高中数学幂函数
- 格式:doc
- 大小:155.50 KB
- 文档页数:4
高考数学知识点幂函数知识点_知识点总结幂函数是高中数学中重要的知识点之一,它在高考数学考试中经常出现。
掌握幂函数的知识点对于顺利解决各类与幂函数相关的数学题目至关重要。
本文将对幂函数的相关知识点进行总结和归纳,帮助同学们理清思路,加强对该知识点的掌握。
一、幂函数的定义幂函数是指函数y = x^n,其中x为自变量,n为常数。
在幂函数中,x的指数是常数,y与x之间存在特定的关系。
二、幂函数的图像特点1. 当n为正整数时,幂函数的图像是以原点为中心的相似变换。
当n为正奇数时,函数具有奇对称性,图像关于坐标原点对称;当n为正偶数时,函数具有偶对称性,图像关于y轴对称,并且右侧都是正数部分;当n为正数时,函数图像都通过第一象限。
2. 当n为负整数时,幂函数的图像将关于x轴对称,并且经过第一象限和第三象限的两点。
3. 当n为0时,幂函数的图像为直线y = 1,是一个常数函数。
三、幂函数的性质1. 定义域:所有实数。
2. 值域:当n为正奇数时,函数的值域为(-∞, +∞);当n为正偶数时,函数的值域为[0, +∞);当n为负奇数时,函数的值域为(-∞, 0);当n为负偶数时,函数的值域为[0, +∞)。
3. 单调性:当n为正数时,幂函数在定义域上是递增函数;当n为负数时,幂函数在定义域上是递减函数。
4. 对称性:当n为正奇数时,幂函数的图像关于原点对称;当n为正偶数时,幂函数的图像关于y轴对称;当n为负整数时,幂函数的图像关于x轴对称。
5. 渐近线:当n为正数时,幂函数的图像与x轴无交点;当n为负整数时,幂函数的图像与y轴无交点。
四、幂函数的应用幂函数广泛应用于数学中的各种实际问题中,比如面积、体积、变量关系等。
在解决这些问题时,我们可以通过列方程、求导等方法将其转化为幂函数的求解过程。
例如,求解一个正方形的面积与边长之间的关系。
我们可以将正方形的面积设为y,边长设为x,那么根据正方形的性质可得 y = x^2,这就是一个幂函数的表达式,通过对该函数进行数学分析,我们可以得出边长与面积之间的关系,并解决相关的数学问题。
高中数学幂函数知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高中数学幂函数知识点形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
高三数学知识点幂函数高三数学知识点:幂函数幂函数是高中数学中的重要知识点之一,它在数学建模、经济学、生物学等各个领域中有着广泛应用。
本文将介绍幂函数的定义、特征、性质以及解题方法。
一、幂函数的定义幂函数是指形如y = ax^k的函数,其中a为常数,k为实数。
在这个函数中,x是自变量,y是因变量,a称为幂函数的底数,k 称为幂函数的指数。
二、幂函数的特征1. 底数a和指数k可以是任意实数,因此幂函数具有广泛的定义域和值域。
2. 当底数a大于1时,函数图像随着自变量x的增加而上升,呈递增趋势;当底数a介于0和1之间时,函数图像随着自变量x 的增加而下降,呈递减趋势。
3. 幂函数的特殊情况包括指数函数(当底数a为常数e时)、常数函数(当指数k为0时)和线性函数(当指数k为1时)。
三、幂函数的性质1. 对于同一个底数a和不同的指数k1和k2,若k1 < k2,则a^k1 < a^k2。
即幂函数的值随着指数的增大而增大。
2. 幂函数的图像关于y轴对称,即f(x) = f(-x),因此幂函数是偶函数。
3. 幂函数的导数可以通过对幂函数取对数来求得,即幂函数的导数为它自身的指数乘以底数的对数。
四、解题方法1. 求幂函数的零点:设幂函数的零点为x0,则有a^k = 0,由此可得x0 = 0。
因此,幂函数的零点为x = 0。
2. 求幂函数的定义域和值域:根据幂函数的定义,可以推导出幂函数的定义域为全体实数集,当底数a大于0时,幂函数的值域为(0, +∞);当底数a小于0时,幂函数的值域为(-∞, 0)。
3. 求解幂函数方程:对于给定的幂函数方程,可以利用对数运算将其转化为对数方程,再进一步求解。
总结:本文详细介绍了高三数学中的幂函数知识点,包括定义、特征、性质以及解题方法。
通过学习幂函数的相关内容,我们可以更好地理解和应用幂函数,在数学问题的解答中得心应手。
希望本文的内容能够对高三学生的数学学习有所帮助。
