四十四个悖论
- 格式:doc
- 大小:53.00 KB
- 文档页数:10
老虎悖论是博弈论中一个著名的逻辑悖论。
故事国王要处决一个囚犯,但给他一个生还的机会。
囚犯被带到5扇紧闭的门前,其中一扇后面关着一只老虎。
国王对囚犯说:“你必须依次打开这些门。
我可以肯定的是,在你没有打开关着老虎的那扇门之前,你是无法知道老虎是在那扇门后。
”显然,如果囚犯有可能在打开有老虎的那扇门前知道,就证明国王在撒谎,那么就可以活命。
开门之前,囚犯进行了如下分析:假如老虎在第五扇门,那当他把前四扇门打开后都没发现老虎,那他肯定猜到老虎在第五扇门中,因国王说过不论何时他也料不到老虎在哪扇门后,那国王的说话就错了。
因此,老虎肯定不在第五扇门中。
同样道理,老虎也不在第四道门中,否则囚犯打开三道门后,只剩两道门,老虎既不在第五扇门后,那就会给他料到在第四扇门后;依次类推,老虎不存在任何一道门后;囚犯这时就不再多想,冒冒失失依次推门,结果老虎从第二扇门中跳了出来,把囚犯咬死了。
国王看见了说:“不是跟你说了老虎在哪扇门后总是出乎你的意料了吗?现在你就是万料不到了。
”悖论分析如果囚犯的推理成立,那么就算国王把老虎放在第五扇门后,也是“料想不到”,学者们争论的重点在于:这个推理究竟错在第几步?1.主张错在第一步如果第一步是正确的,那么后面几步为什么是错的?所以第一步就错了。
错在囚犯把国王的思路作为论据。
首先必须定义怎样算国王所谓的“知道”(或“意料”),如果投机猜测算的话,那国王不论怎样放都不能保证不被猜中,所以带投机成分的猜测不能算“知道”(国王为了自身利益也会这么定义),设“知道”定义为“在即有事实下的逻辑推理”,那么囚犯不仅要正确预测老虎,还要对其预测给出严格的逻辑证明才行。
本例中不考虑没有老虎的情况,即囚犯已知必有1老虎。
作为囚犯,他在每次打开一个门前都会进行逻辑推理,如果能推出老虎是在即将打开的门里就赢了,如果不能推出,他就只能打开这个门,如果打开后没有老虎就继续推理下一个门是否有老虎,依此类推。
然后,把问题从5个门简化为只有2个门,囚犯会在打开第一个门之前,对第一个门里是否有老虎做逻辑推理:由于囚犯要引用国王的思路,故须先考虑国王思路是否是会错。
十大经典悖论1. 赫拉克利特的悖论:你永远无法踏进同一条河流。
这个悖论源自古希腊哲学家赫拉克利特的一句名言:“你不能踏进同一条河流,因为它的水已经不是那条水,而你自己也不是那个人。
”这句话意味着一切事物都在不断变化,一切都是瞬息万变的,不存在恒定不变的东西。
因此,即使你站在同一个地点,望着同一条河流流过,也永远无法再次踏进同一条河流。
2. 色盲悖论:我们无法知道别人的颜色感知和我们自己的感知是否相同。
这个悖论源自于我们的视觉系统确是极其复杂和奇妙的,但人的眼睛只能看见有限的颜色,而有人可能看不见某些颜色或者已存在的颜色看得更加清晰。
因此,我们无法知道别人感知到的颜色和我们自己的感知是否相同,因为不同的颜色触发不同的神经反应。
3. 辛普森悖论:相反的结果,改变了数据的组合。
这个悖论源自数据分析的一个概念,它指的是当我们观察两组数据时,看似相反的趋势却可以被数据的不同组合方式所掩盖。
例如,拥有高学历的男性相对于拥有同样学历的女性而言获得更高的薪水,但是当我们将这两组数据组合时,我们发现女性比男性还要能够获得更高的薪水。
4. 俄狄浦斯悖论:我们的预测或努力可能会导致我们所想要避免的事情的发生。
这个悖论源自神话故事俄狄浦斯王的遭遇。
俄狄浦斯王通过占卜知道自己即将杀死自己的父亲并与母亲结婚,因此为了避免这样的命运,他离开了他的家乡。
然而,在他的旅途中,他无意中杀死了一个人,并不知道该人是他父亲。
最终,他成功地解决了由此引起的谋杀案并娶了继妻。
5. 费马最后定理的悖论:一个数学悖论,宣传广泛,引起了许多人的兴趣和探索。
费马最后定理的悖论是一个数学困惑,该定理声称:$x^n+y^n=z^n$在$n$为整数,$x$、$y$、$z$之间没有公因数的情况下不可能成立,其中$n$的值应该大于2。
在300多年的时间里,许多数学家都试图证明它,但是直到1994年,一位英国数学家安德鲁·怀尔斯终于找到了一个解。
6. 伯努利悖论:即使它不太可能发生,某些事件仍然有可能发生。
数学史上十个有趣的悖论1. 赫拉克利特悖论:你永远无法踏入同一条河流。
因为河流的水流不断更替,所以你每次接触到的都是不同的水。
2. 亚里士多德悖论:有一只鸟,如果它每天吃一只虫子就会活下去,那么它连续吃两只虫子会发生什么?它会死亡,因为它每天只需要一只虫子来维持生命。
3. 形而上学悖论:如果一个人把一艘船的每一块木头一块一块地替换掉,那么到最后是否还是同一艘船呢?4. 希尔伯特问题的悖论:是否存在一个包含所有数学真理的最终公式列表?如果是,那么这个列表将包含说真话的几句话和谎言。
但如果它不能说出哪句话是真话,哪句话是谎言,那么这个列表就不完整。
5. 斯特芬兹悖论:如果你有一个无穷的房间,房间里有一个无穷大的桶,里面装满了无穷多的球,但只有两种颜色:红和白。
你是否能用有限的步骤将球分成两堆,一堆红的,一堆白的?6. 孪生数悖论:对于任何一个素数,若将它加一或减一,它们之间的差值必定是二。
因此,两个素数之间一定有一个偶数。
7. 吉尔伯特-陶逊悖论:如果一个村庄中只有男人和小孩,那么这个村庄中一定存在一个人至少有红色头发吗?实际上是可以的,因为这个悖论只是一个错综复杂的抽象预测。
8. 无穷大悖论:如果你将自然数的所有数字分成偶数和奇数,你会发现奇数会比偶数多一些。
但是,当你将这些数字除以二,结果是每个数字都是整数,因此奇数和偶数应该在数量上相同。
9. 托勒密悖论:在托勒密的地球中心宇宙模型中,一颗星星的轨道被假定为匀速圆周运动。
