人教版八年级数学下册新18.2.2菱形课时练习.docx
- 格式:docx
- 大小:146.94 KB
- 文档页数:14
人教版数学八年级下册第十八章平行四边形第2课时菱形的判定1.小明和小亮在做一道习题:若四边形ABCD是平行四边形,请补充条件,使得四边形ABCD是菱形.小明补充的条件是AB=BC;小亮补充的条件是AC=BD.你认为下列说法正确的是(B)A.小明、小亮都正确B.小明正确,小亮错误C.小明错误,小亮正确D.小明、小亮都错误2.(2019·湖南邵阳期末)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE =DF.求证:▱ABCD是菱形.证明:∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°.∵BE=DF,∴△AEB≌△AFD,∴AB=AD,∴▱ABCD是菱形.3.(2019·山东临沂兰陵期末)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)求证:AF=BD;(2)求证:四边形ADCF是菱形.证明:(1)∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中点,∴AE=DE.又∠AEF=∠BED,∴△AFE≌△DBE(AAS).∴AF=BD.(2)在Rt△ABC中,∵D是斜边BC的中点,∴AD=DC=BD.∵AF=BD,∴DC=AF.又AF∥DC,∴四边形ADCF是平行四边形.∴四边形ADCF是菱形.4.(2019·宁夏中考)如图,四边形ABCD的两条对角线相交于点O,且互相平分.添加下列条件,仍不能判定四边形ABCD为菱形的是(C)A.AC⊥BD B.AB=ADC.AC=BD D.∠ABD=∠CBD5.(2019·山东泰安泰山区期中)如图,在▱ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.求证:四边形AFBE是菱形.证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠AEG=∠BFG.∵EF垂直平分AB,∴AG=BG.又∠AGE=∠BGF,∴△AGE≌△BGF(AAS).∴AE=BF.∴四边形AFBE是平行四边形.又EF⊥AB,∴四边形AFBE是菱形.6.(2019·四川巴中平昌期末)下列条件中,不能判定四边形ABCD为菱形的是(C) A.AC⊥BD,AC与BD互相平分B.AB=BC=CD=DAC.AB=BC,AD=CD,AC⊥BDD.AB=CD,AD=BC,AC⊥BD7.(2019·山东枣庄滕州模拟)如图,在∠MON的两边上分别截取OA,OB,使OA=OB;分别以点A,B为圆心,OA长为半径作弧,两弧交于点C;连接AC,BC,AB,OC.若AB=2 cm,四边形OACB的面积为4 cm2,则OC的长为(C)A.2 cm B.3 cm C.4 cm D.5 cm8.(2019·重庆北碚区月考)如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,AF⊥BC.求证:四边形ADFE是菱形.证明:∵AF⊥BC,点D,E,F分别是AB,AC,BC的中点,∴AB=AC,DF=12AC=AE,EF=12AB=AD.∴DF=AD=EF=AE.∴四边形ADFE是菱形.9.(2019·湖南永州中考)如图,四边形ABCD的对角线相交于点O,且点O是BD的中点.若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为(B)A.40 B.24 C.20 D.15第9题图第10题图10.(教材P58,练习,T3改编)如图,由两个长为9、宽为3的全等矩形叠合而得到四边形ABCD,则四边形ABCD面积的最大值是(A)A.15 B.16 C.19 D.2011.(2019·江苏南京秦淮区一模)如图,在“飞镖形”ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.(1)求证:四边形EFGH是平行四边形;(2)“飞镖形”ABCD满足条件__AC=BD__时,四边形EFGH是菱形.解:(1)证明:如图,连接AC.∵E,F,G,H分别是AB,BC,CD,AD的中点,∴EF,GH分别是△ABC,△ACD的中位线.∴EF綉12AC,GH綉12AC.∴EF綉GH.∴四边形EFGH是平行四边形.12.(2019·安徽淮南谢家集区期末)如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC,BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=5,AC=2,求OE的长.解:(1)证明:∵AD∥BC,∴∠ADB=∠CBD.∵BD平分∠ABC,∴∠ABD=∠CBD.∴∠ADB=∠ABD,∴AD=AB.∵AB=BC,∴AD=BC.∴四边形ABCD是平行四边形.又AB=BC,∴四边形ABCD是菱形.(2)OE=2.13.(2019·广西柳州期末)如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC,DC,BC于点E,F,G,连接DE,DG.(1)求证:四边形DGCE是菱形;(2)若∠ACB=30°,∠B=45°,CG=10,求BG的长.解:(1)证明:∵CD平分∠ACB,∴∠ACD=∠DCG.∵EG垂直平分CD,∴DG=GC,DE=EC.∴∠DCG=∠GDC,∠ACD=∠EDC.∴∠EDC=∠DCG=∠ACD=∠GDC.∴CE∥DG,DE∥GC.∴四边形DECG是平行四边形.又DE=EC,∴四边形DGCE是菱形.(2)BG=5+5 3.14.如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0<t≤15),过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF.(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.解:(1)证明:∵∠B=90°,∠A=60°,∴∠C=90°-∠A=30°.∵DF⊥BC,∴DF=12CD=2t.∵AE=2t,∴AE=DF.(2)当t=10时,四边形AEFD是菱形.(3)当t=152时,△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).。
人教版八年级数学18.2.2 菱形课时训练一、选择题1. 如图,若要使▱ABCD成为菱形,则可添加的条件是()A.AB=CDB.AD=BCC.AB=BCD.AC=BD2. (2020·南通)下列条件中,能判定□ABCD是菱形的是A.AC=BD B.AB⊥BC C.AD=BD D.AC⊥BD3. (2020·绍兴)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB 向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形4. 如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以点A和点B 为圆心,大于AB的长为半径画弧,两弧相交于点C,D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A .矩形B .菱形C .一般的四边形D .平行四边形5. (2020·遵义)如图,在菱形ABCD 中,AB =5,AC =6,过点D 作DE ⊥BA ,交BA 的延长线于点E ,则线段DE 的长为( )A . 125B . 185C . 4D . 2456. (2020·牡丹江)如图,在菱形OABC 中,点B 在x 轴上,点A 的坐标为(2,23),将菱形绕点O 旋转,当点A 落在x 轴上时,点C 的对应点的坐标为 ( )A .(2,23)--或(23,2)-B .(2,23)C .(2,23)-D .(2,23)--或3)二、填空题7. 菱形的两条对角线将菱形分成全等三角形的对数为8. 菱形周长为52cm ,一条对角线长为10cm ,则其面积为 .9.如图,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离BO CA y16cm AB BC ==,则1∠=度.图21CBA10. 顺次连接四边形ABCD 各边中点形成一个菱形,则原四边形对角线AC ,BD 的关系是 .11. 如图,在菱形ABCD 中,AB =5,AC =8,则菱形的面积是________.12. 如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为________cm .三、解答题13. 如图,在菱形ABCD 中,点E.F 分别为AD .CD 边上的点,DE=DF ,求证:∠1=∠2.14. 如图,已知△ABC 中,AB =AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE ,连接BD 、CE 交于点F. (1)求证:△AEC ≌△ADB ;(2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.15. 已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE ∆沿BC 方向平移,使点E 与点C 重合,得GFC ∆.若60B ∠=︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.GF E DCBA16. 如图,E 是菱形ABCD 的边AD 的中点,EF AC ⊥于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分17. 如图所示,在Rt ABC ∆中,90ABC ∠=︒,将Rt ABC ∆绕点C 顺时针方向旋转60︒得到DEC ∆点E 在AC 上,再将Rt ABC ∆沿着AB 所在直线翻转180︒得到ABF ∆连接AD .⑴ 求证:四边形AFCD 是菱形;⑵ 连接BE 并延长交AD 于G 连接CG ,请问:四边形ABCG 是什么特殊平行四边形?为什么?AB CDGEF18. 如图,将矩形纸片ABCD(AD >AB)折叠,使点C 刚好落在线段AD 上,且折痕分别与边BC ,AD 相交.设折叠后点C ,D 的对应点分别为点G ,H ,折痕分别与边BC ,AD 相交于点E ,F.(1)判断四边形CEGF 的形状,并证明你的结论; (2)若AB =3,BC =9,求线段CE 的取值范围.人教版 八年级数学 18.2.2 菱形 课时训练-答案一、选择题1. 【答案】C2. 【答案】D【解析】根据菱形的定义和判断定理判断.定义:有一组邻边相等的平行四边形是菱形;判断定理:对角线互相垂直的平行四边形是菱形.只有D 能够判断出四边形ABCD 是菱形.故选D .3. 【答案】B【解析】本题考查了特殊四边形的判定.当点E 从点A 出发沿AB 向点B 运动时,四边形AECF 的形状依次如下图所示.因此本题选B .O D FO DF CO OD4. 【答案】B5. 【答案】DE ADOB C【解析】本题考查菱形的性质,菱形的面积,勾股定理的应用.在菱形ABCD中,AB =5,AO =12AC =3,AC ⊥BD ,∴BO =AB AO -22=4,BD =8.∴5DE =12AC ·BD =24,解得DE =245.故选D.6. 【答案】D【解析】菱形OABC 中,点A 的坐标为(2,23),所以OA=4,∠A=∠C=60°,分类讨论,①若顺时针旋转,旋转后的图形如图1所示,则OC=OA=4,∠C=60°,可求出点C 对应点的坐标为(-2,-23);②若逆时针旋转,旋转后的图形如图2所示,则OC=OA=4,∠C=60°,可求出点C 对应点的坐标为(2,23).二、填空题7. 【答案】8【解析】根据菱形的性质可知:共有8对8. 【答案】120【解析】菱形的边长为()52413cm ÷=,由勾股数和菱形对角线的性质得另一对角线长为()24cm ,故面积为()2120cm9. 【答案】120︒【解析】由题意可知:构成三角形为等边三角形10. 【答案】AC=BDy xABCOyxA BCO 图1图211. 【答案】24【解析】如解图,连接BD交AC于点O,∵四边形ABCD是菱形,AB=5,AC=8,且菱形的对角线互相垂直平分,∴OA=4,在Rt△AOB中,由勾股定理得OB=3,∴BD=6,∴S菱形ABCD =12AC·BD=12×8×6=24.解图12. 【答案】13【解析】如解图,连接AC、BD交于O,则有12AC·BD=120,∴AC·BD=240,又∵菱形对角线互相垂直平分,∴2OA·2OB=240,∴OA·OB =60,∵AE2=50, OA2+OE2=AE2,OA=OE,∴OA=5,∴OB=12,∴AB =OA2+OB2=122+52=13.