约瑟夫环实习报告
- 格式:docx
- 大小:36.04 KB
- 文档页数:5
约瑟夫环实验报告约瑟夫环是一个经典的数学问题,它涉及到一个有趣的游戏。
这个游戏的规则是:有N个人站成一圈,从某个人开始,每报数到第M个人,就将该人从圈中移出去,再从下一个人开始重新报数,如此循环,直到只剩下一个人为止。
那么,我们将通过实验来探究一下约瑟夫环的性质和一些有趣的现象。
首先,我们设定了一组实验条件。
假设有10个人,从1到10编号,报数为3。
我们选择从编号为1的人开始报数,然后每次报数到第3个人。
接下来,我们按照约瑟夫环的规则进行实验。
实验开始后,我们可以观察到一系列有趣的现象。
首先,被淘汰的人并不会立即离开圈子,而是继续留在原位,但不再参与后续的报数和淘汰。
当每次报数到达M的倍数时,即到了第3个人、第6个人、第9个人等等,这些人就会被逐渐淘汰出圈。
在实验过程中,我们发现了一个有趣的规律。
剩下的人似乎总是固定按照一定的顺序被淘汰。
为了更好地观察这个规律,我们进行了多组实验,并记录了淘汰顺序。
首先,在报数为3的情况下,我们记录了当有10个人时的淘汰顺序。
开始时,第1轮淘汰的是第3个人,然后是第6个人,之后是第9个人。
接着,轮到第2个人被淘汰,然后是第7个人,最后是第1个人。
可见,在这个实验条件下,被淘汰的顺序是3、6、9、2、7、1。
我们可以看到,在最后几轮淘汰时,被淘汰的顺序逐渐回到了初始的编号1。
接着,我们将实验条件略作改变,观察是否会出现相似的淘汰顺序。
这次,我们依然有10个人,报数为4。
开始时,第1轮淘汰的是第4个人,然后是第8个人,之后是第2个人。
接着,轮到第5个人被淘汰,然后是第10个人,最后是第6个人。
通过这次实验,我们可以观察到一些不同之处。
尽管淘汰的顺序在最后几轮回到了初始的编号1,但淘汰的间隔变得更长了,而且整体的淘汰顺序也有了一定的变化。
通过对约瑟夫环实验的多次观察和记录,我们可以总结出一些结论。
首先,淘汰的顺序呈现出周期性,并在最后几轮回到了初始的编号。
其次,在不同的实验条件下,淘汰的规律可能会有所不同。
约瑟夫环问题模拟一、需求分析1、本演示程序模拟约瑟夫环问题:编号为1,2,……,n得n个人按顺时针方向围坐一圈,每人持有一个密码(正整数)。
一开始任选一个正整数作为报数上限值m,从第一个人开始按顺时针方向自1开始顺序报数,报到m时停止报数。
报m的人出列,将他的密码作为新的m值,从他在顺时针方向上的下一个人开始重新从1报数,如此下去,直至所有人全部出列为止。
2、演示程序以用户和计算机对话的方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中需要的相关信息及命令。
运算结果显示在其后。
3、程序需要输入的信息与命令包括:1)初始人数n ;2)n 个人的密码;3)初始的m 值;4、测试数据1)n:7 密码:3、1、7、2、4、8、4 m:62)n:1 密码:4 m:33)n:4 密码:4、2、3、1 m:124)n:3 密码:1、2、3 m:2二、概要设计为了实现上述程序功能,应以单向循环链表模拟问题过程。
每个结点代表一个玩家。
1、有序表抽象数据类型定义:ADT list{数据对象:D = {a i | a i ∈LNode, i = 1,2,……,n, n >= 0}数据关系:R = {<a i-1, a i> | a i-1, a i∈D, i = 2,……,n}基本操作:Init(&L)操作结果:构造一个空的单向循环链表。
Insert(&L, n, s)初始条件:链表L已存在,玩家编号n,玩家密码s。
操作结果:插入一个玩家结点。
Del(&L, m, e)初始条件:链表L已存在,m值有效。
操作结果:删除链表中第m个结点,并有e返回这个结点。
}ADT list2、本程序包含两个模块:a)主程序模块:int main(){初始化;接受命令;处理命令;退出;return 0;}b)循环单向链表单元模块——实现单向循环链表抽象数据类型;模块之间的调用关系如下:主程序模块↓单向循环链表单元模块三、详细设计int main() {//主函数main的实现int n, m, s, i;List l;if (Init(l)) { //初始化链表,执行成功后接受命令printf("how many players? : ");scanf("%d", &n);for (i = 1; i <= n; i++) {printf("the password of the number %d player: ", i);scanf("%d", &s);if (!Insert(l, i, s)) {printf("ERROR!");exit(1);}}//forprintf("Input the value of m: ");scanf("%d", &m);Lnode e;for (i = n; i >= 1; i--) { //处理命令,模拟人员的退出——结点的删除if (Del(l, m, e)) {printf("the number %d player come out\n", e.intNum);m = (m - 1 + e.intSec) % (i - 1);if (m == 0) m = i - 1;}}//for}//ifelse printf("ERROR!");return 0;}typedef struct Lnode {//链表结点类型定义int intNum;int intSec;struct Lnode *next;}Lnode, *Linklist;typedef struct {//循环单向链表类型定义Linklist head;Linklist tail;}List;bool Init(List &l) {//链表初始化l.head = l.tail = NULL;return true;}bool Insert(List &l, int N, int S) {//在链表末尾插入玩家号为N,玩家密码为S的结点Linklist p = (Linklist)malloc(sizeof(Lnode));if (!p) return false;p ->intNum = N;p ->intSec = S;if (!l.head) {l.head = p;}else {l.tail ->next = p;}p ->next = l.head;l.tail = p;return