页岩气藏渗流特征及数值模拟研究进展
- 格式:pdf
- 大小:548.48 KB
- 文档页数:7
页岩储层多尺度渗流实验及数学模型研究刘华;王卫红;陈明君;刘启国;胡小虎【摘要】页岩储层中存在纳米孔隙、微米孔隙、微裂隙和裂缝等多尺度孔隙结构.为了认识页岩储层的多尺度渗流规律,采集涪陵龙马溪组页岩岩样,利用改进的实验装置,开展了吸附/解吸、应力敏感和扩散等实验.实验结果表明:吸附/解吸基本符合兰格缪尔方程;渗透率与有效应力符合指数函数关系;扩散系数随温度的升高而增大,符合Fick扩散定律.基于渗流力学理论分析了页岩储层的多尺度渗流机理,认为页岩气在基质中的流动包括由压力差所引起的渗流、浓度差引起的扩散以及由于压力降低而引起的页岩气解吸,裂缝中的流动为压力差引起的渗流.基于实验及理论分析,建立了页岩储层多尺度综合渗流数学模型,为页岩气井渗流规律研究、产能评价及生产动态分析奠定基础.【期刊名称】《西安石油大学学报(自然科学版)》【年(卷),期】2018(033)004【总页数】6页(P66-71)【关键词】页岩储层;渗流规律;多尺度孔隙结构;岩页气渗流数学模型;解吸;扩散【作者】刘华;王卫红;陈明君;刘启国;胡小虎【作者单位】页岩油气富集机理与有效开发国家重点实验室,北京100083;中国石化石油勘探开发研究院,北京100083;页岩油气富集机理与有效开发国家重点实验室,北京100083;中国石化石油勘探开发研究院,北京100083;西南石油大学,四川成都610500;西南石油大学,四川成都610500;页岩油气富集机理与有效开发国家重点实验室,北京100083;中国石化石油勘探开发研究院,北京100083【正文语种】中文【中图分类】TE312引言我国页岩气资源十分丰富[1-3]。
据国土资源部《2012中国矿产资源报告》显示,我国页岩气地质资源潜力为134×1012 m3,可采资源潜力为25×1012 m3。
页岩气藏不同于常规气藏[2-5]:基质赋存方式独特,自由气和吸附气共存;页岩孔隙结构复杂,存在纳米孔、微米孔、微裂隙、裂缝等,页岩储层致密,孔喉细小,基质渗透率通常小于0.001×10-3μm2,渗流不符合达西定律。
页岩气藏渗流特征及数值模拟研究进展廉培庆;段太忠【摘要】通过对页岩气藏解吸—扩散理论、非达西渗流、开采过程中孔、渗演化特征进行总结的基础上,分析了页岩气藏的扩散和渗流规律;同时对页岩气藏试井解释技术、数值模拟模型建立、页岩气藏和压裂水平井耦合方法等数值模拟技术进行了综述,总结了页岩气藏模拟的关键技术.针对目前页岩气藏在开发过程中存在的问题和挑战,提出自己的见解,并对未来的发展趋势进行了展望.【期刊名称】《精细石油化工进展》【年(卷),期】2018(019)004【总页数】7页(P6-11,15)【关键词】页岩气;解吸;非达西;应力敏感;数值模拟;体积压裂【作者】廉培庆;段太忠【作者单位】中国石化石油勘探开发研究院;页岩油气富集机理与有效开发国家重点实验室,北京100083;中国石化石油勘探开发研究院;页岩油气富集机理与有效开发国家重点实验室,北京100083【正文语种】中文页岩气是一种非常规天然气,具有高效清洁等优点。
随着天然气需求量的日益增加,页岩气已成为满足常规天然气需求的现实补充,许多发达国家将页岩气列为国家能源重点发展战略,美国、加拿大已进行商业开采,并获得巨大成功。
据专家估算,我国的页岩气可采资源量约为26×1012m3,与美国的页岩气储量大致相当[1-4]。
我国对页岩气的开发研究尚处于起步阶段,虽然涪陵页岩气藏已取得每年50×108 m3的产能,但无法满足日益增长的能源需求。
因此,研究页岩气的渗流机理及开采理论,对我国后续能源的供给和社会经济的发展具有重要的战略意义[5-8]。
页岩气藏孔隙致密,渗透率低,储集方式和运移规律复杂,涉及气体吸附、扩散以及滑脱效应等现象,常规的达西方程无法准确描述页岩气的渗流规律[9-13]。
国外已对页岩气运移机理与数值模拟方法开展了初步研究,取得了不错的进展,在Barnett、Marcellus等区块获得成功应用[14-16]。
目前我国尚无成型的页岩气开发理论,随着涪陵页岩气藏的成功开发,迫切需要发展适合我国页岩气藏的渗流理论和数值模拟技术。
页岩气藏渗流及数值模拟研究一、本文概述Overview of this article页岩气藏作为一种重要的非常规天然气资源,近年来在全球范围内受到了广泛的关注和研究。
由于其储层特性复杂,开发难度大,渗流规律及数值模拟研究成为了页岩气藏开发的关键问题。
本文旨在深入探讨页岩气藏的渗流特性,建立相应的数值模拟模型,为页岩气藏的合理开发提供理论支持和技术指导。
