高中数学向量
- 格式:doc
- 大小:370.50 KB
- 文档页数:7
一、向量的基本概念向量:既有大小又有方向的量叫做向量。
物理学中又叫做矢量,如力、速度、加速度、位移就是向量。
向量可以用一条有向线段(带有方向的线段)来表示,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向。
向量也可以用一个小写字母a,b,c表示,或用两个大写字母加表示(其中前面的字母为起点,后面的字母为终点)。
向量的表示方法:几何表示法、字母表示法。
模的概念:向量的大小(长度)称为向量的模。
记作:|ab|。
零向量:长度(模)为0的向量叫做零向量,记作0。
平行向量(共线向量):方向相同或相反的非零向量叫做平行向量或共线向量。
若向量a,b平行,记作a∥b。
规定0与任一向量平行。
相等向量:长度相等且方向相同的向量叫做相等向量。
向量a,b相等记作a=b。
零向量都相等。
任何两个相等的非零向量,都可用同一有向线段表示,但特别要注意向量相等与有向线段起点、终点位置无关。
二、向量的运算向量的加法:两个向量相加的结果是以这两个向量为邻边的平行四边形的对角线(注意起点和方向)。
也可以先作出其中一个向量,然后将另一个向量的起点平移到第一个向量的终点上,最后以第一个向量的起点为起点,以平移后得到的向量的终点为终点作出结果向量。
这种加法称为三角形法则。
向量的减法:两个向量相减的结果是将第一个向量的起点平移到第二个向量的终点上,然后以第二个向量的起点为起点,以平移后得到的向量的终点为终点作出结果向量。
这种减法称为三角形法则的逆运算。
向量的数乘:实数与向量的乘积是一个新的向量,其模等于原向量的模乘以实数的绝对值,其方向与原向量的方向相同或相反(取决于实数的正负)。
向量的点乘:两个向量的点乘结果是一个实数,等于这两个向量的模的乘积再乘以它们之间的夹角的余弦值。
如果两个向量的夹角为90度,则它们的点乘结果为0;如果两个向量的夹角为0度或180度,则它们的点乘结果分别为它们模的乘积的正值和负值。
向量的叉乘:两个三维向量的叉乘结果是一个新的三维向量,其模等于这两个向量的模的乘积再乘以它们之间的夹角的正弦值,其方向垂直于这两个向量所构成的平面,符合右手定则。
平面向量一.向量的基本概念与基本运算 1向量的概念:①向量:既有大小又有方向的量向量一般用c b a,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB 几何表示法 AB ,a;坐标表示法),(y x yj xi a =+=向量的大小即向量的模长度,记作|AB |即向量的大小,记作|a|向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a=0⇔|a|= 由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行共线的问题中务必看清楚是否有“非零向量”这个条件.注意与0的区别 ③单位向量:模为1个单位长度的向量向量0a 为单位向量⇔|0a|=1④平行向量共线向量:方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b行任意的平移即自由向量,平行向量总可以平移到同一直线上,故平行向量也称为共线向量⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a=大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x2向量加法求两个向量和的运算叫做向量的加法设,AB a BC b ==,则a+b =AB BC +=AC1a a a=+=+00;2向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”:1用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量2 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”.3向量的减法① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a-,零向量的相反向量仍是零向量关于相反向量有: i )(a --=a; ii a +a -=a -+a =0 ; iii 若a 、b是互为相反向量,则a =b -,b =a -,a +b =0②向量减法:向量a 加上b 的相反向量叫做a 与b的差,记作:)(b a b a-+=-求两个向量差的运算,叫做向量的减法③作图法:b a -可以表示为从b 的终点指向a 的终点的向量a 、b有共同起点 