这导致了一个悖论,因为我们观察到的星星的视差应该与其轨道的半径有关,但实际上并非如此。
10. 蒙提霍尔悖论:你在面前有三个门,其中一个门后面是奖品,另两个门后面没有奖品。
你选择了一个门,然后主持人打开了另一个没有奖品的门。
你是否应该更改你的选择以提高你获得奖品的机会?是的,你应该更改你的选择,因为这将让你获得奖品的机会增加到2/3。
12个经典悖论12个经典悖论如下:1苏格拉底悖论:苏格拉底有一句名言:“我只知道一件事,那就是什么都不知道。
”2纸牌悖论:纸牌悖论就是纸牌的一面写着:“纸牌反面的句子是对的。
”而另一面却写着:“纸牌反面的句子是错的。
”3上帝万能悖论:“如果说上帝是万能的,他能否创造一块他举不起来的大石头?”4鳄鱼悖论:一条鳄鱼抢走了一个小孩,它对孩子的母亲说:“我会不会吃掉你的小孩?答对了,孩子还给你;答错了,我就吃了他。
”5老子悖论:“知者不言,言者不知。
”是一条悖论,被白居易一语道穿。
白居易在《读老子》里说道:“言者不知知者默,此语吾闻于老君。
若道老君是知者,缘何自着五千文?”6艾宾浩斯悖论:这条悖论是在研究人的记忆力时引发的。
“在记忆获得的初期,人们仅能记住不超过7个项目;但是如果经常复习,那么在一定时间之后,能记住32个项目,几乎是原来的两倍。
”7犹太人悖论:“谁是最优秀的歌手?”或者“谁是最优秀的演员?”这个悖论涉及到一个犹太人的名字,这个人物名字具有两面性,是“叛徒”还是“英雄”?8雷普索尔悖论:这个悖论是一个有关于生命与死亡之间的问题。
它的内容是:有些人声称自己看见了已经死去的人复活了,但是其他人却对此表示怀疑。
9沃森-克拉克悖论:这个悖论与专家系统有关。
专家系统并不完美:“如果专家系统是完美的,那么它就不会出错;但如果它出错了,那么它就不是完美的。
”10哈伯德悖论:这个悖论涉及到一种叫做“哈伯德氏菌”的细菌。
这种细菌可以导致肺炎,但是它也有好处:它可以使人变得更聪明。
11斯特鲁维悖论:这个悖论是有关于“真相”的问题。
它问的是:当一位侦探得到了足够的证据,可以判定他遇到的人是无辜的,但他还是继续调查下去,直到他抓到了真正的罪犯。
12凡勃伦悖论:“一般来说,距离决定速度。
但如果这个距离可以改变,那么时间就会变得不可控制。
”这条悖论探讨了空间和时间之间的关系。
历史上经典的7大悖论包括:1.祖父悖论:这是一种时间旅行的悖论,举例来说,假设你回到过去,在自己父亲出生前把自己的祖父母杀死,由于祖父母死了,就不会有你的父亲,而没有你的父亲,就不会有你,而你没有出生,那么杀死祖父母的行为就不存在。
这个悖论涉及到时间旅行和因果关系的矛盾。
2.理发师悖论:这是罗素悖论的通俗举例。
假设一个城市里唯一的理发师立下规定:只帮那些自己不理发的人理发。
那么问题来了:理发师应该为自己理发吗?如果理发师不给自己理发,他需要遵守规则,帮自己理发;如果理发师给自己理发,他需要遵守规则,不给自己理发。
这个悖论涉及到自指命题的矛盾。
3.辛普森悖论(Simpson's Paradox):在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论。
这个悖论涉及到统计推理和因果关系的矛盾。
4.上帝悖论:这个悖论是几个世纪前罗马教廷出的一本书中提出的,用当时最流行的数学推论导出“上帝是万能的”。
一位智者针锋相对地问:“上帝能创造出一块他搬不动的石头吗?”如果教廷回答说能的,那上帝不能搬动他创造的那块石头,所以上帝不是万能的;如果教廷回答说不能,那么上帝不能创造出一块他搬不动的石头,所以上帝也不是无所不能的。
这个悖论涉及到对“万能”和“不可能”的定义及其相互关系的矛盾。
5.外祖母悖论:也叫“祖父悖论”,和祖父悖论类似,也是时间旅行带来的矛盾。
6.摩尔悖论:这个悖论涉及到自指命题的矛盾。
假设一个命题是真的,那么它的逆命题也是真的。
但是,如果一个命题是假的,它的逆命题却不一定是假的。
这个悖论就产生于这种逻辑矛盾。
7.意外绞刑悖论:这个悖论涉及到对“意外”的定义及其与“必然性”的关系的矛盾。
假设一个绞刑犯被判处绞刑,但是他在行刑前突然感到一阵头晕,于是他伸手去扶住绞刑架以免自己摔倒。
这时,执行绞刑的人问他:“你知道你为什么要被绞刑吗?”绞刑犯回答:“当然知道,我不是因为偷窃而杀人。
16个悖论:我只知道一件事,那就是我一无所知!01、我知我无知02、二分法悖论(dichotomy paradox)03、飞矢不动(arrow paradox)04、忒修斯之船(Ship of Theseus paradox)05、上帝无所不能?06、托里拆利小号(Gabriel's Horn)07、理发师悖论(Russell's Paradox的别称)08、第二十二条军规(Catch-22)09、有趣数悖论(Interesting Number Paradox)10、饮酒悖论(drinking paradox)11、球与花瓶(Balls and Vase Problem)12、土豆悖论(potato paradox)13、生日悖论(birthday paradox)14、朋友悖论(friendship paradox)15、祖父悖论(bootstrap paradox)16、外星文明【1】我知我无知苏格拉底有句名言:“我只知道一件事,那就是我一无所知。
”这个说法本身就是悖论,展现了自我参照的表述(self-referential statement)的复杂性。
而这也是西方哲学先贤带给我们的重要启示:你得问你以为你知道的一切。
越是问东问西问长问短打破砂锅问到底,越会发现身边正有一大波悖论呼啸而过。
【2】二分法悖论(dichotomy paradox)概述:运动是不可能的。
