有机双光子吸收材料的研究进展
- 格式:pdf
- 大小:13.62 MB
- 文档页数:30
双光子吸收mof
双光子吸收MOF简介
双光子吸收是一种非线性光学现象,指在高强度激光照射下,分子或材料同时吸收两个光子而被激发到更高能级态的过程。
与单光子吸收相比,双光子吸收具有独特的优势,如大尺寸三维空间选择性、深组织穿透性强、光损伤较小等,在生物医学成像、光动力治疗、光刻蚀和3D打印等领域展现出广阔的应用前景。
金属-有机框架(MOF)是一类由无机金属离子或簇与有机配体通过配位键自组装而成的多孔晶态材料。
MOF不仅具有高度有序的多孔结构、超高的比表面积和丰富的化学组成,而且可以根据需要通过设计合成实现性能调控。
近年来,双光子吸收MOF由于其独特的光学性能和结构优势而受到广泛关注。
通过对MOF骨架金属离子或配体的精确设计,可以赋予MOF优异的双光子吸收性能。
常见的策略包括引入π-共轭大共平面芳香分子、合适的给电子基团和吸电子基团等。
同时,多孔框架结构使MOF避免了传统双光子染料分子会发生聚集和淬灭的缺陷,保证了优异的双光子吸收性能。
此外,MOF骨架中的金属离子也可以发挥光敏作用,激发产生的电子可以在骨架上快速转移,从而增强光响应性能。
双光子吸收MOF材料兼具高效双光子吸收、合理化学设计可调控性和高度有序多孔结构等优势,在生物成像、光动力治疗、非线性光学
器件、光刻蚀材料等领域展现出巨大的应用潜力。
对于发展新型功能光电材料具有重要的理论和实用价值。
4.3 双光子吸收用红宝石激光照射掺铕的氟化钙晶体时,探测其荧光光谱时发现了红宝石激光的倍频光谱。
但是1、该材料不存在与单个红宝石激光光子对应的任何激发态,因此不能用连续吸收两个红宝石激光光子来解释;2、该材料为立方晶体,具有反演对称性,因此不存在(2)χ,不会出现二次谐波的频率。
唯一的解释是同时吸收了两个光子。
更一般地,当频率分别为1ω、2ω的两束光通过非线性媒质时,如果1ω+2ω接近媒质的某个跃迁频率0ω,媒质就会从每一束光波中同时各吸收一个光子,而引起两束波的同时衰减,这就是双光子吸收,如图4.3-1所示。
j g 宇称相同图4.3-1 双光子共振设媒质中只传输两束光,而且没有二阶非线性效应,或者不满足产生和频、差频和二次谐波相对应的相位匹配条件,同时不满足产生三次谐波的相位匹配条件,而1ω+2ω对应与媒质的某个跃迁频率0ω。
这时只需考虑辐射场之间的耦合作用所产生的结果,所以必须考虑频率为1ω和2ω的三阶非线性极化强度:(3)*101221221()6(;,,)()()()χ=−−P E E E M ωεωωωωωωω (4.3-1)(3)*202112112()6(;,,)()()()χ=−−P E E E M ωεωωωωωωω (4.3-2)耦合方程:2(3)1112212121(,)3(;,,)(,)(,)dE z i E z E z dz k c ωωχωωωωωω=−− (4.3-3) 2(3)2221121221(,)3(;,,)(,)(,)dE z i E z E z dz k c ωωχωωωωωω=−− (4.3-4) 由于12+ωω接近媒质共振频率,因此(3)1221(;,,)−−χωωωω,(3)2112(;,,)−−χωωωω.中的实部与虚部都应当是有限值,在方程中都必须考虑。
非线性极化率的实部具有完全对易对称性,即:Re{(3)2112(;,,)−−χωωωω}=Re[(3)1221(;,,)−−χωωωω]=χ (4.3-5) 非线性极化率的虚部,可以从式(1.3-23)得到:4(3)212211************Im (;,,)Im {[()()(0)]}23()()()()−=+−+++×−−+Ne B A F F F m F F F F χωωωωωωωωεωωωωωω 2201()=−−F i ωωωΓω由于1ω+2ω≈0ω,因此1ω,2ω,12−ωω都远离共振频率0ω,这样(0)F 、12()−F ωω、2()F ω、1()F ω等都是实数,这样:42(3)221221121230(3)2112Im (;,,)()()Im ()3Im (;,,)Ne A F F F m χωωωωωωωωεχωωωω−−=+=−− 因此,令:Im[(3)2112(;,,)−−χωωωω]=Im[(3)1221(;,,)−−χωωωω]=TA χ (4.3-6)由此可见,不仅极化率张量(3)2112(;,,)ωωωω−−χ和(3)1221(;,,)ωωωω−−χ的虚部相同,而且还与与跃迁频率接近0ω的上下两能级之间的集居数密度差有相同的符号。
双光子吸收材料的光学特性研究双光子吸收材料是一类具有特殊光学性质的材料,它可以在低光子密度下实现高效的光吸收。
这种材料在光子学、光电子学、生物医学等领域有着广泛的应用和研究价值。
本文将就双光子吸收材料的光学特性进行深入探讨。
首先,我们来了解一下双光子吸收的原理。
传统的光学材料在光学吸收过程中,通常通过吸收单个光子来激发物质内部的电子。
而双光子吸收材料则是通过吸收两个光子才能使材料内部的电子跃迁到激发态。
这意味着,双光子吸收材料相比于传统材料更具有灵活性和可调性,能够在非线性光学效应领域发挥独特的作用。
其次,我们来讨论一下双光子吸收材料的光学特性。
由于能量守恒定律的限制,双光子吸收材料在吸收两个光子的过程中能够产生高能激发态,这为实现高效率的光学响应提供了可能。
与此同时,双光子吸收材料具有较长的光学吸收长度,这使得它在超分辨成像、光子计算和光学信息存储等领域有着潜在的应用。
在双光子吸收材料的研究中,还有一个重要的方面是光学非线性效应。
由于双光子吸收材料能够吸收两个光子,其非线性效应更加明显。
这些非线性效应包括双光子荧光、双光子共振增强拉曼散射等,这些效应在光子学传感、激光制造和光学通信等领域有广泛的应用前景。
除了光学特性,双光子吸收材料的材料特性也是研究的重点之一。
首先,材料的能带结构决定了双光子吸收材料的光学吸收能力。
一些具有宽能带隙和高透明度的材料被广泛应用于双光子显微成像和荧光探测等领域。
其次,材料的光学损耗对于实现高效的双光子吸收非常关键。
高质量的材料制备技术和表面修饰方法能够降低材料的光学损耗,提高双光子吸收性能。
双光子吸收材料的研究是一个前沿性的课题,目前有许多具有潜力的新型材料被不断发现和研究。
例如,有机-无机杂化材料、量子点材料和二维材料等都被证实具有良好的双光子吸收性能。
此外,随着光学相干成像技术的发展,人们对双光子吸收材料的要求也越来越高,例如要求具有更高的荧光量子效率和更长的荧光寿命。
双光子吸收及其应用双光子吸收是一种非线性光学现象,是指在高强度的激光场作用下,两个光子同时被吸收,电子从基态跃迁到激发态,并释放出光子。
这种现象远远超出了单光子吸收的能力,在现代光学研究中具有重要应用价值。
一、双光子吸收的原理在传统的单光子吸收中,光子的能量与物质的电子能级差正好匹配,光子激发了电子从基态跃迁到激发态,吸收了光的能量。
而在双光子吸收中,两个光子的能量的和与物质的电子能级差匹配,两个光子同时作用于物质,也就是说,在强激光场下,两个光子的效应相互叠加,可以同时激发出电子从基态到激发态,使得双光子吸收引起的能量转移效率比单光子吸收要高得多。
二、双光子吸收的应用双光子吸收在生物医学、材料科学、量子通信等领域都有着广泛的应用。
1. 生物医学:双光子显微镜是一种用来研究生物体内部结构的成像工具。
它有着比传统显微镜更深层次的成像能力,可以在不破坏生物样本的情况下,实现对基因、蛋白质、细胞和组织的高清晰度成像。
2. 材料科学:双光子吸收可以用于光刻和表面修饰等领域。
由于双光子吸收具有空间高分辨率和3D成像的特点,因此可以用于微米和纳米尺度的加工,可以制作出光学器件、微机电系统等微型器件。
3. 量子通信:量子通信需要用到量子纠缠现象,而双光子吸收是产生量子纠缠的重要手段之一。
通过双光子吸收,可以实现高效的单光子源和量子密钥分发。
三、双光子吸收的研究进展双光子吸收的研究一直是现代光学研究的热点之一,科研人员们一直在研究如何进一步提高其效率和应用。
目前,研究人员借助于化学和物理双重手段来制备高效的双光子吸收材料,从而实现对双光子吸收过程的更加深入的理解和掌握。
四、双光子吸收的前景双光子吸收在科学研究中具有广泛的应用前景。
未来,在生物医学、材料科学、量子通信等领域,双光子吸收技术有望成为一种重要的研究工具,为人类的科学事业发展做出更大的贡献。
同时,伴随着技术的不断进步和优化,我们将有望在未来看到更多新的双光子吸收材料的发现和应用,推动科学技术和人类文明的进一步发展。
双光子荧光探针的研究进展双光子荧光探针是一种在生物医学研究中被广泛使用的技术。
与传统的单光子荧光探针相比,双光子荧光探针具有更高的空间分辨率、更深的穿透能力和更少的光散射。
在过去的几十年中,双光子荧光探针已经取得了许多重要的进展,对生物医学研究和临床应用具有重要意义。
一、双光子荧光探针的原理双光子荧光探针是利用两个红外光子几乎同时在一个分子上发生非线性吸收,使其产生可见光的荧光信号。
双光子荧光探针利用了红外光子有更好的穿透能力和较低的光散射的特点,使得荧光信号可以从较深的组织中传出。
双光子激发还具有更高的空间分辨率,可以减少背景杂散信号对成像质量的干扰。
二、双光子荧光探针的制备制备双光子荧光探针的方法主要分为两类:有机染料和量子点。
1.有机染料有机染料是最早被用于双光子荧光探针的材料。
有机染料分子需要具有高的吸收截面和荧光发射效率,以提高探针的灵敏度。
近年来,科学家们研究出了一些新型的有机染料,比如桥接染料和卟啉染料,来提高双光子探针的性能。
2.量子点量子点是由半导体材料制成的纳米颗粒,具有优异的光学和电学性质。
量子点荧光探针可以通过调控量子点的粒径和合成不同元素的复合量子点来实现不同颜色的荧光发射。
此外,量子点还具有较高的光稳定性和荧光发射寿命,使其成为优秀的双光子荧光探针材料。
三、双光子荧光探针的应用1.细胞成像2.组织工程3.药物输送四、双光子荧光探针的挑战与展望虽然双光子荧光探针在生物医学研究中具有广泛的应用潜力,但仍然存在一些挑战和问题需要解决。
1.荧光寿命短目前的双光子荧光探针的荧光发射寿命通常较短,这限制了探针的成像深度和时间分辨率。
因此,如何提高荧光寿命是一个需要解决的关键问题。
2.控制探针的自由扩散总之,双光子荧光探针是一种重要的生物医学成像技术,在细胞成像、组织工程和药物输送等领域具有广泛的应用潜力。
