第六章“均输”讲述纳税和运输 方面的计算问题,实际上是比较 复杂的比例计算问题。
第七章“盈不足”讲述算术中盈 亏问题的解法。盈不足术实际上 是一种线性插值法。该方法通过 丝绸之路传入阿拉伯国家,受到 特别重视,被称为“契丹算法”。 后来传入欧洲,13世纪意大利数 学家斐波那契的《算经》一书中 专门有一章讲“契丹算法”。
第二章“粟米”讲述有关粮食交换 中的比例问题。书中的“今有术” 给出比例式中已知三数求第四数的 方法,欧洲迟至15世纪才出现。
第三章“衰分”讲述配分比例和等 差、等比等问题。
第四章“少广”讲述由田亩面积求 边长,由球体积求经长的算法,这 是世界上最早的多位数开平方、开 立方法则的记载。
今有积五万五千二百二十五步, 问为方几何?答曰:二百三十 五步。
周长为 Ln、面积为 Sn 。将边
数加倍后,得到圆内接正2n边
形,其边长、周长、面积分别
记为 l2n , L2n , S 2n 。 刘徽首先指出,由 ln 及勾股 定理可求出 l2n
其次知道了圆内接正n 边形的
一本数学著作。后世不少人,
如刘徽、祖冲之、李淳风等人
九
均对《九章算术》作过注。特
章
别是刘徽的注,加进了不少自
算 术
己的精辟见解,阐述了重要的 数学理论。《九章算术注》是 《九章算术》得以流芳百世的
重要补充和媒介。
日本数学家小苍金之助把《九
章算术》说成是中国的《几何
原本》。吴文俊教授也认为,
《九章算术》和刘徽的《九章
中国古代数学的主要成就
《周髀算经》是我国最早的天
文著作,系统地记载了周秦以Leabharlann 来适应天文需要而逐步积累的
周
科技成果。该书的主要内容是