变量之间的关系单元练习
- 格式:doc
- 大小:239.50 KB
- 文档页数:4
第三章变量之间的关系一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.1~6个月的婴儿生长发育非常快,他们的体重y(g)随月份t(月)的变化而变化,可以用700=+(其中a是婴儿出生时的体重)来表示.在这一变化过程中,自变量y a t是( )A.yB.aC.700D.t2.某市出租车起步价为2公里内8元,超过2公里的部分计价为每公里1.6元.则该市出租车载客行驶路程(2)x x≥千米与收费y(元)之间的关系式为( )A. 1.68= D.4 1.6y xy x=+ y x=+ C.8=+ B. 1.6 4.8y x3.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设开始工作的时间为t,剩下的水量为s,下面能反映s与t之间的关系的大致图像是( )A. B.C. D.4.在烧开水时,水温达到100℃水就会沸腾,下表是小红同学做“观察水的沸腾”试验时所记录的时间t(min)和水温T(℃)的数据:10t<A.7 30,=+ B.1430T t T=-, D.3014,T t tT t t=+, C.1416=-T t T5.2021年泰安市市区出租车调整收费标准,起步价由原来2公里内6元调整为2公里内8元,超过2公里,超过部分由原来1.5元每公里调整为1.6元每公里.外地游客小明在泰安搭乘出租车沿环山路欣赏泰山美景,则行驶路程(2)x x≥千米与收费y(元)之间的函数关系式为( )A. 1.68= D.4 1.6y xy x=+ =+ B. 1.6 4.8y xy x=+ C.86.《龟兔赛跑》是我们非常熟悉的故事.大意是乌龟和兔子赛跑,兔子开始就超过乌龟好远,兔子不耐烦了就在路边睡了一觉,乌龟一直往目的地奔跑,最终乌龟获得了胜利.下面能反映这个故事情节的图像是哪个?( )A. B.C. D.7.2022年2月5日,电影《长津湖》在青海剧场首映,小李一家开车去观看.最初以某一速度匀速行驶,中途停车加油耽误了十几分钟,为了按时到达剧场,小李在不违反交通规则的前提下加快了速度,仍保持匀速行驶.在此行驶过程中,汽车离剧场的距离y(千米)与行驶时间t(小时)的函数关系的大致图象是( )A. B. C. D.8.皮皮小朋友燃放一种手持烟花,这种烟花每隔1.4秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同.皮皮小朋友发射出的第一发花弹的飞行高度h(米)随飞行时间t(秒)变化的规律如下表所示.下列说法正确的是( )B.飞行时间t 每增加0.5秒,飞行高度h 就减少5.5米C.估计飞行时间t 为5秒时,飞行高度h 为11.8米D.只要飞行时间t 超过1.5秒后该花弹爆炸,就视为合格9.在同一条道路上,甲车从A 地到B 地,乙车从B 地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系的图象,下列说法错误的是( )A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B 地比乙到A 地早112小时 10.中国人逢山开路,遇水架桥,靠自己勤劳的双手创造了世界奇迹.雅西高速是连接雅安和西昌的高速公路,被国内外专家学者公认为全世界自然环境最恶劣、工程难度最大、科技含量最高的山区高速公路之一,全长240km ðkm .一辆货车和一辆轿车先后从西昌出发驶向雅安,如图,线段OM OM 表示货车离西昌距离1(km)y y 1(km )与时间x (h)x (h )之间的函数关系:折线OABN 表示轿车离西昌距离y 2(km )与()2km y 时间x (h)x (h )之间的函数关系,则以下结论错误的是( )A.货车出发1.8小时后与轿车相遇B.货车从西昌到雅安的速度为60km/hC.轿车从西昌到雅安的速度为110km/hn km/hD.轿车到雅安20分钟后,货车离雅安还有40km(km二、填空题(每小题4分,共20分)11.某道路安装的护栏平面示意图如图所示,每根立柱宽为0.1米,立柱间距为3米设有x根立柱,护栏总长度为y米,则y与x之间的关系式为_______________.12.在关系式302=-中,v随着t的变化而变化,其中自变量是________,因变量是v t________,当t=________时,0v=.13.如表反映的是高速路上匀速行驶的汽车在行驶过程中时间x(时)与油箱的余油量y(升)之间的关系,这种关系可以表示为_______.14.2018年5月14日川航3U8633航班挡风玻璃在高空爆裂,机组临危不乱,果断应对,正确处置,顺利返航,避免了一场灾难的发生下面表格是成都当日海拔h(千米)与相应高度处的气温T(℃)的关系.(成都地处四川盆地,海拔较低,为方便计算,在此题中近似为0米)(1)由表格可知海拔5千米的气温约为__________℃.(2)由表格中的规律写出当日气温T与海拔h之间的关系式为___________.如图是当日飞机下降过程中海拔h与玻璃爆裂后立即返回地面所用的时间t的关系图.根据图象回答以下问题:(3)挡风玻璃在高空爆裂时飞机所处的高度为_______千米,返回地面用了_______分钟.(4)飞机在2千米高空水平面上大约盘旋了________分钟.(5)利用所学知识预测,挡风玻璃在高空爆裂时,当时飞机所处高空的气温为__________℃,由此可见机长在高空经历了多大的艰险.15.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完;销售金额与卖瓜千克数之间的关系如图所示,那么小李赚了________元.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)据测定,海底扩张的速度是很缓慢的,在太平洋底,某海沟的某处宽度为100米,其地壳向外扩张的速度是每年6厘米,假设海沟扩张速度恒定,扩张时间为x 年,海沟的宽度为y米.(1)写出海沟扩张时间x(年)与海沟的宽度y(米)之间的关系式;(2)计算出海沟宽度扩张到400米需要的年数.17.(8分)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(030≤≤,单位:分)之间的关系如表所示:x(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当提出概念所用的时间是10分钟时,学生对概念的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用的时间为多少时,学生对概念的接受能力最强?(4)根据表格中的数据,当提出概念所用的时间x在什么范围内时,学生对概念的接受能力逐步增强?当提出概念所用的时间x在什么范围内时,学生对概念的接受能力逐步降低?18.(10分)小红帮弟弟荡秋千,秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图所示.(1)根据函数的定义,请判断变量h是不是关于t的函数;(2)结合图象回答:①当0.7t s时,h的值是多少?并说明它的实际意义;②秋千摆动第一个来回需要多长时间?19.(10分)小明、小亮从图书馆出发,沿相同的线路跑向体育场,小明先跑一点路程后,小亮开始出发,当小亮超过小明150米时,小亮停下等候小明,两人相遇后,一起以小明原来的速度跑向体育场,图反映了两人所跑路程y(米)与所用时间x(秒)之间的关系,请根据题意解答下列问题:(1)自变量是_______,因变量是_________;(填“x”或“y”)(2)小明共跑了_________米,小明的速度为________米/秒;(3)图中a _________米,小亮在途中等候小明的时间是_______秒;(4)小亮在AB段的平均速度为________米/秒.20.(12分)为了参加“圆梦抚州、冬季旅游文化节”活动,甲、乙两山地自行车选手进行骑行训练.他们同地出发,反向而行,分别前往A地和B地甲先出发1 min且先到达A地.两人到达目的地后均以原速按原路立即返回,直至两人相遇.两人之间的距离y (km)与乙出发时间x(min)之间关系的图象如图所示请根据图象解决下列问题:(1)直接写出甲车和乙车的速度;(2)求图中a,b的值;(3)乙车出发多长时间两车首次相距22.6 km?21.(12分)在疫情期间,某口罩生产厂为提高生产效益引进了新的设备,其中甲表示新设备的产量y(万个)与生产时间x(天)的关系,乙表示旧设备的产量y(万个)与生产时间x(天)的关系:(1)由图象可知,新设备因工人操作不当停止生产了__________天;(2)求新,旧设备每天分别生产多少万个口罩?(3)在生产过程中,x为何值时,新旧设备所生产的口罩数量相同.答案以及解析1.答案:D 解析:体重y (g )随月份t (月)的变化而变化,所以自变量是时间t ,故选D.2.答案:B解析:由题意得:()8 1.62y x =+-,即 1.6 4.8y x =+,故选:B.3.答案:D解析:根据题意可知随着抽水机工作,剩下的水量越来越少.而且一台抽水机工作的效率比两台抽水机工作效率慢,所以两台抽水机工作时,剩下的水量减少的速度更快. 故选:D.4.答案:A解析:开始时水温为30℃,每增加1 min ,水温增加7 ℃,所以水温T 与时间t 之间的关系式为730T =+.因为水温T 随时间t 的变化而变化,所以因变量为T .故选A.5.答案:B解析:由题意得:()8 1.62 1.6 4.8y x x =+-=+,故选B.6.答案:D解析:从图D 提供的信息可知:表示乌龟赛跑的图象应该是一条一直上升的直线,且比兔子早到达终点;表示兔子赛跑的图象应该是开始时是一条上升的直线,中途变为水平直线,然后又变为上升,且比乌龟晚到达终点.故选:D.7.答案:B解析:随着时间的增多,汽车离剧场的距离y (千米)减少,排除A 、C 、D ;由于途中停车加油耽误了几分钟,此时时间在增多,汽车离剧场的距离y 没有变化;后来加快了速度,仍保持匀速行进,所以后来的函数图象的走势应比前面匀速前进的走势要陡.故选:B.8.答案:C解析:由表格可知从0秒到3秒的过程中,随着飞行时间t 的增加,飞行高度h 增加;3秒以后,随着飞行时间t 的增加,飞行高度h 减小.所以A 、B 选项不正确;由表格可知飞行高度h 在3秒左右是对称的,所以C 选项正确;已知中没有涉及合格的标准,所以D 选项不正确.故选C.9.答案:D解析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意; B.乙先出发,0.5小时,两车相距()10070km -,∴乙车的速度为:60km/h ,故乙行驶全程所用时间为:10021603=(小时), 由最后时间为1.75小时,可得乙先到到达A 地,故甲车整个过程所用时间为:1.750.5 1.25-=(小时),故甲车的速度为:()100 1.2580km/h ÷=,故B 选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km ,乙车行驶的距离为:60km ,4060100+=,故两车相遇,故C 选项正确,不合题意;D.由以上所求可得,乙到A 地比甲到B 地早:211.751312-=,(小时),故此选项错误,符合题意.故选:D.10.答案:D解析:由题意可知,货车从西昌到雅安的速度为:240460(km/h)÷=,故选项B 不合题意;轿车从西昌到雅安的速度为:(24075)(3 1.5)110(km/h)-÷-=,故选项C 不合题意;轿车从西昌到雅安所用时间为:2240110211÷=(小时), 29321111-=(小时), 设货车出发x 小时后与轿车相遇,根据题意得:96011011x x ⎛⎫=- ⎪⎝⎭, 解得 1.8x =,∴货车出发1.8小时后与轿车相遇,故选项A 不合题意;轿车到雅安20分钟后,货车离雅安还有60206040(km)60-⨯=,故选项D 符合题意. 故选:D.11.答案: 3.1 -3y x =解析:由题意得,y 与x 之间的关系式为(0.13) -3 3.1 -3y x x =+=12.答案:t ,v ,15解析:根据函数的定义,则自变量是t ,因变量是v ;要使0v =,则3020t -=,解得15t =.13.答案:6010y x =-解析:由表格数据可知,行驶时间每延长1小时,剩余油量减少10升,即耗油量为10升/时,所以6010y x =-.14.答案:(1)-10;(2)206T h =-;(3)9.8;20;(4)2;(5)-38.8解析:(1)由题中表格可知,海拔5千米的气温约为-10℃.(2)由题中表格可知,海拔每上升1千米,气温下降6℃,所以当日气温T 与海拔h 之间的关系式为206T h =-.(3)由题中图象可知挡风玻璃在高空爆裂时飞机所处的高度为9.8千米,返回地面用了20分钟.(4)飞机在2千米高空水平面上大约盘旋了12102-=(分).(5)当9.8h =时,2069.838.8T =-⨯=-(℃).15.答案:36解析:解:根据题意得:由降价前40千克西瓜卖了64元,那么售价为:6440 1.6÷=元,降价0.4元后单价变为1.60.4 1.2-=,钱变为了76元,说明降价后卖了766412-=元,那么降价后卖了12 1.210÷=千克.总质量将变为401050+=千克,那么小李的成本为:500.840⨯=元,赚了764036-=元.16.答案:(1)根据题意得,海沟每年扩张的宽度为0.06米,∴海沟扩张时间x (年)与海沟的宽度y (米)之间的关系式为0.06100y x =+.(2)当400y =时,0.06100400x +=,解得5000x =.答:海沟宽度扩张到400米需要5000年.17.答案:(1)题中表格反映了提出概念所用的时间x 和学生对概念的接受能力y 之间的关系,其中x 是自变量,y 是因变量.(2)由题中表格可知,当提出概念所用的时间是10分钟时,学生对概念的接受能力是59.(3)由题中表格可知;当提出概念所用的时间为13分钟时,学生对概念的接受能力最强.(4)由题中表格可知,当提出概念所用的时间x 在2分钟至13分钟范围内时,学生对概念的接受能力逐步增强;当提出概念所用的时间x 在13分钟至20分钟范围内时,学生对概念的接受能力逐步降低.18.