检测系统采用了和半自动检测一样的流程。
该类系统采用计算机控制检测动作,某些情况下还借助多分辨率相机快速定位、聚焦和收集多个接头上的多个光纤端面的图像,测试装置是配置好的,无需操作者的干预(见照片3)。
照片3:清洁室中的自动光纤检测系统。
该系统消除了人工对焦和定位光纤的不确定性,而且,由于软件、显微镜、照明装置和运动控制等设备都可由生产厂家控制,整个系统的性能是可以检验的。
检测的可重复性很高,
重复检测的结果较为一致,总的损伤检测一致性超过了99%,边缘损伤检测一致性也超过了95%。
一些自动检测系统的用户也反应多个测试系统对于数百万光纤的“6Σ”样本尺寸的检测结果具有一致性。
与人工和半自动检测相比,全自动检测具有重要的优势。
对焦、对照和光线校准过程借助主用光纤和NIST可跟踪校准流程而实现完全的自动化。
自动方法提高了检测的准确性,降低了测试成本,增强了测试能力,操作人员的培训量降低,获得的数据量增加,降低了对供应链的限制。
同时,自动检测系统中的固定检测装置可以自动检查检测区域的光纤、光缆或产品的类型,测试者仅需把待测产品安装和拆下即可。
系统中可以安装需要测试数小时的设备,测试者仅需花上几分钟安装、拆卸待测产品以及打开收集数据并根据序号找到特定数据即可。
自动检测中操作者需要参与的部分大大减少,从而更大地降低了人力成本。
自动检测系统能够执行2D几何测量、MT套管定位检测、光一致性检测以及潜在的集成清洁能力。
基于计算机的测试使得更加简单的端面质量评估方法的引入成为可能,例如国际电子生产商联盟(iNEMI)光器件清洁技术工作组已经论证了接头插入损耗与GWpOA (Gaussian Weighted percent Occluded Area)密切相关。
当使用计算机辅助检测方法时,这一结论也许能够极大地简化确定光接头清洁程度的参数。
光纤的应用越来越广泛,飞速增长的使用量使得自动检测愈发地吸引人。
由于光纤应用的质量要求越来越高,自动检测由于提高了检测的可重复性和准确性,将会成为更受欢迎的方案。