解图三、解答题13. 【答案】∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,AD CDD D DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△CDE(SAS),∴∠1=∠2.14. 【答案】(1)证明:∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得, ∴AD =AB ,AE =AC ,∠BAC =∠DAE ,(1分) ∵AB =AC ,∴AD =AB =AE =AC ,∠EAC =∠DAB , 在△AEC 和△ADB 中 ∵⎩⎪⎨⎪⎧AD = AE ∠EAC =∠DAB AB =AC, ∴△AEC ≌△ADB(SAS ).(3分)(2)解:当四边形ADFC 是菱形时,AC =DF ,AC ∥DF , ∴∠BAC =∠ABD , 又∵∠BAC =45°, ∴∠ABD =45°,(5分)又∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得, ∴AD =AB ,∴∠DAB =90°,(6分) 又∵AB =2,由勾股定理可得:BD =AD 2+AB 2=2AB =22,在菱形ADFC 中,DF =AD =AB =2, ∴BF =BD -DF =22-2.(8分)15. 【答案】当32BC AB =时,四边形ABFC 是菱形.∵AB GF ∥,AG BF ∥ ∴四边形ABFG 是平行四边形 ∵Rt ABE ∆中,60B ∠=︒ ∴30BAE ∠=︒ ∴12BE AB =∵BE CF =,32BC AB = ∴12EF AB = ∴AB BF =∴四边形ABFG 是菱形.16. 【答案】连结BD AF EB ,,,因为菱形ABCD 中BD AC ⊥,又因为EF AC ⊥,所以BD EF ∥,因为AD FC ∥,所以四边形BDEF 是平行四边形,可得ED FB =,因为AE ED =,所以AE FB =,从而AE FB ∥,AE FB =,因此四边形AFBE 是平行四边形,所以AB 与EF 互相平分17. 【答案】⑴ Rt DEC ∆是由Rt ABC ∆绕C 点旋转60︒得到∴AC DC =,60ACB ACD ∠=∠=︒ ∴ACD ∆是等边三角形 ∴AD DC AC ==又∵Rt ABF ∆是由Rt ABC ∆沿AB 所在 直线翻转180︒得到∴AC AF =,90ABF ABC ∠=∠=︒ ∴180FBC ∠=︒∴点F 、B 、C 三点共线∴AFC∆是等边三角形∴AF FC AC==∴AD DC FC AF===∴四边形AFCD是菱形.⑵四边形ABCG是矩形.由⑴可知:ACD⊥于E∆是等边三角形,DE AC∴AE EC∥=,又∵AG BC∴EAG ECB∠=∠,AGE EBC∠=∠∴AEG CEB=≌,∴AG BC∆∆∴四边形ABCG是平行四边形,而90∠=︒ABC∴四边形ABCG是矩形.18. 【答案】解:(1)四边形CEGF是菱形,理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,(2分)∵图形翻折后点G与点C重合,EF为折痕,∴∠GEF=∠FEC,∴∠GFE=∠GEF,∴GF=GE,(3分)∵图形翻折后EC与GE完全重合,FC与FG重合,∴GE=EC=GF=FC,∴四边形CEGF为菱形.(4分)(2)如解图①,当点F与点D重合时,四边形CEGF是正方形,(5分) 此时CE最小,且CE=CD=3;(6分)如解图②,当点G与点A重合时,CE最大.(7分)设EC=x,则BE=9-x,由折叠性质知,AE=CE=x,在Rt△ABE中,AB2+BE2=AE2,即9+(9-x)2=x2,解得x=5,∴CE=5,所以,线段CE的取值范围为3≤CE≤5.(8分)解图。
18.2.2菱形同步习题一.选择题1.菱形ABCD的周长为40cm,它的一条对角线长10cm,则它的另一条对角线长为()A.10cm B.10cm C.5cm D.5cm2.已知平行四边形ABCD,AC,BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为菱形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 3.菱形不具备的性质是()A.对角线一定相等B.对角线互相垂直C.是轴对称图形D.是中心对称图形4.如图,菱形ABCD中,∠D=135°,BE⊥CD于E,交AC于F,FG⊥BC于G.若△BFG的周长为4,则菱形ABCD的面积为()A.4B.8C.16D.165.如图,在菱形ABCD中,E、F分别是AB、CD上的点,且AE=CF,EF与AC相交于点O,连接BO.若∠DAC=36°,则∠OBC的度数为()A.36°B.54°C.64°D.72°6.如图,在菱形ABCD中,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,若∠BAD=70°,则∠CFD等于()A.50°B.60°C.70°D.80°7.如图,菱形ABCD中,在边AD、BC上分别截取DM=BN,连接MN交AC于点O,连接DO,若∠BAC=20°,则∠ODC的度数为()A.20°B.40°C.50°D.70°8.如图,在菱形ABCD中,AB=5,对角线BD=8,过BD的中点O作AD的垂线,交AD 于点E,交BC于点F,连接DF,则DF的长度为()A.B.C.D.9.如图平行四边形ABCD中,∠A=110°,AD=DC.E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠PEF=()A.35°B.45°C.50°D.55°10.如图,在菱形ABCD中,∠D=120°,AB=2,点E在边BC上,若BE=2EC,则点B 到AE的距离是()A.B.C.D.二.填空题11.如图,在▱ABCD中,点E、F分别在边AD,BC上,且DE=BF,则再添加一个条件:可判定四边形AFCE是菱形.(只添加一个条件)12.在菱形ABCD中,两条对角线相交于点O,且AB=10cm,AC=12cm.则菱形ABCD 的面积是cm2.13.如图,菱形ABCD中,AC和BD交于点O,过点D作DE⊥BC于点E,连接OE,若∠BAC=25°,则∠OED的度数是.14.如图,在菱形ABCD中,AB=5,AC=6.过点D作BA的垂线,交BA的延长线于点E,则线段DE的长为.15.如图,菱形ABCD中,EF是AB的垂直平分线,∠FBC=80°,则∠ACB=°.三.解答题16.如图,在▱ABCD中,∠ABC=60°,BC=2AB,点E、F分别是BC、DA的中点.(1)求证:四边形AECF是菱形;(2)若AB=2,求BD的长.17.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC、BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.(1)求证:四边形ABCD是菱形;(2)若AB=5,BD=6,求CE的长.18.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且2DE=AC,连接AE交OD于点F,连接DE、OE.(1)求证:AF=EF;(2)已知AB=2,若AB=2DE,求AE的长.参考答案一.选择题1.解:菱形ABCD如右图所示,∵菱形ABCD的周长为40cm,∴AB=BC=CD=AD=10cm;∵对角线BD=10cm,∴BO=DO=5cm;在Rt△ADO中,AO===.∴AD=2AO=.故选:A.2.解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵∠BAC=∠DAC,∴∠BAC=∠ACB,∴AB=BC,∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)故选:B.3.解:根据菱形的性质可知:菱形的对角线互相垂直平分;菱形既是轴对称图形,又是中心对称图形.进行的对角线相等,而菱形不具备对角线一定相等.故选:A.4.解:∵菱形ABCD中,∠D=135°,∴∠BCD=45°,∵BE⊥CD于E,FG⊥BC于G,∴△BFG与△BEC是等腰直角三角形,∵∠GCF=∠ECF,∠CGF=∠CEF=90°,CF=CF,∴△CGF≌△CEF(AAS),∴FG=FE,CG=CE,设BG=FG=EF=x,∴BF=x,∵△BFG的周长为4,∴x+x+x=4,∴x=4﹣2,∴BE=2,∴BC=BE=4,∴菱形ABCD的面积=4×2=8,故选:B.5.解:∵四边形ABCD是菱形,∴AB=BC=AD=CD,AB∥CD,AD∥BC,∴∠EAO=∠FCO,∠DAC=∠ACB=36°,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴AO=CO,又∵AB=BC,∴BO⊥AC,∴∠OBC=90°﹣∠ACB=54°,故选:B.6.解:连接BF,如图所示:∵四边形ABCD是菱形,∴∠BAC=∠BAD=×70°=35°,∠BCF=∠DCF=∠BAC,BC=DC,∠ABC=180°﹣∠BAD=180°﹣70°=110°,∵EF是线段AB的垂直平分线,∴AF=BF,∴∠DCF=∠ABF=∠BAC=35°,∴∠CBF=∠ABC﹣∠ABF=110°﹣35°=75°,在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=75°,∴∠CFD=180°﹣∠CDF﹣∠DCF=180°﹣75°﹣35°=70°,故选:C.7.解:∵四边形ABCD是菱形,∴AB∥CD,∴∠OAM=∠OCN,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴OA=OC,∵四边形ABCD是菱形,∴点O为BD与AC的交点,∵∠ACD=∠BAC=20°,∴∠ODC=90°﹣∠ACD=70°.故选:D.8.解:连接AC,如图:∵四边形ABCD是菱形,O是BD的中点,∴OD=OB=BD=4,AD=AB=5,AC⊥BD,∴OA==3,∵OE⊥AD,∴△AOD的面积=AD×OE=OA×OD,∴OE===,同理:OF=,∴EF=OE+OF=,∵DE===,∵EF⊥AD,∴DF===;故选:D.9.解:∵平行四边形ABCD中,AD=DC,∴四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE=55°,∵PE⊥AB,∴∠PEB=90°∴∠PEF=90°﹣55°=35°,故选:A.10.解:过点B作BH⊥AE于点H,过点E作EF⊥AB交AB的延长线于点F,∵菱形ABCD中,AB=2,∴BC=2,∵BE=2EC,∴BE=,CE=,∵∠D=120°,∴∠ABE=120°,∴∠EBF=60°,∴BF=BE=,EF=,∴AF=AB+BF=2+=,∴AE===,∵S△ABE=AB•EF,∴BH===.故选:A.二.填空题11.解:添加AE=AF,理由:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,又∵DE=BF,∴AE=FC.∴四边形AFCE是平行四边形.又∵AE=AF,∴四边形AFCE是菱形.故答案为:AE=AF.12.解:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC=AC=6cm,OB=OD,∴OB===8(cm),∴BD=2OB=16cm,∴S菱形ABCD=AC•BD=×12×16=96(cm2).故答案为:96.13.解:∵四边形ABCD是菱形,∠BAC=25°,∴∠ABC=180°﹣25°﹣25°=130°,∴O为BD中点,∠DBE=∠ABC=65°.∵DE⊥BC,在Rt△BDE中,OE=BE=OD,∴∠OEB=∠OBE=65°.∴∠OED=90°﹣65°=25°.故答案为:25°.14.解:∵四边形ABCD是菱形,AB=5,AC=6.∴AB=BC=CD=DA=5,AC⊥BD,OA=OC=3,∴OB===4,∴BD=2OB=8,∵,∴=5DE,解得,DE=,故答案为:.15.解:∵四边形ABCD是菱形,∴AD∥BC,∠DAC=∠BAC,∴∠AFB=∠FBC=80°,∠DAC=∠ACB,∵EF是AB的垂直平分线,∴AF=BF,∴∠F AB=∠FBA=(180°﹣∠AFB)=50°,∴∠DAC=∠BAC=25°,∴∠ACB=25°,故答案为:25.三.解答题16.(1)证明:∵四边形ABCD是平行四边形,∴BC∥AD,BC=AD.∵E,F分别是BC,AD的中点∴BE=CE=BC,AF=AD,∴CE=AF,CE∥AF,∴四边形AECF是平行四边形,∵BC=2AB,∴AB=BE,∵∠ABC=60°,∴△ABE是等边三角形,∴AE=BE=CE,∴平行四边形AECF是菱形;(2)解:作BG⊥AD于G,如图所示:则∠ABG=90°﹣∠ABC=30°,∴AG=AB=1,BG=AG=,∵AD=BC=2AB=4,∴DG=AG+AD=5,∴BD===2.17.(1)证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,OB=OD=BD=3,∴OA===4,∴AC=2OA=8,∴菱形ABCD的面积=AC×BD=×8×6=24,∵CE⊥AB,∴菱形ABCD的面积=AB×CE=5CE=24,∴CE=.18.(1)证明:∵四边形ABCD是菱形,∴OA=OC=AC,∵2DE=AC,∴DE=OA,又∵DE∥AC,∴四边形OADE是平行四边形,∴AF=EF;(2)解:连接CE,∵DE∥OC,DE=OC,∴四边形OCED是平行四边形,又∵菱形ABCD,∴AC⊥BD,∴四边形OCED是矩形,∴∠OCE=90°,又∵AB=2DE=AC,∴△ABC为等边三角形,∵在菱形ABCD中,∠ABC=60°,∴AC=AB=2,AO=AC=1,∴在矩形OCED中,CE=OD==,∴在Rt△ACE中,AE==.。
