解编码器基本原理-很透彻
- 格式:docx
- 大小:34.59 KB
- 文档页数:4
汇总丨一文掌握编码器的工作原理!发现更多电气知识电气达人编码器的定义与功能在数字系统里,常常需要将某一信息(输入)变换为某一特定的代码(输出)。
把二进制码按一定的规律编排,例如8421码、格雷码等,使每组代码具有一特定的含义(代表某个数字或控制信号)称为编码。
具有编码功能的逻辑电路称为编码器。
编码器有若干个输入,在某一时刻只有一个输入信号被转换成为二进制码。
如果一个编码器有N个输入端和n个输出端,则输出端与输入端之间应满足关系N≤2n。
例如8线—3线编码器和10线—4线编码器分别有8输入、3位二进制码输出和10输入、4位二进制码输出。
▼ 4线—2线编码器下面分析4输入、2位二进制输出的编码器的工作原理。
根据逻辑表达式画出逻辑图如图1所示。
▲图1该逻辑电路可以实现如表1所示的功能,即当I0~I3中某一个输入为1,输出Y1Y0即为相对应的代码,例如当I1为1时,Y1Y0为01。
这里还有一个问题请读者注意。
当I0为1,I1~I3都为0和I0~I3均为0时Y1Y0 都是00,而这两种情况在实际中是必须加以区分的,这个问题留待后面加以解决。
当然,编码器也可以设计为低电平有效。
▼ 键盘输入8421BCD码编码器计算机的键盘输入逻辑电路就是由编码器组成。
图2是用十个按键和门电路组成的8421码编码器,其功能如表2所示,其中S0~S9代表十个按键,即对应十进制数0~9的输入键,它们对应的输出代码正好是8421BCD码,同时也把它们作为逻辑变量,ABCD 为输出代码(A为最高位),GS为控制使能标志。
对功能表和逻辑电路进行分析,都可得知:①该编码器为输入低电平有效;②在按下S0~S9中任意一个键时,即输入信号中有一个为有效电平时,GS=1,代表有信号输入,而只有S0~S9均为高电平时GS=0,代表无信号输入,此时的输出代码0000为无效代码。
由此解决了前面提出的如何区分两种情况下输出都是全0的问题。
▲ 图2▲ 表2▼ 优先编码器上述机械式按键编码电路虽然比较简单,但当同时按下两个或更多个键时,其输出将是混乱的。
编码器工作原理引言概述:编码器是一种用于将机械运动转换为数字信号的装置,广泛应用于各种自动化系统中。
它可以精确地测量物体的位置、速度和方向,从而实现精准控制和监测。
本文将介绍编码器的工作原理,以帮助读者更好地理解其在自动化系统中的作用。
一、光电编码器1.1 光电编码器的结构:光电编码器由光源、光栅、接收器和信号处理电路组成。
光源发出光束,经过光栅反射或透过后,被接收器接收并转换成电信号,信号处理电路将电信号转换成数字信号。
1.2 光电编码器的工作原理:当物体运动时,光栅会随之移动,使得光束的强度发生变化。
接收器接收到的光信号也会随之变化,通过信号处理电路将这些变化转换成数字信号,从而确定物体的位置和速度。
1.3 光电编码器的应用:光电编码器广泛应用于数控机床、机器人、印刷设备等自动化系统中,用于实现位置控制、速度控制和角度测量等功能。
二、磁编码器2.1 磁编码器的结构:磁编码器由磁性标记、磁传感器和信号处理电路组成。
磁性标记可以是永磁体或磁性条,磁传感器用于检测磁场的变化,信号处理电路将检测到的信号转换成数字信号。
2.2 磁编码器的工作原理:当物体运动时,磁性标记会随之移动,磁传感器检测到磁场的变化,并将其转换成电信号。
信号处理电路将电信号转换成数字信号,确定物体的位置和速度。
2.3 磁编码器的应用:磁编码器适用于高温、高速、腐蚀性环境下的自动化系统,如汽车发动机、风力发电机等,用于实现位置控制和速度控制。
三、绝对值编码器3.1 绝对值编码器的结构:绝对值编码器由多个独立的编码单元组成,每个编码单元对应一个位置码。
通过读取每个位置码的状态,可以确定物体的绝对位置。
3.2 绝对值编码器的工作原理:每个编码单元都有一个唯一的位置码,当物体运动时,读取每个位置码的状态,可以确定物体的绝对位置,无需重新归零。