未来的研究应致力于提高荧光寿命和控制探针的自由扩散能力,以实现更精确、更深入、更准确的生物医学成像。
光学中的多光子吸收现象研究光学是研究光的性质、产生、传播和作用的学科,是人类认识自然的一部分。
其中,多光子吸收是光学中比较特殊的一种现象。
在近年来的研究中,多光子吸收已被广泛地应用于材料科学、生命科学以及化学等领域。
本文将重点阐述多光子吸收的概念、机理和应用,探讨其在今后研究中的潜力和发展。
一、多光子吸收的概念多光子吸收是指在较强光照射下,一个或多个光子同时作用于分子或原子,导致电子转移和离子化的一种非线性光学现象。
与单光子吸收相比,多光子吸收更具有显著的特点,如它的光谱响应弱,横向分辨率高,非线性响应强。
在多光子吸收中,光子与被照射物质的相互作用产生高能量激发,从而发生电离和激发跃迁等过程。
同时,它还可以引起多个分子之间的复杂相互作用,形成复杂的原子和分子结构。
这种吸收现象的特殊性质,受到了广泛的关注和研究。
二、多光子吸收的机理多光子吸收的机理与单光子吸收不同,主要有以下三个方面:1. 多光子吸收具有阈值效应。
当光的能量足够强大时,分子内部的电子会被多个光子同时吸收,随后从基态跃迁到激发态,其能量受到限制,只能接受2个或更多光子的能量。
因此,光子的频率和物质的吸收能级有关。
2. 在多光子吸收的过程中,光子的相位相互作用使分子内部的电子受到强烈的场效应。
此时,由于光子的相位关系,电子在不同的光束之间可以聚集或散开。
因此,分子的电子能级结构发生改变,从而产生非线性响应。
3. 经过多光子吸收后,它会产生大量的自由载流子,从而引起物质的非热效应,如光电子效应、电子-电子碰撞等。
这种非线性效应对功能材料中的性能和制备有很大的影响。
三、多光子吸收的应用多光子吸收在多个领域中都有广泛的应用,如:1. 功能材料领域:多光子吸收已被广泛应用于光学非线性谐振区功能材料的制备和表征。
功能材料通常是那些可以在光照射下产生不同性质的物质。
这些材料可以是半导体、化学材料、生物材料等,其重要性在于可用于传感器、透镜、电子器件等的技术中。
双光子吸收技术双光子吸收技术(Two-photon absorption, TPA)是一种基于非线性光学效应的先进技术,具有广泛应用前景。
本文将介绍双光子吸收技术的原理和应用领域,并探讨其在科学研究和工程应用中的发展前景。
一、双光子吸收技术的原理双光子吸收技术是指当两个光子几乎同时与目标物质相互作用时,它们的能量叠加在一起,达到目标物质电子激发的能量阈值,从而引发非线性光学过程。
相比于单光子吸收技术,双光子吸收技术具有以下几点优势:1. 较高的空间分辨率:由于双光子吸收过程具有非常小的横向光强分布,使得在高分辨显微镜成像中能够获得更清晰、更精确的图像。
2. 较低的光损伤风险:双光子吸收技术采用红外光源,较短的波长可以减少光敏感材料的光损伤风险,提高材料的使用寿命。
3. 较大的穿透深度:红外光在生物组织中的穿透深度较大,可以实现对生物样本内部结构的观察和研究。
二、双光子吸收技术的应用领域双光子吸收技术在众多领域中具有重要的应用价值。
以下是其中几个典型的应用领域:1. 生物医学研究:双光子显微镜可以实现对生命体内动态过程的实时观察,例如细胞内亚细胞器的运动、荧光标记的蛋白质等。
这为生物医学研究提供了有力的工具。
2. 材料科学:双光子聚合技术可以实现微纳结构的精确制备,从而在材料科学领域发挥重要作用。
例如,通过控制双光子吸收过程可以实现高性能的光子晶体、光学波导和传感器等。
3. 光子学器件:双光子吸收技术可以用于制备各种光子学器件,包括非线性光学晶体、光学调制器和光电探测器等。
这些器件在光通信、光存储和光计算等领域有着广泛的应用。
三、双光子吸收技术的未来发展双光子吸收技术在科学研究和工程应用中具有巨大的潜力。
随着技术的不断发展,我们可以期待以下几个方面的进一步突破:1. 新型光源的研发:目前,红外激光仍然是双光子吸收技术的主要光源,但其成本较高,体积较大。
研究人员正在积极寻求更便携、更高效的光源,以推动技术的广泛应用。
基于双光子吸收的成像技术研究随着科技的不断发展,各种高效的成像技术正不断涌现。
其中,基于双光子吸收的成像技术备受研究者们的关注。
这项技术可以实现高分辨率、深部成像、非侵入性等特点,被广泛应用于生物医学、神经科学、材料科学等领域。
一、双光子吸收成像技术简介双光子吸收成像技术又称为光学相干断层扫描成像技术(OCT)或非线性光学成像技术(NLO)。
与传统的成像技术(如X射线、CT、MRI等)不同,双光子成像技术通过使用红外激光和荧光探针,直接照射样品,获得高分辨率、高比例的三维成像。
双光子吸收成像技术的核心在于红外激光。
这种激光具有微小的散射和吸收,且只在样品内部的焦点处产生光学切片。
在这个焦点处,激光会激发荧光探针,使其发出荧光信号,从而实现成像。
与传统的成像技术相比,双光子成像技术具有非侵入性、无辐射、无损伤等优点,可以用于观察动态生物过程。
二、双光子吸收成像技术在生物医学领域中的应用双光子吸收成像技术在生物医学领域中得到了广泛的应用,主要包括一下几个方面:1. 显微镜成像双光子显微镜可以在不切割样品的情况下进行动态成像。
特别是在促进分子和细胞基础研究、病理学研究、组织工程和干细胞研究中发挥了重要作用。
2. 荧光标记药物成像随着Science和Nature领域内科研成果的逐渐累积,激发了人们去深入研究荧光标记药物的生物效应机制。
在药物的研究提高了对人体物质代谢和吸收的准确度。
3. 皮肤成像双光子吸收成像技术对于皮肤的非侵入性成像和高分辨率显像能力提供了便利。
这项技术可以在不破坏皮肤表层的情况下,观察皮肤的微观结构,以及探测毛发、汗腺、血管的内部结构及其动态过程。
三、双光子吸收成像技术在神经科学领域中的应用神经科学是双光子吸收成像技术应用的另一个重要领域。
主要有以下两个方面:1. 脑活动成像双光子技术已成为实现大脑皮层和脑区神经元活动三维成像的理想方式。
神经元活动的成像部位可以很容易地通过荧光标记物模拟,使得双光子技术成为了一个非常有前途的功能性神经影像技术。
第32卷第3期2012年6月物理学进展PROGRESS IN PHYSICSVol.32No.3Jun.2012Recent progress on two-photon absorbing organic materialsWang Yao-Chuan1,Yan Yong-Li2,Li Bo3,Qian Shi-Xiong*41.Physics Department,Dalian Maritime University,Dalian,116026,China2.Beijing National Laboratory for Molecular Sciences(BNLMS),Key Laboratory of Photochemistry,Institute of Chemistry,Chinese Academy of Sciences,Beijing100190,China3.Key Laboratory of Polar Materials and Devices,Ministry of Education,East China Normal University,Shanghai200241,China4.Physics Department,Fudan University,Shanghai200433,ChinaIn this article,we review recent studies on two-photon absorbing organic materials.We introducethe research progresses on the nonlinear optical properties of two-photon absorption(TPA)and two-photon excitedfluorescence(TPF)in organic materials with different structures including dipolar,quadrupolar,and multibranched molecules,macrocycles,and polymers.Ultrafast dynamics in thesematerials,as characterized by transient absorption spectroscopy,is included for a better understandingof the physical mechanisms.Moreover,we summarize recent proposed applications of the two-photonabsorbing organic materials.Key words:Two-photon absorption;Two-photon excitedfluorescence;Ultrafast dynamics;Nonlinearoptics;Organic materialsCLC number:O437Document Code:ACONTENTSI.Introduction135A.Theoretical background of TPA process136B.The study history of TPA in organicπ-conjugatedmolecules137 II.Experimentals139A.Nonlinear optical properties1391.Z-scan technique1392.Two-photon excitedfluorescence140B.Ultrafast dynamics1401.Transient absorption technique1402.Time-resolvedfluorescence140 III.Structure/Properties and Ultrafast dynamics141A.Dipolar and quadrupolar molecules with strongTPF response141B.Multibranched Structures1451.Triphenylamine1452.S-triazine1463.Alkylpyridinium1484.Tricyanobenzene149C.Porphyrins1501.Calculation1502.Substituent porphyrin1503.Porphyrin based polymers152D.Polymers152E.Macrocycles155 IV.Applications156A.Unique advantages of TPA156B.TPF microscopy157C.Optical limiting157Received date:2011-11-16*sxqian@D.Frequency-upconversion lasing158E.Microfabrication159F.Three-dimensional optical data storage160 V.Conclusions160 Acknowledgments161 References161I.INTRODUCTIONTwo-photon absorption(TPA)process is a type of third-order nonlinear optical(NLO)phenom-ena,where two photons are simultaneously absorbed through a virtual state in a sample.