你要到达终点,必须先到达全程的1/2处;要到达1/2处,必须先到1/4处……每当你想到达一个点,总有一个中点需要先到,因此你是永远也到不了终点的。
古希腊哲学家芝诺(Zeno)提出了一系列关于运动不可分性的哲学悖论,二分法悖论就是其中之一。
直到19世纪末,数学家们才为无限过程的问题给出了形式化的描述,类似于0.999……等于1的情境。
那么究竟我们是如何到达目的地的呢?二分法悖论只是空谷传音般放大了问题。
若想妥善解决这个问题,还得靠物质、时间和空间是否无限可分等等这些20世纪的衍生理论。
十大数学著名悖论1. 二分法悖论概述:运动的不可分性,由古希腊哲学家芝诺提出。
每次到达一个点都需要先到达中点,形成无限过程,直到19世纪数学家解决了无限过程的问题。
脑洞:无限二分16寸芝士乳酪蛋糕却不能吃的快感,探讨物质、时间和空间的无限可分性。
2. 飞矢不动概述:箭在瞬间位置不动,暗示了时间的瞬间性。
关联到量子力学和相对论,强调运动在特定时刻的相对性。
脑洞:看到漂亮妞心动3秒,上去要电话惨遭拒绝。
咳咳,飞矢不动,我没心动。
3. 忒修斯之船概述:船上的木头逐渐替换,引发同一性的哲学争议。
讨论木头替换后船是否仍然是原来的船。
脑洞:人体细胞每七年更新一次,七年后,镜子里是另一个你。
4. 托里拆利小号概述:体积有限的物体,表面积可以无限。
源自17世纪的几何悖论,涉及到平凡的几何图形和无限的概念。
脑洞:平胸不一定能为国家省布料的时候。
5. 有趣数悖论概述:将数字的特征定义为有趣或无趣,涉及质数、斐波那契数列等。
引出无趣数概念,研究整数的有趣属性。
脑洞:n只青蛙n张嘴,2n只眼睛4n条腿,你想起数列是个什么鬼了吗?6. 球与花瓶概述:无限个球和一个花瓶进行操作,放10个球再取出1个,引发花瓶内球的数量无限和可变的讨论。
脑洞:小学奥林匹克暗袋摸球概率题终极版。
7. 土豆悖论概述:土豆的含水量和干物质之间的矛盾,涉及百分比的计算。
展示了百分比在特定情境下的谬误。
脑洞:理科生们笑到内伤。
8. 饮酒悖论概述:酒吧里的人是否都在喝酒,引出实质条件的悖论。
通过逻辑演绎表明酒吧中的每个人都在喝酒。
脑洞:一人喝酒导致全场人喝酒,数学的实质条件逻辑。
9. 理发师悖论概述:小城理发师的承诺,引出对自己刮脸的矛盾。
赫赫有名的罗素悖论,影响了数学领域的发展。
脑洞:对于不刮胡子的女理发师不成立。
10. 祖父悖论概述:通过时光机回到过去,引发关于杀死祖父的时间旅行悖论。
涉及对时间和平行宇宙的思考。
脑洞:时间旅行中的命运操纵与平行宇宙的可能性。
哲学十大经典悖论悖论之一:价值悖论作为生活必需品的水价值很低,奢侈品如钻石的价值却很高,但为什么水的价值比钻石低?价值悖论,也被叫做钻石与水悖论,就是一类典型的自相矛盾的例子,尽管在维持生存的价值上水要高出钻石,但是市场价水却不如钻石。
我们来试着解释一下这个悖论,当消费量较小时,两者相比水的边际效用要大于钻石,因此两者都缺少的时候,水的价值就更高。
事实上,现在我们对水的消费量往往都比较大,钻石的消费量却远没有那么大。
我们可以天天喝水喝到吐,却不能天天买钻石。
所以,大量水的边际效用小于少量钻石的边际效用。
按照边际效用学派的解释,比较钻石和水的价值并不是比较两者的总价值,而是比较每份单位的价值。
尽管水的总体价值对于人类来说再大也不为过,毕竟水是生存必需品,但是,考虑到全球的水资源足够充沛,水的边际效用也就处在相对较低水平。
另一方面,急需用水的领域一旦被满足,水就被用作不那么紧急的用途,边际效用因此递减。
所以,水的总量增加,水的总体价值就减少。
钻石的情况就不同了,不管地球上到底有多少钻石,市场上的钻石始终是少量,一颗钻石的用途比一杯水大得多得多得多。
所以钻石对于人更有价值。
钻石的价格远高于水,消费者愿意,商人也乐意,一个愿打一个愿挨。
悖论之二:祖父悖论如果你乘坐时光机回到你祖父祖母相遇之前并杀死你的祖父会发生什么?关于时间旅行最有名的悖论是科幻小说作家赫内·巴赫札维勒1943年的小说《不小心的旅行者》中提出的。
悖论内容如下:时间旅行者回到自己的祖父祖母结婚之前的时空,时间旅行者在该时空杀死了自己的祖父,也就是说,时间旅行者自身从未降生过;但是,如果时间旅行者从未降生,也就不能穿越时空回到以前杀死自己的祖父,如此往复。
我们假设时间旅行者的过去和现在存在因果联系,那么扰乱这种因果关系的祖父悖论看上去似乎是不可能实现的。
(也就杜绝了人可以任意操纵命运的可能)但是,有许多假说绕开了这种悖论,比如有人说过去无法改变,祖父一定已经在孙子的谋杀中幸存下来(如前所说);还有种可能是时间旅行者开启/进入了另一条时间线或者平行宇宙什么的,而在这个世界,时间旅行者从未诞生过。
有趣的悖论推理题
以下是一些有趣的悖论推理题:
1.祖父悖论:如果你回到过去,在你父亲出生前杀害了你的祖父,
那么会发生什么?
2.盒子悖论:有一个盒子,里面装着一些球,其中一些是黑球,一
些是白球。
每个球都被单独地涂上了颜色。
你不能看里面的球,但是你能够通过一个程序随机选取一个球。
首先,你从盒子中取出一个黑球,然后放回去并混合均匀。
接着,你再取出一个白球。
现在,你认为盒子中黑球和白球的比例是多少?
3.狮子和牡蛎悖论:一个牡蛎被放在一个密封的罐子里。
罐子里有
一只狮子和牡蛎。
狮子想要吃牡蛎,但是牡蛎能够通过关闭其壳来避免被狮子吃掉。
每一天,狮子都会尝试吃牡蛎。
如果牡蛎在那天没有关闭其壳,那么狮子就会吃掉牡蛎。
否则,狮子就不会吃牡蛎。
那么问题是:牡蛎是否会在某一天被狮子吃掉?
4.美女与野兽悖论:一个城堡里有一个美丽的少女和一个野兽。
每
天,城堡的主人会问少女:“你愿意嫁给这个野兽吗?”如果少女说“不”,那么野兽就会把她吃掉。