菱形一、基础达标知识点1 菱形的性质1.菱形具有而一般平行四边形不具有的性质是( )A.对角相等B.对边相等C.对角线互相垂直D.对角线相等2.(2014•长沙)如图,已知菱形ABCD的边长等于2,∠DAB=60°,则对角线BD的长为( )A.1B.C.2D.23.如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是( )A.AB∥DCB.AC=BDC.AC⊥BDD.OA=OC4.(2014•上海)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是( )A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍5.(2014•烟台)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为( )A.28°B.52°C.62°D.72°6.(2014•重庆)如图,菱形ABCD中,∠A=60°,BD=7,则菱形ABCD的周长为__________.7.菱形的两邻角之比为1∶2,如果它较短的对角线长为2 cm,则它的周长为__________.8.如图,在菱形ABCD中,E,F分别是BC,CD的中点,连接AE,AF.AE和AF有什么样的数量关系?说明理由.知识点2 菱形的面积9.菱形ABCD的对角线AC、BD交于点O,若AO=3 cm,BO=4 cm,则菱形ABCD的面积是__________cm2.10.如图,菱形ABCD的边长为 2 cm,E是AB的中点,且DE⊥AB,则菱形ABCD的面积为__________cm2.二、能力提升11.如图,在菱形ABCD中,不一定成立的是( )A.四边形ABCD是平行四边形B.AC⊥BDC.△ABC是等边三角形D.∠CAB=∠CAD12.(2014•毕节)如图,在菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD 的周长为28,则OH的长等于( )A.3.5B.4C.7D.1413.如图,在菱形ABCD中,对角线AC,BD分别等于8和6,将BD沿CB的方向平移,使D与A 重合,B与CB延长线上的点E重合,则四边形AEBD的面积等于( )A.24B.48C.72D.9614.(2014•白银)如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.15.如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于E,DF⊥BC,交BC的延长线于F.请你猜想DE与DF的大小有什么关系,并证明你的猜想.16.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.17.已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).(1)连接__________;(2)猜想:__________=__________;(3)证明:三、挑战自我18.菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图2,若∠EAF=60°,求证:△AEF是等边三角形.参考答案一、基础达标1.C2.C3.B4.B5.C6.287.8 cm8.AE=AF.理由:∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,BC=CD.又∵E,F分别为BC,CD的中点,∴BE= BC,DF= CD,∴BE=DF.∴△ABE≌△ADF(SAS).∴AE=AF.9.24 10.2二、能力提升11.C 12.A 13.A 14.1215.DE=DF.证明:连接BD.∵四边形ABCD是菱形,∴∠CBD=∠ABD.又∵DF⊥BC,DE⊥AB,∴DF=DE.16.(1)在菱形ABCD中,AB=AD,∠A=60°,∴△ABD为等边三角形.∴∠ABD=60°.(2)由(1)可知BD=AB=4,又∵O为BD的中点,∴OB=2.又∵OE⊥AB,∠ABD=60°,∴∠BOE=30°.∴BE=1.17.(1)AF;(2)AF,AE;(3)证明:∵四边形ABCD是菱形,∴AB=AD.∴∠ABD=∠ADB.∴∠ABF=∠ADE.在△ABF和△ADE中,∴△ABF≌△ADE(SAS).∴AF=AE.三、挑战自我18.证明:(1)连接AC,∵四边形ABCD是菱形,∴AB=BC=CD.∵∠B=60°,∴△ABC是等边三角形.∵E是BC的中点,∴AE⊥BC.∵∠AEF=60°,∴∠FEC=90°-60°=30°.∵∠C=180°-∠B=120°,∴∠EFC=30°.∴∠FEC=∠EFC.∴CE=CF.∵BC=CD,∴BC-CE=CD-CF,即BE=DF;(2)连接AC,由(1)得△ABC是等边三角形,∴AB=AC.∵∠BAE+∠EAC=60°,∠EAF=∠CAF+∠EAC=60°,∴∠BAE=∠CAF.∵四边形ABCD是菱形,∠B=60°,∴∠ACF= ∠BCD=∠B=60°.∴△ABE≌△ACF.∴AE=AF.∴△AEF是等边三角形.。
18.2.2 菱形第1课时菱形的性质1、菱形具有而一般平行四边形不具有的性质是()A. 对角相等B. 对边相等C. 对角线互相垂直D. 对角线相等2、菱形的周长为100cm,一条对角线长为14cm,它的面积是()A. 168cm2B. 336cm2C. 672cm2D. 84cm23、下列语句中,错误的是()A. 菱形是轴对称图形,它有两条对称轴B. 菱形的两组对边可以通过平移而相互得到C. 菱形的两组对边可以通过旋转而相互得到D. 菱形的相邻两边可以通过旋转而相互得到4、菱形的两条对角线分别是6 cm,8 cm,则菱形的边长为_____,面积为______.5、四边形ABCD是菱形,点O是两条对角线的交点,已知AB=5, AO=4,求对角线BD 和菱形ABCD的面积.6、如图,在菱形ABCD中,∠ADC=120°,则BD:AC等于().(A)3:2 (B)3:3(C)1:2 (D)3:17、菱形ABCD的周长为20cm,两条对角线的比为3∶4,求菱形的面积。
8、如左下图,菱形ABCD的对角线AC、BD交于点O,且AC=16cm,BD=12cm,求菱形ABCD的高DH。
9、如右上图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数为.10、在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.11、如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4)B.M(4,0),N(8,4)C.M(5,0),N(7,4)D.M(4,0),N(7,4)12、(2010•襄阳)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:113、如左下图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=_________.14、如右上图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.15、【提高题】如图,在菱形ABCD中,顶点A到边BC、CD的距离AE、AF都为5,EF=6,那么,菱形ABCD的边长是_____菱形的性质答案1、【答案】 C2、【答案】 B3、【答案】 D4、【答案】 5 cm;24 cm25、【答案】BD=6,面积是24.6、【答案】B7、【答案】24 cm28、【答案】9.6cm9、【答案】60°10、【答案】(1)BD=12cm,3(2)S菱形ABCD3cm211、【答案】 A12、【答案】 C1213、【答案】5214、【答案】312515、【答案】24【提示】方程加勾股定理中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
第十八章平行四边形18.2.2 菱形一、选择题1、菱形具有而一般平行四边形不具有的性质是()A. 对角相等B. 对边相等C. 对角线互相垂直D. 对角线相等2、下列命题中,真命题是()A.对角线互相垂直且相等的四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形3、如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为()A.15B.C.7.5D.4、能够判别一个四边形是菱形的条件是()A. 对角线相等且互相平分B. 对角线互相垂直且相等C. 对角线互相平分D. 一组对角相等且一条对角线平分这组对角5、四个点A,B,C,D在同一平面内,从①AB①CD;①AB=CD;①AC①BD;①AD=①BC;①AD①BC.这5个条件中任选三个,能使四边形ABCD是菱形的选法有().A.1种B.2种C.3种D.4种二、填空题6、已知菱形的两条对角线长为8和6,那么这个菱形面积是________,菱形的高________.7、如图,菱形ABCD中,AB=4,∠B=60°,E,F分别是BC,DC上的点,∠EAF=60°,连接EF,则△AEF的面积最小值是.第7题图第8题图8、如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∠AC 交BC的延长线于点E,则∠BDE的周长为.9、如图所示,已知平行四边形ABCD,AC,BD相交于点O,添加一个条件使平行四边形为菱形,添加的条件为________.(只写出符合要求的一个即可)10、如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将①BDA 沿BD翻折,使点A落在BC边上的点F处,若在y轴上存在点P,且满足FE=FP,则P点坐标为.三、解答题11、在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.12、∠如图,在菱形ABCD中,AE⊥BC,E为垂足.且BE=CE,AB=2.求:(1)BAD的度数;(2)对角线AC的长及菱形ABCD的周长.13、如图所示,在菱形ABCD中,∠ABC=60°,DE∠AC交BC的延长线于点E.求证:DE=BE.14、如图,□ABCD的对角线AC的垂直平分线与AD、BC分别交于E、F,四边形AFCE是否是菱形?为什么?15、如图所示,在四边形ABCD中,AB①CD,AB=CD=BC,四边形ABCD是菱形吗?说明理由.16、如图,在①ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C作CF①BE交DE 的延长线于F,连接CD.(1)求证:四边形BCFE是菱形;(2)在不添加任何辅助线和字母的情况下,请直接写出图中与①BEC面积相等的所有三角形(不包括①BEC).17、如图,已知平行四边形ABCD的两条对角线相交于点O,E是BO的中点,过B点作AC的平行线,交CE的延长线于点F,连接BF(1)求证:FB=AO;(2)当平行四边形ABCD满足什么条件时,四边形AFBO是菱形?说明理由.参考答案:一、1、C 2、B 3、A 4、D 5、D二、6、24;7、8、609、AB=BC 点拨:还可添加A C①BD或①ABD=①CBD等.10、(0,0)(0,4)三、11、【答案】(1)BD=12cm,(2)S菱形ABCD212、解:(1)∵AE⊥BC,且BE=CE,∴△ABC为等边三角形,∠B=∠D=60°,∴∠BAD=∠BCD=120°.(2)AC=AB=2,周长为:4×2=8.13、考点:菱形的性质。