true;}bool Del(List &l, int m, Lnode &e) {//删除链表中第m个结点,并用e返回Linklist p = l.tail;if (!p || m < 1) return false;int cnt = 1;while (cnt < m) {p = p ->next;cnt++;}if (l.head == l.tail) {p ->next = NULL;e = *p;free(p);return true;}Linklist q = p ->next;if (q == l.tail) l.tail = p;if (m == 1) l.head = q ->next;p ->next = q ->next;q ->next = NULL;e = *q;free(q);return true;}四、调试分析1、由于程序时模拟约瑟夫环过程的,只是单纯的对问题的抽象解决,在数据范围不是很大的情况下程序可以比较迅速的完成问题的模拟,但是在大数据范围下,本程序模拟的方法是不适用的,需要更优化的算法。
约瑟夫问题实验报告背景约瑟夫问题(Josephus Problem)据说著名犹太历史学家Josephus有过以下的故事:在罗马人占领乔塔帕特后,39 个犹太人与Josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人到,于是决定了一个自杀方式,41个人排成一个圆圈,由第1个人开始报数,每报数到第3人该人就必须自杀,然后再由下一个重新报数,直到所有人都自杀身亡为止。
然而Josephus 和他的朋友并不想遵从,Josephus要他的朋友先假装遵从,他将朋友与自己安排在第16个与第31个位置,于是逃过了这场死亡游戏。
原题:用户输入M,N值,N个人围成一个环,从0号人开始数,数到M,那个人就退出游戏,直到最后一个人求最后一个剩下的人是几号?问题描述设编号为1-n的n(n>0)个人按顺时针方向围成一圈.首先第1个人从1开始顺时针报数.报m的人(m 为正整数).令其出列。
然后再从他的下一个人开始,重新从1顺时针报数,报m的人,再令其出列。
如此下去,直到圈中所有人出列为止。
求出列编号序列。
一.需求分析:(1)基本要求需要基于线性表的基本操作来实现约瑟夫问题需要利用循环链表来实现线性表(2)输入输出格式输入格式:n,m(n,m均为正整数,)输出格式1:在字符界面上输出这n个数的输出序列(3)测试用例(举例)输入:8,4输出:4 8 5 2 1 3 7 6二.概要设计(1)抽象数据类型:数据对象:n个整数数据关系:除第一个和最后一个n外,其余每个整数都有两个元素与该元素相邻。
基本操作:查找,初始化,删除,创建链表循环链表的存储结构:(2).算法的基本思想循环链表基本思想:先把n个整数存入循环链表中,设置第m个数出列,从第一个开始查找,找到第m个时,输出第m个数,并删掉第m个节点,再从下一个数开始查找,重复上一步骤,直到链表为空,结束。
(3).程序的流程程序由三个模块组成:1.输入模块:完成两个正整数的输入,存入变量n和m中2.处理模块:找到第m个数3.输出模块:按找到的顺序把n个数输出到屏幕上三.详细设计首先,设计实现约瑟夫环问题的存储结构。
约瑟夫环问题实验报告一、实验内容本实验利用单向循环链表模拟约瑟夫环问题(编号为1,2,…,n的n个人按顺时针方向围坐一圈,没人持有一个密码(正整数)。
开始任选一个正整数作为报数上限值m,从第一个人开始按顺时针方向自1开始报数,报到m是停止报数。
报m的人出列,将他的密码作为新的m值,从他在顺时针方向上的下一个人开始重新从1报数,如此下去,直至所有人全部出列为止),按照出列顺序印出个人的编号。
M的初值为20,n=7,7个人的密码依次为3,1,7,2,4,8,4,首先m值为6。
二、源程序#include"stdafx.h"#include<iostream>using namespace std;#include<conio.h>//getch();/*write: Han.JH*/static int people_number_count; typedef struct People_Node{int Password_Data,people_number;struct People_Node *next;}People_Node,*People_LinkList;void GreatList(People_LinkList &L){People_Node *s,*r; int flag=1;int Password;L=new People_Node;L->next=NULL;r=L;while(flag==1){cout<<"输入每个人的密码,以回车作间隔,'0'表示结束:";cin>>Password;//输入每个人的密码;if(Password!=0){s=new People_Node;s->Password_Data=Password;people_number_count++; //对人的编号s->people_number=people_number_count;r->next=s;r=s;}else{ r->next=L->next;flag=0;}}}void GetList(People_LinkList &L){People_Node *r;int m,k;int count=0;cout<<"输入报数上限值m:";cin>>m;r=L;cout<<"出列排序:";while(count!=people_number_count){ //则所有人以出列,结束循环for(k=1;k<=m-1;k++){r=r->next;}count++;m=r->next->Password_Data;cout<<"["<<r->next->people_number<<"]";r->next=r->next->next;}}void main(){People_LinkList L;void GreatList(People_LinkList &);void GetList(People_LinkList &);cout<<"++++++++++++约瑟夫环问题+++++++++++"<<endl;GreatList(L);GetList(L);cout<<"[--结束--]"<<endl;getch();}三、调试刚开始调试时出现了无法打开<iostream.h>头文件的错误,经过上网查询,#include<iostream.h>是C语言风格,但是在标准 C 里面,是不用#include <iostream.h>的,而要使用#include <iostream>把#include<iostream.h>改为:#include<iostream>using namespace std;后,问题解决。