如果少女说“是”,那么第二天她就会和野兽结婚。
那么问题是:少女是否应该嫁给她?
这些悖论都很有趣,它们挑战了我们对时间、逻辑和概率的理解,同时也引发了我们对现实世界中类似情况的思考。
世界十大悖论 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】十大悖论1、说谎者悖论一个克里特人说:“我说这句话时正在说慌。
”然后这个克里特人问听众他上面说的是真话还是假话?这个悖论出自公元前六世纪希腊的克里特人伊壁,使得希腊人大伤脑筋,连西方的圣经《新约》也引用过这一悖论。
对克里特人“我说这句话时正在说慌”不可判其真亦不可判其伪。
2、柏拉图与苏格拉底悖论调侃他的老师:“苏格拉底老师下面的话是假话。
”苏格拉底回答说:“上面的话是对的。
”不论假设苏格拉底的话是真是假,都会引起矛盾。
3、鸡蛋的悖论先有鸡还是先有蛋?4、书名的悖论美国数学家缪灵写了一部标题为的书,问:缪灵的这本书的书名是什么?5、印度父女悖论女儿在卡片上写道:“今日下午三时之前,您将写一个‘不’字在此卡片上。
”随即女儿要求父亲判断她在卡片上写的事是否会发生;若判断会发生,则在卡片上写“是”,否则写“不”。
问:父亲是写“是”还是写“不”6、蠕虫悖论一只蠕虫从一米长的橡皮绳的一端以每秒1厘米的速度爬向另一端,橡皮绳同时均匀地以每秒1米的速度向同方向延伸,蠕虫会爬到另一端吗?蠕虫每前进1厘米,同时绳子的另一端却拉远1米,近不抵疏,怕是永远爬不到头了。
现算算看:第1秒,蠕虫爬了绳子的1/100(意为100分之1,下同),第2秒,蠕虫爬了绳子的1/200,---------,第N秒,蠕虫爬了绳子的1/N×100,前2的K次方秒,蠕虫爬的总路程占绳子全长的比例为1/100(1+1/2+1/3+-----+1/2的K次方)而1+1/2+1/3+-----+1/2的K次方=(1+1/2)+(1/3+1/4)+(1/5+1/6+1/7+1/8)+-----+(1/<2的次方+1>+1/<2的方+2>+-----+1/2的K次方)>1+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+-----(1/2的K次方+1/2的K次方+----+1/2的K次方)———————————∨————————共有2的次方项=1+1/2+1/2+-----+1/2=1+K/2———∨—————共有2的K次方项当K=198时,1+K/2=100,于是1/100(1+1/2+1/4+----+1/2的198次方)>1所以不超过2的198次方秒,蠕虫爬到了绳子的另一端。
16个让你烧脑让你晕的悖论悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。
悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。
悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。
悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。
产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。
1、我知我无知概述:苏格拉底有句名言:“我只知道一件事,那就是我一无所知。
”这个说法本身就是悖论,展现了自我参照的表述(self-referential statement)的复杂性。
而这也是西方哲学先贤带给我们的重要启示:你得问你以为你知道的一切。
越是问东问西问长问短打破砂锅问到底,越会发现身边正有一大波悖论呼啸而过。
2、二分法悖论(dichotomy paradox)概述:运动是不可能的。
你要到达终点,必须先到达全程的1/2处;要到达1/2处,必须先到1/4处……每当你想到达一个点,总有一个中点需要先到,因此你是永远也到不了终点的。
古希腊哲学家芝诺(Zeno)提出了一系列关于运动不可分性的哲学悖论,二分法悖论就是其中之一。
直到19世纪末,数学家们才为无限过程的问题给出了形式化的描述,类似于0.999……等于1的情境。
那么究竟我们是如何到达目的地的呢?二分法悖论只是空谷传音般放大了问题。
若想妥善解决这个问题,还得靠物质、时间和空间是否无限可分等等这些20世纪的衍生理论。
脑洞:无限二分16寸芝士乳酪蛋糕却不能吃的快感,你值得拥有。
3、飞矢不动(arrow paradox)概述:一根箭是不可能移动的。
飞行过程中的任何瞬间,它都有一个暂时的位置,由此可知一枝动的箭是所有不动的集合。
芝诺又一著名悖论,他认为时间的单位是瞬间。
经典悖论及其解法经典悖论是指在逻辑上似乎正确,但实际上却导致矛盾或荒谬的推理,常常出现在哲学、数学和物理学中。
下面列举十个经典悖论及其解法。
1. 赫拉克利特悖论:同一河流,我不能踏入两次。
这个悖论的解法是,时间和空间的变化使得河流的状态不断变化,所以每次进入的河流都是不同的。
2. 阿喀琉斯与乌龟悖论:阿喀琉斯追上乌龟需要无限次。
这个悖论的解法是,因为阿喀琉斯始终比乌龟快,所以只需要追上乌龟前面的一小段距离即可。
3. 矛盾悖论:这个陈述是假的。
这个悖论的解法是,这个陈述既不真也不假,因为它是自指陈述,类似于“这个句子不成立”。
4. 费马大定理悖论:费马大定理的证明过于复杂,无法在有限时间内完成。
这个悖论的解法是,虽然费马大定理的证明确实非常复杂,但已经被证明是可行的,而且已有多个人独立证明了该定理。
5. 哈金斯悖论:如果这句话是错的,那么地球是方的。
这个悖论的解法是,这句话是自指陈述,无法判断它的真假,因为它所涉及的概念是无法定义的。