[1]In the case of degenerated TPA process,two photons with the same photon energy resonant to half of the energy gap in-duce transitions to excited state in a sample.The pro-cess of TPA is schematically illustrated in compared to one-photon absorption in Figure1.The concept of the TPA process was theoretically proposed by G¨o ppert-Mayer in1931.In her doctoral dissertation,she predicted that a TPA process would lead to a transition from a ground state to a higher en-ergy state of a molecule.However,as a NLO process with simultaneous absorption of two photons,TPA process requires intense incident lightfield,making the experimental demonstration very difficult at that time prior to the invention of laser.In1960s,Kaiser文章编号:1000-0542(2012)03-0135-30135136Wang Yao Chuan et al.:Recent progress on two-photon absorbing organic materialsFIG.1.Energy diagrams illustrating the processes of one-photon absorption and TPAand Garrett observed the bluefluorescence(FL)emis-sion from a CaF2:Eu2+crystal excited by the focused Ruby laser pulses at a wavelength of694.3nm.[2]In 1963,Peticola and Rieckhoffobserved TPA in a dilute organic solution.[3]TPA process has several unique advantages over the conventional one-photon absorption for many re-searches and applications.Firstly,the quadratic de-pendence of TPA on the incident light intensity per-mits a highly-confined spatial excitation,leading to improved three-dimensional(3D)resolution forflu-orescence imaging.Secondly,benefiting from lower scattering at longer incident wavelength,TPA pro-cess can enhance the penetration depth in scatter-ing and absorbing media.Thirdly,longer excitation wavelength can reduce the photobleaching and cel-lular auto-fluorescence from proteins and other in-trinsicfluorophores which absorb UV or visible light. With these advantages,TPA has been implanted for applications in optical limiting,[4∼9]two-photon ex-citedfluorescence imaging,[10∼15]two-photon poly-merization induced3D microfabrication,[16∼27]pho-todynamic therapy,[28]optical data storage,[29∼31]up-conversion lasing,[32,33]and so on.These techniques have made significant impacts in variousfield includ-ing physics,chemistry,biology,material science and information technology.After the observation of large TPA parameters of the dyes,the organic conjugated systems with TPA properties attracted great attentions.Design and syn-thesis strategies have been rapidly developed,and a series of organic conjugated materials with superior TPA properties have been synsynthesized.As the TPA parameters of the organic materials are very crucial to many applications,exploring the organic conjugate materials with large TPA cross-section and strong TPF has become one of the hottest topics in the past decades.A.Theoretical background of TPA process Theoretically,one can describe TPA process with a dipole model of the intense light-matter interaction. As shown in Figure2,the medium can usually be considered as bounded charged particles.Under an applied electricfield,the positive charges and nega-tive charges would move to the opposite directions, respectively,and the electricfield induces an electric polarization in the medium.The electric-dipole mo-ments caused by these small movements can be de-scribed asµind=−ex,where e is electron charge,and x is the displacement induced by electricfield.FIG.2.Oscillator model of the interaction between light and matterThe overall polarization isµind=−N e ex,where N e is the electron density in the medium.Under a weak electricfield,the polarization is linearly proportional to the electricfield P ind(E)=χ(1)E,whereχ(1)is the linear electric susceptibility.The incident lightfield is in fact a combination of electric and magneticfields oscillating sinusoidally at optical ually,the effect of the magnetic field on