2020春人教版八下数学18.2.2菱形同步课堂练习(学生版)第1课时菱形的性质01基础题知识点1菱形的性质1.(2018·十堰)菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形2.(2019·河北)如图,在菱形ABCD中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°3.(2019·贵阳)如图,菱形ABCD的周长是4 cm,∠ABC=60°,那么这个菱形的对角线AC的长是() A.1 cm B.2 cmC.3 cm D.4 cm4.(2019·呼和浩特)已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为() A.2 2 B.2 5 C.4 2 D.2105.(2019·赤峰)如图,菱形ABCD周长为20,对角线AC,BD相交于点O,E是CD的中点,则OE的长是()A.2.5B.3C.4D.56.(2019·衢州)已知:如图,在菱形ABCD中,点E,F分别在边BC,CD上,且BE=DF,连接AE,AF.求证:AE=AF.知识点2菱形的面积7.(2018·徐州)若菱形两条对角线的长分别是6 cm和8 cm,则其面积为cm2.8.(教材P56例3变式)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且∠ACD=30°,BD=4,求菱形ABCD的面积.易错点点的位置不确定导致漏解9.四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上.若OE=3,则CE的长为.02中档题10.(2019·泸州)一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8 B.12 C.16 D.3211.如图,在菱形ABCD中,点M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°12.(2019·绵阳)如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,3) B.(3,2) C.(3,3) D.(3,3)13.(2019·广西)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.14.(2019·百色)如图,在菱形ABCD中,作BE⊥AD,CF⊥AB,分别交AD,AB的延长线于点E,F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.15.如图,在菱形ABCD中,对角线AC,BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)求证:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.03综合题16.如图,已知菱形ABCD的周长为16,面积为83,E为AB的中点.若P为对角线BD上一动点,则EP +AP的最小值为.17.(2019·宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.对角线互相垂直的四边形的面积我们已经知道:菱形的面积等于对角线乘积的一半,那么,如果是对角线互相垂直的任意一个四边形,还有这样的结论吗?如图,四边形ABCD的对角线AC,BD互相垂直,其中对角线BD长为15,AC长为20,垂足为O,求四边形ABCD的面积.(请写出求解过程)结论:对角线互相垂直的四边形的面积等于.第2课时菱形的判定01基础题知识点1有一组邻边相等的平行四边形是菱形1.如图,若要使▱ABCD成为菱形,则可添加的条件是()A.AB=CDB.AD=BCC.AB=BCD.AC=BD2.如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,求证:四边形AEDF是菱形.知识点2对角线互相垂直的平行四边形是菱形3.如图,四边形ABCD的对角线互相垂直,且满足AO=CO,请你添加一个适当的条件,使四边形ABCD成为菱形.(只需添加一个即可)4.(2018·遂宁)如图,在▱ABCD中,点E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF 是菱形.知识点3四条边相等的四边形是菱形5.(2019·兰州)如图,AC=8,分别以A,C为圆心,以5为半径作弧,两条弧分别相交于点B,D.依次连接A,B,C,D,连接BD交AC于点O.(1)判断四边形ABCD的形状,并说明理由;(2)求BD的长.6.如图,在四边形ABCD中,AC=BD,E,F,G,H依次是AB,BC,CD,DA的中点.求证:四边形EFGH 是菱形.易错点对菱形的判定方法掌握不透导致出错7.下列命题:①四边都相等的四边形是菱形;②两组邻边分别相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形;④对角线相等的四边形是菱形;⑤一条对角线平分一组对角的平行四边形是菱形.其中正确的是.(填序号)02中档题8.(2019·宁夏)如图,四边形ABCD的两条对角线相交于点O,且互相平分.添加下列条件,仍不能判定四边形ABCD为菱形的是()A.AC⊥BD B.AB=ADC.AC=BD D.∠ABD=∠CBD9.(2019·永州)如图,四边形ABCD的对角线相交于点O,且点O是BD的中点.若AB=AD=5,BD=8,∠ABD =∠CDB,则四边形ABCD的面积为()A.40 B.24 C.20 D.1510.如图,在四边形ABCD中,AB=AD,BC=DC,AC,BD相交于点O,点E在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连接BE,DE,判断四边形BCDE的形状,并说明理由.11.(2019·宿迁)如图,矩形ABCD中,AB=4,BC=2,点E,F分别在AB,CD上,且BE=DF=3 2.(1)求证:四边形AECF是菱形;(2)求线段EF的长.03综合题12.(2019·滨州)如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.2020春人教版八下数学18.2.2菱形同步课堂练习(教师版)第1课时菱形的性质01基础题知识点1菱形的性质1.(2018·十堰)菱形不具备的性质是(B)A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形2.(2019·河北)如图,在菱形ABCD中,∠D=150°,则∠1=(D)A.30°B.25°C.20°D.15°3.(2019·贵阳)如图,菱形ABCD的周长是4 cm,∠ABC=60°,那么这个菱形的对角线AC的长是(A)A.1 cm B.2 cmC.3 cm D.4 cm4.(2019·呼和浩特)已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为(C) A.2 2 B.2 5 C.4 2 D.2105.(2019·赤峰)如图,菱形ABCD周长为20,对角线AC,BD相交于点O,E是CD的中点,则OE的长是(A)A.2.5B.3C.4D.56.(2019·衢州)已知:如图,在菱形ABCD中,点E,F分别在边BC,CD上,且BE=DF,连接AE,AF.求证:AE=AF.证明:∵四边形ABCD是菱形,∴AB=AD,∠B=∠D.∵BE=DF,∴△ABE≌△ADF(SAS).∴AE=AF.知识点2菱形的面积7.(2018·徐州)若菱形两条对角线的长分别是6 cm和8 cm,则其面积为24cm2.8.(教材P56例3变式)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且∠ACD=30°,BD=4,求菱形ABCD的面积.解:∵四边形ABCD 是菱形,BD =4,∴OA =OC =12AC ,OB =OD =12BD =2,AC ⊥BD.∵在Rt △OCD 中,∠OCD =30°, ∴CD =2OD =4,OC =CD 2-OD 2=42-22=2 3.∴AC =2OC =4 3.∴S 菱形ABCD =12AC·BD =12×43×4=8 3.易错点 点的位置不确定导致漏解9.四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上.若OE =3,则CE 的长为02 中档题 10.(2019·泸州)一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为(C ) A .8 B .12 C .16 D .3211.如图,在菱形ABCD 中,点M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO.若∠DAC =28°,则∠OBC 的度数为(C )A .28°B .52°C .62°D .72°12.(2019·绵阳)如图,在平面直角坐标系中,四边形OABC 为菱形,O(0,0),A(4,0),∠AOC =60°,则对角线交点E 的坐标为(D )A .(2,3)B .(3,2)C .(3,3)D .(3,3)13.(2019·广西)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,过点A 作AH ⊥BC 于点H ,已知BO =4,S 菱形ABCD =24,则AH =245.14.(2019·百色)如图,在菱形ABCD 中,作BE ⊥AD ,CF ⊥AB ,分别交AD ,AB 的延长线于点E ,F. (1)求证:AE =BF ;(2)若点E 恰好是AD 的中点,AB =2,求BD 的值.解:(1)证明:∵四边形ABCD 是菱形, ∴AB =BC ,AD ∥BC.∴∠A=∠CBF.∵BE⊥AD,CF⊥AB,∴∠AEB=∠BFC=90°.∴△AEB≌△BFC(AAS).∴AE=BF.(2)∵点E是AD的中点,且BE⊥AD,∴直线BE为AD的垂直平分线.∴BD=AB=2.15.如图,在菱形ABCD中,对角线AC,BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)求证:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.解:(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD.∴AE∥CD.又∵DE⊥BD,∴DE∥AC.∴四边形ACDE是平行四边形.(2)∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=AO2+DO2=5.∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8.∴C△ADE=AD+AE+DE=5+5+8=18.03综合题16.如图,已知菱形ABCD的周长为16,面积为83,E为AB的中点.若P为对角线BD上一动点,则EP+AP的最小值为17.(2019·宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.解:(1)证明:∵四边形EFGH是矩形,∴EH=FG,EH∥FG.∴∠GFH=∠EHF.∵∠BFG=180°-∠GFH,∠DHE=180°-∠EHF,∴∠BFG=∠DHE.∵四边形ABCD是菱形,∴AD∥BC.∴∠GBF=∠EDH.∴△BGF≌△DEH(AAS).∴BG=DE.(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC.∵E为AD中点,∴AE=ED.∵BG=DE,∴AE=BG,AE∥BG.∴四边形ABGE是平行四边形.∴AB=EG.∵在矩形EFGH中,EG=FH=2,∴AB=2.∴菱形ABCD的周长为8.对角线互相垂直的四边形的面积我们已经知道:菱形的面积等于对角线乘积的一半,那么,如果是对角线互相垂直的任意一个四边形,还有这样的结论吗?如图,四边形ABCD的对角线AC,BD互相垂直,其中对角线BD长为15,AC长为20,垂足为O,求四边形ABCD的面积.(请写出求解过程)解:∵S四边形ABCD=S△ADC+S△BAC=12AC·OD+12AC·BO=12AC·(OD+OB)=12AC·BD,∴S四边形ABCD=12×20×15=150.结论:对角线互相垂直的四边形的面积等于两条对角线乘积的一半.第2课时菱形的判定01基础题知识点1有一组邻边相等的平行四边形是菱形1.如图,若要使▱ABCD成为菱形,则可添加的条件是(C)A.AB=CDB.AD=BCC.AB=BCD.AC=BD2.如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,求证:四边形AEDF是菱形.