4实数与向量的积:①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:Ⅰa a⋅=λλ;Ⅱ当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反;当0=λ时,0=a λ,方向是任意的②数乘向量满足交换律、结合律与分配律 5两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =a λ 6平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底 7 特别注意:1向量的加法与减法是互逆运算2相等向量与平行向量有区别,向量平行是向量相等的必要条件3向量平行与直线平行有区别,直线平行不包括共线即重合,而向量平行则包括共线重合的情况4向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关二.平面向量的坐标表示 1平面向量的坐标表示:在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j 作为基底由平面向量的基本定理知,该平面内的任一向量a 可表示成a xi yj =+,由于a 与数对x,y 是一一对应的,因此把x,y 叫做向量a 的坐标,记作a =x,y,其中x 叫作a 在x 轴上的坐标,y 叫做在y 轴上的坐标1相等的向量坐标相同,坐标相同的向量是相等的向量2向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关2平面向量的坐标运算:(1)若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±± (2)若()()2211,,,y x B y x A ,则()2121,AB x x y y =-- (3)若a =x,y,则λa =λx, λy(4)若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-= (5)若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅若a b ⊥,则02121=⋅+⋅y y x x3,数与向量的乘积,向量的数量内积及其各运算的坐标表示和性质12(a b x x +=+AB BC AC +=12(a b x x -=-)(b a b a-+=- AB BA =-OB OA AB -=a a)()(λμμλ=12a b x x •=+三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·︱b ︱cos θ叫做a 与b 的数量积或内积 规定00a ⋅=2向量的投影:︱b ︱cos θ=||a ba ⋅∈R,称为向量b 在a 方向上的投影投影的绝对值称为射影3数量积的几何意义:a ·b 等于a 的长度与b 在a 方向上的投影的乘积 4向量的模与平方的关系:22||a a a a ⋅== 5乘法公式成立:()()2222a b a b a b a b +⋅-=-=-;()2222a ba ab b ±=±⋅+222a a b b =±⋅+6平面向量数量积的运算律: ①交换律成立:a b b a ⋅=⋅②对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈ ③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅± 特别注意:1结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅; 2消去律不成立a b a c⋅=⋅不能得到b c =⋅3a b ⋅=0不能得到a =0或b =0 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y +8向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ001800≤≤θ叫做向量a 与b 的夹角cos θ=cos ,a b a b a b•<>=•=222221212121y x y x y y x x +⋅++当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题9垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b 10两个非零向量垂直的充要条件:a ⊥b ⇔a ·b=O ⇔2121=+y y x x 平面向量数量积的性质题型1.