nonlinear optics is pretty weak and would be neglected later.The motion of charged particles in a dielectric medium in response to an optical electric field is oscillatory.In the oscillator model,motion of the electrons is dominant,since the mass of nuclei is orders heavier than that of electron.The motion of the electron in the electricfield can be described by a simple mechanical spring model,which is governed by the equation of motion for an oscillator.d2xd t2+2Γd xd t+ω20x=−emE(t)(1)Where x is the displacement from the mean position,ω0is the resonance frequency,Γis the damping con-stant,t is the time,and m is the mass of electron.Wang Yao Chuan et al.:Recent progress on two-photon absorbing organic materials137 Considering a sinusoidal optical electricfield,E(t)=E0cos(ωt)=12E0exp(−iωt)+exp(iωt)(2)whereωis the optical frequency.Substituting equa-tion(2)into(1),the solution can be described asx=−eE0me−iωtω20−2iΓω−ω2+c.c.(3)c.c.is complex conjugate.Then the electric polariza-tion can be described asP=−Nex=Ne2m1ω20−2iΓω−ω2E(ω)e−iωt+c.c.(4)If the appliedfield becomes intense enough,the equa-tion of motion should include anharmonic terms. Thus,the description of equation(4)must be mod-ified tod2x d t2+2Γd xd t+ω20x+(ax2+bx3+···)=−emE(t)(5)Hence,there is no longer an exact harmonic solution for the equation.If the anharmonicity is much smaller in comparison to the linear term,the solution can be approximated as a power series in E.In general,the electric polarization in the medium could be expanded as following:P=χ(1)E+χ(2)EE+χ(3)EEE+ (6)whereχ(2)andχ(3)are the second-order and third-order nonlinear optical susceptibility,respectively.In principle,high-order NLO effects would only happen when the intensity of light electricfield is compara-ble to the bound electricfield inside an atom or a molecule.Under the excitation of intensefield in-duced by the laser beam,the NLO effects might be strong enough to be observed.In addition to this, if the frequency of the light lies near to the intrinsic frequency of the oscillating dipoles,there would be a resonant enhancement of the NLO effects.Thus,it is possible to observe high-order NLO effects under relatively low laser excitation with the resonance en-hancement.The TPA process is an effect arising from such resonant enhancement.The TPA process is related to the imaginary part of the third-order nonlinear optical susceptibility.Dur-ing the two-photon process,energy transfers from the field to medium,known as nonlinear dissipative pro-cess.The rate of energy transfer can be described as[1]:d W d t =<E·P>=12ωIm(E·P)(7)E and P are the electricfield and the electric polar-ization vector,respectively.The bracket indicates a time average over several cycles of thefield.For the degenerate TPA process,the rate of energy absorbed in a medium can be written as:d Wd t=8πωn2c2I2Im(χ(3))(8)where I=EE∗nc/8π,n is the refractive index,c is the velocity of light.It can be clearly seen that the rate of absorption of energy is quadratically dependent on the excitation intensity,while this dependence is linear in one-photon absorption process.Thus,it is one criterion to check whether a process is TPA or not. The TPA properties of a molecule is often evaluated in a term of TPA cross-section:d n pd t=σ2NF2(9)where d n p/d t is the number of photons absorbed in unit time,σ2is TPA cross-section,and the unit commonly used is GM(1GM=10−50cm4s photon−1molecule−1),N is the number of absorbing molecules per unit volume,F=I/hνis the photon flux.As d W/d t=d n p/d t·hν(h is Planck constant), we can get:σ2=16π2hν2n2c2NIm(χ(3))(10)B.The study history of TPA in organicπ-conjugated moleculesAbout thirty years ago,the study of TPA was mainly focused on the inorganic crystals and semi-conductors.However,due to the limited number of inorganic materials,the magnitude of TPA response in most of inorganic materials is relatively weak and the response time is relatively long.After many or-ganic materials were successfully synthesized,NLO re-sponse of organic material arising from the delocal-ization ofπ-electrons was found much faster.What is more important is that the optical nonlinearity of these organic materials was found very large.Formed by covalent bonds,the organic materials have excel-lent manufacture processability,relatively high pho-todamage threshold,and high mechanical intensity. Moreover,the structure of organic molecules can be