《数据结构与算法设计》约瑟夫环实验报告——实验一专业:物联网工程班级:物联网1班学号:15180118姓名:刘沛航一、实验目的1、熟悉VC环境,学习使用C语言利用链表的存储结构解决实际的问题。
2、在编程、上机调试的过程中,加深对线性链表这种数据结构的基本概念理解。
3、锻炼较强的思维和动手能力和更加了解编程思想和编程技巧。
二、实验内容1、采用单向环表实现约瑟夫环。
请按以下要求编程实现:①从键盘输入整数m,通过create函数生成一个具有m个结点的单向环表。
环表中的结点编号依次为1,2,……,m。
②从键盘输入整数s(1<=s<=m)和n,从环表的第s个结点开始计数为1,当计数到第n个结点时,输出该第n结点对应的编号,将该结点从环表中消除,从输出结点的下一个结点开始重新计数到n,这样,不断进行计数,不断进行输出,直到输出了这个环表的全部结点为止。
例如,m=10,s=3,n=4。
则输出序列为:6,10,4,9,5,2,1,3,8,7。
三、程序设计1、概要设计为了解决约瑟夫环的问题,我们可以建立单向环表来存储每个人的信息(该人的编号以及其下一个人的编号),及结点,人后通过查找每个结点,完成相应的操作来解决约瑟夫问题。
(1) 抽象数据类型定义ADT Joh{数据对象:D={|,1,2,,,0}i i a a ElemSet i n n ∈=≥K数据关系:R1=11{,|,,1,2,,}i i i i a a a a D i n --<>∈=K基本操作:create(&J, n)操作结果:构造一个有n 个结点的单向环表J 。
show(J)初始条件:单向环表J 已存在。
操作结果:按顺序在屏幕上输出J 的数据元素。
calculate( J,s,n)初始条件:单向环表J 已存在,s>0,n>0,s<环表结点数。
操作结果:返回约瑟夫环的计算结果。
}ADT Joh(2)宏定义#define NULL 0#define OK 1#define ERROR -1(3)主程序流程(4)程序分为下述模块:1)主函数模块——执行输入调用其他的功能函数2)创建环表模块——创建单向环表3)计算处理模块——计算出要出列的标号并输出4)显示模块——输出建立好的环表调用关系如下:2、详细设计(1)数据类型设计typedef int ElemType; //元素类型typedef struct {ElemType data;struct Joh *next;}Joh, *LinkList,*p; //结点类型,指针类型(2)操作算法Status create(LinkList &J,int n){//创建一个有n个结点的单向环表if(n<=0)return ERROR; //n<0错误J=(LinkList)malloc(sizeof(J));J->data=1;J->next=J;//建立第一个结点for(int i=n;i>1;--i){p=(LinkList)malloc(sizeof(J));p->data=i;p->next=J->next;J->next=p;//插入到表头}return OK;}//createvoid show(LinkList J){//主要的操作函数//顺序输出环表J的结点p=J;printf("%d ",p->data);p=p->next;while(p!=J){ //循环终止条件printf("%d ",p->data);p=p->next;}}//showvoid calculate(LinkList J,int s,int n){p=J;Joh *head=p; //声明结点while(p->data!=s){p=p->next;head=p;}//寻找起始结点while(p->next!=p){ //终止条件for(int i=0;i<n-1;i++){head=p; //保存前置节点p=p->next;}printf("%d ",p->data);head->next=p->next; //删除已输出结点p=head->next;}if(n!=1)printf("%d\n",p->data);elseprintf("\n");}//calculate(3)主函数代码int main(){//主函数Joh *J;int m,s,n;printf("The num of node is:");scanf("%d",&m);create(J,m); //创建单向环表Jshow(J); //输出J的数据printf("\n");printf("The first node which you want is:");scanf("%d",&s);printf("The internal which you want is:");scanf("%d",&n);calculate(J,s,n); //计算并输出结果return 0;}//main四、程序调试分析1、细节决定成败,编程最需要的是严谨,如何的严谨都不过分,往往检查了半天发现错误发生在某个括号,分号,引号,或者数据类型上。
约瑟夫环数据结构实验报告《约瑟夫环数据结构实验报告》摘要:本实验旨在通过使用约瑟夫环数据结构来模拟约瑟夫问题,并通过实验结果分析该数据结构的性能和适用场景。
实验结果表明,约瑟夫环数据结构在解决约瑟夫问题方面具有良好的性能和效率,并且可以应用于一定范围的实际问题中。
1. 引言约瑟夫问题是一个经典的数学问题,描述了一个有n个人的圆桌围坐,从第一个人开始报数,报到m的人离开,然后从离开的人的下一个人开始重新报数,直到所有人离开。
在本实验中,我们将使用约瑟夫环数据结构来模拟这一问题,并分析其性能和适用场景。
2. 实验方法我们首先定义了一个约瑟夫环的数据结构,并实现了相应的插入、删除等操作。
然后,我们使用不同规模的数据集进行了实验,记录了每次操作的时间开销,并进行了性能分析。
3. 实验结果实验结果表明,约瑟夫环数据结构在解决约瑟夫问题方面具有良好的性能和效率。
在不同规模的数据集下,其操作时间基本保持在可接受的范围内,并且随着数据规模的增加,性能表现基本保持稳定。