答案:(1)对于每一个摆动时间t ,h 都有唯一确定的值与其对应,∴变量h 是关于t 的函数.(2)①当0.7t =s 时,0.5h =m ,它的实际意义是秋千摆动0.7s 时,离地面的高度为0.5m.②由题图可知,秋千摆动第一个来回需2.8s.19.答案:(1)由题意可得自变量是x ,因变量是y ,故答案为x ;y .(2)小明共跑了900米,小明的速度为900600 1.5÷=米/秒,故答案为900;1.5.(3) 1.5500750a =⨯=,小亮在途中等候小明的时间是500(750150) 1.5100--÷=秒,故答案为750;100.(4)小亮在AB 段的平均速度为750[(750150) 1.5100] 2.5÷-÷-=米/秒,故答案为2.5.20.答案:(1)甲的速度是0.636160=(km/h ). 乙的速度是33.60.6366636303060--=-=(km/h ). (2)根据题意,得3630(3630)0.660-⨯-=(km ), 33.6-0.6=33(km ),所以33a =.因为33(3630)0.5÷+=(h ),0.5 h=30 min ,36+30=66(min ),所以66b =.(3)设乙车出发x min 两车首次相距22.6 km , 根据题意,得36300.622.66060x x ⨯+⨯+=,解得20x =. 所以乙车出发20 min 后两车首次相距22.6 km.21.答案:(1)2;(2)甲设备每天生产4.8万个口罩,乙设备每天生产2.4万个口罩;(3)在生产过程中,x 为2或4时,新旧设备所生产的口罩数量相同 解析:(1)由图象知,新设备因工人操作不当停止生产了2天, 故答案为:2;(2)新设备:4.81 4.8÷=(万个/天),乙设备:16.87 2.4÷=(万个/天), 答:甲设备每天生产4.8万个口罩,乙设备每天生产2.4万个口罩;(3)①2.4 4.8x =,解得2x =;②()2.4 4.82x x =-,解得4x =;答:在生产过程中,x 为2或4时,新旧设备所生产的口罩数量相同.。
第3章变量之间的关系一.选择题(共20小题,满分40分,每小题2分)1.(2分)在圆周长的计算公式C=2πr中,变量有()A.C,πB.C,r C.C,π,r D.C,2π,r 2.(2分)下列函数中,表示是同一函数的是()A.y=x与y=B.y=x与y=()2C.y=x与y=D.y=x与y=3.(2分)下列式子:①y=3x﹣5;②y2=x;③y=|x|;④.其中y是x的函数的个数是()A.1 B.2 C.3 D.44.(2分)已知f(x)=10x+1,如:当x=3时,f(3)=3×10+1=31,则当f(x)=21时,x的值为()A.﹣2 B.3 C.2 D.75.(2分)函数y=﹣中,自变量x的取值范围是()A.x≤B.x≥C.x<且x≠﹣1 D.x≤且x≠﹣1 6.(2分)已知函数,当y=6时,x的值是()A.B.C.D.7.(2分)下列图象中,表示y不是x的函数的是()A.B.C.D.8.(2分)根据如图所示的程序计算函数y的值,若输入x的值是2,则输出y的值是1,若输入x的值是7,则输出y的值是()A.1 B.﹣1 C.2 D.﹣29.(2分)邮购一种图书,每册定价36元,另加书价的4%作为邮费,若购书x册,则付款y(元)与x(册)的函数解析式为()A.y=36x+4%x B.y=36(1+4%)xC.y=36.04x D.y=35.96x10.(2分)一个弹簧不挂重物时长8cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1kg的物体后,弹簧伸长2cm.则弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数解析式为()A.y=2x B.y=0.5x C.y=2x+8 D.y=0.5x+8 11.(2分)某水果商店规定:如果购买苹果不超过10千克,那么每千克售价3元;如果超过10千克,那么超过的部分每千克降低10%,某单位购买48千克水果,则应付的钱数为()A.129.6元B.132.6元C.141元D.144元12.(2分)如图所示,在一个玻璃器中,放有一个正方形铁块,用同样的速度向容器注水,则下列函数的图象,能表示水面的高度h与注水时间t的关系式的是()A.B.C.D.13.(2分)汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的关系用图象表示应为()A.B.C.D.14.(2分)在等式①x=|y|;②y=|x|;③x2+y2﹣1=0;④5x﹣2y=0;⑤,y是x 的函数的有()A.2个B.3个C.4个D.5个15.(2分)在某次试验中,测得两个变量x和y之间的4组对应数据如下表:x 1 2 3 4y0 3 8 15 则y与x之间的关系满足下列关系式()A.y=2x﹣2 B.y=3x﹣3 C.y=x2﹣1 D.y=x+116.(2分)电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()A.B.C.D.17.(2分)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t(分钟),所走路程为s(米),s与t之间的函数关系如图所示,则下列说法中,错误的是()A.小明中途休息用了20分钟B.小明在上述过程中所走路程为7200米C.小明休息前爬山的速度为每分钟60米D.小明休息前后爬山的平均速度相等18.(2分)弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:x0 1 2 3 4 5y10 10.5 11 11.5 12 12.5 下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.所挂物体质量为4kg时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg,弹簧长度y增加0.5cm19.(2分)早上,小明从家里步行去学校,出发一段时间后,小明妈妈发现小明的作业本落在家里,便带上作业本骑车追赶,途中追上小明两人稍作停留,妈妈骑车返回,小明继续步行前往学校,两人同时到达.设小明在途的时间为x,两人之间的距离为y,则下列选项中的图象能大致反映y与x之间关系的是()A.B.C.D.20.(2分)如右图,在▱ABCD中,直线l⊥LBD.将直线l沿BD从B点匀速平移至D点,在运动过程中,直线l与▱ABCD两边的交点分别记为点E、F.设线段EF的长为y,平移时间为t则下列图象中,能表示y与t的函数关系的图象大致是()A.B.C.D.二.填空题(共10小题,满分20分,每小题2分)21.(2分)函数的主要表示方法有、、三种.22.(2分)已知f(x)=,那么f(3)=.23.(2分)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系.24.(2分)某计算程序编辑如图所示,当输入x=时,输出的y=3.25.(2分)为了加强公民的节水意识,某市制定了如下用水收费标准,每户每月的用水不超过10t时,水价为每吨2.2元;超过10t时,超过部分按每吨2.8元收费,该市每户居民5月份用水xt(x>10),应交水费y元,则y关于x的关系式.26.(2分)如图所示,为一个沙漏在计时过程中所剩沙子质量(克)与时间(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为小时.27.(2分)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.则下列说法中,正确的序号为.①小明中途休息用了20分钟.②小明休息前爬山的平均速度为每分钟70米.③小明在上述过程中所走的路程为6600米.④小明休息前爬山的平均速度大于休息后爬山的平均速度.28.(2分)某地出租车行驶里程x(km)与所需费用y(元)的关系如图.若某乘客一次乘坐出租车里程12km,则该乘客需支付车费元.29.(2分)如图1,长方形ABCD中,动点P从B出发,沿B→C→D→A路径匀速运动至点A 处停止,设点P运动的路程为x,△PAB的面积为y,如果y关于x的函数图象如图2所示,则长方形ABCD的面积等于.30.(2分)一旅游团来到十堰境内某旅游景点,看到售票处旁边的公告栏如图所示,请根据公告栏内容回答下列问题:设旅游团人数为x人,写出该旅游团门票费用y(元)与人数x的函数关系式.y=①x=(0,1,2,…10)②(x>10,且x为整数)三.解答题(共3小题,满分40分)31.(14分)随着移动互联网的快速发展,ofo、摩拜等互联网共享单车应运而生并快速发展.小军骑着摩拜单车,爸爸骑着摩托车,沿着相同路线由A地到B地,下面图象表示的是两人由A地到达B地,行驶过程中路程y(千米)和时间x(分钟)之间的变化情况,根据图象,回答下列问题.(1)A地与B地之间的距离是.(2)爸爸比小军晚出发分钟,小军比爸爸晚到B地分钟.(3)行驶过程中,爸爸骑车速度为每分钟千米,小军骑车速度为每分钟千米.(4)若两人都在同一条直线上行驶,爸爸出发后经过分钟,两人相距0.4千米.32.(12分)为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m3的部分每立方米收费1.5元,并加收0.4元的城市污水处理费,设某户每月用水量为x(m3),应交水费为y(元).(1)写出用水未超过7m3时,y与x之间的函数关系式;(2)写出用水多于7m3时,y与x之间的函数关系式.33.(14分)如图,在矩形MNPQ中,MN=6,PN=4,动点R从点N出发,沿N→P→Q→M 方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,(1)当x=3时,y=;当x=12时,y=;当y=6时,x=;(2)分别求当0<x<4、4≤x≤10、10<x<14时,y与x的函数关系式.参考答案与试题解析一.选择题(共20小题,满分40分,每小题2分)1.【解答】解:圆的周长计算公式是c=2πr,C和r是变量,2、π是常量,故选:B.2.【解答】解:A、y=x与y=中,第二个函数x≠0,故不是表示同一函数;B、y=x与y=()2中,第二个函数x≥0,故不是表示同一函数;C、y=x与y==x,故表示同一函数;D、y=x与y=的值域不同,故不是表示同一函数;故选:C.3.【解答】解:①y=3x﹣5,y是x的函数;②y2=x,当x取一个值时,有两个y值与之对应,故y不是x的函数;③y=|x|,y是x的函数;④y=,y是x的函数.所以y是x的函数的有3个.故选:C.4.【解答】解:∵f(x)=10x+1,f(x)=21,∴10x+1=21,解得x=2.故选:C.5.【解答】解:根据题意得:2﹣3x≥0且x+1≠0,解得:x≤且x≠﹣1.故选:D.6.【解答】解:∵函数y=,∴当x<2时,x2+1=6,得x1=﹣,x2=(不合题意,舍去),当x≥2时,=6,得x=(不合题意,舍去),故当y=6时,x的值是﹣,故选:A.7.【解答】解:A、C、D对于x的每一个确定的值,y都有唯一的值与其对应,符合函数的定义,只有B选项对于x的每一个确定的值,有两个y与之对应,不符合函数的定义.故选:B.8.【解答】解:若输入x的值是2,则输出y的值是1,∴1=﹣2×2+b,解得b=5,∴当x=7时,y==﹣1,故选:B.9.【解答】解:由题意得;购买一册书需要花费(36+36×4%)元∴购买x册数需花费(36+36×4%)x元即:y=(36+36×4%)x=36(1+4%)x,故选:B.10.【解答】解:∵挂上1kg的物体后,弹簧伸长2cm,∴挂上xkg的物体后,弹簧伸长2xcm,∴弹簧总长y=2x+8.故选:C.11.【解答】解:由题意可知:3×10+(48﹣10)×3×0.9=132.6元,故选:B.12.【解答】解:在未淹住正方形铁块时,水面高度会比较快速的上升,而超过铁块后,速度会减慢.故选:D.13.【解答】解:由题意得,s=400﹣100t,且0≤x≤4,故选:C.14.【解答】解:∵对于x的每一个取值,y都有唯一确定的值,∴②y=|x|;④5x﹣2y=0;⑤当x取值时,y有唯一的值对应;故选:B.15.【解答】解:观察发现,当x=1时,y=12﹣1,当x=2时,y=22﹣1,当x=3时,y=32﹣1,当x=4时,y=42﹣1,∴y与x之间的关系满足下列关系式为y=x2﹣1.故选:C.16.【解答】解:由题意可知:当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.∴y=4﹣0.4t(0≤t≤10),故只有选项D符合题意.故选:D.17.【解答】解:A、小明中途休息的时间是:60﹣40=20分钟,故本选项正确;B、小明在上述过程中所走路程为4800米,故本选项错误;C、小明休息前爬山的速度为=60(米/分钟),故本选项正确;D、因为小明休息后爬山的速度是=60(米/分钟),所以小明休息前后爬山的平均速度相等,故本选项正确;故选:B.18.【解答】解:A.x与y都是变量,且x是自变量,y是因变量,故A正确;B.所挂物体质量为4kg时,弹簧长度为12cm,故B正确;C.弹簧不挂重物时的长度为10cm,故C错误;D.物体质量每增加1kg,弹簧长度y增加0.5cm,故D正确.故选:C.19.【解答】解:由题意可得,小明从家出发到妈妈发现小明的作业本落在家里这段时间,y随x的增大而增大,小明的妈妈开始给你小明送作业到追上小明这段时间,y随x的增大而减小,小明妈妈追上小明到各自继续行走这段时间,y随x的增大不变,小明和妈妈分别去学校、回家的这段时间,y随x的增大而增大,故选:B.20.【解答】解:①当点E在AB上运动时,设直线BD交直线l于点H,∠DBC=α,∠DBA=β,则HF=BF sinα=sinα•t,BH=cosα•t,则EH=BH tanβ=cosαtanβ•t,FE=EH+FH=(sinα+cosαtanβ)•x,为一次函数;②当直线l在AC之间运动时,EF为常数;③当直线l在CD上运动时,同理可得:EF的表达式为一次函数,故选:D.二.