6. 巴贝奇悖论:这句话是一个谎言。
这个悖论的解法是,如果这句话是真的,那么它就成了自相矛盾的陈述;如果这句话是假的,那么它就成了真实的陈述,所以这句话既不真也不假。
7. 相对论悖论:双胞胎悖论。
这个悖论的解法是,因为时间在相对论中是相对的,所以当一个人以接近光速的速度移动时,他的时间会变慢,而他的双胞胎在地球上的时间则会继续流逝,因此双胞胎的年龄差异是可以解释的。
8. 猜想悖论:如果这个猜想是错的,那么这个证明是正确的。
这个悖论的解法是,如果证明是正确的,那么猜想也是正确的;如果猜想是错的,那么证明也是错的,所以这个悖论是无意义的。
9. 猜测悖论:我不能进行这个陈述的真伪判断。
这个悖论的解法是,这个陈述是自指陈述,无法判断它的真假,因为它所涉及的概念是无法定义的。
10. 猴子与香蕉悖论:猴子需要借助箱子才能拿到香蕉,但如果猴子拿了箱子,就无法拿到香蕉。
这个悖论的解法是,猴子可以先拿到香蕉,再把箱子推过来,这样就可以拿到香蕉了。
世界上著名的十大悖论
1、鹰和鸽子悖论:即鹰能抓住鸽子,鸽子也能抓住鹰,结果导致它们都不能抓住对方。
大家被这个悖论困惑了很久,令人费解的地方在于可以任意假设一种情况,另一种情
况会自动发生变化。
2、肯德尔悖论:表明宇宙可能不存在,即如果宇宙是有限的,它就不可能存在。
它
把我们带到了即使宇宙存在,它也可能不存在的极端情况。
3、拯救悖论:表明上帝不可能同时既无法拯救每个人,又要拯救他们。
4、矛盾悖论:即每一个事实都可以被武断地断定是绝对的事实,但同时都可以被现
实反驳。
5、苏格拉底的等式悖论:即苏格拉底说“凡事都可以怀疑,即我们也可以怀疑‘凡
事都可以怀疑’本身”。
这也导致了一种矛盾,即“无法怀疑”。
6、文森特·萨缪尔斯的“羊”悖论:即文森特曾经说过:“一只羊在一棵树上安家,但它同时又不在那棵树上。
”,即它既在又不在。
7、两箭悖论:指宙斯关押了两个英雄,一个英雄只有一支箭,但另一个英雄拥有足
够的箭头来杀完两个人。
但另一个英雄的箭头会在被试图最终放出时耗尽。
8、亨利·奥斯特的傻瓜悖论:他曾向上帝求助,祈求做一个傻傻的人,可以然而,
就算如此,上帝仍然不会给他一个真正的傻傻的答案,因为他无法区分真正的傻瓜和一个
假装傻瓜的人。
9、庞贝悖论:表明对于所有的可能性,它们既能被支持,又能证明自己是不可能的,因此它们都证明自己都是可能的,这又引出了深思熟虑的悖论。
10、假舌悖论:指西方神话中的假舌的悖论,即它既能说真话又能说假话。
所以,它
既具备说真话的能力,又具备说假话的能力,令人费解。
芝诺提出的四十五个悖论是什么?芝诺(埃利亚) (Zeno of Elea),古希腊数学家、哲学家。
约公元前490年生于意大利半岛南部的埃利亚;约公元前425年卒.芝诺生活在古代希腊的埃利亚城邦.他是埃利亚学派的著名哲学家巴门尼德(Parmenides)的学生和朋友.关于他的生平,缺少可靠的文字记载.柏拉图在他的对话《巴门尼德》篇中,记叙了芝诺和巳门尼德于公元前5世纪中叶去雅典的一次访问.其中说:“巴门尼德年事已高,约65岁;头发很白,但仪表堂堂.那时芝诺约40岁,身材魁梧而美观,人家说他已变成巴门尼德所钟爱的了。
”按照以后的希腊著作家们的意见,这次访问乃是柏拉图的虚构.然而柏拉图在书中记述的芝诺的观点,却被普遍认为是相当准确的.据信芝诺为巴门尼德的“存在论”辩护.但是不象他的老师那样企图从正面去证明存在是“一”不是“多”,是“静”不是“动”,他常常用归谬法从反面去证明:“如果事物是多数的,将要比是‘一’的假设得出更可笑的结果。
”他用同样的方法,巧妙地构想出一些关于运动的论点.他的这些议论,就是所谓“芝诺悖论”.芝诺有一本著作《论自然》.在柏拉图的《巴门尼德》篇中,当芝诺谈到自己的著作时说:“由于青年时的好胜著成此篇,著成后,人即将它窃去,以致我不能决断,是否应当让它问世.”公元5世纪的评论家普罗克洛斯(Proclus)在给这段话写的评注中说,芝诺从“多”和运动的假设出发,一共推出了40个各不相同的悖论.芝诺的著作久已失传,亚里士多德的《物理学》和辛普里西奥斯(Simplici-us)为《物理学》作的注释是了解芝诺悖论的主要依据,此外还有少量零星残篇可提供佐证.现存的芝诺悖论至少有8个,其中关于运动的4个悖论尤为著名.芝诺因其悖论而著名,并因此在数学和哲学两方面享有不朽的声誉.一则广为流传但情节说法不一的故事说,芝诺因蓄谋反对埃利亚(另一说为叙拉古)的僭主,而被拘捕、拷打,直至处死.下面是芝诺关于运动的4个著名悖论: 一。
二十四种常见的逻辑谬误第一条:稻草人你歪曲了别人的观点,使你自己能够更加轻松的攻击别人.你夸张、歪曲,甚至凭空创造了别人的观点,来让你本身的观点显得更加合理.这是一种极端不诚实的行为,这不但影响了理性的讨论,也影响了你自己观点的可信度.因为如果你可以负面的歪曲别人的观点,你就有可能从正面歪曲自己的观点.例子:小明说国家应该投入更多的预算来发展教育行业,小红回复到:"想不到你这么不爱国,居然想减少国防开支,让外国列强有机可乘." 小红就犯了稻草人谬误.------------------------------------------------------------------------------------------------------------------------------ 第二条:错误归因你从两个事物可能存在相关性,就得出一个事物是造成另一个事物的原因.你看到了两个事物同时存在,就觉得其中一个事物是另一个的起因.你的错误在于,同时存在的两个事物未必有因果关系,可能这两个事物有共同的起因,或者两个事物根本没有因果关系,它们直接的共存只是巧合.