幂函数
教材分析:幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数。
本课的教学重点是掌握常见幂函数的概念和性质,难点是根据幂函数的单调性比较两个同指数的指数式的大小。
幂函数模型在生活中是比较常见的,学习时结合生活中的具体实例来引出常见的幂函数
2
1132x
y ,x y ,x y ,x y ,x y =====-。
组织学生画出他们的图象,根据图象观
察、总结这几个常见幂函数的性质。
对于幂函数,只需重点掌握
2
11
32x
y ,x
y ,x y ,x y ,x y =====-这五个函数的图象和性质。
学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析。
学生已经有了学习幂函数和对象函数的学习经历,这为学习幂函数做好了方法上的准备。
因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习。
教学目标: ㈠知识和技能
1.了解幂函数的概念,会画幂函数
3
2x y ,x y ,x y ===,1
x y -=,2
1x y =的图象,并能
结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。
2.了解几个常见的幂函数的性质。
㈡过程与方法
1.通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。
2.使学生进一步体会数形结合的思想。
㈢情感、态度与价值观
1.通过生活实例引出幂函数的概念,使学生体会到生活中处处有数学,激发学生的学习兴趣。
2.利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望。
教学重点
常见幂函数的概念和性质 教学难点
幂函数的单调性与幂指数的关系 教学过程
一、创设情景,引入新课
问题1:如果张红购买了每千克1元的水果w 千克,那么她需要付的钱数p (元)和购买的水果量w (千克)之间有何关系?
(总结:根据函数的定义可知,这里p 是w 的函数)
问题2:如果正方形的边长为a ,那么正方形的面积2a S =,这里S 是a 的函数。
问题3:如果正方体的边长为a ,那么正方体的体积3
a V =,这里V 是a 的函数。
问题4:如果正方形场地面积为S ,那么正方形的边长2
1S
a =,这里a 是S 的函数
问题5:如果某人t s 内骑车行进了1km ,那么他骑车的速度s /km t V 1-=,这里v 是t 的函数。
以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)
这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题) 二、新课讲解
(一)幂函数的概念
如果设变量为x ,函数值为y ,你能根据以上的生活实例得到怎样的一些具体的函数式?
这里所得到的函数是幂函数的几个典型代表,你能根据此给出幂函数的一般式吗? 这就是幂函数的一般式,你能根据指数函数、对数函数的定义,给出幂函数的定义吗?
幂函数的定义:一般地,我们把形如α
=x y 的函数称为幂函数(power function ),其中x 是自变量,α是常数。
【探究一】幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念)
结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看
有如下区别:
对幂函数来说,底数是自变量,指数是常数 对指数函数来说,指数是自变量,底数是常数 试一试:判断下列函数那些是幂函数
(1)x
2.0y = (2)5
1x y = (3)3x y -= (4)2x y -=
我们已经对幂函数的概念有了比较深刻的认识,根据我们前面学习指数函数、对数函数的学习经历,你认为我们下面应该研究什么呢?(研究图象和性质) (二)几个常见幂函数的图象和性质
在初中我们已经学习了幂函数2
1
x y ,x y ,,x y ===-的图象和性质,请同学们在同一坐标系中画
出它们的图象。
根据你的学习经历,你能在同一坐标系内画出函数2
13
x y ,x y ==的图象吗?