4. 结论约瑟夫环数据结构在解决约瑟夫问题方面具有良好的性能和效率,并且可以应用于一定范围的实际问题中。
然而,在处理大规模数据时,仍需进一步优化算法和数据结构,以提高性能和效率。
5. 展望未来,我们将进一步研究约瑟夫环数据结构在实际问题中的应用,并探索其在其他领域的潜在价值。
同时,我们也将继续优化算法和数据结构,以提高其性能和适用范围。
综上所述,约瑟夫环数据结构在解决约瑟夫问题方面具有良好的性能和效率,并且具有一定的实际应用价值。
通过本实验,我们对该数据结构有了更深入的了解,并为其在实际问题中的应用提供了一定的参考和借鉴。
约瑟夫环实验报告总结【篇一:约瑟夫环实验报告】实验报告课程名称:数据结构实验名称:顺序表和链表的应用实验编号:实验一指导教师:一、实验目的(1)掌握线性表的基本操作(插入、删除、查找)以及线性表合并等运算在顺序存储结构、链式存储结构上的实现。
重点掌握链式存储结构实现的各种操作。
(2)掌握线性表的链式存储结构的应用。
二、实验内容与实验步骤(1)实验内容:实现约瑟夫环,约瑟夫环(joseph)问题的一种描述是:编号为1、2、3……n的n个人按照顺时针方向围坐一圈,每人持有一个密码(正整数)。
一开始任选一个正整数作为报数的上限值m,从第一个人开始按照顺时针的方向自1开始顺序报数,报到m时停止报数。
报m的人出列,将他的密码作为新的m值,从他的顺时针方向上的下一个人开始重新从1报数,如此下去,直至所有人全部出列为止。
设计一个程序求出出列顺序。
(2)抽象数据类型和设计的函数描述,说明解决设想。
首先定义一个链表,用其中的data项存储每个人的编号,用password项存储每个人所持有的密码,并且声明一个指针。
之后使用creatlist_cl函数来创建一个循环链表,在其中的data和password中存入编号和密码,最后使最后一个节点的next指向l,使其能够形成循环队列。
定义了函数display来显示链表当中的内容,以确定存储的数据没有错误。
定义了函数delete_l来实现约瑟夫环中依次删除的功能,依次比较,如果某个人所持的密码和m值相等,则删除这个结点,并且输出此时该结点的编号和密码,实现出列的功能。
(3)简短明确地写出实验所采用的存储结构,并加以说明。
该实验我主要采用的是线性表的链式存储结构,首先定义了链表的结构,其中包括data项和password项,分别存储每个人的编号和所持密码,还声明了指向下一个结点的指针,该指针可以连接各个结点,并且将最后一个结点的指针指向第一个结点使之成为一个循环链表。
三、实验环境操作系统:windows 7调试软件名称:vc++版本号:6.0上机地点:综合楼311四、实验过程与分析(1)主要的函数或操作内部的主要算法,分析这个算法的时、空复杂度,并说明设计的巧班级:学号:姓名:组号:实验成绩:批阅教师签字:实验日期:实验时间:妙之处。
数据结构约瑟夫环实习报告一、实习题目约瑟夫环(Josephus Problem)是一种经典的问题,编号为1,2,……,n的n个人按顺时针方向围坐一圈,每人持有一个密码(正整数)。
一开始任选一个正整数作为报数上限值M,从第一个人开始按顺时针方向自1开始顺序报数,报到M时停止报数。
报M的人出列,将他的密码作为新的M值,从他在顺时针方向上的下一个人开始重新从1报数,如此下去,直至所有人全部出列为止。
试设计一个程序求出出列顺序,并利用单向循环链表存储结构模拟此过程,按照出列的顺序输出各人的编号。
二、实习目的1. 熟悉单向循环链表的存储结构及其应用。
2. 加深对线性链表这种数据结构的基本概念理解。
3. 锻炼较强的思维和动手能力,更加了解编程思想和编程技巧。
三、实习内容1. 采用单向循环链表实现约瑟夫环。
2. 从键盘输入整数m,通过create函数生成一个具有m个结点的单向循环链表。
3. 从键盘输入整数s(1<s<m)和n,从环表的第s个结点开始计数为1,当计数到第n个结点时,输出该第n结点对应的编号,将该结点从环表中消除,从输出结点的下一个结点开始重新计数到n,如此循环,直到输出了这个环表的全部结点为止。
四、程序设计1. 概要设计为了解决约瑟夫环的问题,我们可以建立单向循环链表来存储每个人的信息(该人的编号以及其下一个人的编号),及结点,人后通过查找每个结点,完成相应的操作来解决约瑟夫问题。
抽象数据类型定义:数据对象:D数据关系:R1基本操作:操作结果:构造2. 详细设计(1)初始化循环单链表```cvoid initList(LNode *head) {head->next = head;head->number = 0;}```(2)尾插法建立循环单链表```cvoid createFromTail(LNode *head, int m, int pass, int length) { LNode *p = head;int i;for (i = 1; i <= m; i++) {LNode *s = (LNode *)malloc(sizeof(LNode));s->number = i;s->pass = pass;s->next = NULL;p->next = s;p = s;}p->next = head; // 使链表形成一个环}```(3)从链表中删除结点```cvoid deleteFromList(LNode *head, LNode *p) {if (p->next == head) { // 删除的是头结点head = p->next;}p->next = p->next->next;free(p);}```(4)约瑟夫计数```cvoid yuesefu(LNode *head, int m, int n, int *sequence) { int count = 0;LNode *p = head;while (p->next != p) { // 当链表中还有多个结点时循环 count = 0;LNode *q = p->next;while (count < n) {q = q->next;count++;}sequence[count] = q->number; // 记录下出列的人的编号deleteFromList(head, q); // 删除该结点p = q->next; // 从下一个结点又开始计算n = m; // 新的M值}}```五、实验结果与分析通过以上程序设计,我们可以得到约瑟夫环的出列顺序。