一个事情比另一个事情先发生同样不能说明两个事物肯定存在因果性.例子:小红指出,过去几个世纪全球海盗数量减少,全球温度在升高,从而得出是海盗的数量的减少造成了气候变化,海盗能够降低全球温度.小红犯了错误归因的谬误.------------------------------------------------------------------------------------------------------------------------------ 第三条:诉诸感情你试图通过操作别人的感情来取代一个有力的论述.你操作的感情可能包括恐惧、嫉妒、怜悯、骄傲等等.一个逻辑严谨的论述可能激起别人的情感波动,但是如果只用感情操作而不用逻辑论述,那你就犯了诉诸感情的错误.每个心智健康的人都会受感情影响,所以这种谬误很有效,但这也是为什么这种谬误是低级和不诚实的手段.例子:小红在饭店看到小明吃狗肉,于是上前训斥:"你怎么可以吃狗肉,小狗多么可爱,就像小朋友一样,你忍心伤害小朋友吗?" 小红犯了诉诸感情的谬误.------------------------------------------------------------------------------------------------------------------------------ 第四条:谬误谬误你看到别人的论述水平很低,或者别人的论述里面有谬误,就认为别人的观点一定是错误的.很多时候,辩论的赢家获胜并不是因为观点正确,而是因为辩论技巧更好.作为一个理性的人,你不能因为别人的论述中存在谬误或者错误,就认为别人的观点一定是错误的.例子:一个提倡健康饮食的人在电视上发表了很荒唐的饮食理论来推广健康饮食理念,小红看后觉得健康饮食就是骗人的,于是开始每天暴饮暴食.小红犯了谬误谬误.------------------------------------------------------------------------------------------------------------------------------ 第五条:滑坡谬误你搞得好像如果A发生了,那么Z也一定会发生会,以此来表示A不应该发生.你不讨论现下的事物<A>,而是把讨论重心转移到了意淫出来的极端事物<Z>.因为你没能给出任何证据来证明A的发生一定会造成极端事物Z的发生,所以这是一种诉诸恐惧的谬误,也影响了人们讨论A时候的客观性.例子:小红反对同性恋婚姻,因为她认为如果我们允许同性恋结婚,那么就会有人想要和桌子、椅子结婚.小红犯了滑坡谬论.------------------------------------------------------------------------------------------------------------------------------ 第六条:人身攻击你讨论时针对对方的人格、动机、态度、地位、阶级或处境等,而进行攻击或评论,并以此当作提出了理据去驳斥对方的论证或去支持自己的论点人身攻击时不一定是直接进行攻击,也可能是通过背后捅刀子、暗示听众等等方式来造成对对方人格的质疑.你试图用你对别人人格的攻击来取代一个有力的论述.更多关于人身攻击.例子:当小明提出了一个很合理的关于基础设施建设的提议的时候吗,小红说她不相信任何小明说的话,因为小明不爱国,经常批评政府,不懂得感恩.小红犯了人身攻击的谬误.------------------------------------------------------------------------------------------------------------------------------ 第七条:诉诸虚伪你不正面回应别人对你的批评,而是用批评别人作为你的回复——"你不也曾经....."你想要把通过用批评回应批评的方式,免去你为自己辩护的责任.你通过这种方法来暗示对方是个虚伪的人,但是不管别人虚伪与否,你都只是在回避别人对你的批评.例子:小明在和小红争论的时候指出小红犯了一个逻辑谬误,小红不正面捍卫自己,反而回应:"你之前也犯了逻辑谬误." 小红在这里犯了诉诸虚伪的谬误------------------------------------------------------------------------------------------------------------------------------ 第八条:个人怀疑你因为自己不明白或者知识水平不够,就得出一个事物可能是假的.一些很复杂的概念,比如生物进化等等需要一些基本的理解和知识.有些人因为不理解这些复杂的概念,而觉得这些东西是错误的.例子:小红指着块石头说:"你说进化论是真的,那你让这块石头进化人给我看看."小红犯了个人怀疑的谬误.------------------------------------------------------------------------------------------------------------------------------ 第九条:片面谬误当你的观点被证明是错误的时候,你用特例来给自己开脱.人类都不喜欢被证明是错的,所以当他们被证明是错的时候总会想办法给自己开脱.人总是觉得自己以前觉得正确的东西必须是正确的,所以总能找到理由让自己阿Q一下.只有诚实和勇敢的人才能面对自己的错误和过去,并且承认自己犯错了.例子:小张说自己有特异功能,能用塔罗牌算出未出生小孩的性别,但是孩子生下来后发现猜错了,于是他就说是算命的人缺乏信仰,或者心灵不诚.小张犯了片面谬误.