【探究二】观察函数1
2
13
2
x y ,x y ,x y ,x y ,x y -=====的图象,将你发现的结论写在下表内。
【探究三】根据上表的内容并结合图象,试总结函数:2
13
2
x y ,x y ,x y ,x y ====的共同性质。
(1) 函数2
13
2
x y ,x y ,x y ,x y ====的图象都过点)0,0(),1,1(
(2) 函数2
13
2
x y ,x y ,x y ,x y ====在[)+∞,0上单调递增;
归纳:幂函数α
=x y 图象的基本特征是,当0>α是,图象过点)0,0(),1,1(,且在第一象限随x 的增大而上升,函数在区间[)+∞,0上是单调增函数。
(演示几何画板制作课件:幂函数.asp)
请同学们模仿我们探究幂函数α
=x y 图象的基本特征0>α的情况探讨0<α时幂函数α
=x y 图象的基本特征。
(利用drawtools 软件作图研究)
归纳:0<α 时幂函数α
=x y 图象的基本特征:过点)1,1(,且在第一象限随x 的增大而下降,函数在区间
),0(+∞上是单调减函数,且向右无限接近X 轴,向上无限接近Y 轴。
(三)例题剖析
【例1】求下列幂函数的定义域,并指出其奇偶性、单调性。
(1) 3
2
x y =(2)2
3x
y -= (3)2
x
y -=
分析:根据你的学习经历,你觉得求一个函数的定义域应该从哪些方面来考虑?
方法引导:解决有关函数求定义域的问题时,可以从以下几个方面来考虑,列出相应不等式或不等式组,解不等式或不等式组即可得到所求函数的定义域。
(1) 若函数解析式中含有分母,分母不能为0;
(2) 若函数解析式中含有根号,要注意偶次根号下非负; (3) 0的0次幂没有意义;
(4) 若函数解析式中含有对数式,要注意对数的真数大于0; 求函数的定义域的本质是解不等式或不等式组。
结论:在函数解析式中含有分数指数时,可以把它们的解析式化成根式,根据“偶次根号下非负”这一条件来求出对应函数的定义域;当函数解析式的幂指数为负数时,根据负指数幂的意义将其转化为分式形式,根据分式的分母不能为0这一限制条件来求出对应函数的定义域。
归纳分析如果判断幂函数的单调性(第一象限利用性质,其余象限利用函数奇偶性与单调性的关系) 【例2】比较下列各组数中两个值的大小(在横线上填上“<”或“>”) (1) 21
14.3________2
1π (2)3
)38.0(-________()3
39.0-
(3)125.1-__________1
22.1- (4)25
.0)
3
1(-____________27
.0)
3
1(-
分析:利用考察其相对应的幂函数和指数函数来比较大小 三、课堂小结
1、 幂函数的概念及其指数函数表达式的区别
2、 常见幂函数的图象和幂函数的性质。
四、布置作业
㈠课本第73页习题2.4第1、2、3题
㈡思考题:根据下列条件对于幂函数α
=x y 的有关性质的叙述,分别指出幂函数α
=x y 的图象具有下列
特点之一时的α的值,其中⎭
⎬⎫⎩⎨⎧-
--∈α3,2,1,21,31,21,1,2
(1)图象过原点,且随x 的增大而上升;
(2)图象不过原点,不与坐标轴相交,且随x 的增大而下降; (3)图象关于y 轴对称,且与坐标轴相交; (4)图象关于y 轴对称,但不与坐标轴相交; (5)图象关于原点对称,且过原点; (6)图象关于原点对称,但不过原点; 课堂练习
1、下列函数中,是幂函数的是( )
A 、x 2y =
B 、3
x 2y = C 、x 1
y =
D 、x
2y =
2、下列结论正确的是( ) A 、幂函数的图象一定过原点
B 、当0<α时,幂函数α
=x y 是减函数 C 、当0>α时,幂函数α=x y 是增函数
D 、函数2
x y =既是二次函数,也是幂函数
3、下列函数中,在()0,∞-是增函数的是( )
A 、3x y =
B 、2
x y = C 、
x 1y =
D 、2
3
x y =
4、函数
5
3
x y =的图象大致是( )
5、已知某幂函数的图象经过点
)2,2(,则这个函数的解析式为_______________________
6、写出下列函数的定义域,并指出它们的单调性:
(1)4
x y =(2)4
1x y =(3)3
x y -=。