基本概念判断正误:1共线向量就是在同一条直线上的向量.2若两个向量不相等,则它们的终点不可能是同一点. 3与已知向量共线的单位向量是唯一的. 4四边形ABCD 是平行四边形的条件是AB CD =. 5若AB CD =,则A 、B 、C 、D 四点构成平行四边形. 6因为向量就是有向线段,所以数轴是向量. 7若a 与b 共线, b 与c 共线,则a 与c 共线. 8若ma mb =,则a b =. 9若ma na =,则m n =.10若a 与b 不共线,则a 与b 都不是零向量. 11若||||a b a b ⋅=⋅,则//a b . 12若||||a b a b +=-,则a b ⊥. 题型2.向量的加减运算1.设a 表示“向东走8km ”, b 表示“向北走6km ”,则||a b += .2.化简()()AB MB BO BC OM ++++= .3.已知||5OA =,||3OB =,则||AB 的最大值和最小值分别为 、 .4.已知AC AB AD为与的和向量,且,AC a BD b ==,则AB = ,AD = .5.已知点C 在线段AB 上,且35AC AB =,则AC = BC ,AB = BC . 题型3.向量的数乘运算1.计算:13()2()a b a b +-+= 22(253)3(232)a b c a b c +---+-=2.已知(1,4),(3,8)a b =-=-,则132a b -= .题型4.作图法球向量的和已知向量,a b ,如下图,请做出向量132a b +和322a b -.a b题型5.根据图形由已知向量求未知向量1.已知在ABC ∆中,D 是BC 的中点,请用向量AB AC ,表示AD . 2.在平行四边形ABCD 中,已知,AC a BD b ==,求AB AD 和.题型6.向量的坐标运算1.已知(4,5)AB =,(2,3)A ,则点B 的坐标是 .2.已知(3,5)PQ =--,(3,7)P ,则点Q 的坐标是 .3.若物体受三个力1(1,2)F =,2(2,3)F =-,3(1,4)F =--,则合力的坐标为 .4.已知(3,4)a =-,(5,2)b =,求a b +,a b -,32a b -.5.已知(1,2),(3,2)A B ,向量(2,32)a x x y =+--与AB 相等,求,x y 的值.6.已知(2,3)AB =,(,)BC m n =,(1,4)CD =-,则DA = .7.已知O 是坐标原点,(2,1),(4,8)A B --,且30AB BC +=,求OC 的坐标.题型7.判断两个向量能否作为一组基底1.已知12,e e 是平面内的一组基底,判断下列每组向量是否能构成一组基底: A.1212e e e e +-和 B.1221326e e e e --和4 C.122133e e e e +-和 D.221e e e -和2.已知(3,4)a =,能与a 构成基底的是A.34(,)55B.43(,)55C.34(,)55--D.4(1,)3--题型8.结合三角函数求向量坐标1.已知O 是坐标原点,点A 在第二象限,||2OA =,150xOA ∠=,求OA 的坐标.2.已知O 是原点,点A 在第一象限,||43OA =60xOA ∠=,求OA 的坐标.题型9.求数量积1.已知||3,||4a b ==,且a 与b 的夹角为60,求1a b ⋅,2()a a b ⋅+,31()2a b b -⋅,4(2)(3)a b a b -⋅+.2.已知(2,6),(8,10)a b =-=-,求1||,||a b ,2a b ⋅,3(2)a a b ⋅+, 4(2)(3)a b a b -⋅+.题型10.求向量的夹角1.已知||8,||3a b ==,12a b ⋅=,求a 与b 的夹角.2.已知(3,1),(23,2)a b ==-,求a 与b 的夹角.3.已知(1,0)A ,(0,1)B ,(2,5)C ,求cos BAC ∠. 题型11.求向量的模1.已知||3,||4a b ==,且a 与b 的夹角为60,求1||a b +,2|23|a b -.2.已知(2,6),(8,10)a b =-=-,求1||,||a b ,5||a b +,61||2a b -.3.已知||1||2a b ==,,|32|3a b -=,求|3|a b +.题型12.求单位向量 与a 平行的单位向量:||a e a =± 1.与(12,5)a =平行的单位向量是 .2.与1(1,)2m =-平行的单位向量是 . 题型13.向量的平行与垂直1.已知(6,2)a =,(3,)b m =-,当m 为何值时,1//a b 2a b ⊥2.已知(1,2)a =,(3,2)b =-,1k 为何值时,向量ka b +与3a b -垂直 2k 为何值时,向量ka b +与3a b -平行3.