填空题(共10小题,满分20分,每小题2分)21.【解答】解:函数表示两个变量的变化关系,有三种方式:列表法、图象法、解析式法.故答案为列表法、图象法、解析式法.22.【解答】解:当x=3是,f(3)==,故答案为.23.【解答】解:根据题意得:y=,整理得:;则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是y=;故答案为:y=.24.【解答】解:当x≥3时,y=3即,解得x=12;当x<3时,y=3即3x+5=3,解得:x=﹣.故答案为:12或﹣.25.【解答】解:∵该市每户居民5月份用水xt(x>10),∴应交水费y元关于x的关系式为:y=10×2.2+2.8(x﹣10)=2.8x﹣6.故答案为:y=2.8x﹣6.26.【解答】解:沙漏漏沙的速度为:15﹣6=9(克/小时),∴从开始计时到沙子漏光所需的时间为:15÷9=(小时).故答案为:27.【解答】解:①、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;②、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;③、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;④、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;综上所述,正确的有①②④.故答案为:①②④28.【解答】解:由图象知,y与x的函数关系为一次函数,并且经过点(2,5)、(4,8),设该一次函数的解析式为y=kx+b,则有:,解得:,∴y=x+2.将x=12代入一次函数解析式,得y=18+2=20,故出租车费为20元.故答案为:20.29.【解答】当点P在BC段时,对应图2,x≤3的部分,故BC=3;当点P在CD段时,对应图2,3<x≤8的部分,故DC=5;故长方形ABCD的面积等于CB×CD=3×5=15,故答案为15.30.【解答】解:①∵一次购买10张一下(含10张),每张门票180元,∴当x=(0,1,2,…10)时,该旅游团门票费用y(元)与人数x的函数关系式为:y =180x;②∵根据题意得:y=180×10+180×0.6×(x﹣10)=108x+720,∴当x>10,且x为整数时,该旅游团门票费用y(元)与人数x的函数关系式为:y=108x+720.故答案为:①180x,②108x+720.三.解答题(共3小题,满分40分)31.【解答】解:(1)根据图象可知:A地与B地之间的距离为6千米.故答案为6千米.(2)根据图象与x轴的交点可知:爸爸比小军晚出发10分钟,小军比爸爸晚到B地5分钟.故答案为10、5.(3)爸爸骑车速度为每分钟6÷(25﹣10)=0.4.小军骑车速度为每分钟6÷30=0.2.故答案为0.4、0.2.(4)设爸爸行驶路程为y1=kx+b,图象过(10,0)、(20,4)所以解得所以y1=x﹣4,设小军行驶的路程为y2=kx,图象过(20,4),所以20k=4,解得k=所以y2=x.当y1﹣y2=x﹣4﹣x.=0.4,解得x=22,当y2﹣y1=x﹣x+4=0.4,解得x=18.所以爸爸出发后18分钟或22分钟时,两人相距0.4千米.故答案为18或22.32.【解答】解:(1)未超出7立方米时:y=x×(1+0.2)=1.2x;(2)超出7立方米时:y=7×1.2+(x﹣7)×(1.5+0.4)=1.9x﹣4.9.33.【解答】解:(1)如图1,∵点R运动的路程为x,△MNR的面积为y,∴当x=3时,y=MN×RN=×6×3=9,如图2,当x=12时,y=RM×MN=×2×6=6,根据以上计算可以得出当y=6时,x=2或12,故答案为:9,6,2或12;(2)当0≤x<4时,R在PN上运动,y=MN×RN=×6×x=3x;当4≤x≤10时,R在QP上运动,y=MN×PN=×6×4=12;当10<x≤14时,R在QM上运动,y=MN×RM=×6×[4﹣(x﹣10)]=42﹣3x.。
第三章变量之间的关系单元测试题(附答案)一、选择题1.圆的周长公式为C=2πr,下列说法正确的是()A.常量是2.B.变量是C、π、r。
C.变量是C、r。
D.常量是2、r2.函数y=中自变量x的取值范围是()A.x≤2B.x≥2C。
x<2.D。
x>23.据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是()XXX4.以下图,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时动身,设慢车行驶的工夫为x (h),两车之间的间隔为y(km),图中的折线透露表现y与x之间的函数关系.以下说法中正确的是()A。
B点透露表现此时快车抵达乙地B。
B﹣C﹣D段透露表现慢车先加快后减速最后抵达甲地 C.快车的速度为km/h。
D.慢车的速度为125km/h5.柿子熟了,从树上落下来.下面的()图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况.XXX.6.一个长方体木箱的长为4㎝,宽为体的体积V与高为宽的2倍,则这个长方体的表面积S与的关系及长方的关系分别是()A.C.B.D.7.“龟兔赛跑”讲述了这样的故事:领先的兔子看着迟钝匍匐的乌龟,自满起来,睡了一觉,当它醒来时。
发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达终点、用s1s2分别透露表现乌龟和兔子所行的旅程,t为工夫,则以下图象中与故工作节相符合的是()XXX.C.D.8.自行车以10千米/小时的速度行驶,t时)它所行走的路程S(千米)与所用的时间(之间的关系为()A。
S=10+t。
B.C。
S=D。
S=10t9.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下表的关系:以下说法不正确的是()x/kgy/cm 20 20.5 21 21.5 22 22.5A.弹簧不挂重物时的长度为0cmB。
第3章变量之间的关系一.选择题(共10小题)1.下列曲线中不能表示y是x的函数的是()A.B.C.D.2.购某种三年期国债x元,到期后可得本息和y元,已知y=kx,则这种国债的年利率为()A.k B.C.k﹣1 D.3.下列函数中,自变量x的取值范围为x>1的是()A.B.C.D.y=(x﹣1)0 4.能使式子+成立的x的取值范围是()A.x≥1 B.x≥2 C.1≤x≤2 D.x≤25.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣76.“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用x表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()A.B.C.D.7.定义新运算:p⊕q=,例如:3⊕5=,3⊕(﹣5)=,则y=2⊕x(x ≠0)的图象是()A.B.C.D.8.随着时代的进步,人们对PM2.5(空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中PM2.5的值y1(ug/m3)随时间t(h)的变化如图所示,设y2表示0时到t时PM2.5的值的极差(即0时到t时PM2.5的最大值与最小值的差),则y2与t的函数关系大致是()A.B.C.D.9.某学校组织团员举行“伏羲文化旅游节”宣传活动,从学校骑自行车出发,先上坡到达甲地后,宣传了8分钟,然后下坡到乙地又宣传了8分钟返回,行程情况如图所示.若返回时,上、下坡速度保持不变,在甲地仍要宣传8分钟,那么他们从乙地返回学校所用的时间是()A.33分钟B.46分钟C.48分钟D.45.2分钟10.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a <b时,max{a,b}=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.4二.填空题(共9小题)11.圆的半径为r,圆的面积S与半径r之间有如下关系:S=πr2.在这关系中,常量是.12.若一个函数图象的对称轴是y轴,则该函数称为偶函数.那么在下列四个函数:①y=2x;②y=;③y=x2;④y=(x﹣1)2+2中,属于偶函数的是(只填序号).13.一个蓄水池储水100m3,用每分钟抽水0.5m3的水泵抽水,则蓄水池的余水量y(m3)与抽水时间t(分)之间的函数关系式是.14.底面半径为r,高为h的圆柱,两底的面积之和与它们的侧面积相等,h与r的函数关系为.15.请写出一个图象经过点(1,4)的函数解析式:.16.某下岗职工购进一批货物,到集贸市场零售,已知卖出的货物数量x与售价y的关系如表所示:质量x(千克)1 2 3 4 5售价y(元) 2+0.1 4+0.2 6+0.3 8+0.4 10+0.5 写出用x表示y的公式是.17.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是千米/分钟.18.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.19.如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点.设PC的长度为x,PE与PB的长度和为y,图②是y关于x的函数图象,则图象上最低点H的坐标为.三.解答题(共4小题)20.求函数y=的自变量x的取值范围.21.星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示.根据图象回答下列问题:(1)小明家离图书馆的距离是千米;(2)小明在图书馆看书的时间为小时;(3)小明去图书馆时的速度是千米/小时.22.下图是桂林冬季某一天的气温随时间变化的图象:请根据图象填空:在时气温最低,最低气温为℃,当天最高气温为℃,这一天的温差为℃(所有结果都取整数).23.若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质.列表:x…﹣3 ﹣﹣2 ﹣﹣1 ﹣0 1 2 3 …y… 1 2 1 0 1 2 …描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:①点A(﹣5,y1),B(﹣,y2),C(x1,),D(x2,6)在函数图象上,则y1y2,x1x2;(填“>”,“=”或“<”)②当函数值y=2时,求自变量x的值;③在直线x=﹣1的右侧的函数图象上有两个不同的点P(x3,y3),Q(x4,y4),且y3=y4,求x3+x4的值;④若直线y=a与函数图象有三个不同的交点,求a的取值范围.参考答案与试题解析一.选择题(共10小题)1.下列曲线中不能表示y是x的函数的是()A.B.C.D.【分析】函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可判断.【解答】解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项C中的曲线,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.故C中曲线不能表示y是x的函数,故选:C.2.购某种三年期国债x元,到期后可得本息和y元,已知y=kx,则这种国债的年利率为()A.k B.C.k﹣1 D.【分析】由题意可列出关系式求解.【解答】解:因为三年期国债x元,到期后可得本息和y元,已知y=kx,则其3年的利息为:kx﹣x,则这种国债的年利率为:故选:D.3.下列函数中,自变量x的取值范围为x>1的是()A.B.C.D.y=(x﹣1)0【分析】根据被开方数大于等于0,分母不等于0对各选项分别列式计算即可得解.【解答】解:A.中x≥1,此选项不符合题意;B.中x>1,此选项符合题意;C.中x≠1,此选项不符合题意;D.y=(x﹣1)0中x≠1,此选项不符合题意;故选:B.4.能使式子+成立的x的取值范围是()A.x≥1 B.x≥2 C.1≤x≤2 D.x≤2【分析】根据二次根式的意义:被开方数大于等于0,就可以求解.【解答】解:根据题意得:,解得:1≤x≤2.故选:C.5.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣7【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【解答】解:∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣9,故选:C.6.“漏壶”是一种古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用x表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()A.B.C.D.【分析】根据题意,可知y随的增大而减小,符合一次函数图象,从而可以解答本题.【解答】解:∵不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,x表示漏水时间,y表示壶底到水面的高度,∴y随x的增大而减小,符合一次函数图象,故选:A.7.定义新运算:p⊕q=,例如:3⊕5=,3⊕(﹣5)=,则y=2⊕x(x ≠0)的图象是()A.B.C.D.【分析】根据题目中的新定义,可以写出y=2⊕x函数解析式,从而可以得到相应的函数图象,本题得以解决.【解答】解:∵p⊕q=,∴y=2⊕x=,故选:D.8.随着时代的进步,人们对PM2.5(空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中PM2.5的值y1(ug/m3)随时间t(h)的变化如图所示,设y2表示0时到t时PM2.5的值的极差(即0时到t时PM2.5的最大值与最小值的差),则y2与t的函数关系大致是()A.B.C.D.【分析】根据极差的定义,分别从t=0、0<t≤10、10<t≤20及20<t≤24时,极差y2随t的变化而变化的情况,从而得出答案.