证明:∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∠FAD=∠EDA.∵AD是∠BAC的平分线,∴∠EAD=∠FAD.∴∠EDA=∠EAD.∴AE=ED.∴四边形AEDF是菱形.知识点2对角线互相垂直的平行四边形是菱形3.如图,四边形ABCD的对角线互相垂直,且满足AO=CO,请你添加一个适当的条件BO=DO(答案不唯一),使四边形ABCD成为菱形.(只需添加一个即可)4.(2018·遂宁)如图,在▱ABCD中,点E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF 是菱形.证明:∵四边形ABCD是平行四边形,∴AD綊BC.∵DE=BF,∴AD-DE=BC-BF,即AE=FC.∵AE∥FC,∴四边形AECF是平行四边形.又∵AC⊥EF,∴四边形AECF是菱形(对角线互相垂直的平行四边形是菱形).知识点3四条边相等的四边形是菱形5.(2019·兰州)如图,AC=8,分别以A,C为圆心,以5为半径作弧,两条弧分别相交于点B,D.依次连接A,B,C,D,连接BD交AC于点O.(1)判断四边形ABCD的形状,并说明理由;(2)求BD的长.解:(1)四边形ABCD 为菱形,理由如下:由作法得AB =AD =CB =CD =5,∴四边形ABCD 为菱形.(2)∵四边形ABCD 为菱形,∴OA =OC =12AC =4,OB =OD ,AC ⊥BD. 在Rt △AOB 中,OB =52-42=3,∴BD =2OB =6.6.如图,在四边形ABCD 中,AC =BD ,E ,F ,G ,H 依次是AB ,BC ,CD ,DA 的中点.求证:四边形EFGH 是菱形.证明:∵E ,F ,G ,H 分别是线段AB ,BC ,CD ,AD 的中点,∴EH ,FG 分别是△ABD ,△BCD 的中位线,EF ,HG 分别是△ABC ,△ACD 的中位线.∴EH =FG =12BD ,EF =HG =12AC. 又∵AC =BD ,∴EH =FG =EF =HG.∴四边形EFGH 是菱形.易错点 对菱形的判定方法掌握不透导致出错7.下列命题:①四边都相等的四边形是菱形;②两组邻边分别相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形;④对角线相等的四边形是菱形;⑤一条对角线平分一组对角的平行四边形是菱形.其中正确的是①③⑤.(填序号)02中档题8.(2019·宁夏)如图,四边形ABCD的两条对角线相交于点O,且互相平分.添加下列条件,仍不能判定四边形ABCD为菱形的是(C)A.AC⊥BD B.AB=ADC.AC=BD D.∠ABD=∠CBD9.(2019·永州)如图,四边形ABCD的对角线相交于点O,且点O是BD的中点.若AB=AD=5,BD=8,∠ABD =∠CDB,则四边形ABCD的面积为(B)A.40 B.24 C.20 D.1510.如图,在四边形ABCD中,AB=AD,BC=DC,AC,BD相交于点O,点E在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连接BE,DE,判断四边形BCDE的形状,并说明理由.解:(1)证明:在△ADC 和△ABC 中,⎩⎨⎧AD =AB ,AC =AC ,DC =BC ,∴△ADC ≌△ABC(SSS ).∴∠1=∠2.(2)四边形BCDE 是菱形.理由:∵∠1=∠2,CD =BC ,∴AC 垂直平分BD.∵OE =OC ,∴四边形DEBC 是平行四边形.∵AC ⊥BD ,∴四边形DEBC 是菱形.11.(2019·宿迁)如图,矩形ABCD 中,AB =4,BC =2,点E ,F 分别在AB ,CD 上,且BE =DF =32. (1)求证:四边形AECF 是菱形;(2)求线段EF 的长.解:(1)证明:∵在矩形ABCD 中,AB =4,BC =2,∴CD =AB =4,AD =BC =2,CD ∥AB ,∠D =∠B =90°.∴AF =CE =22+(32)2=52. ∵BE =DF =32,∴CF =AE =4-32=52. ∴AF =CF =CE =AE =52. ∴四边形AECF 是菱形.(2)过点F 作FH ⊥AB 于点H ,则四边形AHFD 是矩形,∴AH =DF =32,FH =AD =2. ∴EH =52-32=1. ∴EF =FH 2+HE 2=22+12= 5.03 综合题12.(2019·滨州)如图,矩形ABCD 中,点E 在边CD 上,将△BCE 沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作FG ∥CD 交BE 于点G ,连接CG .(1)求证:四边形CEFG 是菱形;(2)若AB =6,AD =10,求四边形CEFG 的面积.解:(1)证明:由题意得△BCE ≌△BFE ,∴∠BEC =∠BEF ,FE =CE.∵FG ∥CE ,∴∠FGE =∠CEB.∴∠FGE =∠FEG.∴FG =FE.∴FG =EC.∴四边形CEFG 是平行四边形.又∵CE =FE ,∴四边形CEFG 是菱形.(2)∵矩形ABCD 中,AB =6,AD =10,BC =BF ,∴∠BAF =90°,AD =BC =BF =10.∴AF =8.∴DF =2.设EF =x ,则CE =x ,DE =6-x.∵∠FDE =90°,∴22+(6-x)2=x 2.解得x =103. ∴CE =103. ∴S 四边形CEFG =CE·DF =103×2=203.。
第2课时菱形的判定知识点 1 一组邻边相等的平行四边形是菱形1.如图,若要使▱ABCD成为菱形,则可添加的条件是()A.AB=CDB.AD=BCC.AB=BCD.AC=BD2.如图,平行四边形ABCD中,AB=9 cm,BC=4 cm,将BC边以2 cm/s的速度沿BA方向平移得到FE,则当BC边移动s时,四边形DAFE是菱形.3.已知:如图,在△ABC中,AD平分∠BAC交BC于点D,DE∥AC交AB于点E,DF∥AB交AC于点F.求证:四边形AEDF 是菱形.知识点 2 对角线互相垂直的平行四边形是菱形4.已知两根长度不相同的木棒的中点被捆在一起,如图拉开一个角度α,当α=时,四边形ABCD是菱形()A.60°B.90°C.45°D.30°5.如图所示,四边形ABCD的对角线AC,BD互相垂直,则下列条件中能判定四边形ABCD为菱形的是()A.BA=BCB.AC,BD互相平分C.AC=BDD.AB∥CD6.如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.知识点 3 四条边相等的四边形是菱形AB的长为半径画弧,相交于点C,D,则四边形ACBD为菱形的依据7.如图,已知线段AB,分别以A,B为圆心,大于12为.8.如图,△ABD为等腰三角形,把它沿底边BD翻折后,得到△CBD.求证:四边形ABCD是菱形.9.如图,四边形ABCD是一张平行四边形纸片,要求利用所学知识作出一个菱形,甲、乙两名同学的作法分别如下:对于甲、乙两人的作法,下列判断正确的为()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误10.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,AB=3,AC=2,则BD的长为.11.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.12.如图,在平面直角坐标系中,有三点A(0,4),B(9,4),C(12,0).已知点P从点A出发沿着AB路线向点B运动,同时点Q从点C出发沿着CO向点O运动,运动速度都是每秒2个单位长度,运动时间为t秒.(1)当t=4.5时,判断四边形AQCB的形状,并说明理由.(2)当四边形AOQB是矩形时,求t的值.(3)是否存在某一时刻,使四边形PQCB是菱形?若存在,求出t的值;若不存在,请说明理由.答案1.C2.2.5解析:设BC边移动的时间为t s,则BF=2t cm,∴AF=(9-2t)cm.∵四边形ABCD是平行四边形,∴AD=BC=4 cm,且AD∥BC.∵BC边以2 cm/s的速度沿BA方向平移得到FE,∴BC=FE,且BC∥FE,∴AD=FE,且AD∥FE,∴四边形DAFE是平行四边形,∴当AF=AD时,四边形DAFE是菱形,此时9-2t=4,解得t=2.5.3.证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形.∵AD平分∠BAC,∴∠EAD=∠FAD.∵DE∥AC,∴∠FAD=∠ADE,∴∠EAD=∠ADE,∴AE=DE,∴四边形AEDF是菱形.4.B解析:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.∵∠AOB=90°,∴AC⊥BD,∴四边形ABCD是菱形.5.B6.证明:∵四边形ABCD是平行四边形,∴AD∥BC.∵DE=BF,∴AD-DE=BC-BF,即AE=FC.又∵AE ∥FC ,∴四边形AECF 是平行四边形.又∵AC ⊥EF ,∴四边形AECF 是菱形.7.四条边相等的四边形是菱形8.证明:∵将△ABD 沿底边BD 翻折得到△CBD ,∴AB=CB ,AD=CD.又∵AB=AD ,∴AB=CB=CD=AD , ∴四边形ABCD 是菱形.9.C10.4√2 解析: 过点A 作AE ⊥BC 于点E ,AF ⊥CD 于点F.∵两张纸条宽度相同,∴AE=AF. ∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形. ∵S ▱ABCD =BC ·AE=CD ·AF ,AE=AF. ∴BC=CD ,∴四边形ABCD 是菱形.设BD 与AC 交于点O , 则AC ⊥BD ,AO=12AC=1,BO=12BD ,∴BO=√AB 2-AO 2=2√2, ∴BD=2BO=4√2,故答案为4√2.11.解:(1)证明:∵AF ∥BC ,∴∠AFE=∠DBE ,∠FAE=∠BDE. ∵E 是AD 的中点,∴AE=DE.在△FAE 和△BDE 中,{∠AFE =∠DBE ,∠FAE =∠BDE ,AE =DE ,∴△FAE ≌△BDE ,∴AF=DB. ∵AD 是BC 边上的中线, ∴DB=DC ,∴AF=DC.(2)四边形ADCF是菱形.证明:∵AF=DC,AF∥DC,∴四边形ADCF是平行四边形.∵AB⊥AC,∴△ABC是直角三角形.∵AD是斜边BC上的中线,BC=DC,∴AD=12∴平行四边形ADCF是菱形.12.解:(1)四边形AQCB是平行四边形.理由:∵A(0,4),B(9,4),∴AB∥OC,AB=9.当t=4.5时,CQ=2t=9,∴AB=CQ,∴四边形AQCB是平行四边形.(2)∵C(12,0),∴OC=12,∴OQ=12-2t.当四边形AOQB是矩形时,有AB=OQ,即9=12-2t,解得t=1.5,∴当t=1.5时,四边形AOQB是矩形.(3)不存在.理由:当PB=CQ时,四边形PQCB是平行四边形,则9-2t=2t,解得t=2.25,此时CQ=2t=4.5.如图,过点B作BD⊥OC,垂足为D.∵B(9,4),C(12,0),∴BD=4,CD=3,∴BC=2+CD2=5,∴BC≠CQ,∴四边形PQCB不是菱形,即不存在某一时刻,使四边形PQCB是菱形.。