designed,modified and optimized conveniently with relatively low cost.Thus,organic materials have been intensively investigated in the decades.Practical applications of TPA materials benefit from the availability of materials with large TPA cross-section and high FL quantum yield,which can reduce the exposure time and lower the photonflux required to generate the two-photon effect.To fully explore the potential applications of TPA materials,138Wang Yao Chuan et al.:Recent progress on two-photon absorbing organic materialsintensive research efforts have been devoted to the fabrication of molecules with large TPA cross-section and fast response.Theoretical calculation and exper-imental investigation have been done to study the structure-dependent TPA property in organic ma-terial.These results have been used to guide the synthesis of new materials.Till now a huge num-ber of organic conjugated systems with quite large TPA cross-section have been reported,including dipo-lar molecules,quadrupolar,octupolar multibranched structure,macrocycle,polymer,and so on.[34,35] Organic molecules with TPA in visible and near in-frared(NIR)range didn’t attract much attention un-til the late1990s when the measured values of the TPA cross-section increased significantly.In1998, Perry and co-workers reported a series of quadrupo-lar molecules with large TPA cross-section value.[36] Prasad et al.calculated the TPA cross-sections of a series of symmetrically substituted distyrene deriva-tives,and the results indicated that the TPA cross-sections of modified distyrene derivatives(length-ening the conjugated length,substituting different pull/push electron groups,modifying and increasing the repeat unit)can be enhanced obviously.The electron donor(D)increased the delocalization of the electron cloud,and the charge redistribution inside the molecule after the photo-excitation would enhance the transition moment from S1to S2,the intensity of pull/push electron groups,conjugation length as well as the symmetry property of the molecule.These fac-tors will increase TPA cross-section.[37]In the earlier stage,the study on TPA materi-als was mainly focused on electron push/pull dipolar molecule systems,with the symmetrical or asymmet-rical connection of D and electron acceptor(A)via π-bridge,forming D-π-D,D-π-A and A-π-A struc-tures.In1998,Prasad’s group synthesized a series of asymmetrical molecules with D-π-A structure and systematically studied the effect of the planarity,the intensity of D/A group,conjugation length,length of the modified side-chain as well as the solvent envi-ronment on the TPA property.[37]Marder and Perry reported a series of molecules with D-π-D and A-π-A structure,and studied their TPA cross-sections.[7] In2000,Kim and co-workers compared a series of molecules with D-π-D and D-π-A structures,and the results indicated that the TPA cross-section of ante-rior molecule is much larger than the latter case.[38] Due to the good planarity and high FL quantum yield of thefluorene derivatives,Belfield et al.syn-thesized a series offluorene derivatives.[39∼43]Since then,many new push/pull or push/push systems were synthesized,utilizing anthracene,fluorene,oligoflu-orenes,diphenyl,dithienothiophene,fused aromatic rings and ethynylene.Effective intramolecular charge transfer(ICT)processes occur in these rge cross-section(the maximum is2600GM)and rel-ative high FL quantum yield were observed,while chromophores containing triple bonds displayed mod-est value of TPA cross-section.[38,44∼49]However,the TPA cross-sections of molecules with dipolar structure are still limited by the chromophore intensity,the de-localization of electron cloud,and the ICT property. The addition of strong D and A may further optimize their optical properties as a result of the molecular symmetry in conjugated system.It was proved by Albota et al.theoretically and experimentally that the quadrupolar molecules with D-π-A-π-D and A-π-D-π-A structures have excellent TPA properties.[36]Mtaka reported a series of2,1,3-benzothiadiazole-based red emitters with D-π-A-π-D structure,which show large TPA cross-sections and efficient red FL emissions.[50,51]Yang synthesized a series of D-π-A-π-D molecules with1,4-diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole as the core,and the TPA cross-section was reported to be1200GM.