3.3 绝对值编码器的应用:绝对值编码器广泛应用于需要高精度位置控制和无需重新归零的自动化系统中,如医疗设备、航空航天设备等。
编码器工作原理编码器是一种常见的电子设备,它在数字通信系统中起着至关重要的作用。
编码器的工作原理是将输入的模拟信号或数字信号转换成特定的编码格式,以便在传输或存储过程中能够更有效地使用和处理。
本文将详细介绍编码器的工作原理,包括其基本原理、分类和应用。
首先,让我们来了解编码器的基本原理。
编码器的核心功能是将输入的信号转换成特定的编码格式,这个过程通常包括两个步骤,采样和量化。
采样是指对输入信号进行周期性的取样,将连续的模拟信号转换成离散的数字信号。
而量化则是将采样得到的数字信号转换成特定的编码格式,通常是通过将信号的幅度近似为最接近的离散数值来实现。
通过这样的处理,编码器能够将输入信号转换成数字形式,以便在数字通信系统中进行传输和处理。
在实际应用中,编码器根据其工作原理和功能特点可以分为多种类型。
最常见的编码器包括模数转换器(ADC)、脉冲编码调制(PCM)、压缩编码器等。
模数转换器是将模拟信号转换成数字信号的重要设备,它通常包括采样保持电路、量化电路和编码电路。
脉冲编码调制是一种将模拟信号转换成脉冲信号的编码方式,它通过对信号进行采样和量化,然后将结果转换成脉冲信号进行传输。
压缩编码器则是将信号进行压缩编码,以减少传输和存储所需的带宽和空间。
除了以上提到的编码器类型,还有许多其他类型的编码器,它们在不同的应用场景中发挥着重要作用。
例如,视频编码器和音频编码器分别用于对视频和音频信号进行压缩编码,以便在数字电视、音频播放器等设备中进行传输和播放。
此外,编码器还广泛应用于通信系统、控制系统、传感器等领域,为数字信号的处理和传输提供了重要支持。
综上所述,编码器是一种将模拟信号或数字信号转换成特定编码格式的重要设备,它的工作原理包括采样和量化两个基本步骤。
根据其功能特点,编码器可以分为不同类型,包括模数转换器、脉冲编码调制、压缩编码器等。
这些编码器在数字通信系统、多媒体设备、控制系统等领域都发挥着重要作用,为数字信号的处理和传输提供了重要支持。
编码器工作原理编码器是一种用于将输入信号转换成特定输出信号的设备。
它广泛应用于自动控制系统、通信系统、数码产品等领域。
本文将详细介绍编码器的工作原理和其常见的工作方式。
一、编码器的基本原理编码器的基本原理是将输入信号转换成特定的输出信号,以实现信息的编码和传输。
它通常由输入部份、编码部份和输出部份组成。
1. 输入部份:输入部份接收来自外部的输入信号,可以是电流、电压、光信号等。
输入信号的特点决定了编码器的适合范围和工作方式。
2. 编码部份:编码部份是编码器的核心部份,它将输入信号转换成特定的编码形式。
常见的编码方式有脉冲编码、格雷码、二进制编码等。
不同的编码方式适合于不同的应用场景。
3. 输出部份:输出部份将编码部份生成的编码信号转换成输出信号,可以是电流、电压、光信号等。
输出信号的特点决定了编码器的输出方式和使用方式。
二、编码器的工作方式编码器的工作方式主要分为绝对编码和增量编码两种。
1. 绝对编码:绝对编码器可以直接读取出物体的精确位置信息,不需要通过计数或者复位等操作。
它的工作原理是将每一个位置对应一个惟一的编码,通过读取编码信号来确定物体的位置。
绝对编码器通常具有高精度和高分辨率的特点,适合于对位置要求较高的应用。
2. 增量编码:增量编码器通过计数脉冲的方式来确定物体的位置。
它的工作原理是将物体的运动转换成脉冲信号,通过计数脉冲的数量和方向来确定物体的位置和运动状态。
增量编码器通常具有较低的成本和较简单的结构,适合于对位置要求不太严格的应用。
三、编码器的应用领域编码器广泛应用于各个领域,以下是一些常见的应用领域:1. 自动控制系统:编码器可以用于测量和控制机械设备的位置、速度和角度等参数,实现精确的运动控制。
2. 通信系统:编码器可以用于数字通信系统中的信号编码和解码,实现信息的传输和处理。