已知a 是非零向量,a b a c ⋅=⋅,且b c ≠,求证:()a b c ⊥-.题型14.三点共线问题1.已知(0,2)A -,(2,2)B ,(3,4)C ,求证:,,A B C 三点共线.2.设2(5),28,3()2AB a b BC a b CD a b =+=-+=-,求证:A B D 、、三点共线. 3.已知2,56,72AB a b BC a b CD a b =+=-+=-,则一定共线的三点是 .4.已知(1,3)A -,(8,1)B -,若点(21,2)C a a -+在直线AB 上,求a 的值.5.已知四个点的坐标(0,0)O ,(3,4)A ,(1,2)B -,(1,1)C ,是否存在常数t ,使OA tOB OC +=成立题型15.判断多边形的形状1.若3AB e =,5CD e =-,且||||AD BC =,则四边形的形状是 .2.已知(1,0)A ,(4,3)B ,(2,4)C ,(0,2)D ,证明四边形ABCD 是梯形.3.已知(2,1)A -,(6,3)B -,(0,5)C ,求证:ABC ∆是直角三角形.4.在平面直角坐标系内,(1,8),(4,1),(1,3)OA OB OC =-=-=,求证:ABC ∆是等腰直角三角形.题型16.平面向量的综合应用1.已知(1,0)a =,(2,1)b =,当k 为何值时,向量ka b -与3a b +平行2.已知(3,5)a =,且a b ⊥,||2b =,求b 的坐标.3.已知a b 与同向,(1,2)b =,则10a b ⋅=,求a 的坐标.3.已知(1,2)a =,(3,1)b =,(5,4)c =,则c = a + b .4.已知(5,10)a =,(3,4)b =--,(5,0)c =,请将用向量,a b 表示向量c .5.已知(,3)a m =,(2,1)b =-,1若a 与b 的夹角为钝角,求m 的范围; 2若a 与b 的夹角为锐角,求m 的范围.6.已知(6,2)a =,(3,)b m =-,当m 为何值时,1a 与b 的夹角为钝角 2a 与b 的夹角为锐角7.已知梯形ABCD 的顶点坐标分别为(1,2)A -,(3,4)B ,(2,1)D ,且//AB DC ,2AB CD =,求点C 的坐标.8.已知平行四边形ABCD 的三个顶点的坐标分别为(2,1)A ,(1,3)B -,(3,4)C ,求第四个顶点D 的坐标.9.一航船以5km/h 的速度向垂直于对岸方向行驶,航船实际航行方向与水流方向成30角,求水流速度与船的实际速度.10.已知ABC ∆三个顶点的坐标分别为(3,4)A ,(0,0)B ,(,0)C c ,1若0AB AC ⋅=,求c 的值;2若5c =,求sin A 的值.备用1.已知||3,||4,||5a b a b ==+=,求||a b -和向量,a b 的夹角.2.已知x a b =+,2y a b =+,且||||1a b ==,a b ⊥,求,x y 的夹角的余弦.1.已知(1,3),(2,1)a b ==--,则(32)(25)a b a b +⋅-= .4.已知两向量(3,4),(2,1)a b ==-,求当a xb a b +-与垂直时的x 的值.5.已知两向量(1,3),(2,)a b λ==,a b 与的夹角θ为锐角,求λ的范围. 变式:若(,2),(3,5)a b λ==-,a b 与的夹角θ为钝角,求λ的取值范围. 选择、填空题的特殊方法:1.代入验证法例:已知向量(1,1),(1,1),(1,2)a b c ==-=--,则c = A.1322a b -- B.1322a b -+ C.3122a b - D.3122a b -+ 2.排除法例:已知M 是ABC ∆的重心,则下列向量与AB 共线的是A.AM MB BC ++B.3AM AC +C.AB BC AC ++D.AM BM CM ++。
高中数学公式大全向量的运算与应用高中数学公式大全:向量的运算与应用一、定义与基本概念在数学中,向量是具有大小和方向的物理量。
向量通常用有向线段来表示,有长度和方向。
二、向量的表示方法1. 坐标表示法:向量可以用坐标表示,通常用尖括号表示。
例如:向量a = <a1, a2, a3>2. 基本单位向量表示法:使用基本单位向量i、j、k以及系数表示。
例如:向量a = a1i + a2j + a3k三、向量的运算1. 向量的加法:向量的加法满足交换律和结合律。
a +b = b + a(a + b) + c = a + (b + c)2. 向量的减法:向量的减法可以转化为加法。
a -b = a + (-b)3. 向量的数量积(点积):向量a和b的数量积表示为a·b = |a| |b| cosθ,其中θ为a和b之间的夹角。