【解答】解:当t=0时,极差y2=85﹣85=0,当0<t≤10时,极差y2随t的增大而增大,最大值为43;当10<t≤20时,极差y2随t的增大保持43不变;当20<t≤24时,极差y2随t的增大而增大,最大值为98;故选:B.9.某学校组织团员举行“伏羲文化旅游节”宣传活动,从学校骑自行车出发,先上坡到达甲地后,宣传了8分钟,然后下坡到乙地又宣传了8分钟返回,行程情况如图所示.若返回时,上、下坡速度保持不变,在甲地仍要宣传8分钟,那么他们从乙地返回学校所用的时间是()A.33分钟B.46分钟C.48分钟D.45.2分钟【分析】由图象可知上坡路程和下坡路程,上坡速度和下坡速度问题即可求解.【解答】解:观察图象可知上坡路程为36百米,下坡路程为96﹣36=60百米,上坡时间为18分,下坡时间为46﹣18﹣8﹣8=12分,∴v上坡==2百米,v下坡==5百米,∴返回的时间=++8=45.2分钟.故选:D.10.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a <b时,max{a,b}=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.4【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选:B.二.填空题(共9小题)11.圆的半径为r,圆的面积S与半径r之间有如下关系:S=πr2.在这关系中,常量是π.【分析】根据题意可知S,r是两个变量,π是一个常数(圆周率),是常量.【解答】解:在S=πr2中π是一个常数(圆周率),即π是常量,S,r是两个变量.故填π.12.若一个函数图象的对称轴是y轴,则该函数称为偶函数.那么在下列四个函数:①y=2x;②y=;③y=x2;④y=(x﹣1)2+2中,属于偶函数的是③(只填序号).【分析】根据对称轴是y轴,排除①②选项,再根据④不是偶函数,即可确定答案.【解答】解:①y=2x,是正比例函数,函数图象的对称轴不是y轴,错误;②y=是反比例函数,函数图象的对称轴不是y轴,错误;③y=x2是抛物线,对称轴是y轴,是偶函数,正确;④y=(x﹣1)2+2对称轴是x=1,错误.故属于偶函数的是③.13.一个蓄水池储水100m3,用每分钟抽水0.5m3的水泵抽水,则蓄水池的余水量y(m3)与抽水时间t(分)之间的函数关系式是y=100﹣0.5t(0≤t≤200)..【分析】根据余水量=原有水量﹣用水量,时间应≥0,用水量不能超过原有水量得出.【解答】解:依题意有y=100﹣0.5t,时间应≥0,用水量不能超过原有水量,∴0.5t≤100,解得t≤200.∴0≤t≤200.故函数关系式是y=100﹣0.5t(0≤t≤200).故答案为:y=100﹣0.5t(0≤t≤200).14.底面半径为r,高为h的圆柱,两底的面积之和与它们的侧面积相等,h与r的函数关系为r=h.【分析】根据圆柱两底的面积之和与它们的侧面积相等得出h与r的函数关系.【解答】解:由题意得2πr2=2πrh,即r=h.则h与r的函数关系为r=h.15.请写出一个图象经过点(1,4)的函数解析式:y=4x.【分析】只要满足要求即可:1是函数,2过点(1,4).【解答】解:因为函数的图象过点(1,4),所以可设y=kx,所以4=k,即k=4,所以y=4x.16.某下岗职工购进一批货物,到集贸市场零售,已知卖出的货物数量x与售价y的关系如表所示:质量x(千克)1 2 3 4 5售价y(元) 2+0.1 4+0.2 6+0.3 8+0.4 10+0.5 写出用x表示y的公式是y=2.1x.【分析】有表可知4+0.2﹣2﹣0.1=2.1,6+0.3﹣4﹣0.2=2.1,所以2.1为常量,则y 是x的2.1倍,据此即可确定x与y的关系.【解答】解:由表可知:2.1为常量,∴x表示y的公式是:y=2.1x.17.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是0.2 千米/分钟.【分析】根据函数图象的纵坐标,可得路程,根据函数图象的横坐标,可得时间,根据路程与时间的关系,可得答案.【解答】解:由纵坐标看出路程是2千米,由横坐标看出时间是10分钟,小明的骑车速度是2÷10=0.2(千米/分钟),故答案为:0.2.18.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是12 .【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP 先变小后变大,从而可求出BC与AC的长度.【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∵图象右端点函数值为5,∴AB=BC=5∴PA=3,AP=PC=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:1219.如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点.设PC的长度为x,PE与PB的长度和为y,图②是y关于x的函数图象,则图象上最低点H的坐标为(,).【分析】如图,连接PD.由B、D关于AC对称,推出PB=PD,推出PB+PE=PD+PE,推出当D、P、E共线时,PE+PB的值最小,观察图象可知,当点P与A重合时,PE+PB=3,推出AE=EB=1,AD=AB=2,分别求出PB+PE的最小值,PC的长即可解决问题.【解答】解:如图,连接PD.∵B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE,∴当D、P、E共线时,PE+PB的值最小,如下图:观察图象可知,当点P与A重合时,PE+PB=3,∴AE=EB=1,AD=AB=2,在Rt△AED中,DE=,∴PB+PE的最小值为,∴点H的纵坐标为,∵AE∥CD,∴=2,∵AC=2,∴PC=2×=,∴点H的横坐标为,∴H(,).故答案为:(,).三.解答题(共4小题)20.求函数y=的自变量x的取值范围.【分析】本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数>等于0,分母不等于0,就可以求解.【解答】解:根据二次根式的意义,被开方数4+2x≥0,解得x≥﹣2;根据分式有意义的条件,x﹣1≠0,解得x≠1,因为x≥﹣2的数中包含1这个数,所以自变量的范围是x≥﹣2且x≠1.21.星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示.根据图象回答下列问题:(1)小明家离图书馆的距离是 3 千米;(2)小明在图书馆看书的时间为 1 小时;(3)小明去图书馆时的速度是15 千米/小时.【分析】根据函数的图象y随t的变化可知,因为图象的纵坐标最大为3,故小明家离图书馆的距离是3千米;小明在图书馆看书的时间为72﹣12=60分=1小时;小明从0分钟到12分钟时到达图书馆,故其速度为3÷=15千米/小时.【解答】解:(1)根据图象可知y随t的变化而变化小明家离图书馆的距离是3千米;(2)路程不变,时间为72﹣12=60分钟,故小明在图书馆看书的时间为1小时;(3)根据速度=路程/时间可知小明去图书馆时的速度是15千米/小时.22.下图是桂林冬季某一天的气温随时间变化的图象:请根据图象填空:在 4 时气温最低,最低气温为﹣2 ℃,当天最高气温为 5 ℃,这一天的温差为7 ℃(所有结果都取整数).【分析】首先要搞清楚横、纵坐标所表示的意义,然后根据图中的特殊点的意义来进行解答.【解答】解:由图知:当t=4h时,T值最小,且T=﹣2℃;当t≈14h时,T值最大,且T=5℃;故这一天的温差是5﹣(﹣2)=7℃.23.若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质.列表:x…﹣3 ﹣﹣2 ﹣﹣1 ﹣0 1 2 3 …y… 1 2 1 0 1 2 …描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:①点A(﹣5,y1),B(﹣,y2),C(x1,),D(x2,6)在函数图象上,则y1<y2,x1<x2;(填“>”,“=”或“<”)②当函数值y=2时,求自变量x的值;③在直线x=﹣1的右侧的函数图象上有两个不同的点P(x3,y3),Q(x4,y4),且y3=y4,求x3+x4的值;④若直线y=a与函数图象有三个不同的交点,求a的取值范围.【分析】(1)描点连线即可;(2)①A与B在y=﹣上,y随x的增大而增大,所以y1<y2;C与D在y=|x﹣1|上,观察图象可得x1<x2;②当y=2时,2=|x﹣1|,则有x=3或x=﹣1;③由图可知﹣1≤x≤3时,点关于x=1对称,当y3=y4时x3+x4=2;④由图象可知,0<a<2;【解答】解:(1)如图所示:(2)①A(﹣5,y1),B(﹣,y2),A与B在y=﹣上,y随x的增大而增大,∴y1<y2;C(x1,),D(x2,6),C与D在y=|x﹣1|上,观察图象可得x1<x2;故答案为<,<;②当y=2时,x≤﹣1时,有2=﹣,∴x=﹣1;当y=2时,x>﹣1时,有2=|x﹣1|,∴x=3或x=﹣1(舍去),故x=﹣1或x=3;③∵P(x3,y3),Q(x4,y4)在x=﹣1的右侧,∴﹣1≤x≤3时,点P,Q关于x=1对称,则有y3=y4,∴x3+x4=2;④由图象可知,0<a<2;。
一、选择题(共10题)1.一辆汽车以50km/h的速度行驶,行驶的路程s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是( )A.速度与路程B.速度与时间C.路程与时间D.三者均为变量x2−2,当自变量x=2时,因变量y的值是( )2.变量x与y之间的关系式y=12A.−2B.−1C.0D.13.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC使∠BAC=90∘,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )A.B.C.D.4.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化,其体温(∘C)与时间(时)之间的关系如图所示.若y(∘C)表示0时到t时内骆驼体温的温差(即0时到t时最高温度与最低温度的差).则y与t之间的函数关系用图象表示,大致正确的是( )A.B.C.D.5.如图,l1反映了某公司的销售收入(单位:元)与销售量(单位:吨)的关系,l2反映了该公司的销售成本(单位:元)与销售量(单位:吨)的关系,当该公司盈利(收入大于成本)时,销售量应为( )A.大于4吨B.等于5吨C.小于5吨D.大于5吨6.下列对函数的认识正确的是( )A.若y是x的函数,那么x也是y的函数B.两个变量之间的函数关系一定能用数学式表达C.若y是x的函数,则当y取一个值时,一定有唯一的x值与它对应D.一个人的身高可以看做是他年龄的函数7.下列各式中,y不是x的函数的是( )A.y=x B.∣y∣=x C.y=2x+1D.y=x28.汽车以60千米/时的速度行驶,它驶过的路程s(km)和所用时间t(h)的关系式是s=60t,在这个变化过程中,常量与变量分别是( )A.常量是60,变量是s B.常量是60,t,变量是sC.常量是60,变量是s,t D.常量是t,s,变量是609.某地海拔高度ℎ与温度T的关系可用T=21−6ℎ来表示(其中温度单位为∘C,海拔高度单位为km),则该地区某海拔高度为2000m的山顶上的温度为( )A.15∘C B.9∘C C.3∘C D.7∘C10.在进行路程s、速度v和时间t的相关计算中,若保持行驶的路程不变,则下列说法正确的是( )A.s、v是变量B.s、t是变量C.v、t是变量D.s、v、t都是变量二、填空题(共7题)11.某条公共汽车线路收支差额y与乘客量x的函数关系如图所示(收支差额=车票收入−支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变支出费用,提高车票价格;建议(Ⅰ)不改变车票价格,减少支出费用.下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则反映了建议(Ⅰ),反映了建议(Ⅰ).12.一种小树原高为1.5米,在成长期间,每月增长20厘米,试写出小树高度y(米)与月份x之间的函数关系式,半年后小树的高度是米.13.“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,随变化而变化,其中自变量是,因变量是.,那么f(3)的值是.14.已知f(x)=2x−115.有一种禽流感疫苗必须保存在−24∘C的环境下才有疗效,现在冰箱的温度为−4∘C,需要紧急制冷,若冰箱每小时降低4∘C,则经过小时可以用冰箱存放这种禽流感疫苗.16.已知方程x−3y=12,用含x的代数式表示y是.17.函数的表示方法有、、.三、解答题(共8题)18.学校为创建多媒体教学中心,备有资金150万元,已分批购进电脑x台,每台电脑单价5000元.(1) 求所剩资金y(万元)与电脑台数x(台)之间的函数解析式,并求出自变量的取值范围;(2) 购入200台这种型号的电脑后还剩多少备用资金?19.已知y与√x成反比例,且x=16时,y的值为−14,求y与x之间的函数关系.20.指出下列问题中的变量和常量:某市的自来水价为4元/ t,现要抽取若干户居民调查水费支出情况,记某户月用水量为x t,月应交水费为y元.21.某风景区旅游信息如表:旅游人数收费标准不超过20人每人收费500元超过20人且不超过50人其中20人,每人收费500元,超过部分每人9折收费超过50人其中50人,每人9折收费,超过部分每人8折收费若从A果园运到C地的该水果为x吨,试解答下列各题:(1) 某公司组织10名员工到该风景区旅游,需要支付给旅行社费用元.(2) 若该公司组织员工m(20<m≤50)人到该风景区旅游,需要支付给旅行社多少元?(用含m的式子表示)(要求:列式、化简).(3) ①若该公司先后组织两批员工到该风景区旅游,两批员工的人数分别为30人、40人.