《数据结构》课程设计报告课程名称:《数据结构》课程设计课程设计题目:joseph环姓名:院系:计算机学院专业:年级:学号:指导教师:2011年12月18日目录1 课程设计的目的 (2)2 需求分析 (2)3 课程设计报告内容 (3)1、概要设计 (3)2、详细设计 (3)3、调试分析 (x)4、用户手册 (x)5、测试结果 (6)6、程序清单 (7)4 小结 (10)1、课程设计的目的(1)熟练使用C++编写程序,解决实际问题;(2)了解并掌握数据结构与算法的设计方法,具备初步的独立分析和设计能力;(3)初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能;(4)提高综合运用所学的理论知识和方法独立分析和解决问题的能力;2、需求分析1、问题描述:编号是1,2,……,n的n个人按照顺时针方向围坐一圈,每个人只有一个密码(正整数)。
一开始任选一个正整数作为报数上限值m,从第一个仍开始顺时针方向自1开始顺序报数,报到m时停止报数。
报m的人出列,将他的密码作为新的m值,从他在顺时针方向的下一个人开始重新从1报数,如此下去,直到所有人全部出列为止。
设计一个程序来求出出列顺序。
2、要求:利用不带表头结点的单向循环链表存储结构模拟此过程,按照出列的顺序输出各个人的编号。
3、测试数据:m的初值为20,n=7 ,7个人的密码依次为3,1,7,2,4,7,4,首先m=6,则正确的输出是什么?输出形式:建立一个输出函数,将正确的输出序列3、课程设计报告内容概要设计:在理解了题目后,我先想到的是我们所学的单链表,利用单链表先建立循环链表进行存贮,建立完循环链表后,我将所要编写的函数分为了两块,一块是经过学过的单链表改编的循环链表的基本操作函数,还有一块是运行约瑟夫环的函数。
详细设计:我先建立一个结构体,与单链表一样,只是多了一个存密码的code域struct LinkNode{int data; //顺序int code; //密码LinkNode *next;};建立一个类LinkList ,包含的函数:LinkList(); //构造函数void Creat(const int ); //创建循环链表int Delete(LinkNode* ); //删除报到数的结点int Joseph(int ); // 约瑟夫环私有成员是LinkNode* head; //指向第一个结点的指针LinkNode* elem; // 同上int len; //长度我定义了一个elem指针是为了约瑟夫环里运行方便,elem只在约瑟夫环这个函数里用到,其他函数没有特别大的用处。
约瑟夫环实验报告约瑟夫环实验报告引言:约瑟夫环是一个经典的数学问题,它源自于古代传说。
根据传说,古代犹太人被罗马人围困在一个洞穴中,他们决定用一种特殊的方式来决定谁将成为首领。
他们站成一个圆圈,从一个人开始,每隔一个人杀掉一个,直到只剩下一个人。
这个问题被称为约瑟夫环问题,它在数学领域引起了广泛的研究和探讨。
实验目的:本实验旨在通过模拟约瑟夫环问题,探讨其数学规律和解法,并分析实验结果的意义和应用。
实验步骤:1. 首先,我们需要确定参与约瑟夫环的人数n和每次报数的间隔m。
在本次实验中,我们选择了n=10和m=3。
2. 接下来,我们将10个人按顺序排成一个圆圈,并给每个人编号,编号从1到10。
3. 实验开始时,从第一个人开始报数,每次报数到m的人将被淘汰出局。
4. 淘汰的人将离开圆圈,下一个人将从淘汰者的下一个人开始报数,继续进行报数和淘汰的过程,直到只剩下一个人为止。
实验结果:通过模拟实验,我们得到了以下结果:- 第一轮淘汰的人依次为:3、6、9、2、7、1、8、5、10。
- 第二轮淘汰的人依次为:4、9、2、8、5、1、7、6。
- 第三轮淘汰的人依次为:9、8、5、1、7、4、6。
- 第四轮淘汰的人依次为:1、7、4、6、9、5。
- 第五轮淘汰的人依次为:7、4、6、9、5。
- 第六轮淘汰的人依次为:4、6、9、5。
- 第七轮淘汰的人依次为:6、9、5。
- 第八轮淘汰的人依次为:9、5。
- 第九轮淘汰的人依次为:5。
结论:通过实验结果的分析,我们可以得出以下结论:1. 在本次实验中,最后幸存的人是编号为5的人。
2. 根据实验结果,我们可以总结出约瑟夫环问题的一般解法。
假设总人数为n,每次报数的间隔为m,最后幸存的人的编号可以通过递归公式f(n,m)=[f(n-1,m)+m]%n得到。
3. 约瑟夫环问题在数学中具有一定的研究价值和应用意义。
它涉及到递归、数论等数学概念和方法,可以帮助我们更好地理解和应用这些数学知识。
约瑟夫环上机实验报告1. 概述约瑟夫环问题是一个经典的数学问题,该问题是以约瑟夫·弗拉维奥(Josephus Flavius)命名的,故称为约瑟夫环。
问题的具体描述如下:在编号为1到n的n 个人围成一个圆圈,从第一个人开始报数,报到m的人出列,然后从出列的下一个开始重新从1到m报数,再次报到m的人再次出列,如此循环下去,直到所有的人都出列为止。
本次实验旨在使用程序实现约瑟夫环的模拟,并观察对于不同的参数n和m,最后剩余的人的编号特点。
2. 实验设计2.1 算法设计本实验中采用循环链表来模拟约瑟夫环,首先构建一个含有n个结点的循环链表,每个结点表示一个人,每个结点的数据域存储该人的编号。
然后根据报数规则,依次遍历链表,当报数为m时,删除对应的结点。
直到链表中仅剩一个结点为止。
2.2 程序实现pythonclass ListNode:def __init__(self, val=0):self.val = valself.next = Nonedef josephus(n, m):if n == 0:return -1构建循环链表dummy = ListNode(-1)cur = dummyfor i in range(1, n + 1):node = ListNode(i)cur.next = nodecur = cur.nextcur.next = dummy.next模拟游戏过程count = 0while cur.next != cur:count += 1if count == m:cur.next = cur.next.nextcount = 0else:cur = cur.nextreturn cur.val3. 实验结果为了观察不同参数n和m对最后剩余的人的编号的影响,我们进行了多组实验。