a·b = a1b1 + a2b2 + a3b34. 向量的向量积(叉积):向量a和b的向量积表示为a×b,满足交换律和分配律。
a×b = |a| |b| sinθ n,其中θ为a和b之间的夹角,n为一个垂直于a 和b的单位向量。
四、向量的应用1. 向量的单位化:将向量转化为单位向量,即长度为1。
单位化的向量往往用于表示方向。
单位向量u = a / |a|,其中a为非零向量。
2. 向量的投影:向量a在向量b上的投影表示为a在b方向上的投影长度,可以计算为:a在b方向上的投影= |a|cosθ,其中θ为a与b之间的夹角。
3. 向量的共线与垂直判定:a与b共线的条件是a×b = 0。
a与b垂直的条件是a·b = 0。
4. 平面向量的共线与垂直判定:a与b共线的条件是a×b = 0。
a与b垂直的条件是a·b = 0。
5. 平面向量的夹角计算:两个向量a和b之间的夹角θ可以计算为:cosθ = (a·b) / (|a| |b|)6. 向量的线性相关与线性无关:如果存在一组不全为零的系数k1、k2、...、kn,使得k1a1 + k2a2 + ... + knan = 0,则向量组a1、a2、...、an线性相关;如果这样的系数不存在,向量组a1、a2、...、an线性无关。
高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。
2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。
高中数学向量知识点总结一、基础概念向量是由大小和方向两个方面表示的量,可以用有向线段表示。
向量的模(长度)是一个标量,用||a||表示,其中a为向量。
模为0的向量称为零向量。
向量的方向由其符号决定,同方向向量与相反方向向量称为“对向向量”。
二、向量的加法向量加法:向量加上另一个向量就是在另一个向量的末端从起点开始画一个同样大小的向量。
可加性:若a、b、c为向量,那么a+b=c,即a+b=c-b。
交换律:一个向量加上另一个向量等于另一个向量加上第一个向量。
结合律:(a+b)+c=a+(b+c)三、向量的减法向量减法:一个向量减上另一个向量等于另一个向量的相反数加上第一个向量。
四、向量的数量积向量的数量积:向量 a 与标量 k 的积乘积表示为ka 。
向量 a 与向量 b 的数量积表示为a·b 。
夹角公式:a·b=|a||b|cosθ。
五、向量的叉积向量的叉积可以得到一个新的向量,叉积符号为叉乘号-×。
向量的叉积表示为a×b,结果垂直于a和b所在的平面,方向通过右手定则判断。
六、平面向量平面向量:一个平面向量的模表示这个向量所代表的有向线段的长度,而朝向的方向则由向量的起点指向终点。
标准单位向量i、j 满足|i|=|j|=1,同时是相互垂直的。
平面向量加减的公式与三维向量相同。
七、空间向量空间向量:空间向量是三维向量,定义为一个向量的起点和终点可以在三维空间中的任意两个点之间往返移动。
空间向量加减的公式与平面向量相同。
空间向量的数量积:a·b=|a||b|cosθ。
八、向量的应用平移变换:平移是向量应用最广泛的变换之一,在2D空间或3D空间中使用相同的基础技巧。
投影:当我们需要在三维空间中绘制3D图像时,我们经常需要计算平行于某个坐标轴的投影。
高中数学中的向量运算与化简运算规则在高中数学中,向量是一个重要的概念,它不仅有着广泛的应用,而且在解决各种数学问题时也起着重要的作用。
向量的运算和化简是我们在解题过程中经常会遇到的问题,下面我们就来详细讨论一下高中数学中的向量运算与化简运算规则。
一、向量的加法与减法运算向量的加法运算是指将两个向量相加得到一个新的向量。
具体来说,对于两个向量A和B,它们的加法运算可以表示为A+B=C,其中C是一个新的向量。
向量的加法运算满足以下几个规则:1. 交换律:A+B=B+A,即向量的加法运算满足交换律,无论是先加A再加B,还是先加B再加A,最终的结果都是一样的。
2. 结合律:(A+B)+C=A+(B+C),即向量的加法运算满足结合律,无论是先加A和B再加C,还是先加B和C再加A,最终的结果都是一样的。
3. 零向量:对于任意向量A,都有A+0=A,其中0表示零向量。
向量的减法运算是指将一个向量减去另一个向量得到一个新的向量。
具体来说,对于两个向量A和B,它们的减法运算可以表示为A-B=C,其中C是一个新的向量。
向量的减法运算可以转化为向量的加法运算,即A-B=A+(-B),其中-B表示向量B的反向量。
二、向量的数量乘法运算向量的数量乘法运算是指将一个向量乘以一个实数得到一个新的向量。
具体来说,对于一个向量A和一个实数k,它们的数量乘法运算可以表示为kA=B,其中B是一个新的向量。
向量的数量乘法运算满足以下几个规则:1. 分配律:k(A+B)=kA+kB,即向量的数量乘法运算满足分配律,实数k乘以向量A和B的和等于实数k分别乘以向量A和B再求和。