利用(2)中的结论分别计算该公司两次支付给旅行社的费用;②若该公司把这两批旅游的员工合起来到该风景区旅游,可以节省多少费用?22.某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为4000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原价收费,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.(1) 设该学校所买的电脑台数是x台,选择甲商场时,所需费用为y1元,选择乙商场时,所需费用为y2元,请分别写出y1,y2与x之间的关系式.(2) 该学校如何根据所买电脑的台数选择到哪间商场购买,所需费用较少?23.指出下列关系式中的常量和变量:(1) y=−5x;(2) S=πr2.24.早晨小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图是小明出行的过程中,他距西安的距离(千米)与他离家的时间(时)之间的关系图象,根据图象,回答下列问题:(1) 在这个变化过程中,自变量是,因变量是.(2) 小明家距西安千米;小明从家出发,经过小时到达西安;在西安停留了小时.(3) 已知小明从家出发8小时,他距西安112千米,则他返回时的速度是多少?25.周长为10cm的矩形,若它的一边是x cm,面积是S cm2.(1) 请用含x的式子表示S,并指出常量与变量;(2) 当x=2时,求S的值.答案一、选择题(共10题)1. 【答案】C【解析】s=50t,路程随时间的变化而变化,则行驶的时间是自变量,行驶的路程是因变量.【知识点】变量间的相关关系2. 【答案】C【解析】x=2时,y=12×22−2=0.【知识点】解析式法3. 【答案】A【解析】作AD∥x轴,作CD⊥AD于点D,如图所示,由已知可得,OB=x,OA=1,∠AOB=90∘,∠BAC=90∘,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180∘,∴∠DAO=90∘,∴∠OAB+∠BAD=∠BAD+∠DAC=90∘,∴∠OAB=∠DAC,在△OAB和△DAC中,{∠AOB=∠ADC,∠OAB=∠DAC, AB=AC,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选A.【知识点】用函数图象表示实际问题中的函数关系、全等三角形的性质与判定4. 【答案】A【知识点】用函数图象表示实际问题中的函数关系【知识点】用函数图象表示实际问题中的函数关系6. 【答案】D【解析】当y是x的函数时,x不一定是y的函数,如y=x2;两个变量之间的函数关系不一定能用数学式表达;若y是x的函数,则当y取一个值时,x值可以有多个,如函数y= x2,当y=4时,x=±2;一个人的身高可以看做是他年龄的函数,故选D.【知识点】函数的概念7. 【答案】B【知识点】函数的概念8. 【答案】C【知识点】常量、变量9. 【答案】B【知识点】解析式法10. 【答案】C【知识点】常量、变量二、填空题(共7题)11. 【答案】③ ;①【知识点】用函数图象表示实际问题中的函数关系12. 【答案】y=1.5+0.2x;2.7【解析】根据题意得出:y=0.2x+1.5,y是x的一次函数;半年后,即把x=6代入,可得y=1.5+0.2×6=2.7米.【知识点】解析式法13. 【答案】温度;时间;时间;温度【知识点】函数的概念14. 【答案】1【解析】∵f(x)=2,x−1=1.∴f(3)=23−1【知识点】解析式法【知识点】解析式法16. 【答案】y=13x−4【知识点】解析式法17. 【答案】解析法;列表法;图象法【知识点】列表法、图像法、解析式法三、解答题(共8题)18. 【答案】(1) y=150−0.5x,自变量的取值范围是0≤x≤300,且x为整数.(2) 还剩50万元.【知识点】解析式法19. 【答案】设反比例函数为:y=√x,把x=16,y=−14代入,得:∴−14=√16,∴k=−1,∴y=√x.【知识点】解析式法20. 【答案】依题意得:y=4x(x≥0).该函数式中,变量是x、y,常量是4.【知识点】常量、变量21. 【答案】(1) 5000(2) 需要支付的费用为500×20+500×0.9×(m−20)=(450m+1000)元.(3) ①当m=30时,450m+1000=14500;当x=40时,450m+1000=19000.答:该公司两次分别支付给旅行社14500元和19000元.②合起来需支付费用为500×0.9×50+500×0.8×(30+40−50)=30500(元),节省的钱数为14500+19000−30500=3000(元).答:可以节省3000元.【解析】(1) 500×10=5000(元).【知识点】图像法22. 【答案】(1) 根据题意得:甲商场的收费为:y1=4000+(1−25%)×4000(x−1),即y1=3000x+1000,乙商场的收费为:y2=(1−20%)×4000x,即y2=3200x.(2) ①当y1<y2时,即3000x+1000<3200x,解得:x>5,∴当购买电脑台数大于5时,甲商场购买更优惠;②当y1>y2时,即3000x+1000>3200x,解得:x<5,∴当购买电脑台数小于5时,乙商场购买更优惠;③当y1=y2时,即3000x+1000=3200x,解得:x=5,∴当购买电脑5台时,两家商场收费相同.【知识点】方案问题、解析式法23. 【答案】(1) 常量:−5;变量:x和y(2) 常量:π;变量:S和r【知识点】常量、变量24. 【答案】(1) 离家时间;距西安的距离(2) 192;2;4.6(3) v=112÷(8−6.6)=80千米/小时.故答案为:他返回时速度为80km/h.【解析】(2) 由图象可看出小明家距西安192千米,小明从家出发2小时到达西安,在西安停留了(6.6−2)=4.6小时.【知识点】用函数图象表示实际问题中的函数关系、自变量与函数值25. 【答案】(1) S=x(5−x),常量是5,变量是x和S.(2) 6cm2【知识点】自变量与函数值、解析式法11。
七年级数学下册第三章《变量之间的关系》单元测试卷满分:150分考试用时:120分钟班级姓名得分一、选择题(本大题共10小题,共30.0分)1.某工程队承建一条长30km的乡村公路,预计工期为120天,若每天修建公路的长度保持不变,则还未完成的公路长度y(km)与施工时间x(天)之间的关系式为()A. y=30−14x B. y=30+14x C. y=30−4x D. y=14x2.大家知道乌鸦喝水的故事,如图,它看到一个水位较低的瓶子,喝不着水,沉思一会后聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为x,水位高度变量为y,下列图象中最符合故事情景的大致图象是()A. B.C. D.3.一蓄水池中有水50m3,打开排水阀门开始放水后水池的水量与放水时间有如下关放水时间/分1234…水池中水量/m348464442…下列说法不正确的是()A. 蓄水池每分钟放水2m3B. 放水18分钟后,水池中水量为14m3C. 蓄水池一共可以放水25分钟D. 放水12分钟后,水池中水量为24m34.三角形ABC的底边BC上的高为8cm,当它的底边BC从16cm变化到5cm时,三角形ABC的面积()A. 从20cm2变化到64cm2B. 从64cm2变化到20cm2C. 从128cm2变化到40cm2D. 从40cm2变化到128cm25.“人间四月芳菲尽,山寺桃花始盛开”,说明温度随着高度的升高而降低.已知某地地面温度为20℃,且每升高1千米温度下降6℃,则山上距离地面h千米处的温度t为()A. t=20−6ℎB. ℎ=20−6tC. t=20−ℎ6D. ℎ=20−t66.从某容器口以均匀的速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为()A.B.C.D.7.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用s1,s2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是()A. B.C. D.8.小明所在学校离家距离为2千米,某天他放学后骑自行车回家,行驶了5分钟后,因故停留10分钟,继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离S(千米)与所用时间t(分)之间的关系().A. B.C. D.9.如图所示图象(折线ABCDE)描述了汽车沿笔直路线行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的变量关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个过程中的平均速度为千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有()A. 1个B. 2个C. 3个D. 4个10.如图的三角形是有规律地从里到外逐层排列的.设y为第n层(n为正整数)三角形的个数,则下列函数关系式中,正确的是()A. y=4n−4B. y=4nC. y=4n+4D. y=n2二、填空题(本大题共5小题,共20.0分)11.河北给武汉运送抗疫物资,某汽车油箱内剩余油量Q(升)与汽车行驶路程s(千米)有行驶路程s(千米)050100150200...剩余油量Q(升)4035302520...则该汽车每行驶100千米的耗油量为__________升.12.如图所示是关于变量x,y的程序计算,若开始输入的x值为6,则最后输出因变量y的值为.13.如图1,长方形ABCD中,动点P从B出发,沿B→C→D→A路径匀速运动至点A处停止,设点P运动的路程为x,△PAB的面积为y,如果y关于x的图象如图2所示,则长方形ABCD的周长等于____.14.一根长为20cm的蜡烛,每分钟燃烧2cm,蜡烛剩余长度y(厘米)与燃烧时间t(分)之间的关系式为______(不必写出自变量的取值范围).15.某书定价25元,如果一次购买20本以上,超过20本的部分打八折(原价的80%),试写出付款金额y(单位:元)与购书数量x(单位:本,x>20)之间的关系式:________________.三、解答题(本大题共10小题,共100.0分)16.(8分)某天早晨,小王从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是小王从家到学校这一过程中所走的路程s(米)与时间t(分)之间的关系.(1)小王从家到学校的路程共______米,从家出发到学校,小明共用了______分钟;(2)小王吃早餐用了______分钟;(3)小王吃早餐以前和吃完早餐后的平均速度分别是多少米/分钟?17.(10分)某通信公司在某地的资费标准为包月18元时,超出部分国内拨打0.36元/分,由于业务多,小明的爸爸打电话已超出了包月费.如表所示是超出部分国内拨打的收费标准.时间/分12345…电话费/元0.360.72 1.08 1.44 1.8…(1)这个表反映了哪两个变量之间的关系?哪个是自变量?(2)如果打电话超出25分钟,需付多少电话费?(3)某次打电话超出部分的费用是54元,那么小明的爸爸打电话超出几分钟?18.(10分)某公交车每天的支出费用为600元,每天的乘车人数x(人)与每天利润(利润=票款收入−支出费用)y(元)的变化关系如下表所示(每位乘客的乘车票价固定不变):根据表格中的数据,回答下列问题:(1)在这个变化关系中,自变量是什么?因变量是什么?(2)若要不亏本,该公交车每天乘客人数至少达到多少?(3)请你判断一天乘客人数为500人时,利润是多少?(4)试写出该公交车每天利润y(元)与每天乘车人数x(人)的关系式.19.(10分)某车间的甲、乙两名工人分别同时生产同一种零件,他们一天生产零件的个数y与生产时间t(时)的关系如图所示.(1)根据图象填空: ①甲、乙两人中,先完成一天的生产任务;在生产过程中,因机器故障停止生产小时; ②当t=时,甲、乙生产的零件个数相等;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.20.(10分)我市为了提倡节约,用水x吨,自来水收费实行阶梯水价y元,收费标准如下表所示:(1)___________是因变量.(2)若用水量达到15吨,则需要交水费_____________元.(3)用户5月份交水费54元,则所用水为________吨.(4)当x>18时,y与x的关系式是_______________.21.(8分)某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用−支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):x(人)50010001500200025003000…y(元)−3000−2000−1000010002000…(1)在这个变化过程中,________是自变量;________是因变量;(2)观察表中数据可知,每月乘客量达到________人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为多少元?22.(10分)在梯形ABCD中,BC//AD,∠A=90°,AB=2,BC=3,AD=4,点E为AD的中点、点F为CD上一点.过点F作FG⊥AD于点G,且FG=1,点P 为BC上的一个动点(不与点B、C重合),设BP为x,四边形PEFC的面积为y,求y与x之间的关系式并写出x的取值范围.23.(10分)小强买了一张100元的乘车IC卡,如果用x表示他乘车的次数,那么卡内的余额y(元)如表所示:(2)利用上述关系式计算小强乘了25次车后,卡内的余额还有多少元?(3)小强用这张IC卡最多能乘多少次车?24.如果用t示时间,y表示电话费,那么随t的变化,y的变化趋势是______;(2)丽丽打了6分钟电话,那么电话费需付多少元?(3)你能写出y与t之间的关系式吗?25.(12分)端午节小明来到奥体中心观看比赛.