[52]These results indicated that increasing the quantity of the ICT by modifying the molecule structure can effec-tively enhance TPA response.The concept of octupolar multibranched structure was initially proposed by Zyss.[53]Recently,it was found that building multibranched molecules with oc-tupolar or dendriform structure can greatly improve the TPA response.In1999,Prasad reported a series of multibranched TPA dyes synthesized by coupling two and three two-photon active asymmetric D-A chro-mophores linked together with a common amine group triphenylamine as the central core.The dyes showed large TPA cross-section(587GM)at wavelength of 796nm.[54]The results of the measured TPA cross-section clearly indicate a remarkable increase of the effective TPA cross-section with increase of the num-ber of chromophore moieties,which is not propor-tional to the number density(the relative ratio of TPA cross-sections is1:3.1:6.8).These results are surprising and impressive.The cooperative enhance-ment of TPA effect in multibranched structures leads to new design criteria for the development of highly efficient two-photon materials.There are many lit-eratures reporting the multibranched or dendriform structures.[55∼58]Moreover,the TPA cross-sections of multibranched chromophores were found to scale lin-early with the number of branches in some materi-als but exhibit a small enhancement as the molecu-lar size increases in other materials.Investigations on tri-branched molecules indicate that increasing the di-mensionality of dipolar molecules is a good approach to enhance the NLO response,as certain branched compounds exhibit enhanced TPA cross-sections over the linear counterparts.While it is believed that theWang Yao Chuan et al.:Recent progress on two-photon absorbing organic materials139cooperative interaction among individual branches is the major factor,while the effective electronic delocal-ization and the increased ICT are also possible reasons for the enhancement of TPA.Recently,Kenji reported that TPA response can be enhanced by confining the organic dyes in a two-dimensional nanoscale space.[59]The reason of the enhancement was ascribed to the low-dimension and confinement of intramolecular twisty movement. Some metal porphyrin derivatives also show intense TPA.[60]Porphyrins,phthalocyanines,and other re-lated large macrocycles are characterized by a frame-work of conjugatedπ-electrons which extends in two-dimensions,representing an alternative type of build-ing block for the study of NLO properties.There are several domestic groups in China re-searching TPA in organic materias.Jiang,Yu and Tao et al.synthesized naphthyridine salt derivations,and studied the application possibility in TPA polymeriza-tion and TPF imaging of the biology cells.[24,25]They also theoretically investigated the effect of symmetri-cal/asymmetric charge transfer pattern on the TPA properties of the molecules.The results indicated that different patterns have different polarization re-sponse,and the symmetrical pattern of charge trans-fer have larger charge distribution property,which is much helpful to increase the TPA cross-section of molecules.Tian’s group[61,62]and Wang’s group[63,64] also did interesting work in the TPAfield.In East China University of Science and Technology,Tian’s group synthesized a lot of tri-branched compounds as well as polymers,showing large TPA cross-sections and relative high FL quantum yields.[65∼69]Theoret-ical calculations of TPA process have been done in Feng’s group.[70∼74]In the organic conjugated materials,the relaxation dynamic behavior of excited states are associated to the NLO response.The ultrafast dynamics informa-tion can help to understand the physics of the light-matter interactions.Ultrafast dynamics of the organic conjugated system with intense TPA response has been a hot topic in the frontier.By using femtosecond (fs)ultrafast time-resolved spectroscopy techniques, such as transient absorption(TA)spectroscopy,time-resolvedfluorescence(TRFL),and three-pulse pho-ton echo peak shift method,the excited-state relax-ation properties and the interaction between branches of multibranched molecules after the excitation has been investigated.Goodson’s group has made some pioneering contributions in thefield.