------------------------------------------------------------------------------------------------------------------------------ 第十条:诱导性谬误你在提出问题的时候加入了诱导的成分,使得对方只能按着你的意思来回答.常见的逼供或诱供就是.你试图用诱导性的问题来逼对方回答你提出的低级问题,从而破坏理性的讨论,打乱对方的逻辑.例子:小张怀疑自己的妻子搞外遇,为了一探究竟,于是就问她:"谁谁的屁股上是不是有个胎记?"小张使用的就是诱导性问题.------------------------------------------------------------------------------------------------------------------------------第十一条:举证责任你认为举证责任不在提出观点的人,而在于质疑观点的人.当有人提出一个观点结果被人质疑后,你认为举证的责任不在提出观点的人,而在质疑者.不能证伪一个事物,或者举出反例,并不能证明这个事物的合理性,这都是举证责任.当然,如果只因为没有足够的证据说明一个事物是合理的,也并不能肯定的说明它是不合理的.例子:小张说他相信宇宙是一个全知全能的神创造的,因为没有人能证明这个神不存在,所以神是存在的.小张就犯了举证责任的谬误.------------------------------------------------------------------------------------------------------------------------------ 第十二第:语义模糊你用双关语或者意思存有歧义的语言来歪曲事实.当你被别人批评的时候又利用这些有歧义的语言作为自己的挡箭牌,为自己的利益辩护.例子:地上一个猴,树上骑个猴,一共几个猴?------------------------------------------------------------------------------------------------------------------------------ 第十三条:赌徒谬误你认为随机事物的发生和之前发生的事情是有相关性的.有人在看到独立的随机事件〔比如抛硬币〕时,总觉得会和前面的事情有相关性〔前面连着五个正面,下一个肯定要是反面了.〕------------------------------------------------------------------------------------------------------------------------------ 第十四条:乐队花车你试图说明因为很多人都在做同一件事情/相信同一件事物,这件事情就是对的.一个事物/观点的流行程度和它本身是否合理没有关系.地球是球形的,在人们相信地球是平的时代地球也是球形的,地球才不管你信不信它呢.例子:看到《货币战争》怎么那么畅销,小红相信一定是罗斯柴尔德和共济会在背后操纵着整个世界.小红犯了乐队花车谬误.------------------------------------------------------------------------------------------------------------------------------ 第十五条:诉诸权威你利用一个权威人物/机构的观点来取代一个有力的论述.要证明一个观点,只是摘录别人的观点是不够的, 至少要知道所提到的权威为什么有那样的观点.因为权威人物/机构也是会犯错误的,所以不能无条件的假设合理性.当然,权威人物/机构的观点有可能是对的,所以不能只因为对方使用了诉诸权威的谬误就认定这个观点肯定是错的.例子:小红不知道怎么反驳进化论,于是就说:"我老公孙越是大科学家,他觉得进化论是错的."小红犯了诉诸权威的额谬误.------------------------------------------------------------------------------------------------------------------------------ 第十六条:合成谬误你认为一个总体的组成部分所具有的特性,对于这个总体的其它部分也是普适的.很多时候,对于一个组成部分存在合理性的事物,对于其它组成部分并不具有合理性.我们常能观察到事物之间的一致性,所以当一致性不存在的时候也会偏见的认为有一致性.例子:小红买了辆自行车,当她看到自行车的车座是人造革的时候,她就觉得自行车的其它部位也是人造革的.------------------------------------------------------------------------------------------------------------------------------第十七条:没有真正的苏格兰人你提出了一个观点,并收到了别人的批评,你试图用"诉诸纯洁"的方式来捍卫自己的观点.你试图通过马后炮和修改标准的方式来维护自己那有缺陷的观点.例子:小红:"所有荷兰人都喜欢喝胡辣汤".小明:"孙越就是荷兰人,他就不喜欢喝胡辣汤."小红:"好吧,所有[真正的]荷兰人都喜欢喝胡辣汤."<——小红这里就犯了"没有真正的苏格兰人"的谬误------------------------------------------------------------------------------------------------------------------------------ 第十八条:基因谬误你通过一个事物的出身来判断它的好坏.