2. 结合律:(kl)A=k(lA),即向量的数量乘法运算满足结合律,两个实数的乘积先乘以向量A,再乘以向量A的结果是一样的。
3. 单位向量:对于任意非零向量A,都有1A=A,其中1表示单位向量。
三、向量的化简运算规则在解决向量运算问题时,我们经常需要对向量进行化简运算,即将一个向量表示为另一个更简单的向量。
高中向量知识点总结向量是数学中的重要概念,它在几何、物理等领域都有着广泛的应用。
在高中数学学习中,向量是一个重要的知识点,掌握好向量的相关知识对于学生的数学学习和未来的发展都具有重要意义。
本文将对高中向量知识点进行总结,希望能够帮助学生更好地理解和掌握这一部分内容。
1. 向量的概念。
向量是具有大小和方向的量,通常用有向线段来表示。
在直角坐标系中,向量可以表示为一个有序数对,也可以表示为一个坐标点到另一个坐标点的位移。
向量的大小通常用模长来表示,方向则可以用夹角或者方向角来描述。
2. 向量的运算。
向量的运算包括加法、减法和数量乘法。
向量的加法和减法都是按照平行四边形法则进行的,而数量乘法则是将向量的模长与一个标量相乘,同时改变向量的方向。
向量的运算在几何和物理问题中有着重要的应用,能够帮助我们更好地描述和计算问题。
3. 向量的数量积和向量积。
向量的数量积又称为点积,是两个向量的数量乘积再与它们的夹角的余弦值相乘所得的结果。
向量的数量积具有对称性和分配律,可以用来计算向量的模长、夹角以及投影等问题。
而向量的向量积又称为叉积,是两个向量的数量乘积再与它们的夹角的正弦值相乘所得的结果。
向量的向量积可以用来求得平行四边形的面积和向量的方向。
4. 向量的应用。
在几何中,向量可以用来描述平面图形的性质,比如平行四边形的性质、三角形的性质等。
在物理中,向量则可以用来描述物体的位移、速度、加速度等物理量,是物理学中不可或缺的工具。
另外,在工程和计算机图形学中,向量也有着广泛的应用,比如在计算机游戏中的物体运动、碰撞检测等方面。
总结:通过本文的总结,我们对高中向量知识点有了更深入的了解。
向量作为数学中的重要概念,在几何、物理等领域有着广泛的应用。
掌握好向量的相关知识,不仅有助于学生的数学学习,还能够为他们未来的发展打下坚实的基础。
希望本文能够帮助学生更好地理解和掌握高中向量知识,为他们的学习和未来的发展提供帮助。
高中数学中的向量向量是高中数学中的重要概念,它不但在数学上有广泛的应用,在物理、工程等领域也有着重要的地位。
本文将从向量的定义、性质、运算和应用等方面来介绍高中数学中的向量。
一、向量的定义向量是有大小和方向的量,通常用一条带箭头的线段来表示。
在数学中,向量通常用坐标表示,一个n维向量可以表示为(a1,a2,...,an),其中a1,a2,...,an为实数。
二、向量的性质1. 向量的大小向量的大小(或长度)是一个标量,通常用|v|来表示,根据勾股定理可以得到一个向量的大小:|v| = √(v1² + v2² + ... + vn²)2. 向量的方向向量的方向通常用另一个向量来表示,这个向量被称为一个单位向量,它的大小为1。
假设向量v的大小为|v|,则单位向量u = v/|v|,表示v的方向。
3. 向量的零向量大小为0的向量被称为零向量,通常用0或O来表示。
4. 向量的相等如果两个向量的大小和方向都相同,则这两个向量相等。
三、向量的运算1. 向量的加法两个向量的加法等于将它们的对应分量相加,例如(u1,u2) + (v1,v2) = (u1+v1,u2+v2)。
当向量的维数增多时,其加法规律也同样适用。
2. 向量的数乘向量的数乘指将一个向量的所有分量乘以一个实数,例如k(u1,u2) = (ku1,ku2)。
3. 向量的点积向量的点积也叫数量积,它是两个向量相乘后再相加得到的标量。
设两个n维向量u和v,则它们的点积为u·v = u1v1 + u2v2 + ... + unvn。
如果u·v=0,则称u和v垂直(或正交)。
4. 向量的叉积向量的叉积也叫向量积,它是两个三维向量相乘后得到的新向量。
设两个三维向量u=(u1,u2,u3)和v=(v1,v2,v3),则它们的叉积为u×v = (u2v3-u3v2,u3v1-u1v3,u1v2-u2v1)。