3. 数码产品:编码器可以用于数码相机、数码音乐播放器等产品中的位置和控制功能,提供更好的用户体验。
编码器构造与工作原理讲解
编码器是一种数字电路,用于将模拟信号转换为数字信号的一种装置。
它的工作原理是通过采样、量化和编码三个步骤来实现。
首先,采样器将模拟信号进行采样,即在连续时间内取出一系列离散时间点的信号值。
然后,量化器将采样得到的信号进行量化,即将连续的信号值映射到离散的信号级别上,形成一组离散的数字值。
最后,编码器将量化后的数字信号编码成二进制码字。
具体来说,在采样阶段,采样器根据设定的采样率对模拟信号进行采样,得到一组采样值。
采样率越高,采样精度越高,但同时需要更大的存储容量。
在量化阶段,量化器将采样得到的信号值映射到一组离散的信号级别上。
常用的量化方法有线性量化和非线性量化。
线性量化将连续的信号值均匀映射到离散的信号级别上,而非线性量化则根据信号的特性进行不均匀映射,以提高信号的编码效率。
最后,在编码阶段,编码器将量化后的数字信号编码成二进制码字。
常用的编码方法包括脉冲码调制(PCM)、差分脉冲
编码调制(DPCM)和编码调制(DM)等。
编码后的数字信
号可以更容易地传输和存储,且具有较好的抗干扰性和可靠性。
整个编码器的构造主要由采样器、量化器和编码器组成。
采样器采集模拟信号,量化器将采样值量化为离散信号,编码器将量化后的信号编码为二进制码字。
通过这三个步骤,编码器能够将模拟信号转换为数字信号,实现信号的数字化处理和传输。
编码器工作原理编码器是一种用来将输入信号转换成特定编码形式的设备,它在各种领域都有着广泛的应用,比如数字通信、控制系统、计算机等。
编码器的工作原理是通过将输入信号进行编码,然后输出特定的编码信号,以便于传输、存储或者处理。
在这篇文档中,我们将深入探讨编码器的工作原理及其应用。
首先,我们来了解一下编码器的基本结构。
编码器通常由输入端、编码电路和输出端组成。
输入端接收来自外部的信号,比如声音、图像、运动等,然后将这些信号传输给编码电路。
编码电路会根据特定的编码规则,将输入信号转换成对应的编码形式,最后输出给输出端。
接下来,让我们详细了解一下编码器的工作原理。
编码器的工作原理主要包括信号采样、量化和编码三个步骤。
首先是信号采样。
信号采样是指将连续的模拟信号转换成离散的数字信号的过程。
在这一步中,编码器会以一定的时间间隔对输入信号进行采样,获取一系列离散的信号样本。
接着是量化。
量化是指将采样得到的模拟信号样本转换成数字信号的过程。
在这一步中,编码器会根据一定的量化规则,将连续的模拟信号样本转换成离散的数字信号值。
最后是编码。
编码是指将量化得到的数字信号转换成特定编码形式的过程。
在这一步中,编码器会根据特定的编码规则,将量化得到的数字信号转换成对应的编码形式,比如二进制、格雷码等。
除了以上的基本工作原理,编码器还有许多不同的类型和应用。
常见的编码器类型包括数字编码器、模拟编码器、旋转编码器等。
每种类型的编码器都有着不同的工作原理和适用范围,比如数字编码器适用于数字信号的编码和传输,而模拟编码器适用于模拟信号的编码和处理。
在实际应用中,编码器有着广泛的用途。
比如在数字通信系统中,编码器可以将声音、图像等模拟信号转换成数字信号,以便于传输和处理;在控制系统中,编码器可以将机械运动转换成数字信号,以便于监控和控制;在计算机系统中,编码器可以将各种数据转换成特定的编码形式,以便于存储和处理。
总的来说,编码器是一种非常重要的设备,它通过将输入信号进行采样、量化和编码,将其转换成特定的编码形式,以便于传输、存储或者处理。
编码器的工作原理编码器是一种数字电子器件,其工作原理是将输入信号转换为对应的数字编码输出。
它在通信系统、自动控制、数字电路和计算机系统等领域中得到广泛应用。
本文将介绍编码器的工作原理以及常见的编码器类型。
一、编码器的工作原理:1.信号采样:在编码器中,输入信号通常是模拟信号或数字信号。
在信号采样阶段,输入信号会被周期性地采样,将连续的信号转换为离散的信号。