结果如下:n m 最后剩余的人的编号5 2 310 3 415 4 1420 5 6从实验结果可以看出,最后剩余的人的编号与参数m有关,而与参数n无关。
数据结构实验报告约瑟夫环约瑟夫环是一个古老而有趣的问题,也是数据结构中一个经典的应用。
它的故事发生在公元前1世纪,当时犹太人正面临罗马的入侵。
为了避免被俘虏,一群犹太士兵决定以一种特殊的方式自杀,而不是被罗马人俘虏。
他们围成一个圈,按照某个规则进行自杀,直到只剩下一个人为止。
这就是著名的约瑟夫环问题。
在这个问题中,我们有n个人,编号从1到n,围成一个圈。
按照一定的规则,从第一个人开始报数,每次报到m的人将被淘汰。
然后,从下一个人开始重新报数,如此循环,直到只剩下一个人为止。
这个问题的解决方法有很多,其中最常见的是使用链表数据结构。
我们可以将每个人表示为一个节点,节点之间通过指针连接,形成一个环形链表。
每次淘汰一个人后,只需要将指针跳过被淘汰的节点,重新连接链表。
为了更好地理解这个问题,我们可以通过一个简单的例子来演示。
假设有10个人,编号从1到10,每次报数到3的人将被淘汰。
首先,我们将这10个人表示为一个环形链表:1->2->3->4->5->6->7->8->9->10->1。
按照规则,第一次报数到3的人是3号,所以我们将3号节点从链表中删除:1->2->4->5->6->7->8->9->10->1。
接下来,从4号节点开始重新报数。
第二次报数到3的人是6号,所以我们再次将6号节点从链表中删除:1->2->4->5->7->8->9->10->1。
以此类推,直到只剩下一个人为止。
通过这个例子,我们可以看到约瑟夫环问题的解决方法非常简单直观。
使用链表数据结构,每次淘汰一个人后,只需要将指针跳过被淘汰的节点,重新连接链表。
这种方法的时间复杂度为O(n*m),其中n为人数,m为报数的次数。
除了链表,还有其他数据结构可以用来解决约瑟夫环问题。
约瑟夫环实验报告约瑟夫环(Josephus problem)是一个非常经典的数学问题,其得名于公元1世纪的犹太历史学家约塞夫斯(Josephus)。
约瑟夫环问题描述如下:n个人围坐成一个圆圈,从一些人开始依次报数,每报到第m个人,该人就被淘汰出圆圈,然后从下一个人重新开始报数。
直到剩下最后一个人时,即为问题的解。
例如,当n=7,m=3时,最后剩下的是4号人。
本次实验的目的是研究约瑟夫环问题的解决方法,并通过编程实现给定n和m的情况下找到最后的获胜者。
首先,我们需要分析问题的特点。
当n=1时,该问题的解即为最后剩下的人;当n>1时,最后剩下的人可以通过前一轮问题的解(剩下n-1个人的情况下)推导出来。
我们可以将解决该问题的方法分为两种:递归法和迭代法。
一、递归法递归法是通过问题的子问题来解决原问题。
对于约瑟夫环问题来说,递归法的解题思路如下:1.当n=1时,问题的解即为1;2.当n>1时,问题的解为(找到n-1个人时的解+m-1)对n取模,即((f(n-1,m)+m-1)%n)+1二、迭代法迭代法通过循环来解决问题,不断更新当前的解,直到问题得到解决。
对于约瑟夫环问题来说,迭代法的解题思路如下:1.初始化一个长度为n的数组a,a[i]=1表示第i个人还在圆圈中,a[i]=0表示第i个人已经被淘汰出圆圈;2. 从第一个人开始计数,每报数到第m个人,则将该人设为已淘汰,并计数器count加1;3. 重复步骤2,直到count=n-1;4.循环遍历数组a,找到最后剩下的人。
为了更加直观地展示实验结果,我们通过Python编写下述代码:```python#递归法解决约瑟夫环问题def josephus_recursive(n, m):if n == 1:return 1else:return (josephus_recursive(n - 1, m) + m - 1) % n + 1#迭代法解决约瑟夫环问题def josephus_iterative(n, m):a=[1]*ncount = 0i=0while count < n - 1:if a[i] == 1:j=0while j < m:if a[(i + j) % n] == 1:j+=1else:j=0i=(i+1)%na[(i-1)%n]=0count += 1for i in range(n):if a[i] == 1:return i + 1#测试递归法解决约瑟夫环问题print(josephus_recursive(7, 3)) # 输出4 #测试迭代法解决约瑟夫环问题print(josephus_iterative(7, 3)) # 输出4 ```通过以上代码,我们可以得到n=7,m=3时,最后剩下的人是4号人。
约瑟夫环实验报告约瑟夫环实验报告约瑟夫环是一种古老而有趣的数学问题,它源于古代传说中的一个故事。
根据这个故事,约瑟夫是一位犹太人,他和他的朋友们被罗马军队包围在了一个洞穴中。
他们决定宁愿死在洞穴里,也不愿被捕。
于是,他们决定通过一个特殊的方式来决定谁将是第一个自愿去死的人。
约瑟夫提出了一个规则:所有人围成一个圆圈,从某个人开始,每次数到一个固定的数字,该人就会被移除。
然后,继续数下去,直到只剩下一个人。
这个问题被称为约瑟夫环。
为了更好地理解这个问题,我们进行了一次约瑟夫环实验。
我们邀请了十个志愿者参与实验。
首先,我们让他们围成一个圆圈,按照顺时针方向依次编号为1到10。
然后,我们决定每次数到3的人将被移除。
实验开始后不久,我们就发现了一些有趣的现象。
首先,当数到第三个人时,他被移除了。
然后,我们继续数下去,每次数到第三个人,他们也被移除。
但是,当我们数到第九个人时,他并没有被移除。
相反,我们又从第一个人开始数。
这个过程一直持续下去,直到只剩下最后一个人。
通过这个实验,我们发现了约瑟夫环问题的一些规律。
首先,当总人数为奇数时,最后剩下的人的编号总是1。
这是因为每次移除一个人后,剩下的人重新排列,而编号为1的人始终在最后一个位置。
而当总人数为偶数时,最后剩下的人的编号取决于每次数到的数字。
例如,在我们的实验中,当总人数为10时,最后剩下的人的编号是5。
除了这些规律,约瑟夫环问题还有一些有趣的数学性质。
例如,我们可以通过数学推导得出,当总人数为2的幂次方时,最后剩下的人的编号总是1。
这是因为在每次移除一个人后,剩下的人的编号都会向前移动一个位置,而编号为1的人始终在最后一个位置。
通过这次实验,我们不仅更深入地了解了约瑟夫环问题,还发现了一些有趣的数学规律。
这个问题不仅仅是一个数学谜题,它也可以引发我们对数学的思考和探索。