[75∼79]He and co-workers investigated several multibranched organic conjugated systems.They found an important role of fast delocalization of charge,depolarization,the ICT and cooperation enhancement effect between branches in the excited state relaxation processes.It was pro-posed that the time-resolved anisotropy will show fast decay if there was strong intramolecular interactions among branches.They also found that the dimer and trimer show a shorter depolarization time in com-parison with the monomer.Ji’s group in National University of Singapore investigated excited dynam-ics of organic conjugated systems.[80,81]Gong’s group in Peking University also did some research work in thisfield.[82,83]Our group in Fudan University investi-gated NLO properties and ultrafast dynamics of many organic conjugated systems,including polymer,dipo-lar,quadrupolar,multibranched structure,modified phthalocyanines,dithienylethene materials with pho-tochromic property.[84∼90]All these results have pro-vide great important insights for better understanding the TPA organic compounds.II.EXPERIMENTALSFs laser systems are widely used to study the TPA properties of the materials due to its significant fea-tures.High power output characteristic of the fs laser pulses make it to be the most suitable candidate to be used to measure the NLO properties of novel materi-als.Ultrashort duration of the fs laser pulses provides the opportunities to detect the dynamics of the ex-cited states in the fs or picosecond(ps)domain.Var-ious optical configurations and set-ups for measuring the TPA properties and the dynamics of the materi-als were proposed by using the fs laser system.This section introduces some widely used techniques.A.Nonlinear optical properties1.Z-scantechniqueFIG.3.Experimental setup for z-scanZ-scan technique was introduced by Sheik-Bahae M. in1989[91]and is now widely used for the measurement of NLO properties due to its outstanding advantages. As a single beam technique,it can be used to evaluate140Wang Yao Chuan et al.:Recent progress on two-photon absorbing organic materialsnonlinear refractive index and nonlinear absorption by using closed-and open-aperture configurations,re-spectively.Typical setup is shown in Figure3.The input intensity in the sample is adjusted by moving the sample along the focused laser beam path.De-tector D2is used to measure the NLO absorption by detecting the whole transmission laser power,which is known as open-aperture z-scan.In the another con-figuration,a small part of the laser beam can reach the detector(D1)by using an iris to block the rest. The second configuration is defined as close-aperture configuration that can be used to measure the NLO refractive index.The results of open-aperture z-scan are the intensity dependent transmissions,and can be used to value the TPA properties.The formulas used to calculate the TPA cross-section are shown below:T nonlin=ln(1+q(z))q(z)(11)q(z)=βL effI0(1−R)/(1+(z/z0)2)(12)σ2=β/N=hνβ/N0=103hνβ/N A C(13)Whereβis the NLO absorption coefficient,and N0 is the number density of the absorption centers,N A is the Avogadro constant and C represents the solute molar concentration.2.Two-photon excitedfluorescenceFor some materials,FL can be generated by the TPA process.The wavelength of the excitation beam is longer than that of the FL emission.The distinct property of this TPF is that the FL intensity shows a quadratic dependence on the excitation intensity of the excitation beam.The TPA cross-section can be measured by TPF technique which wasfirst reported by Xu and Webb,[92]and was further developed by Rebane.[93]To achieve this,TPF emission intensity is compared with that of a standard sample for which the TPA cross-section and the quantum yield are already known.In order to simplify the calculation,one photon quantum yield is used to instead of TPA quantum yield.One advantage of this technique is the prominent sensitivity that the TPA cross-section for the sam-ple with small TPA cross-section or low concentration can still be measured,when the change of the nonlin-ear transmission is too small to be detected by open-aperturez-scan.FIG.4.Experimental setup for TAB.Ultrafast dynamics1.Transient absorption techniqueTA can be used to study the ultrafast dynamics of the excited states,as shown in Figure4.The laser beam is divided into two beams with the power ratio around10:1(pump:probe).After passing through an optical-delay line(ODL),the modulated pump beam was focused on the sample,while the probe beam reached the same spot on the sample where the sam-ple was excited to a non-equilibrium state.After