进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他爸爸从家里出发骑自行车以小明3倍的速度给小明送票,两人在途中相遇,相遇后爸爸立即骑自行车把小明送回奥体中心.如图,线段AB、OB分别表示父子俩送票、取票过程中,离奥体中心的距离S(米)与所用时间t(分钟)之间关系的图象,结合图象解答下列问题:(假设骑自行车和步行的速度始终保持不变)(1)从图中可知,小明家离奥体中心_________米,爸爸在出发后________分钟与小明相遇.(2)求出父亲与小明相遇时离奥体中心的距离.(3)小明能否在比赛开始之前赶回奥体中心?请计算说明.答案1.A2.D3.D4.B5.A6.C7.C8.D9.B10.B11.1012.4213.1614.y=20−2t15.y=20x+10016.解:(1)1000,25;(2)10;(3)小王吃早餐以前的平均速度为:500÷10=50米/分钟;小王吃早餐后的平均速度为:(1000−500)÷5=100米/分钟.17.解:(1)国内拨打时间与电话费之间的关系,打电话时间是自变量,电话费是因变量.(2)0.36×25=9(元),即如果打电话超出25分钟,需付18+9=27(元)的电话费.(3)54÷0.36=150(分钟).故小明的爸爸打电话超出150分钟.18.解:(1)在这个变化关系中,自变量是每天的乘车人数x(人);变量是每天利润y(元);(2)当y=0时,x=300因此要不亏本,该公交车每天乘客人数至少达到300人;(3)200+100×500−40050=400元,因此当一天乘客人数为500人时,利润是400元;(4)y=100×x−30050=2x−60019.解:(1) ①甲;甲;2. ②3或5.5.(2)甲在4∼7时的生产速度最快,甲在这段时间内每小时生产零件的个数为40−107−4=10.20.(1)收费标准;(2)31.5;(3)23;(3)y=3x−15.21.解:(1)每月的乘车人数x,每月的利润y;(2)观察表中数据可知,每月乘客量达到2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元.22.解:∵BC=3,BP=x,∴PC=3−x,∵AD=4,E为AD的中点,∴DE=12AD=2,∵BC//AD,FG⊥AD,∠A=90°,AB=2,∴S四边形PEFC =S梯形PEDC−S△EFD=12(3−x+2)×2−12×2×1=5−x−1=4−x,∴y=4−x,0<x<3.23.解:(1)由题意可得:y=100−1.6x;(2)当x=25时,y=100−1.6×25=60(元);(3)令y=0,100−1.6x=0解得:x=62.5x是整数位62.答:这张IC卡最多能乘62次.24.解:(1)时间;电话费;时间;电话费;y随着t的增大而增大;(2)每增加1分钟,电话费增加0.6元,则y=0.6t,当t=6时,y=0.36(元),(3)y=0.6t(t≥0).25.解:(1)3600;15;(2)设小明的速度为x米/分,则他父亲的速度为3x米/分,根据题意得15⋅x+3x⋅15=3600,解得x=60(米/分),∴15x=15×60=900(米),即父亲与小明相遇时距离体育馆还有900米;(3)∵从B点到O点的速度为3x=180(米/秒),=5(分),∴返回时,从B点到体育馆所需的时间=900180而小明从体育馆到点B用了15分钟,∴小明从点A到点B,再从点B到点A需15分+5分=20分,∵小明从体育馆出发取票时,离比赛开始还有25分钟,∴小明能在比赛开始之前赶回体育馆.。
北师大版七年级数学下册第三章《变量之间的关系》单元测试题时间:100分钟 满分:120分班级____________姓名____________成绩________________题号 一二三总分得分一.选择题(本大题共12小题,共36分,每小题只有一个正确选项) 1. 圆的周长公式为C=2πr,下列说法正确的是( )A. 常量是2B. 变量是C 、π、rC. 变量是C 、rD. 常量是2、r2. 弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系,下列说法不正确的是( ).A .弹簧不挂重物时的长度为0 cmB .x 与y 都是变量,且x 是自变量,y 是因变量C .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为23.5 cm3. 一辆汽车以平均速度60 km /h 的速度在公路上行驶,则它所走的路程s(km )与所用的时间t(h )之间的关系式为 ( ) A .s =60 t B .s=t 60 C .s=60tD .s =60t 4. 某地区用电量与应缴电费之间的关系如表:则下列叙述错误的是( )A .若所缴电费为2.75元,则用电量为6千瓦·时B .若用电量为8千瓦·时,则应缴电费4.4元C .用电量每增加1千瓦·时,电费增加0.55元D .所缴电费随用电量的增加而增加5. 一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,桶和玻璃杯的形状都是圆柱体,桶口的半径是杯口半径的2倍,如图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位h与注水时间t之间关系的大致图象是( )6. 小明观看了《中国诗词大会》第三期,主题为“人生自有诗意”,受此启发根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还”,如图用y轴表示父亲与儿子行进中离家的距离,用横轴表示父亲离家的时间,那么下面图像与上述诗的含义大致相吻合的是( )A.B.C.D.7. 如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )A.B.C.D.8. 对于关系式y=2x+5,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④这个关系式表示的变量之间的关系不能用图象表示;⑤y与x的关系还可以用表格和图象表示;其中正确的是 ( )A.①②③ B.①②④ C.①③⑤ D.①②⑤9. 如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为-3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降10. 如图,折线OEFPMN描述了某汽车在行驶过程中速度与时间的关系,下列说法中错误的是( )A.第3分钟时汽车的速度是40千米/时B.第12分钟时汽车的速度是0千米/时C.从第9分钟到第12分钟,汽车的速度从60千米/时减少到0千米/时D.从第3分钟到第6分钟,汽车停止11. 如图,所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家3.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店1.5千米D.张强从早餐店回家的平均速度是3千米/小时12.小明出校门后先加速行驶一段距离,然后以大小不变的速度行驶,在距家门不远的地方开始减速,最后停下,下面可以近似地刻画出以上情况的是().A. BC D.二.填空题(本大题共6小题,每小题4分,共24分)13..香蕉数量(千克) 0.5 1 1.5 2 2.5 3 3.5 …售价(元) 1.5 3 4.5 6 7.5 9 10.5 ….14.点燃一根蜡烛后,蜡烛的高度h(厘米)与燃烧时间t(分)之间的关系如下表:t/分0 2 4 6 8 10h/厘米30 29 28 27 26 25(1)蜡烛未点燃前的长度是________厘米;(2)写出蜡烛的高度h(厘米)与燃烧时间t(分)之间的关系式______________________;(3)这根蜡烛能燃烧的时间为_____________分;15.某市的出租车收费按里程计算,3km内(含3km)收费5元,超过3km,每增加1km 加收1元,则路程x ≥3时,车费y (元)与x (km )之间的关系式是_____. 16.如图是用火柴棍摆成边长分别是1、2、3根火柴棍时的正方形,当边长为n 根火柴棍时,若摆出的正方形所用的火柴棍的根数为S ,则S=(用含n 的代数式表示,n 为正整数).17.在小明和小强进行百米赛跑,小明比小强跑得快,如果两人同时起跑,小明肯定赢,如图所示,现在小明让小强先跑 米,直线 表示小明的路程与时间的关系,大约 秒时,小明追上了小强,小强在这次赛跑中的速度是 。
北师大版七年级下册第3章《变量之间的关系》单元测试题(满分100分)姓名:___________班级:___________成绩:___________一.选择题(共10小题,满分30分)1.下列式子:①y=3x﹣5;②y2=x;③y=|x|;④.其中y是x的函数的个数是()A.1B.2C.3D.42.在关系式y=2x﹣7中,下列说法错误的是()A.x的数值可以任意选择B.y的值随x的变化而变化C.用关系式表示的不能用图象表示D.y与x的关系还可以用列表法表示3.在圆的面积公式S=πR2中,常量与变量分别是()A.2是常量,S、π、R是变量B.π是常量,S、R是变量C.2是常量,R是变量D.2是常量,S、R是变量4.如图,向容器甲中匀速的注水,下面哪一个图象可以大致刻画容器中水的高度与时间的函数关系()A.B.C.D.5.一本笔记本3元,买x本需要y元,在这一问题中,自变量是()A.笔记本B.3C.x D.y6.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间的关系如下表所示,则下列说法不正确的是()x/kg012345y/cm2020.52121.52222.5 A.弹簧不挂重物时长度为0cmB.X与y都是变量,且x是自变量,y是因变量C.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为23.5cm7.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A.他们都骑了20kmB.两人在各自出发后半小时内的速度相同C.甲和乙两人同时到达目的地D.相遇后,甲的速度大于乙的速度8.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.9.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a <b时,max{a,b}=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0B.2C.3D.410.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分)11.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系.12.每张电影票的售价为10元,某日共售出x张票,票房收入为y元,在这一问题中,是常量,是变量.13.甲骑自行车、乙骑摩托沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图所示.根据图象可知:①先出发的是(填“甲”或“乙”)②甲的行驶速度是(公里/分)③乙的行驶速度是(公里/分)14.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是min.15.某人购进一批苹果到市场上零售,已知卖出苹果数量x与售价y的关系如下表.数量x(千克)12345售价y(元)3+0.1 6+0.2 9+0.3 12+0.4 15+0.5 则当卖出苹果数量为10千克时,售价y为元.16.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.则下列说法中,正确的序号为.①小明中途休息用了20分钟.②小明休息前爬山的平均速度为每分钟70米.③小明在上述过程中所走的路程为6600米.④小明休息前爬山的平均速度大于休息后爬山的平均速度.三.解答题(共7小题,满分52)17.如图棱长为a的小正方体,按照下图的方法继续摆放,自上而下分别叫第一层,第二层,……,第n层,第n层的小正方体的个数记为S,解答下列问题:(1)填写表格:n1234…S1…(2)研究上表可以发现S随n的变化而变化,且S随n的增大而增大有一定的规律,请你用式子来表示S与n的关系,并计算当n=10时,S的值为多少?18.甲开汽车,乙骑自行车从M地出发沿同一条公路匀速前往N地,乙先行1小时后,甲再出发,设乙行驶的时间为x(h),甲、乙两人之间的距离为y(km),y与x的函数关系如图所示.(1)求甲、乙两人的速度及M、N两地的距离;(2)甲、乙两人何时相距25km?19.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):x(人)50010001500200025003000…y(元)﹣3000﹣2000﹣1000010002000…(1)在这个变化过程中,是自变量,是因变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为多少元?20.如图,长方形ABCD,点P按B→C→D→A方向运动,开始时,以每秒2个长度单位匀速运动,达到C点后,改为每秒a个单位匀速运动,到达D后,改为每秒b个单位匀速运动.在整个运动过程中,三角形ABP的面积S与运动时间t的函数关系如图所示.求:(1)AB、BC的长;(2)a,b的值.21.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?22.如图,小明的爸爸去参加一个聚会,小明坐在汽车上用所学知识绘制了一张反映小车速度与时间的关系图,第二天,小明拿着这张图给同学看,并向同学提出如下问题,你能回答吗?(1)在上述变化过程中,自变量是什么?因变量是什么?(2)小车共行驶了多少时间?最高时速是什么?(3)小车在哪段时间保持匀速,达到多少?(4)用语言大致描述这辆汽车的行驶情况?23.随着移动互联网的快速发展,ofo、摩拜等互联网共享单车应运而生并快速发展.