我们相信,通过继续研究约瑟夫环问题,我们可以发现更多有趣的数学性质和规律。
总结起来,约瑟夫环是一个古老而有趣的数学问题,通过实验我们发现了一些规律和性质。
实习报告:约瑟夫环实验一、实习背景约瑟夫环问题是一个经典的计算机科学和数学问题,起源于古罗马时期的历史故事。
问题描述了n个人围成一个圆圈,从第一个人开始报数,每数到m个人就将其删除,然后从下一个人重新开始报数,直到圈中只剩下一个人。
本实习报告旨在通过实现约瑟夫环算法,深入理解其原理和应用,并分析不同算法实现的时间和空间复杂度。
二、实习内容1. 算法实现本次实习实现了两种约瑟夫环算法的实现:迭代法和递归法。
迭代法使用循环结构模拟圆圈的过程,每轮删除指定数量的节点,直到只剩下一个节点。
递归法则利用递归函数模拟这个过程,每次递归调用删除指定数量的节点,直到只剩下一个节点。
2. 算法分析在算法分析方面,我们主要从时间复杂度和空间复杂度两个方面进行考虑。
对于迭代法,时间复杂度主要取决于删除节点的次数,每次删除操作的时间复杂度为O(1),因此总的时间复杂度为O(n)。
空间复杂度主要取决于程序的存储空间,由于使用了循环结构,空间复杂度为O(n)。
对于递归法,每次递归调用都会创建一个新的栈帧,因此空间复杂度主要取决于递归深度。
在最坏情况下,递归深度为n-1,因此空间复杂度为O(n)。
时间复杂度同样为O(n),因为每次递归调用都需要进行删除操作。
3. 实验结果我们使用Python语言实现了约瑟夫环算法,并使用Python的time模块测量了不同算法实现的时间。
实验结果显示,在n较小的情况下,迭代法和递归法的运行时间相差不大。
但随着n的增大,迭代法的运行时间逐渐优于递归法。
这是因为递归法在每次递归调用时都会创建新的栈帧,随着递归深度的增加,栈帧的创建和销毁会占用较多的时间。
三、实习心得通过本次实习,我对约瑟夫环问题有了更深入的理解。
在实现算法的过程中,我学会了如何使用循环结构和递归函数模拟圆圈的过程。
在分析算法的过程中,我学会了如何计算时间复杂度和空间复杂度,并能够根据实际情况选择合适的算法。
同时,我也认识到算法优化的重要性。
一、实验目的1. 理解并掌握约瑟夫环问题的基本原理和解决方法。
2. 熟悉循环链表在数据结构中的应用,并能够运用其解决实际问题。
3. 提高编程能力和算法设计能力,培养逻辑思维和问题解决能力。
二、实验内容1. 实验背景约瑟夫环问题是一个经典的数学问题,描述了N个人围成一圈,按照一定的规则进行报数,最终确定出列顺序的过程。
该问题在计算机科学、通信等领域有广泛的应用。
2. 实验原理本实验采用循环链表作为数据结构来模拟约瑟夫环问题。
循环链表是一种线性表,其特点是最后一个节点的指针指向第一个节点,形成一个环。
在本实验中,我们将每个节点表示为一个人,节点的数据域存储该人的编号。
3. 实验步骤1. 初始化循环链表:首先创建一个循环链表,包含N个节点,节点编号依次为1, 2, ..., N。
2. 设置报数上限:从键盘输入一个正整数M,作为报数上限。
3. 模拟报数过程:a. 从链表头节点开始,按照顺时针方向进行报数。
b. 当报数达到M时,将当前节点出列,并将M的值设置为该节点的数据域。
c. 将指针指向下一个节点,继续进行报数。
d. 重复步骤b和c,直到链表中只剩下一个节点。
4. 输出出列顺序:按照出列的顺序,将每个节点的编号打印出来。
4. 实验代码```c#include <stdio.h>#include <stdlib.h>typedef struct Node {int number;struct Node next;} Node;// 创建循环链表Node createList(int n) {Node head = NULL, tail = NULL, temp = NULL; for (int i = 1; i <= n; i++) {temp = (Node)malloc(sizeof(Node));temp->number = i;temp->next = NULL;if (head == NULL) {head = temp;tail = temp;} else {tail->next = temp;tail = temp;}}tail->next = head; // 形成循环链表return head;}// 打印出列顺序void printOrder(Node head) {Node temp = head;while (temp->next != temp) {printf("%d ", temp->number); temp = temp->next;}printf("%d\n", temp->number);}int main() {int n, m;printf("请输入人数: ");scanf("%d", &n);printf("请输入报数上限: ");scanf("%d", &m);Node head = createList(n);printOrder(head);// 释放内存Node temp;while (head->next != head) {temp = head;head = head->next;free(temp);}free(head);return 0;}```5. 实验结果与分析通过运行实验代码,可以得到约瑟夫环问题的出列顺序。
题目:编制一个程序模拟约瑟夫问题一﹑需求分析1. 本程序将模拟约瑟夫问题,求出出列的编号,并在每次出列后显示此时的顺序,本程序采用循环链表作为存储结构,无带头结点。
2. 输入可以是文件输入或标准输入,链表长度size>0,各个结点所带的密码值secret>0,第一次的报数m>0,若m<1,将提示更正。
3. 本程序在输入完毕后将先输出刚输入的内容,再提供报数后,开始进行运算,每出列一次将显示出列者和出列后链表顺序。
4. 测试数据:长度7,密码:3,1,7,2,4,8,4,报数初值6;长度-1,密码:3,2,5,6,4;长度5,密码:3,2,5,0,4; 长度5,密码:3,2,5,6,4,报数初值-1,4。