平面向量的数量积及平面向量的应用1.定义及运算律.两个向量的内积(即数量积),其结果是一个实数,而不是向量.其定义源于物理学中“力所做的功”.设a 及b 是具有共同始点的两个非零向量,其夹角θ满足:0°≤θ≤180°,我们把|a |²|b |²cos θ叫做a 与b 的数量积,记作a ²b 若a =(x 1,y 1),b =(x 2,y 2),则a ²b =2121y y x x +.其运算满足“交换律”“结合律”以及“分配律”,即:a ²b =b ²a ,(λ²a )²b =λ(a ²b ),(a ±b )²c =a ²c ±b ²c .2.平面向量数量积的重要性质.①|a |=a a ⋅=2||cos ||||a a a =θ⋅;cos θ=||||)(b a b a ⋅⋅;|a ²b |≤|a |²|b |,当且仅当a ,b 共线时取等号.②设a =(x 1,y 1),b =(x 2,y 2),则:|a |=2121y x +;cos θ=222221212121)(y x y x y y x x +⋅++;|x 1x 2+y 1y 2|≤22222121y x y x +⋅+3.两向量垂直的充要条件若a ,b 均为非零向量,则:a ⊥b ⇔a ²b =0.若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.4.向量的模及三角不等式|a |2=a ²a 或|a |=a a ⋅;|a ²b |≤|a |²|b |;|a |2-|b |2=(a +b )²(a -b );|a ±b |=θ⋅⋅±+cos ||||222b a b a (θ为a ,b 夹角);||a |-|b ||≤|a ±b |≤|a |+|b |.5.三角不等式的推广形式|a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |.小练习一【例1】计算下列各题:(1)已知等边三角形ABC边长为1,且=a,=b,=c,求a²b+b²c+c²a;(2)已知a、b、c是空间中两两垂直的向量,且|a|=1,|b|=2,|c|=3,求r=a+b+c的长度以及它和a,b,c的夹角;(3)已知(a+3b)与(7a-5b)垂直,且(a-4b)与(7a-2b)垂直,求a、b的夹角;2π,p=3a-b,q=λa+17b,问系数λ取向值时,p⊥q.(4)已知|a|=2,|b|=5,a,b的夹角是3【例2】在△ABC中,AB=(2,3),AC=(1,k),且△ABC的一个内角为直角,求k的值.【例3】已知平行四边形以a=(2,1),b=(1,-3)为两邻边.(1)求它的边长和内角;(2)求它的两对角线的长和夹角.小练习二一、基础夯实1.已知|a|=1,|b|=2,且(a-b)与a垂直,则a与b的夹角是( )A.60°B.30°C.135°D.45°,则向量m=a-4b的模为( )2.已知|a|=2,|b|=1,a与b之间的夹角为3A.2B.23C.6D.123.a ,b 是两个非零向量,(a +b )2=a 2+b 2是a ⊥b 的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.若a =(-4,3),b =(5,6),则3|a |2-4a ²b 等于 ( )A.23B.57C.63D.835.已知a =(λ,2),b =(-3,5)且a 与b 的夹角为钝角,则λ的取值范围是 ( )A.λ>310B.λ≥310C.λ<310D.λ≤310 6.已知a =(4,3),向量b 是垂直a 的单位向量,则b 等于 ( ) A.⎪⎭⎫ ⎝⎛54,53或⎪⎭⎫ ⎝⎛53,54 B ⎪⎭⎫ ⎝⎛53,54或⎪⎭⎫ ⎝⎛--54,53 C ⎪⎭⎫ ⎝⎛-54,53或⎪⎭⎫ ⎝⎛-53,54 D ⎪⎭⎫ ⎝⎛-54,53或⎪⎭⎫ ⎝⎛-54,53 7.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为 ( ) A.55 B.55- C.565 D.1313 8.已知A (3,2),B (-1,-1),若点P (x ,-21)在线段AB 中垂线上,则x 为 ( ) A.-47 B.47 C.2 D.-2 9.已知a =(3,0),b =(k,5),且a 与b 的夹角为43π,则k 的值为 ( ) A.-4 B.4 C.5 D.-510.已知a =(3,-1),b =(1,2),求满足条件:x ²a =9与x ²b =-4的向量x 为 ( )A.(2,3)B.(2,-3)C.(-2,3)D.(-2,-3)二、思维激活11.已知向量a 、b 的夹角为3π,|a |=2,|b |=1,则|a +b |²|a -b |= . 12.已知a ⊥b 、c 与a ,b 的夹角均为60°,且|a |=1,|b |=2,|c |=3,则(a +2b -c )2= .13.已知a =(1,2),b =(1,1),c =b -k a ,若c ⊥a ,则c = .14.已知点A (1,0),B (3,1),C (2,0),且a =,b =,则a 与b 的夹角为 .三、能力提高15.设A 、B 、C 、D 是平面内任意四点,求AB ²CD +BC ²AD +CA ²BD 值.16.