Shale gas reservoirs, as an important unconventional natural gas resource, have received widespread attention and research worldwide in recent years. Due to the complex reservoir characteristics and high development difficulty, the study of seepage laws and numerical simulation has become a key issue in the development of shale gas reservoirs. This article aims to deeply explore the permeability characteristics of shale gas reservoirs, establish corresponding numerical simulation models, and provide theoretical support and technical guidance for the rational development of shale gasreservoirs.本文首先将对页岩气藏的地质特征和渗流特性进行概述,包括页岩储层的岩石学特征、孔渗结构、渗流机制等。
页岩气藏气体流动机理及数值模拟研究页岩气是一种以页岩为主要储层的天然气资源,由于其在储层中的特殊性质,其流动机理和数值模拟研究对于有效开发和利用页岩气具有重要意义。
在页岩气藏中,气体流动的机理主要包括渗流机理和吸附机理。
渗流机理是指气体在页岩储层中的渗流过程,主要受到渗透率、孔隙度和渗透率分布等因素的影响。
吸附机理是指气体在页岩储层中与页岩表面发生吸附作用,主要受到吸附等温线和吸附解吸速率等因素的影响。
为了研究页岩气藏中气体的流动机理,数值模拟成为一种重要的研究手段。
数值模拟可以通过建立数学模型和计算方法,模拟气体在页岩储层中的流动过程,对气体的渗流和吸附行为进行定量描述。
数值模拟可以通过改变渗透率、孔隙度和吸附等温线等参数,研究它们对气体流动的影响,从而为页岩气藏的开发和利用提供科学依据。
在数值模拟研究中,常用的方法包括有限差分法、有限元法和边界元法等。
这些方法可以通过离散化储层模型,将连续的流动方程转化为离散的代数方程,然后通过迭代求解,得到气体在储层中的流动状态。
数值模拟可以通过改变模型的边界条件和参数,模拟不同的开发方案和条件,评估其对气体产量和开发效果的影响。
然而,数值模拟研究也存在一些挑战和限制。
首先,页岩气藏储层复杂多变,储层参数的确定和模型的建立存在一定的不确定性。
其次,数值模拟需要大量的计算资源和时间,对计算机性能和算法效率提出了较高的要求。
此外,数值模拟结果的可靠性和准确性也需要通过与实际生产数据和实验结果进行验证。
尽管存在一些挑战,但数值模拟研究对于页岩气藏的开发和利用具有重要意义。
通过数值模拟,可以评估不同的开发方案和条件对气体产量和开发效果的影响,优化开发策略,降低开发成本。
此外,数值模拟还可以预测页岩气藏的产量潜力和剩余资源,为储量评价和资源管理提供科学依据。
页岩气藏气体流动机理和数值模拟研究对于有效开发和利用页岩气具有重要意义。
通过研究气体在页岩储层中的渗流和吸附行为,可以揭示气体流动的机理,为开发策略的制定和优化提供依据。
153页岩气是指主体位于暗色泥页岩或高碳泥页岩中的天然气聚集[1]。
页岩气藏属于非常规气藏,页岩气以游离气和吸附气两种形式存在,游离气主要存在于各种孔隙以及各级裂缝中,吸附气主要吸附在有机质含量较高的页岩表面[2]。
页岩气藏地质特征复杂,储集空间具有多尺度特征,页岩的孔隙度低,渗透率极低。
页岩气的流体运移机制复杂,包括解吸、扩散、达西流和非达西流。
页岩气井需采用水平井加大规模水力压裂的方式进行开发。
因此页岩气井生产过程中渗流特征比较复杂,国内外学者主要通过建立理论解析渗流模型对页岩气井的渗流特征进行相关研究。
国外学者Bello基于双重介质模型,建立了双线性流模型,研究了5个不同区域的流动特征[3];Brown建立了三线性流模型,认为页岩气井渗流可以简化成3个区域的线性流动[4]。
国内有学者在Brown模型的基础上,考虑了启动压力梯度的影响,建立了三线性流模型[5];有学者综合考虑页岩气解吸、扩散等渗流特征,建立并求解页岩气藏不稳定渗流数学模型,划分了页岩气井流动阶段[6-8];有学者考虑页岩大型压裂改造特征将储层分为5个区,建立了五区复合渗流模型,将产能递减曲线划分为6个流动阶段,研究了参数对各阶段的影响[9];有学者建立了页岩气分段压裂水平井半解析模型,认为页岩气分段压裂水平井可分为线性流、第一径向流、双径向流等6个渗流阶段[10];有学者根据实际气井研究认为页岩气井生命期内通常出现4种流态[11];有学者建立无限导流多段压裂水平井模型,研究了均质页岩气藏中无限导流分段压裂水平井的压力动态特征[12];有学者建立了基岩和复杂裂缝系统数学模型,认为压裂水平井除常见的4种流动形态(不包括外边界),早期还可能存在裂缝内的径向流动[13];有学者通过数值模拟研究认为多段压裂的水平井裂缝流动特征明显,在流动由线性流转为拟径向流后,出现径向流特征[14];也有学者采用数值模拟的方法研究了考虑页岩气微观渗流机理的压裂井产能[15-16]。