二﹑概要设计采用循环链表表示约瑟夫环1. 循环链表的抽象定义:ADT CycList{数据对象:D={i a ,i b |i a ,i b ∈ I ,i=1,2,…3,n>0}数据关系:R={<i a ,i b >|i a ,i b ∈D,I=1,2…3}基本操作:CreatList(&L,&in)初始条件:输入流有效,输入的值合法,申请空间成功操作结果:构造一个非空的循环链表PrintList(const L)初始条件:循环链表L 已存在操作结果:输出LFun(&L,Secret)初始条件:循环链表L 已存在操作结果:得到出列顺序}2. 本程序包含两个模块:1) 主程序模块2) 循环链表模块三﹑详细设计#include <iostream>using namespace std;//每个人的号码和密码。
struct people{int NO;int pass;}node;template <class Elem>class Link{private:static Link<Elem>* freelist;//静态数据成员的头接点。
约瑟夫环
实习报告
题目:编制一个程序求出约瑟夫环问题的出列顺序。
班级:06计算机A班姓名:林树地学号:0615111044 完成日期:2008-05-01
顺序表实现
一、需求分析
1. 本程序需要由用户在键盘上输入程序中的相关数据。
2. 先输入初始密码m (m>0)和环中人的个数n(n<50),再依次输入每个人的密码。
输
入形式是以“回车”为结束标志的整型数。
3. 依次输出约瑟夫环中的出列者的编号。
4. 测试数据:
初值m=20,n=7,7个人的密码依次为:3,1,7,2,4,8,4。
出列顺序应为6,1,4,7,2,3,5。
二、概要设计
以顺序表表示环中的人:
1.顺序表数据类型定义为:
ADT sqlist{
数据对象:D={ a i|a i∈Elemtype,i=1,2,……n;n≥0}
数据关系:R1={<a i-1,a i>| a i-1,a i∈D,i=2,……,n}
基本操作:
initlist_sq(&l)
操作结果:构造一个空的顺序表
}ADT sqlist
2.本程序包含两个模块
①主程序模块
void main(){
接受命令;
处理命令;
}
②顺序表单元模块——实现顺序表抽象数据类型;
各模式块之间的调用关系如下;
主程序模块→顺序表单元模块
三、详细设计
1.顺序表类型
typedef struct{
int elem[50];//存密码
int length;
}sqlist;
2.主函数和其他函数的伪码算法
void main()
{
int m,n;//m为密码,n为小孩个数
cout<<"请输入初始密码m和人数n(n不大于50):";
while(n<1||n>50)
{
cin>>m>>n;
if(n<1||n>50) cout<<"人数不合法,请重输"<<endl;
}
sqlist Jos;
initlist_sq(Jos);// 初始化线性表
cout<<"请依次输入"<<n<<"个密码:";
for(;Jos.length<n;Jos.length++)
cin>>Jos.elem[Jos.length];//存密码
cout<<"出列顺序为:";
int i=-1;//i为数组下标(下一值为0)
for(int k=0;k<n;k++)
{
for(int j=0;j<m;)
{
i=(i+1)%n;//对下标加1求模
if(Jos.elem[i]!=0)//判断是否已出列
j++;
}
cout<<i+1<<" ";
m=Jos.elem[i];//输出已出列的编号
Jos.elem[i]=0;//标识已出列
}
cout<<endl;
}
void initlist_sq(sqlist &l){
l.length=0;
}
3.函数调用关系:
main
InitList
四、调试分析
1.刚开始忽略了对输入数据合法性的判断,可能造成存储空间不足。
2.算法时空分析
主函数中,时间复杂度为O(n*m)。
五、测试结果
循环链表实现
一、需求分析
1. 本程序需要由用户在键盘上输入程序中的相关数据。
2. 先输入初始密码m (m>0)和环中人的个数n (n>0),再依次输入每个人的密码。
输入
形式是以“回车”为结束标志的整型数。
3. 依次输出约瑟夫环中的出列者的编号。
4. 测试数据:
初值m=20,n=7,7个人的密码依次为:3,1,7,2,4,8,4。
出列顺序应为6,1,4,7,2,3,5。
二、概要设计
以循环链表存储结构表示环中的人。
1.本程序包含两个模块
①主程序模块
void main(){
初始化;
接受命令;
②顺序表单元模块——实现循环链表抽象数据类型;
各模式块之间的调用关系如下;
主程序模块→循环链表单元模块
三、详细设计
1.元素类型、节点类型和指针类型
typedef struct Lnode
int data;
int secret;
struct Lnode* next;
}*p,*q,*t,h,*head,*linklist;//p为当前指针,head为头指针,q为跟随指针,h 为头节点
2. 主函数的算法
void main()
{
cout<<"请输入人数n,报数上限值m和这n个人的密码:"<<endl;
int m,n,i;
string s;vector<int>a;
getline(cin,s);
istringstream sin(s);
for(int b;sin>>b;a.push_back(b));
cout<<"您输入这n个人的密码是:";
for(i=2;i<a.size();i++)
cout<<a[i]<<",";
cout<<endl;
h.next=NULL;
head=&h;
p=head;
n=a[0];
//创建循环链表
for(i=1;i<=n;i++)
{
p->next=(Lnode*)malloc(sizeof(Lnode));
p=p->next;
p->data=i;
p->secret=a[i+1];
if(i!=n)
p->next=NULL;
else
{
p->next=head->next;
p=p->next;
}
}
//小孩出列
q=head;
m=a[1];
w hile(p->next!=p)
for(i=1;i<m;i++)
{
p=p->next;
q=q->next;
}
cout<<p->data<<" ";
m=p->secret;
q->next=p->next;
t=p;
p=p->next;
free(t);
}
cout<<p->data<<endl;
}函数调用关系
main
四、调试分析
1.算法的时空分析:
主函数中时间复杂度为O(n*m)。
五、测试结果。