小军骑着摩拜单车,爸爸骑着摩托车,沿着相同路线由A地到B地,下面图象表示的是两人由A地到达B地,行驶过程中路程y(千米)和时间x(分钟)之间的变化情况,根据图象,回答下列问题.(1)A地与B地之间的距离是.(2)爸爸比小军晚出发分钟,小军比爸爸晚到B地分钟.(3)行驶过程中,爸爸骑车速度为每分钟千米,小军骑车速度为每分钟千米.(4)若两人都在同一条直线上行驶,爸爸出发后经过分钟,两人相距0.4千米.参考答案一.选择题(共10小题)1.【解答】解:①y=3x﹣5,y是x的函数;②y2=x,当x取一个值时,有两个y值与之对应,故y不是x的函数;③y=|x|,y是x的函数;④y=,y是x的函数.所以y是x的函数的有3个.故选:C.2.【解答】解:A、x的数值可以任意选择;正确;B、y随x的变化而变化;正确;C、用关系式表示的不能用图象表示,错误;D、y与x的关系还可以用列表法表示,正确;故选:C.3.【解答】解:∵在圆的面积公式S=πR2中,S与R是改变的,π是不变的;∴变量是S、R,常量是π.故选:B.4.【解答】解:由容器的形状可知:注入水的高度随着时间的增长越来越高,但增长的速度越来越慢,即图象开始陡峭,后来趋于平缓,故选:C.5.【解答】解:在这个问题中,x和y都是变量,且x是自变量.故选:C.6.【解答】解:由表格,得A、弹簧不挂重物时的长度为0cm,错误,故A符合题意B、x与y都是变量,且x是自变量,y是x的函数,正确,故B不符合题意;C、物体质量每增加1kg,弹簧长度y增加0.5cm,正确,故C不符合题意;D、所挂物体质量为7kg时,弹簧长度为20+7×0.5=23.5cm,正确,故D不符合题意;故选:A.7.【解答】解:由函数图象可得,他们都骑了20km,故选项A不合题意;两人在各自出发后半小时内的速度相同,故选项B不合题意;甲先到达目的地,故选项C符合题意;相遇后,甲的速度大于乙的速度,故选项D不合题意;故选:C.8.【解答】解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,s=,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分.故选:C.9.【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选:B.10.【解答】解:汽车从出发地到目的地走了140千米,又回到出发地因而共行驶了280千米,故①错误;汽车在行驶途中停留了4﹣3=1小时,故②正确;汽车在整个行驶过程中的平均速度为:280÷(9﹣1)=35(千米/时),故③错误;汽车出发后6小时至9小时之间行驶的速度不变,故④错误.综上所述,正确的只有②.故选:A.二.填空题(共6小题)11.【解答】解:根据题意得:y=,整理得:;则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是y=;故答案为:y=.12.【解答】解:常量是电影票的售价,变量是电影票的张数,票房收入,故答案为电影票的售价,电影票的张数,票房收入.13.【解答】解:(1)甲先出发,10分钟后乙出发;(2)甲20分钟行驶了4公里,则甲的速度==0.2(公里/分);(3)乙10分钟行驶了4公里,则甲的速度==0.4(公里/分).故答案为甲;0.2;0.4.14.【解答】解:由图可得,去校时,上坡路的距离为3600米,所用时间为18分,∴上坡速度=3600÷18=200(米/分),下坡路的距离是9600﹣36=6000米,所用时间为30﹣18=12(分),∴下坡速度=6000÷12=500(米/分);∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小亮从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2(分钟).故答案为:37.215.【解答】解:由图表可得出:y=3x+0.1x=3.1x.当x=10时,y=3.1×10=31,故答案为:31.16.【解答】解:①、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;②、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;③、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;④、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;综上所述,正确的有①②④.故答案为:①②④三.解答题(共7小题)17.【解答】解:(1)∵第1个图有1层,共1个小正方体,第2个图有2层,第2层正方体的个数为1+2=3,第3个图有3层,第3层正方体的个数为1+2+3=6,∴n=4时,即第4层正方体的个数为:1+2+3+4=10,故答案为:3,6,10;(2)第n层时,S=1+2+3+…+n=n(n+1),当n=10时,S=×10×11=55.18.【解答】解:(1)设甲的速度为akm/h,乙的速度为bkm/h,,解得,,则M、N两地的距离是:(2.5﹣1)×75=112.5km,答:甲、乙两人的速度分别是75km/h,25km/h,M、N两地的距离是112.5km;(2)∵甲、乙两人的速度分别是75km/h,25km/h,M、N两地的距离是112.5km,∴当t=1或t=4.5﹣1=3.5时,两人相距25km,(t﹣1.5)×(75﹣25)=25,得t=2,答:甲、乙两人1h,2h或3.5h相距25km.19.【解答】解:(1)在这个变化过程中,每月的乘车人数x是自变量,每月的利润y是因变量;故答案为:每月的乘车人数x,每月的利润y;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为:观察表中数据可知,每月乘客量达到2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元.20.【解答】解:(1)从图象可知,当点P在BC上运动时,3秒钟到C,所以BC=2×3=6,从图象可知,当3≤t≤15时,△ABP面积不变为30,∴AB•BC=30,即×6×AB=30,∴AB=10,∴长方形的长为AB=10,宽为BC=6;(2)有(1)可知DC=AB=10,AD=BC=6,∴a==,b==1.21.【解答】解:(1)由图象可知,对于每一个摆动时间t,h都有唯一确定的值与其对应,∴变量h是关于t的函数;(2)①由函数图象可知,当t=0.7s时,h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度是0.5m;②由图象可知,秋千摆动第一个来回需2.8s.22.【解答】解:(1)自变量是时间,因变量是速度.(2)根据速度与时间图象的横坐标可知:小车共行驶了55分钟,最高时速是85千米/时;(3)35分钟到55分钟保持匀速,达到85千米每小时;(4)先匀加速行驶至第10分钟,然后匀减速行驶至第25分钟,接着停下5分钟,再匀加速行驶至第35分钟,然后匀速行驶第55分钟,再匀减速行驶至停止.23.【解答】解:(1)根据图象可知:A地与B地之间的距离为6千米.故答案为6千米.(2)根据图象与x轴的交点可知:爸爸比小军晚出发10分钟,小军比爸爸晚到B地5分钟.故答案为10、5.(3)爸爸骑车速度为每分钟6÷(25﹣10)=0.4.小军骑车速度为每分钟6÷30=0.2.故答案为0.4、0.2.(4)设爸爸行驶路程为y1=kx+b,图象过(10,0)、(20,4)所以解得所以y1=x﹣4,设小军行驶的路程为y2=kx,图象过(20,4),所以20k=4,解得k=所以y2=x.当y1﹣y2=x﹣4﹣x.=0.4,解得x=22,当y2﹣y1=x﹣x+4=0.4,解得x=18.30﹣22=8,30﹣18=12.∵小军骑车速度为每分钟0.2千米,0.2×2=0.4千米,∴第三种情况:爸爸已经到B地,孩子离B地还有0.4千米,(6﹣0.4)÷0.2=28(分钟),28﹣10=18(分钟)故答案为8或12或18.。
新北师大版下册《变量之间的关系》单元检测测试题时间60分钟满分100分2015、2、16 一、选择题(每小题4分共32分)1.如果用总长为60 m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p(m),一边长为a(m),那么S,p,a中是变量的是( ).A.S和p B.S和aC.p和a D.S,p,a2.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系:A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm3.雪橇手从斜坡顶部滑了下来,下图中可以大致刻画出雪橇手下滑过程中速度—时间变化情况的是( ).4.对于关系式y=3x+5,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④这个关系式表示的变量之间的关系不能用图象表示;⑤y与x的关系还可以用表格和图象表示,其中正确的是( ).A.①②③B.①②④C.①③⑤D.①②⑤5. 星期天,小王去朋友家借书,如图是他离家的距离y(千米)与时间x(分)的函数图象,根据图象信息,下列说法正确的是( ).A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分C.小王去时所花的时间少于回家所花的时间D.小王去时走上坡路,回家时走下坡路6. 已知A,B两地相距4千米,上午8:00,甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息知,乙到达A地的时刻为( ).A.8:30 B.8:35C.8:40 D.8:457. 某市一周平均气温(℃)如图所示,下列说法不正确的是( ).A.星期二的平均气温最高B.星期四到星期日天气逐渐转暖C.这一周最高气温与最低气温相差4 ℃D.星期四的平均气温最低8.某工厂去年底积压产品a件(a>0),今年预计每月销售产品2b件(b>0),同时每月可生产出产品b件,则产品积压量y(件)与今年开工时间t(月)的关系的图象应是( ).二、填空题(每空2分共34分)9.梯形的上底长是2,下底长是8,则梯形的面积y与高x之间的关系式是______,自变量是______,因变量是______.10.在关系式y=3x-1中,当x由1变化到5时,y由______变化到______.11.某型号汽油的数量与相应金额的关系如图,那么这种汽油的单价为每升______元.11题 12题 14题 15题12.如图表示某地的气温变化情况.(1)在______时气温最高,为______;(2)在______时到______时这段时间气温是逐渐上升的.13.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.3元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.11元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为__________.14.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图所示,则慢车比快车早出发__________小时,快车追上慢车行驶了__________千米,快车比慢车早__________小时到达B地.15.河道的剩水量Q(米3)和水泵抽水时间t(时)的关系图象如图,则水泵抽水前,河道内有__________米3的水,水泵最多抽__________小时,水泵抽8小时后,河道剩水量是__________米3.三、解答题(第16、17题每题8分,18、19每题9分共34分)16.某天放学后,小敏徒步回家,如图所示,反映了她的速度与时间的变化关系.(1)请你根据图象填写下表:17.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并释放出氧气的过程.如图是夏季的白天7时~18时的一般的绿色植物的光合作用强度与时间之间的关系的曲线,分析图象回答问题:观察:(1)大约几时的光合作用最强?(2)大约几时的光合作用最弱?18.2007年的夏天,湖南省由于持续高温和连日无雨,水库蓄水量普遍下降,如图是某水库的蓄水量V(万立方米)与干旱持续时间t(天)之间的关系图,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万立方米?(2)若水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?19.如图①所示,在△ABC中,AD是三角形的高,且AD=6 cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8 cm.(1)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(2)当E点停止后,求△ABE的面积.参考答案1.B2.B 点拨:观察表中的数据发现,选项A ,C 显然对,而当x =0时,y =10,即弹簧不挂重物时长度为10 cm ,故选项B 错,由选项C 可得y 与x 之间的关系式为y =10+0.5x ,所以当x =7时,y =13.5,所以选项D 是正确的.3.A 点拨:因为雪橇手在下滑过程中,速度将随着时间的增加越来越大,故选A. 4.D 点拨:根据因变量的概念可知,因变量是随着自变量的变化而变化的,所以③的说法是错误的;又因为变量之间的关系既可以用关系式表示,也可以用表格和图象表示,所以④错.故选D.5.B 点拨:读图可知小王去朋友家路上用时20分,在朋友家中停留了10分,回家路上用时10分,易知回家时速度大于去时的速度.而D 项无法确定.6.C 点拨:由图象知,甲走完4千米的路程用60分,所以甲走2千米(图中两图象的交点处)的路程用30分,这就说明乙走2千米只用了10分,所以乙走完全程用20分,故乙到达A 地的时刻为8:40.7.C8.C 点拨:由题意可知,产品的积压量y 随时间t 的增大而减小,故选C. 9.y =5x x y 点拨: 梯形面积=12×高×(上底+下底).10.2 14 点拨:将x 的值代入,分别求出对应的y 值即可. 11.7.09 点拨:由图可直接计算单价为709100=7.09(元).12.(1)15 15 ℃ (2)8 1513.y =0.11x -0.03(x >3) 点拨:当通话时间超过3分时,y =0.3+(x -3)×0.11=0.11x -0.03.14.2 276 415.600 12 200 点拨:水泵抽8个小时后,河道剩水量是600-60012×8=200(米3).16.解:(1)速度:0,2.5,5,5,5,5,2.5,2.5,2.5,2.5,0;(2)由图象知小敏放学后开始加速走动,等速度达5千米/时的时候开始匀速行走,大约过了8分,开始减速,直至2.5千米/时,又开始匀速行走,大约过了6分又开始减速,4分后停止.17.解:观察得到:(1)大约上午10时的光合作用最强; (2)大约早上7时和晚上18时的光合作用最弱.18.解:(1)水库原蓄水量为1 000万立方米,持续干旱10天后,蓄水量为800万立方米.(2)持续干旱30天后将发出严重干旱警报.(3)持续干旱50天后水库将干涸.19.解:(1)由速度与时间的关系知点E从B向C运动的过程中是匀速的,其速度为3 cm/s,所以运动x秒后BE=3x cm.由题意得y=9x(0≤x≤2).(2)由图②知其运动了2秒,所以当x=2时,y=9×2=18(cm2).点拨:求变量之间的关系式时,要注意写出自变量的取值范围.。