人教版八年级下册18.2.2 菱形 同步课时练习一、选择题1.萎形不一定具备的性质是( ) A .对边平行且相等 B .对角相等 C .对角线互相平分D .对角线相等2.矩形和菱形都一定具有的性质是( ) A .对角线互相垂直 B .对角线互相平分 C .对角线长度相等D .对角线平分一组对角3.如图,下列条件中,能使平行四边形ABCD 成为菱形的是( )A .AB CD = B .AD BC = C .AB BC =D .AC BD =4.在平行四边形ABCD 中,添加下列条件能够判定平行四边形ABCD 是菱形的是( ) A .AC ⊥BDB .AB =CDC .AB ⊥BCD .AC =BD5.下列命题中,假命题是( ) A .对角线垂直的平行四边形是菱形 B .对角线互相平分且垂直的四边形是菱形 C .对角线互相平分且平分一组内角的四边形是菱形 D .对角线相等且垂直的四边形是菱形6.如图,在菱形ABCD 中,点E 、F 分别是AB 、AC 的中点,如果4EF =,那么菱形ABCD 的周长是( )A .16B .24C .28D .327.若菱形ABCD 的边长为2,其中∠ABC =60°,则菱形ABCD 的面积为( ) A .4B .3C .2D .238.如图,已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM +PN 的最小值是( )A .5B .10C .6D .8二、填空题9.在菱形ABCD 中,AB =2,则菱形的周长是___.10.菱形两条对角线长为8cm 和6cm,则菱形面积为_______cm 2.11.命题“对角线互相垂直的四边形是菱形”,这是个______命题.(填“真”、“假”)12.如图,在ABC 中,已知E 、F 、D 分别是AB 、AC 、BC 上的点,且//DE AC ,//DF AB ,请你添加一个________条件,使四边形AEDF 是菱形.13.如图,在菱形ABCD 中,∠BAD =45°,DE 是AB 边上的高,BE =2,则AB 的长是____.14.如图,在菱形ABCD 中,6BC =,点E 是AD 的中点,连接OE,则OE=_____________.15.如图,在矩形ABCD 中,边AB 的长为3,点E ,F 分别在AD ,BC 上,连接BE ,DF ,EF ,BD .若四边形BEDF 是菱形,且=+EF AE FC ,则边BC 的长为______.16.如图,菱形ABCD 中,E 、F 分别在BC CD 、边上,AB AE =,且AEF 是等边三角形,则C ∠=_______.三、解答题17.如图,平行四边形ABCD 中,对角线BD 平分ABC ∠.求证:平行四边形ABCD 是菱形.18.如图,在▱ABCD 中,点O 是对角线BD 的中点,过点O 作EF ⊥BD ,垂足为点O ,且交AD ,BC 分别于点E ,F . 求证:四边形BEDF 是菱形.19.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,CE ∥BD ,DE ∥AC ,AD =23,DE =2,求四边形OCED 的面积.20.如图,在四边形ABCD 中,AB DC ∥,AB AD =,对角线AC 、BD 交于点O ,AC 平分∠BAD ,过点C 作CE AB ⊥交AB 的延长线于点E .(1)求证:四边形ABCD 是菱形; (2)若8AC =,6BD =,求CE 的长.21.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,//BE AC ,//AE BD ,OE 与AB 交于点F .(1)试判断四边形AEBO 的形状,并说明理由; (2)若5OE =,8AC =,求菱形ABCD 的面积.22.如图,在菱形ABCD 中,AE ⊥BC 于点E .(1)如图1,若∠BAE=30°,AE=3,求菱形ABCD的周长及面积;(2)如图2,作AF⊥CD于点F,连接EF,BD,求证:EF∥BD;(3)如图3,设AE与对角线BD相交于点G,若CE=4,BE=8,四边形CDGE和△AGD的面积分别是S1和S2,求S1﹣S2的值.参考答案1.D【解析】【分析】本题考查菱形的性质,菱形两组对边平行,四条边相等,两组对角相等,对角线互相垂直平分,以此可以求解.【详解】解:A、菱形的对边平行且四边相等,此选项说法正确,不符合题意;B、菱形的两组对角相等,此选项说法正确,不符合题意;C、菱形的对角线互相垂直平分,此选项说法正确,不符合题意;D、菱形的对角线不相等,此选项说法错误,符合题意.故选:D.【点睛】本题考查菱形的性质,熟悉菱形的性质是解题的关键.2.B【解析】【分析】根据菱形和矩形的性质对各选项分别进行判断.【详解】解:A、菱形的对角线互相垂直平分,而矩形的对角线互相平分且相等,所以A选项错误;B、菱形和矩形的对角线都互相平分,所以B选项正确;C、菱形的对角线互相垂直平分,而矩形的对角线互相平分且相等,所以C选项错误;D、菱形的对角线互相垂直平分且平分每组对角,而矩形的对角线互相平分且相等,所以D选项错误.故选B.【点睛】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了矩形的性质.解题关键是掌握菱形的性质及矩形的性质.3.C【解析】【分析】根据菱形的性质逐个进行证明,再进行判断即可.【详解】解:A、▱ABCD中,本来就有AB=CD,故本选项错误;B、▱ABCD中本来就有AD=BC,故本选项错误;C、▱ABCD中,AB=BC,可利用邻边相等的平行四边形是菱形判定▱ABCD是菱形,故本选项正确;D、▱ABCD中,AC=BD,根据对角线相等的平行四边形是矩形,即可判定▱ABCD是矩形,而不能判定▱ABCD是菱形,故本选项错误.故选:C.【点睛】本题考查了平行四边形的性质,菱形的判定的应用,注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形.4.A【解析】【分析】根据对角线互相垂直的平行四边形是菱形判定,即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,故选:A..【点睛】本题考查了菱形的判定.熟记判定定理是解此题的关键.5.D【解析】【分析】利用菱形的判定定理分别对每个选项逐一判断后即可得到正确的选项.【详解】解:A、正确,是真命题;B、正确,是真命题;C、正确,是真命题;D、对角线相等且垂直的四边形也可能是等腰梯形,故错误,是假命题,故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解菱形的判定定理,属于基础题,比较简单.6.D根据三角形的中位线定理易得BC=2EF,那么菱形的周长等于4BC【详解】解:点E、F分别是AB、AC的中点,4EF=,∴==,BC EF28四边形ABCD是菱形,∴菱形ABCD的周长是:4832⨯=.故选:D.【点睛】本题考查三角形的中位线定理和菱形周长,掌握这两个知识点是关键.7.D【解析】【分析】过点A作AE⊥BC于E,由含30°角的直角三角形的性质得BE=1,再求出AE的长,然后由菱形的面积公式即可得解.【详解】解:如图,过点A作AE⊥BC于E,则∠AEB=90°,∵菱形ABCD的边长为2,∠ABC=60°,∴∠BAE=90°﹣60°=30°,AB=1,∴BE=12∴AE33∴菱形的面积=BC×AE=2×33故选:D.【点睛】本题考查了菱形的性质,解直角三角形,作辅助线构造出直角三角形是解题的关键.8.A作M 关于BD 的对称点Q ,连接NQ ,交BD 于P ,连接MP ,此时MP +NP 的值最小,连接AC ,求出CP 、BP ,根据勾股定理求出BC 长,证出MP +NP =QN =BC ,即可得出答案. 【详解】解:作M 关于BD 的对称点Q ,连接NQ ,交BD 于P ,连接MP ,此时MP +NP 的值最小,连接AC ,则P 是AC 中点,∵四边形ABCD 是菱形, ∴AC ⊥BD ,∠QBP =∠MBP , 即Q 在AB 上, ∵MQ ⊥BD , ∴AC ∥MQ , ∵M 为BC 中点, ∴Q 为AB 中点,∵N 为CD 中点,四边形ABCD 是菱形, ∴BQ ∥CD ,BQ =CN ,∴四边形BQNC 是平行四边形, ∴PQ ∥AD ,而点Q 是AB 的中点,故PQ 是△ABD 的中位线,即点P 是BD 的中点, 同理可得,PM 是△ABC 的中位线, 故点P 是AC 的中点,即点P 是菱形ABCD 对角线的交点, ∵四边形ABCD 是菱形, 则△BPC 为直角三角形, 113,422CP AC BP BD ====, 在Rt △BPC 中,由勾股定理得:BC =5, 即NQ =5,∴MP +NP =QP +NP =QN =5, 故选:A .本题考查了轴对称-最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置.9.8cm【解析】【分析】根据菱形的性质可直接进行求解.【详解】解:由菱形的四条边相等可得:菱形的周长为2×4=8cm,故答案为:8cm.【点睛】本题主要考查菱形的性质,熟练掌握菱形的性质是解题的关键.10.24【解析】【分析】根据菱形的面积等于两对角线乘积的一半求其面积即可.【详解】解:菱形面积是6×8÷2=24cm2;故答案为24.【点睛】本题考查的是菱形的面积的计算,掌握“菱形的面积等于两条对角线乘积的一半”是解本题的关键.11.假.【解析】【分析】利用菱形的判定定理判断后即可确定正确的答案.【详解】对角线互相平分且垂直的四边形是菱形,故错误,是假命题.故答案为:假.【点睛】本题考查了命题与定理的知识,解题的关键是了解菱形的判定方法,难度不大.12.AE AF(不唯一)【解析】先根据平行四边形的判定可得四边形AEDF是平行四边形,再根据菱形的判定即可得.【详解】DE AC DF AB,解://,//∴四边形AEDF是平行四边形,则当AE AF=时,平行四边形AEDF是菱形,故答案为:AE AF=(不唯一).【点睛】本题考查了平行四边形和菱形的判定,熟练掌握菱形的判定方法是解题关键.13.4+【解析】【分析】设AB=x,根据勾股定理列方程为:AD2=AE2+DE2,则x2=(x−2)2+(x−2)2,解方程可解答.【详解】解:设AB=x.∵四边形ABCD是菱形,∴AD=AB=x.∵DE是AB边上的高,∴∠AED=90°.∵∠BAD=45°,∴∠BAD=∠ADE=45°,∴AE=ED=x﹣2,由勾股定理得:AD=AE2+DE2,∴x2=(x﹣2)2+(x﹣2)2,解得:x1,x2=4﹣∵BE=2,∴AB>2,∴AB=x故答案为:【点睛】本题考查了菱形的性质,等腰直角三角形的性质和勾股定理,熟练掌握菱形的性质是解题的关键.14.3【分析】由菱形的性质可得出AC ⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半即可得出结论. 【详解】解:∵四边形ABCD 为菱形, ∴AC ⊥BD,AB=BC=CD=DA=6, ∴△AOD 为直角三角形. ∵点E 为线段AD 的中点,AD=6, ∴OE=3. 故答案为:3. 【点睛】本题考查了菱形的性质以及直角三角形的性质,本题属于基础题,难度不大.15.【解析】 【分析】根据矩形和菱形的性质可利用“HL ”间接证明ABE CDF ≅,即得出AE =CF .由=+EF AE FC ,即可证明AE =OE ,继而可再次利用“HL ”证明ABE OBE ≅,即得出ABE OBE ∠=∠,从而可求出1303ABE DBE DBC ABC ∠=∠=∠=∠=︒,最后由含30角的直角三角形的性质即可求出答案. 【详解】∵四边形ABCD 是矩形, ∴AB =CD ,90A C ∠=∠=︒. ∵四边形BEDF 是菱形,∴BE =DF ,OE =OF ,DBE DBC ∠=∠∴在ABE △和CDF 中AB CDBE DF=⎧⎨=⎩ ,∴()ABE CDF HL ≅, ∴AE =CF .∵=+EF AE FC ,即OE OF AE FC +=+ ∴AE =OE ,∴在ABE △和OBE △中AE OEBE BF =⎧⎨=⎩,∴()ABE OBE HL ≅,∴ABE OBE ∠=∠∴1303ABE DBE DBC ABC ∠=∠=∠=∠=︒.∴26BD CD ==,∴BC ===故答案为: 【点睛】本题考查矩形、菱形的性质,全等三角形的判定和性质,含30角的直角三角形的性质以及勾股定理,综合性强.掌握各知识点,利用数形结合的思想是解答本题的关键. 16.100︒ 【解析】 【分析】根据菱形性质可得AB =AD =BC =CD ,∠C =∠BAD ,∠B +∠BAD =180°,由AEF 是等边三角形,可得∠EAF =60°,AE =AF ,由AB =AE ,可得∠B =∠BEA =∠AFD =∠D ,可求∠BAE =∠DAF ,设∠BAE =∠DAF =m °,根据两直线平行同旁内角互补可列方程()11802m ︒-︒+60°+2m °=180°求解即可. 【详解】解:在菱形ABCD 中,AB =AD =BC =CD ,∠C =∠BAD ,∠B +∠BAD =180°, ∵AEF 是等边三角形, ∴∠EAF =60°,AE =AF , ∵AB =AE , ∴AD =AF =AB =AE ,∴∠B =∠BEA =∠AFD =∠D ,∴∠BAE =180°-∠B -∠AEB =180°-∠AFD -∠D =∠DAF , 设∠BAE =∠DAF =m °, ∴∠B =()11802m ︒-︒,∠BAD =60°+2m °, ∴()11802m ︒-︒+60°+2m °=180°, 解得m =20°, ∴∠C =∠BAD =60°+40°=100°. 故答案为100°. 【点睛】本题考查菱形性质,等边三角形性质,等腰三角形性质,平行线性质,利用同旁内角互补建构方程是解题关键.17.证明见解析 【解析】 【分析】根据题意可得:13∠=∠,从而AB AD =,即可解答. 【详解】 证明:如图,∵四边形ABCD 是平行四边形, ∴//AD BC , ∴23∠∠=. 又∵BD 平分ABC ∠, ∴12∠=∠, ∴13∠=∠, ∴AB AD =,∴平行四边形ABCD 是菱形. 【点睛】本题主要考查了菱形的判定,平行四边形的性质,解题的关键是熟练掌握菱形的判定定理,平行四边形的性质定理,并能灵活运用相关知识进行证明. 18.证明见解析 【解析】 【分析】证△DOE ≌△BOF (ASA ),得OE =OF ,再证四边形EBFD 是平行四边形,然后由EF ⊥BD 即可得出结论. 