the sample,the probe beam was detected by either reflec-tion or transmission mode using a photodiode together with a lock-in amplifier.Temporal intervals between the pump beam and probe beam can be easily ad-justed through the movement of ODL.By sampling the probe intensity at the different delay times,the relaxation properties of excited states in a sample can be acquired,and the lifetime of the excited state can be calculated byfitting the experiment data with ap-propriate exponential equation.If the wavelengths of pump and probe beams are the same,this technique is called one-color pump-probe. In other case,the pump and probe beam can be set at different wavelengths.This two-color pump-probe technique would offer more information of the excited states.For further improving this technique,super-continuum can be employed as the probe beam,and a CCD equiped spectragraph can be applied as the detector.This measurement can record the signals within a broad spectral region,highly improving the experimental efficiency.2.Time-resolvedfluorescenceRegarding to the FL emission state,the decay prop-erties are quite important.The ultrashort FL life-time can be investigated by up-conversion or Kerr-gate technique in fs scale.Wang Yao Chuan et al.:Recent progress on two-photon absorbing organic materials 141FIG. 5.Experimental setup for the optical Kerr-gate methodIn the up-conversion process,the FL is studied by mixing it with an intense beam in a NLO crystal.The dynamics of FL can be investigated by measuring the temporal behavior of generated sum frequency signal. This method is very sensitive,and the main disad-vantage is that only the dynamics of one selected FL wavelength could be detected at one scan process. Figure5illustrates the schematic diagram of the optical Kerr-gate method,which is based on the op-tical Kerr effect.[85,94]By using a beam splitter,the fundamental beam is divided into two beams.The intense beam is used to pump the Kerr-material to generate photoinduced birefringence,while the sam-ple is excited by another beam to emitfluorescence. The polarization of the collected FL emission is set to be45◦with that of the pump beam by a polarizer. Both the polarized FL emission and the pump beam are focused onto the same point in the Kerr medium. After the Kerr-material,the polarization of the FL emission is changed due to the birefringence.Pass-ing through an analyzer with the cross polarization to the polarizer,TRFL signal is detected by a CCD or a photomultiplier combined with a monochromator.In this setup,the Kerr medium and two crossed polariz-ers act as a“gate”.The“gate”is triggered to open by the pump pulses within the temporal scale of ultrafast response time of the optical Kerr effect.III.STRUCTURE/PROPERTIES ANDULTRAF AST DYNAMICSA.Dipolar and quadrupolar molecules with strong TPF responseIn an early literature,a series of molecules with modified molecular structures exhibiting large TPA cross-sections were synthesized.[37]These samples were characterized in solution at wavelength of800 nm and pulse duration of8ns using a nonlinear trans-mission technique.[37]As shown in Figure6,there are two general organic structural types.Type I(D-π-A): When D and A groups are substituted at the oppo-site termini of aπ-bridge,the ICT process would lead to the appearance of a dipole moment in the ground and/or excited states,denoted as dipolar molecules. Type II(D-π-D,or A-π-A)is symmetrical in nature, consisting of aπelectron rich aromatic bridgeflanked on either side with a D or with an A group.These molecules are linearly conjugated chains with electron donating or withdrawing substituents arranged sym-metrically to the center of the molecule.With pre-served inversion center,the lowest order moment sup-ported by these molecules is ually, the values of the TPA cross-sections of these dipo-lar/quadrupolar dyes are about tens ofGM.FIG.6.Schematics of various linear chromophores clas-sified based on the substitution pattern.I:dipolar molecules;II:quadrupolar molecules(from reference[37]) FIG.7.Schematics of various linear chromophores fromreference[36]Bredas,Marder and Perry identified and articu-lated the design criteria for symmetrical structures based on the direct correlation between large changes in quadrupolar moment during photoexcitation.[36] As shown in Figure7,these quadrupolar molecules with alternating vinyl and1,4-arylene groups as the。