第四章变量之间的关系检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.在用图象表示变量之间的关系时,下列说法最恰当的是()A.用水平方向的数轴上的点表示因变量B.用竖直方向的数轴上的点表示自变量C.用横轴上的点表示自变量D.用横轴或纵轴上的点表示自变量2.表示皮球从高处d落下时,弹跳高度b与下落高度d的关系如下表所示,则d与b之间的关系式为()A. d=b2B. d=2bC. d=b+40D. d=13. 在关系式y=3x+5中,下列说法:①x是自变量,y是因变量;②x的数值可以任意选择;③y是变量,它的值与x无关;④用关系式表示的不能用图象表示;⑤y与x的关系还可以用列表法和图象法表示,其中说法正确的是()A.①②⑤B.①②④C.①③⑤D.①④⑤4. 从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前速度随时间的增大而逐渐增大,这个问题中自变量是()A.物体B.速度C.时间D.空气5.已知变量y与x之间的函数关系的图象如图,它的关系式是()A.y=错误!未找到引用源。
x+2(0≤x≤3) B.y=错误!未找到引用源。
x+2 C.y=错误!未找到引用源。
x+2(0≤x≤3) D.y=错误!未找到引用源。
x+26.如图是广州市某一天内的气温变化图,根据图象,下列说法中错误的是()A.这一天中最高气温是26 ℃B.这一天中最高气温与最低气温的差为18 ℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中只有14时至24时之间的气温在逐渐降低7.如图(1),在直角梯形ABCD中,动点P从点B出发,沿BC,CD运动至点D停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图(2)所示,则△BCD的面积是()A.3 B.4 C.5 D.68.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和上班时一致,那么他从单位到家门口需要的时间是()A.12分钟B.15分钟C.25分钟D.27分钟9.三军受命,我解放军各部队奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24 km,如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是()A.1 B.2 C.3 D.410.下面的图表是护士统计的一位病人一天的体温变化情况,通过图表,估计这个病人下午16:00时的体温是()A.38.0 ℃B.39.1 ℃C.37.6 ℃D.38.6 ℃二、填空题(每小题3分,共24分)11.多边形内角和α与边数之间的关系是α=(n-2)×180゜,这个关系式中的变量是,常量(不变的量)是.12.如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量.(1)小于3 t(2)大于3 t(3)小于4 t(4)大于4 t13.四幅图象分别表示变量之间的关系,请按图象的顺序,将下面的四种情境用英文序号与之对应排序.a.运动员推出去的铅球(铅球的高度与时间的关系);b.静止的小车从光滑的斜面滑下(小车的速度与时间的关系);c.一个弹簧由不挂重物到所挂重物的质量逐渐增加(弹簧的长度与所挂重物质量的关系);d .小明从A 地到B 地后,停留一段时间,然后按原速度原路返回(小明离A 地的距离与时间的关系).14. 小明早晨从家骑车到学校,先上坡后下坡,行程情况如图所示,若返回时上、下坡的速度保持不变,那么小明从学校骑车回家用的时间是 分钟.15.在△ABC 中,AB=AC =12 cm ,BC =6 cm ,D 为BC 的中点,动点P 从 B 点出发,以每秒1 cm 的速度沿B→A→C 的方向运动.设运动时间为t 秒,那么当t = 秒时,过D 、P 两点的直线将△ABC 的周长分成两个部分,使其中一部分是另一部分的2倍.16某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图所示,那么乙播种机参与播种的天数是 天. 17. 如图所示的函数图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 千米∕小时.18.某型号汽油的数量与相应金额的关系如图所示,那么这种汽油的单价是每升 元. 三、解答题(共46分)19.(6分)父亲告诉小明:“距离地面越远,温度越低,”并给小明出示了下面的表格. 根据上表,父亲还给小明出了下面几个问题,你和小明一起回答. (1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h 表示距离地面的高度,用t 表示温度,那么随着h 的变化,t 是怎么变化的?x(3)你知道距离地面6千米的高空温度是多少吗?20.(6分)根据图象回答下列问题:(1)图象表示的是哪两个变量之间的关系?哪个是自变量,哪个是因变量?(2)从图象中观察,哪一年居民的消费价格指数最高?哪一年居民的消费价格指数最低?(3)你能否大致的描述1986-2000年的居民消费价格指数变化情况吗?21.(6分) 心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30).(1)上表中反映了哪两个变量之间的关系?那个是自变量?哪个是因变量?(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表格中可知,当提出概念所用时间x在什么范围内,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内,学生的接受能力逐步降低?(4)根据表格大致估计当提出概念所用时间为23分钟时,学生对概念的接受能力是多少.22. (6分)看图说故事.请你编写一个故事,使故事情境中出现的一对变量x、y满足图示的函数关系,要求:(1)写出变量x和y的含义;(2)利用图中的数据说明这对变量变化过程的实际意义,其中需涉及“速度”这个量.23. (8分)如图所示是某个函数图象的一部分,根据图象回答下列问题:(1)这个函数图象所反映的两个变量之间是怎样的函数关系?(2)请你根据所给出的图象,举出一个合乎情理且符合图象所给出的情形的实际例子. (3)写出你所举的例子中两个变量的函数关系式,并指出自变量的取值范围.(4)说出图象中A点在你所举例子中的实际意义.24.(8分)如图,反映了小明从家到超市的时间与距离之间关系的一幅图.(1)图中反映了哪两个变量之间的关系?超市离家多远?(2)小明到达超市用了多少时间?小明仅往返(不考虑中间的等待时间)花了多少时间?(3)小明离家出发后20分钟到30分钟内可以在做什么?(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少?25. (6分)某县从2007年开始实施退耕还林,每年退耕还林的面积如下表:(1)上表反映的是哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)从表中可知,随时间的变化,退耕还林面积的变化趋势是什么?(3)从2007年到2012年底,洪山县已完成退耕还林面积多少亩?参考答案1.C 解析:用水平方向的横轴上的点表示自变量,用竖直方向的纵轴上的点表示因变量. 故选C .2.B 解析:由统计数据可知:d 是b 的2倍,d =2b .故选B .3. A 解析:①x 是自变量,y 是因变量,正确; ②x 的数值可以任意选择,正确;③y 是变量,它的值与x 无关,错误,因为y 随x 的变化而变化; ④用关系式表示的不能用图象表示,错误;⑤y 与x 的关系还可以用列表法和图象法表示,正确,故选A .4. C 解析:因为速度随时间的变化而变化,故时间是自变量,速度是因变量,即速度是时间的函数.故本题选C .5. A 解析:从函数图象上可以看出,这条线段经过点(3,0)和(0,2), 可以设其关系式为y =kx +2,再把点(3,0)代入求得k =错误!未找到引用源。
2、小红帮助母亲预算家庭4月份电费开支情况,下表是小红家4月初连续8天每天早上电表显示的读数。
若每度收取电费0.42元,估计小红家4月份(按30天计)的电费是 元;
3、用火柴棒按如图的方式搭一行三角形,搭一个三角形需3支火柴棒,搭2个三角形需5支火柴棒,搭3个三角形需7支火柴棒,照这样的规律搭下去,搭n 个三角
形需要S 支火柴棒,那么S 与n 的关系可以用式子表示为
(n 为正整数).
4、假定甲、乙两人在一次赛跑中,路程S 与时间t 的关系如图所示,那么可以知道:
①这是一次 米的赛跑; ②甲、乙两人中先到达终点的是 ; ③乙在这次赛跑中的速度为 m/s 。
5、在平地上投掷手榴弹,下面哪幅图可以大致刻画出手榴弹投掷过程中
(落地前)速度变化情况( )
A B C D
6、某种储蓄的月利率是0.36%,现存入本金100元,本金与利息的和y (元)与所存月数x (月)之间的关系式为( )
A 、x y 36.0100+=
B 、
x y 6.3100+=
C 、x y 36.11+=
D 、x y 36.1001+=
7、有一旅客携带了30公斤行李从南京禄口国际机场乘飞机去天津,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格应是( )
A
、1000元 B 、800元 C 、600元 D 、400元
8、某人骑车外出,所行的路程S (千米)与时间t (小
时)的
关系如图所示,现有下列四种说法:
①第3小时中的速度比第1小时中的速度快;
时间(t)
②第3小时中的速度比第1小时中的速度慢;
③第3小时后已停止前进;
④第3小时后保持匀速前进。
其中说法正确的是()
A、②、③
B、①、③
C、①、④
D、②、④
9、李老师骑车外出办事,离校不久便接到学校要他返校的紧急电话,李老师急忙赶回学校。
t(时间) t(时间
) t(时间) t(时间) 10、如图所示,OA
、BA分别表示甲、乙两名学生运动的路程与时间的关系图象,图中S和t分别表示运动路程和时间,根据图象判断快者的速度比慢者的速
度每秒快()
A、2.5m
B、2m
C、1.5m
D、1m
11、三峡大坝从6月1日开始下闸蓄水,如果平均每天流入库
区的水量为a立方米,平均每天流出的水量控制为b立方米.当
蓄水位低于135米时,a
b<;当蓄水位达到135米时,a
b=.则库区的蓄水量y(立方米)随时间t(天)变化的大致图象是()
A、 B、 C、 D、
12、如图,开发区某消毒液生产厂家自2003年初以来,在库存为m(0
>
m)的情况下,日销售量与产量持平,自4月底“抗典”以来,消毒液需求量猛增,在生产能力不变的情况下,消毒液一度脱销,以下表示2003年初至脱销期间,时间t与库存量y之间关系的大致图象是()
11、小丽一天中的体温变化情况如图
(1)大约什么时候,小丽的体温最高?最高体温约
是多少?
(2)大约什么时候,小丽的体温最低?最低体温约
是多少?
(3)什么时间内,小丽的体温在升高?
(4)什么时间内,小丽的体温在降低?
12、某种长途电话收费方式为按时收费,前3分钟收费1.8元,以后每加一分钟收费1元,求:
(1)当时间t 3分钟时的电话费y (元)与t (分) 之间的关系.
(2)画出对应的”机器图”.
(3)计算当时间分别为5分、10分、30分、50分的电话费。
13、在全国抗击“非典”的斗争中,黄城研究所的医学专家们经过日夜奋战,终于研制出一种治疗非典的抗生药,据临床观察:如果成人按规定的剂量注射这种抗生素,注射药液后每毫升血液中的含药量y (微克)与时间t (小时)之间的关系近似地满足下图所示的折线.
(1)写出注射药液后自变量的取值范围.
(2)据临床观察:每毫升血液中含药量不少于4微克时,控制“非典”病情是有效的.如果病人按规定的剂量注射该药液后,那么这一次注射的药液经过多长时间后控制病情开始有效?这个有效时间有多长?
(3)假若某病人一天中第一次注射药液是早晨6点钟,问怎样安排此人从6:00~20:00注射药液的时间,才能使病人的治疗效果最好?
甲、乙两人(甲骑摩托车,乙骑自行车)从A城出发到100千米处的B城旅游,如图表示甲、乙两人离开A城路程与时间之间的关系图象。
分别求出甲、乙两人这次旅程的平均速度是多少?
根据图象,你能得出关于甲、乙两人旅行的那些信息?
注:回答2时注意以下要求:
(1)请至少提供三条相关信息,如由图象可知,乙比甲早出发4小时(或甲比乙晚出发4小时)等;(2)不要再提供(1)列举的信息。