【详解】证明:∵四边形ABCD 是平行四边形,O 为对角线BD 的中点, ∴BO =DO ,AD ∥BC , ∴∠EDB =∠FBO ,在△EOD 和△FOB 中,EDO FBO OD OBEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DOE ≌△BOF (ASA );又∵OB =OD ,∴四边形BEDF 是平行四边形, ∵EF ⊥BD ,∴平行四边形BEDF 为菱形. 【点睛】本题主要考查了菱形的判定,平行四边形的判定与性质以及全等三角形的判定与性质等知识,证明△DOE ≌△BOF 是解题的关键. 19.23 【解析】 【分析】连接OE ,与DC 交于点F ,只要证明四边形ODEC 是菱形,四边形ADEO 是平行四边形即可解决问题. 【详解】解:∵CE //BD ,DE //AC , ∴四边形OCED 是平行四边形. ∴OD =EC ,OC =DE .∵矩形ABCD 的对角线AC 与BD 相交于点O , ∴OD =OC .∴平行四边形OCED 是菱形. 连接OE , ∵DE =2,∴AC =2OC =2DE =4, ∵AD =23,∴DC =22224(23)2AC AD -=-=, ∵DE ∥AC ,AO =OC =DE , ∴四边形AOED 是平行四边形. ∴OE =AD =23.∴四边形OCED 的面积为2 3.2DC OE⨯=本题考查矩形的性质、平行四边形的判定和性质、菱形的判定和性质等知识,解题的关键是学会添加常用辅助线,利用菱形的性质解决问题. 20.(1)见解析; (2)245【解析】 【分析】(1)先判断出OAB DCA ∠=∠,进而判断出DAC DCA ∠=∠,得出CD AD AB ==,此题得证; (2)根据菱形的性质得到OA OC =,BD AC ⊥,132OB OD BD ===,由勾股定理可以求出AB 的长,然后通过菱形的面积公式可以求出CE 的长. (1)证明:∵//AB DC , ∴OAB DCA ∠=∠, ∵AC 平分∠BAD , ∴OAB DAC ∠=∠, ∴DAC DCA ∠=∠, ∴CD AD =, ∵AB=AD , ∴AB CD =, ∵//AB DC ,∴四边形ABCD 是平行四边形, 又∵AB AD =,∴四边形ABCD 是菱形; (2)∵四边形ABCD 是菱形,BD =6,AC =8,∴118422OA OC AC ===⨯=,BD AC ⊥,116322OB OD BD ===⨯=, ∴90AOB ∠=︒,在Rt AOB △中,根据勾股定理可知,5AB =,∴菱形的面积11862422S AC BD ==⨯⨯=, ∵CE AB ⊥,∴菱形面积524S AB CE CE ===, ∴245CE =. 【点睛】本题考查了菱形的判定与性质,平行四边形的判定与性质,等腰三角形的判定,勾股定理等知识,熟练掌握菱形的判定与性质是解题的关键.21.(1)四边形AEBO 是矩形,理由见解析; (2)24. 【解析】 【分析】(1)根据//BE AC ,//AE BD 可先证明四边形AEBO 是平行四边形,再利用菱形对角线互相垂直平分可得90AOB ∠=︒,即可证明四边形AEBO 是矩形;(2)利用菱形对角线互相平分的性质可知4OA =,利用勾股定理可求出3AE =,进一步得6BD =,利用菱形面积等于对角线乘积的一半即可求出菱形的面积. (1)解:四边形AEBO 是矩形,理由如下: ∵//BE AC ,//AE BD ,∴四边形AEBO 是平行四边形, ∵ABCD 是菱形, ∴BD AC ⊥, ∴90AOB ∠=︒,∴四边形AEBO 是矩形. (2)解:∵8AC =, ∴4OA =,∵5OE =且90OAE ∠=︒, ∴3AE OB ==, ∴6BD =,∴菱形ABCD 的面积1=242BD AC =. 【点睛】本题考查菱形的性质和面积,矩形的判定定理,勾股定理解三角形,掌握矩形的判定定理:有一个角等于90︒的平行四边形是矩形,是解本题的关键之一,另一个关键是掌握菱形面积等于对角线乘积的一半.22.(1)周长为,面积为(2)见解析【解析】 【分析】(1)根据直角三角形的性质可得2AB BE = ,再由勾股定理可得BE =,从而得到BC AB == ,即可求解; (2)根据菱形的性质和AE ⊥BC ,AF ⊥CD ,可得△ABE ≌△ADF ,从而得到BE =DF ,进而得到CE =CF ,则有∠CBF =∠CBD =12(180°-∠C ),即可求证;(3)连接CG ,可先证明△ADG ≌△CDG ,可得到AG =CG ,△ADG 和△CDG 的面积相等,从而得到S 1﹣S 2=S △CEG ,再由勾股定理可得AE =,然后设EG x = ,则CG AG x == ,根据勾股定理可得EG =,即可求解. (1)解:∵AE ⊥BC ,∠BAE =30°, ∴2AB BE = , ∵AE =3,∴()222222233AB BE BE BE BE -=-== ,∴BE =, ∴AB =,∵四边形ABCD 是菱形,∴BC AB ==,∴菱形ABCD 的周长为4=,面积为3AE BC ⨯=⨯; (2)证明:∵四边形ABCD 是菱形, ∴∠ABE =∠ADF ,AB =AD =BC =CD , ∵AE ⊥BC ,AF ⊥CD , ∴∠AEB =∠AFD =90°, 在△ABE 和△ADF 中,∵∠ABE =∠ADF ,∠AEB =∠AFD ,AB =AD , ∴△ABE ≌△ADF (AAS ), ∴BE =DF ,∵BC =CD , ∴CE =CF ,∴∠CBF =∠CBD =12(180°-∠C ),∴EF ∥BD ; (3)解:连接CG ,∵四边形ABCD 是菱形, ∴∠ADG =∠CDG ,AD =CD , 在△ADG 和△CDG 中,∵AD =CD ,∠ADG =∠CDG , DG =DG , ∴△ADG ≌△CDG ,∴AG =CG ,△ADG 和△CDG 的面积相等, ∴S 1﹣S 2=S △CEG , ∵CE =4,BE =8, ∴AB =BC =CE +BE =12, ∵AE ⊥BC ,∴222212845AE AB BE -=-=, 设EG x = ,则45CG AG x == , ∵222EG CE CG += , ∴()22245x x += , 解得:855x,即85EG =, ∴121185165422CEGS S S CE EG -==⨯=⨯=. 【点睛】本题主要考查了菱形的性质,全等三角形的判定和性质,直角三角形的性质,勾股定理,熟练掌握菱形的性质,全等三角形的判定和性质,直角三角形的性质,勾股定理是解题的关键.。
初中数学试卷马鸣风萧萧新人教版数学八年级下册18.2.2菱形课时练习一、选择题(共15小题)1.在平面直角坐标系中,已知点A(0,2),B(﹣2,0),C(0,﹣2),D(2,0),则以这四个点为顶点的四边形ABCD是()A、矩形B、菱形C、正方形D、梯形答案:B知识点:坐标与图形性质;菱形的判定解析:解答:画出草图,求得各边的长,再根据特殊四边形的判定方法判断.在平面直角坐标系中画出图后,可发现这个四边形的对角线互相平分,先判断为平行四边形,对角线还垂直,那么这样的平行四边形应是菱形.分析:动手画出各点后可很快得到四边形对角线的特点.2.用两个全等的等边三角形,可以拼成下列哪种图形()A、矩形B、菱形C、正方形D、等腰梯形答案:B知识点:等边三角形的性质;菱形的判定解析:解答:由题可知,得到的四边形的四条边也相等,得到的图形是菱形.由于两个等边三角形的边长都相等,则得到的四边形的四条边也相等,即是菱形.故选B.分析:本题利用了菱形的概念:四边相等的四边形是菱形.3.如图,下列条件之一能使平行四边形ABCD是菱形的为()①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.A、①③B、②③C、③④D、①②③答案:A知识点:菱形的判定;平行四边形的性质解析:解答:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.根据菱形的判定:对角线互相垂直的平行四边形是菱形,有一组邻边相等的平行四边形是菱形可知:①,③正确.故选A.分析:本题考查菱形的判定,即对角线互相垂直的平行四边形是菱形,有一组邻边相等的平行四边形是菱形.4.红丝带是关注艾滋病防治问题的国际性标志,人们将红丝带剪成小段,并用别针将折叠好的红丝带别在胸前,如图所示.红丝带重叠部分形成的图形是()A、正方形B、等腰梯形C、菱形D、矩形答案:C知识点:菱形的判定解析:解答:首先可判断重叠部分为平行四边形,且两条彩带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又AE=AF.∴BC=CD,∴四边形ABCD是菱形.故选C.分析:本题利用了平行四边形的判定和平行四边形的面积公式、一组邻边相等的平行四边形是菱形.5.在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是()A、矩形B、菱形C、正方形D、梯形答案:B知识点:等边三角形的性质;菱形的判定解析:解答:用两个边长为a的等边三角形拼成的四边形,它的四条边长都为a,根据菱形的定义四边相等的四边形是菱形.根据题意得,拼成的四边形四边相等,则是菱形.故选B.分析:此题主要考查了等边三角形的性质,菱形的定义.6.用两个边长为a的等边三角形纸片拼成的四边形是()A、等腰梯形B、正方形C、矩形D、菱形答案:D知识点:等边三角形的性质;菱形的判定解析:解答:由于两个等边三角形的边长都相等,则得到的四边形的四条边也相等,即是菱形.由题意可得:得到的四边形的四条边相等,即是菱形.故选D.分析:本题利用了菱形的概念:四边相等的四边形是菱形.7.汶川地震后,吉林电视台法制频道在端午节组织发起“绿丝带行动”,号召市民为四川受灾的人们祈福.人们将绿丝带剪成小段,并用别针将折叠好的绿丝带别在胸前,如图所示,绿丝带重叠部分形成的图形是()A、正方形B、等腰梯形C、菱形D、矩形答案:C知识点:菱形的判定解析:解答:首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又AE=AF.∴BC=CD,∴四边形ABCD是菱形.故选C.分析:本题利用了平行四边形的判定和平行四边形的面积公式、一组邻边相等的平行四边形是菱形.8.能判定一个四边形是菱形的条件是()A、对角线相等且互相垂直B、对角线相等且互相平分C、对角线互相垂直D、对角线互相垂直平分答案:D知识点:菱形的判定解析:解答:根据菱形的判定方法:对角线互相垂直平分来判断即可.菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.只有D能判定为是菱形,故选D.分析:本题考查菱形对角线互相垂直平分的判定.9.四边形的四边长顺次为a、b、c、d,且a2+b2+c2+d2=ab+bc+cd+ad,则此四边形一定是()A、平行四边形B、矩形C、菱形D、正方形答案:C知识点:菱形的判定;平方的非负性解析:解答:本题可通过整理配方式子a2+b2+c2+d2=ab+bc+cd+ad,得到(a﹣b)2+(b﹣c)2+(c﹣d)2+(a﹣d)2=0,从而得出a=b=c=d,∴四边形一定是菱形.解:整理配方式子a2+b2+c2+d2=ab+bc+cd+ad,2(a2+b2+c2+d2)=2(ab+bc+cd+ad),)∴(a﹣b)2+(b﹣c)2+(c﹣d)2+(a﹣d)2=0,由非负数的性质可知:(a﹣b)=0,(b﹣c)=0,(c﹣d)=0,(a﹣d)=0,∴a=b=c=d,∴四边形一定是菱形,故选C.分析:此题主要考查了菱形的判定,关键是整理配方式子,还利用了非负数的性质.10.如图所示,圆O的弦AB垂直平分半径OC,则四边形OACB()A、是正方形B、是长方形C、是菱形D、以上答案都不对答案:C知识点:垂径定理;菱形的判定解析:解答:根据垂径定理和特殊四边形的判定方法求解.由垂径定理知,OC 垂直平分AB ,即OC 与AB 互相垂直平分,所以四边形OACB 是菱形.故选C .分析:本题综合考查了垂径定理和菱形的判定方法.11.如图,菱形花坛ABCD 的边长为6m ,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为( )A .12mB .20mC .22mD .24m答案:C 知识点:菱形的性质;等边三角形的性质解析:解答:连接AC ,已知∠A=120°,ABCD 为菱形,则∠B=60°,从而得出△ABC 为正三角形,以△ABC 的顶点所组成的小三角形也是正三角形,所以正六边形的边长是△ ABC 边长的31,则种花部分图形共有10条边,所以它的周长为31×6×10=20m ,故选B .分析:本题综合考查了菱形的性质和等边三角形的性质.12.能判定一个四边形是菱形的条件是( )A .对角线互相平分且相等B .对角线互相垂直且相等C .对角线互相垂直且对角相等D .对角线互相垂直,且一条对角线平分一组对角答案:C知识点:菱形的判定解析:解答:∵对角线互相垂直平分的四边形是菱形,∴A 、B 、D 都不正确;∵对角相等的四边形是平行四边形,而对角线互相垂直的四边形是菱形,∴C 正确.