设=(3,1),=(-1,2),⊥,∥,O 是原点,求满足+=时的坐标.17.已知两单位向量a 与b 的夹角为120°,若c =2a -b ,d =3b -a ,试求:c 与d 的夹角.18.已知a =(3,-1),b =⎪⎪⎭⎫ ⎝⎛23,21,且存在实数k 和t ,使得x =a +(t 2-3)²b , y =-k a +t ²b ,且x ⊥y ,试求tt k 2+的最小值.小练习三一选择题1.已知A 、B 、C 为三个不共线的点,P 为△ABC 所在平面内一点,若+++,则点P 与△ABC 的位置关系是 ( )A 、点P 在△ABC 内部B 、点P 在△ABC 外部C 、点P 在直线AB 上D 、点P 在AC 边上2.已知三点A (1,2),B (4,1),C (0,-1)则△ABC 的形状为 ( )A 、正三角形B 、钝角三角形C 、等腰直角三角形D 、等腰锐角三角形3.当两人提起重量为|G|的旅行包时,夹角为θ,两人用力都为|F|,若|F|=|G|,则θ的值为( )A 、300B 、600C 、900D 、1200二、填空题5.一艘船以5km/h 的速度向垂直于对岸方向行驶,船的实际航行方向与水流方向成300角,则水流速度为 km/h 。
6.两个粒子a ,b 从同一粒子源发射出来,在某一时刻,以粒子源为原点,它们的位移分别为S a =(3,-4),S b =(4,3),(1)此时粒子b 相对于粒子a 的位移 ;(2)求S 在S a 方向上的投影 。
三、解答题7.如图,点P 是线段AB 上的一点,且A P ︰PB=m ︰n ,点O 是直线AB 外一点,设OA = a ,OB = b ,试用,,,m n a b 的运算式表示向量OP .高三数学平面向量综合练习题一、选择题1、设平面向量=(-2,1),=(λ,-1),若与的夹角为钝角,则λ的取值范围是A 、),2()2,21(+∞⋃- B 、(2,+∞) C 、(21-,+∞) D 、(-∞,21-) 2、设=(x 1,y 1),=(x 2,y 2),则下列为与共线的充要条件的有①存在一个实数λ,使=λ或=λ;②|²|=||²||; ③2121y y x x =;④(+)//(-) A 、1个 B 、2个 C 、3个 D 、4个3、若函数y=2sin(x+θ)的图象按向量(6π,2)平移后,它的一条对称轴是x=4π,则θ的一个可能的值是A 、125πB 、3πC 、6πD 、12π 4、ΔABC 中,若BC BA AC AB ⋅=⋅,则ΔABC 必约A 、直角三角形B 、钝角三角形C 、锐角三角形D 、等腰三角形5、已知ΔABC 的三个顶点A 、B 、C 及所在平面内一点P 满足=++,则点P 与ΔABC 的关系是A 、P 在ΔABC 内部B 、P 在ΔABC 外部C 、P 在直线AB 上D 、P 在ΔABC 的AC 边的一个三等分点上 6、在边长为1的正三角形ABC 中,a BC =,AB c = ,CA b = ,则a c c b b a ⋅+⋅+⋅=A 、1.5B 、-1.5C 、0.5D 、-0.5二、填空题1、已知=(cos θ,sin θ),=(3,-1),则|2-|的最大值为____________2、已知P(x ,y)是椭圆1422=+y x 上一点,F 1、F 2是椭圆的两焦点,若∠F 1PF 2为钝角,则x 的取值范围为________________3、设m =(a,b),n =(c,d),规定两向量m, n 之间的一个运算“³”为m ³n =(ac -bd ,ad+bc),若已知p =(1,2),p ³q =(-4,-3),则q =____________ 4、将圆x 2+y 2=2按a =(2,1)平移后,与直线x+y+λ=0相切,则实数λ的值为____________三、解答题1、已知平面内三向量、、的模为1,它们相互之间的夹角为1200。
(1)求证:c b a ⊥-)(;(2)1||>++c b a k ,求k 的取值范围。
2、设两个向量1e 、2e 满足|1e |=2,|2e |=1,1e 与2e 的夹角为600,若向量2172e e m +=λ与向量21e e n λ+=的夹角为钝角,求实数λ的取值范围。
3、△ABC 内接于以o 为圆心,l 为半径的圆,且=++543,求:⋅,⋅,⋅。
4、抛物线22x y -=与过点M(1,0)的直线l 相交于A 、B 两点,O 为坐标原点,若⋅=0,求直线l 的方程。
5、设=(m ,n),=(p ,q),定义向量间运算“*”为:*=(mp -nq ,mq+np)。
(1)计算||、|| 及 |*|;(2)设=(1,0),计算cos<*,>及cos<,>;(3)根据(1)、(2)的结果,你能得到什么结论? 6、已知=(cos α,sin α),=(cos β,sin β),0<α<β<π。