你试图逃避正面的讨论,而转而讨论事物的出处.这种做法和本文第六条"人身攻击"类似,都是想试图通过已有的负面印象来从侧面攻击对方,却不能正面的回应对方的论述.例子:小明:"孙越不喜欢喝胡辣汤."小红:"孙越是荷兰人,怎么会不喜欢喝胡辣汤?"<——小红这里就犯了基因谬误------------------------------------------------------------------------------------------------------------------------------ 第十九条:非黑即白你把黑和白作为仅有的可能,却忽略了其它可能性的存在.你使用了简单粗暴的假二分法,来掩盖其它可能性的存在.你想通过非黑即白的选择来误导讨论,破坏辩论的建设性.例子:在谈到反恐战争时,总统说如果你不支持反恐战争,你就是支持恐怖分子.总统这里犯了非黑即白的谬误.------------------------------------------------------------------------------------------------------------------------------ 第二十条:窃取论点你采用循环论证的方法来证明一个被包含在前提里面的观点.这是一种逻辑智商破产的谬误,因为你把你的前提假设默认为真的,然后利用循环论证的方式来证明它.例子:KengDie教的经文《KengDie Sutra》里面说的东西都是真理,因为在《KengDie Sutra》第一章第二段里面提到了"KengDie所述都是真理."------------------------------------------------------------------------------------------------------------------------------ 第二十一条:诉诸自然你认为一个事物是"自然"的,所以它是合理、必然并且更好的.一个事物是自然的并不一定代表它就更好.互相杀戮是大自然中普遍存在的现象,但是大多数人都认为我们不应该互相屠杀.例子:小红认为吃草药肯定比吃人工制造的药有效,因为草药更加"自然".小红犯了诉诸自然的谬误------------------------------------------------------------------------------------------------------------------------------ 第二十二条:轶事证据你试图用个人经验或者单独事例来取代逻辑论述或者有力的证据.比起复杂而确凿的证据来说,轶事证据更容易获得,但是却要粗浅很多.在绝大多数情况下,量化衡量的科学数据/确凿证据比个人经验/轶事要更加可信.例子:小红爷爷是个30年的老烟枪,现在80多岁身体还很健康,小红依次得出吸烟对身体无害的结论.小红犯了轶事证据的谬误.------------------------------------------------------------------------------------------------------------------------------ 第二十三条:德克萨斯神枪手你在大量的数据/证据中小心的挑选出对自己的观点有利的证据,而不使用那些对自己不利的数据/证据.你先开了一枪,然后在子弹击中的地方画上靶心,搞得自己真是个神枪手一样.你先决定了自己的立场,然后才开始找证据,并且你只找对自己有利的,而对于那些对自己不利的就选择性忽略.例子:红X字会为了证明自己尽到了职责,到处宣传自己拨出了####的善款,却只字不提自己公款消费的奢侈无度.红X字会犯了"德克萨斯神枪手"谬误------------------------------------------------------------------------------------------------------------------------------ 第二十四条:中间立场你觉得两个极端观点的妥协,或者说中间立场,肯定是对的.虽然大多数时候,真理确实存在于两种极端的中间地带,但是你不能轻易的认为只要是处于中间立场的观点就一定是正确的.谎言和实话的中间地带依然是谎言.例子:小红认为疫苗会造成儿童自闭症,孙越从科学研究的结论中得出结论认为疫苗不会造成儿童自闭症,小明认为两者观点的妥协——疫苗会造成儿童自闭症,但不是全部的儿童自闭症——才是正确的.小明犯了中间立场的谬误.------------------------------------------------------------------------------------------------------------------------------。
数学上的悖论
数学上有很多著名的悖论,以下是其中一些示例:
1. 赛兹悖论(Russell's paradox):由英国数学家伯特兰·罗素提出的悖论,涉及到集合论中的自指问题。
简而言之,它证明了不存在一个包含所有不包含自己的集合的集合。
2. 卡塔兰数悖论:卡塔兰数是组合数学中的一种数列,用于描述许多组合问题。
然而,当使用相关的递归公式进行计算时,很容易出现负数结果,这与卡塔兰数的定义相矛盾。
3. 第二哥德尔不完备性定理:哥德尔于1931年提出的两个不完备性定理表明,任何基于自然数的形式理论都存在无法被证明或证伪的命题。
这意味着在数学领域中,总会存在无法确定真伪的命题,从而引发了对数学基础和形式系统的思考。
这些悖论都挑战了数学体系的完备性、一致性或者自指性,进一步推动了数学基础研究的发展。