故选C .分析:本题综合考查了菱形的判定.13.下列给出的条件中,能识别一个四边形是菱形的是()A.有一组对边平行且相等,有一个角是直角B.两组对边分别相等,且有一组邻角相等C.有一组对边平行,另一组对边相等,且对角线互相垂直D.有一组对边平行且相等,且有一条对角线平分一个内角答案:D知识点:菱形的判定解析:解答:A.错误,可判定为矩形,而不一定是菱形;B.错误,可判定为矩形,而不一定是菱形;C.错误,可判定为等腰梯形,而不是菱形;D.正确,有一组对边平行且相等可判定为平行四边形,有一条对角线平分一个内角,则可判定有一组邻边相等,而一组邻边相等的平行四边形是菱形.故选D.分析:本题综合考查了菱形的判定.14.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠CAB交CD于E,交CB于F,且EG∥AB 交CB于G,则CF与GB的大小关系是()A.CF>GBB.GB=CFC.CF<GBD.无法确定答案:B知识点:全等三角形的判定与性质;角平分线的性质;菱形的判定与性质解析:解答:用观察和作图的方法可以猜测CF=GB.下面只要证明CF=GB即可.由条件∠ACB=90°,AF平分∠CAB,想到FH⊥AB,垂足为H,连接EH,易证菱形CEHF,平行四边形EHBG,故有CF=EH=GB,从而得证.要证明菱形CEHF,只需证明两对边平行,临边相等,根据菱形的定义即可证明.要证平行四边形EHBG,两对边平行即可.关于证明EH∥BC,只需证明∠AHE=∠B,通过在Rt△ACD与Rt△ACD 中,证明∠ACD=∠B、∠AHE=∠ACD即可得.解:过F做FH⊥AB且交于点H,连接EH,在△ACF与△AHF中∵AF平分∠CAB交CD于E,又∵AF=AF,∴△ACF≌△AHF,∴AC=AH,同理在△ACE与△AHE中,△ACE≌△AHE,可知CE=EH,∠ACE=∠AHE,在Rt△ACD中,∠CAD+∠ACD=90°,在Rt△ABC中,∠CAB+∠B=90°,又∵∠CAD与∠CAB为同一角,∴∠ACD=∠B,∴∠AHE=∠B,∴EH∥BC,∵CD⊥AB,FH⊥AB,∴CD∥FH,∴四边形CEHF为菱形,四边形EGBH为平行四边形,∴CF=EH=,EH=GB,∴CF=GB.故选B.分析:本题考查全等三角形的性质与判定、角平分线的性质与判定、菱形的性质与判定、直角三角形的性质.难点在于恰当添加辅助线FH、EH,根据题意证明菱形CEHF,平行四边形EHBG.此类题学生丢分率较高,需注意.15.如图所示,在△ABC中,AB=AC,DE垂直平分腰AB,若AC=CD,AB∥CD,则∠A的度数为()A、36°B、72°C、120°D、44°答案:C知识点:等腰三角形的性质;菱形的判定与性质解析:解答:先证明四边形ABDC是菱形,再根据DE是AB的垂直平分线,得到△ABD是正三角形,此题就不难求解了.解:如图,连接AD,BD,∵AB=AC,AC=CD,∴AB=CD,又∵AB∥CD,∴四边形ABDC是菱形,∵DE垂直平分腰AB,∴AD=BD=AB,∴△ABD是等边三角形,∴∠DAB=60°,∴∠A=2∠DAB=120°,∴∠A的度数为120°.故选C.分析:本题考查了菱形的判定和性质,四边都相等的四边形是菱形,这是解决本题的关键.二、填空题(共5小题)1.如图,四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是_________(只填一个你认为正确的即可).答案:AC⊥BD或AB=BC或BC=CD或AB=AD知识点:菱形的判定解析:解答:根据平行四边形的性质和菱形的性质,可添加:AC⊥BD或AB=BC,或BC=CD,或CD=DA,或AB=AD.四边形ABCD的对角线互相平分,则四边形ABCD为平行四边形,再依据:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形,可添加:AC⊥BD或AB=BC,或BC=CD,或CD=DA,或AB=AD(答案不唯一)分析:本题考查平行四边形及菱形的判定.菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.2.如图,如果要使平行四边形ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是_________.答案:AB=AD或AC⊥BD知识点:菱形的判定解析:解答:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.∴可添加:AB=AD或AC⊥BD.因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:AB=AD或AC⊥BD.分析:本题考查菱形的判定,答案不唯一.3.如图,平行四边形ABCD中,AF、CE分别是∠BAD和∠BCD的角平分线,根据现有的图形,请添加一个条件,使四边形AECF为菱形,则添加的一个条件可以是_________.(只需写出一个即可,图中不能再添加别的“点”和“线”)答案:AC⊥EF或AF=CF等知识点:菱形的判定;平行四边形的性质;角平分线的性质解析:解答:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.根据平行四边形的判定可得四边形AECF是平行四边形,由平行四边形的性质知,对角线互相平分,又对角线互相平分且垂直的四边形是菱形,可得:当AC⊥EF时,四边形AECF是菱形.解:则添加的一个条件可以是:AC⊥EF.证明:∵AD∥BC,∴∠FAD=∠AFB,∵AF是∠BAD的平分线,∴∠BAF=FAD,∴∠BAF=∠AFB,∴AB=BF,同理ED=CD,∵AD=BC,AB=CD,∴AE=CF,又∵AE∥CF∴四边形AECF是平行四边形,∵对角线互相平分且垂直的四边形是菱形,则添加的一个条件可以是:AC⊥EF.分析:本题考查了菱形的判定,利用角的平分线的性质和平行四边形的性质求解,答案不唯一.4.在四边形ABCD中,对角线AC、BD交于点O,从(1)AB=CD;(2)AB∥CD;(3)OA=OC;(4)OB=OD;(5)AC⊥BD;(6)AC平分∠BAD这六个条件中,选取三个推出四边形ABCD是菱形.如(1)(2)(5)⇒ABCD是菱形,再写出符合要求的两个:_________⇒ABCD是菱形;_________⇒ABCD 是菱形.答案:(1)(2)(6)⇒ABCD是菱形;(3)(4)(5)或者(3)(4)(6)⇒ABCD是菱形.知识点:菱形的判定解析:解答:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.解:(1)(2)(6)⇒ABCD是菱形.先由(1)(2)得出四边形是平行四边形,再由(6)和(2)得出∠DAC=∠DCA,由等角对等边得AD=CD,所以平行四边形是菱形.(3)(4)(5)⇒ABCD是菱形.由对角线互相平分且垂直的四边形是菱形.(3)(4)(6)⇒ABCD是菱形.由(3)(4)得出四边形是平行四边形,再由(6)得出∠DAC=∠DCA,由等角对等边得AD=CD,所以平行四边形是菱形.分析:本题考查菱形的判定.5.若四边形ABCD是平行四边形,请补充条件_________(写一个即可),使四边形ABCD是菱形.答案:AB=BC或者AC⊥BD知识点:菱形的判定解析:解答:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.据此判断即可.解:因为一组邻边相等的平行四边形是菱形;对角线互相垂直平分的四边形是菱形.可补充条件:AB=BC 或AC⊥BD.分析:主要考查了菱形的特性.菱形的特性:菱形的四条边都相等;菱形的对角线互相垂直平分,且每一条对角线平分一组对角.三、解答题(共5小题)1.如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE,CE.(1)求证:△ABE≌△ACE;(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.答案:见解析知识点:全等三角形的判定;菱形的判定解析:解答:由题意可知三角形三线合一,结合SAS可得△ABE≌△ACE.四边形ABEC相邻两边AB=AC,只需要证明四边形ABEC是平行四边形的条件,当AE=2AD(或AD=DE或DE=AE)时,根据对角线互相平分,可得四边形是平行四边形.(1)证明:∵AB=AC,点D为BC的中点,∴∠BAE=∠CAE,∵AE=AE∴△ABE≌△ACE(SAS).(2)解:当AE=2AD(或AD=DE或DE=AE)时,四边形ABEC是菱形理由如下:∵AE=2AD,∴AD=DE,又∵点D为BC中点,∴BD=CD,∴四边形ABEC为平行四边形,∵AB=AC,∴四边形ABEC为菱形.分析:本题考查了全等三角形和等腰三角形的性质和菱形的判定定理,比较容易.2.如图,在平行四边形ABCD中,E,F分别为边AB,CD的中点,连接DE、BF、BD.(1)求证:△ADE≌△CBF.(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.答案:见解析知识点:全等三角形的判定;平行四边形的判定;菱形的判定解析:解答:(1)根据题中已知条件不难得出,AD=BC,∠A=∠C,E、F分别为边AB、CD的中点,那么AE=CF,这样就具备了全等三角形判定中的SAS,由此可得出△AED≌△CFB.(2)直角三角形ADB中,DE是斜边上的中线,因此DE=BE,又由DE=BF,FD∥BE那么可得出四边形BFDE是个菱形.(1)证明:在平行四边形ABCD中,∠A=∠C,AD=BC,∵E、F分别为AB、CD的中点,∴AE=CF.在△AED和△CFB中,∴△AED≌△CFB(SAS);(2)解:若AD⊥BD,则四边形BFDE是菱形.证明:∵AD⊥BD,∴△ABD是直角三角形,且∠ADB=90°.∵E是AB的中点,∴DE=AB=BE.由题意可知EB∥DF且EB=DF,∴四边形BFDE是平行四边形.∴四边形BFDE是菱形.分析:本题主要考查了全等三角形的判定,平行四边形的性质和菱形的判定等知识点.3.如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.答案:见解析知识点:全等三角形的判定与性质;菱形的判定解析:解答:(1)利用AAS推出△ADE≌△DAF,再根据全等三角形的对应边相等得出AE=DF;(2)先根据已知中的两组平行线,可证四边形DEFA是平行四边形,再利用AD是角平分线,结合AE∥DF,易证∠DAF=∠FDA,利用等角对等边,可得AF=DF,从而可证平行四边形AEDF实菱形.证明:(1)∵DE∥AC,∠ADE=∠DAF,同理∠DAE=∠FDA,∵AD=DA,∴△ADE≌△DAF,∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴∠DAF=∠FDA.∴AF=DF.∴平行四边形AEDF为菱形.分析:考查了全等三角形的判定方法及菱形的判定的掌握情况.4.已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.答案:见解析知识点:菱形的判定;直角三角形斜边上的中线;平行线的性质;全等三角形的判定与性质解析:解答:由题意易得DE=BE,再证四边形BCDE是平行四边形,即证四边形BCDE是菱形.证明:∵AD⊥BD,∴△ABD是Rt△∵E是AB的中点,∴BE=AB,DE=AB (直角三角形斜边上的中线等于斜边的一半),∴BE=DE,∴∠EDB=∠EBD,∵CB=CD,∴∠CDB=∠CBD,∵AB∥CD,∴∠EBD=∠CDB,∴∠EDB=∠EBD=∠CDB=∠CBD,∵BD=BD,∴△EBD≌△CBD (ASA ),∴BE=BC,∴CB=CD=BE=DE,∴菱形BCDE.(四边相等的四边形是菱形)分析:此题主要考查菱形的判定,综合利用了直角三角形的性质和平行线的性质.5.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.(1)求证:△ABC≌△DCB;(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.答案:见解析知识点:全等三角形的判定;菱形的判定解析:解答:(1)由SSS可证△ABC≌△DCB;(2)BN=CN,可先证明四边形BMCN是平行四边形,由(1)知,∠MBC=∠MCB,可得BM=CM,于是就有四边形BMCN是菱形,则BN=CN.(1)证明:如图,在△ABC和△DCB中,∵AB=DC,AC=DB,BC=CB,∴△ABC≌△DCB;(2)解:据已知有BN=CN.证明如下:∵CN∥BD,BN∥AC,∴四边形BMCN是平行四边形,由(1)知,∠MBC=∠MCB,∴BM=CM(等角对等边),∴四边形BMCN是菱形,∴BN=CN.分析:此题主要考查全等三角形和菱形的判定.。