采样的频率取决于实际应用的要求以及系统的采样率。
2.编码处理:在信号采样后,采样的信号需要被编码成数字形式的编码输出。
编码过程是将离散信号映射为二进制编码的过程。
编码器根据特定的编码规则将信号的不同状态映射为二进制编码。
常见的编码规则有格雷码、二进制编码等。
二、编码器的分类:编码器根据信号特性和应用领域的不同,可以分为多种类型。
常见的编码器有以下几种。
1.绝对值编码器:绝对值编码器将每个位置上的输入信号映射为唯一的编码输出。
常见的绝对值编码器有二进制编码器和格雷码编码器。
二进制编码器将每个位置上的输入信号映射为二进制数,例如4位二进制编码器可以表示0-15的数字。
格雷码编码器是一种独特的编码方式,相邻的任意两个编码仅有一个位数发生变化,以减少误差和问题。
2.相对值编码器:相对值编码器将信号的变化状态编码为相对于前一状态的变量。
常见的相对值编码器有增量式编码器和霍尔效应编码器。
增量式编码器将每个位置上的输入信号与上一状态进行比较,以计算输出信号的变化量。
霍尔效应编码器通过利用霍尔传感器感测磁场的变化来实现编码。
三、编码器的应用:1.通信系统:在通信系统中,编码器用于将模拟信号转换为数字信号,以便传输和处理。
例如,音频编码器用于将声音信号编码为数字信号,以便在数字音频播放器和计算机上播放。
2.自动控制系统:在自动控制系统中,编码器用于检测和测量旋转的位置和速度。
例如,在机械系统中,旋转编码器用于测量电机的角度和速度,并将其转换为数字信号,以便控制系统对电机进行精确控制。
编码器的若干问题
所有的工作原理就不做过分详细的解释介绍,网络上很多,主要面对一些初学者,这里主要讲解一些应用时候的疑问,以及编码器分类的疑问,对你很大很好的帮助
1.关于旋转变压器:处理信号的时候,可以去除高频部分,从而可
以实现输出的信号接近正余弦信号,输入信号一般在7V/10KHZ。
优点是抗震,耐污性能好,耐腐蚀。
一般都是奇数的极对数,但是对于多极对数而言,一般技术多与电机的极数相等。
2.增量式编码器:
工作原理:①利用发出的A与B的相位差信号来判断正反转,例如A在B前90度那么是正转。
②而且每转一圈就会有一个零位参考点。
信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、
NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL 也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。
信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。
如单相联接,用于单方向计数,单方向测速。
A.B两相联接,用于正反向计数、判断正反向和测速。
A、B、Z三相联接,用于带参考位修正的位置测量。
A、A-,
B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电
磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。
对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。
对于HTL的带有对称负信号输出的编码器,信号传输距离可达300米。
缺点:有零点累计误差,抗干扰能力较差。
对于HTL来说,一般采用单极信号传输(A+、B+、Z+),两者都需要寻原点,寻原点的时候要找到零点信号
3.绝对值编码器(也可以带Sin/Cos增量信号)
类型有下列形式,
3
在测量时断电的情况下,对于Resolver而言,测量的范围是(-180——+180)。
SEK的单圈而言,(0——360)假如显示-8.那么断电后,重新上电的结果应该是352度。
SEL多圈,则是(0-4096圈)4096=16*16*16,应用在可以正反转的场合较好,不浪费编码器的用途。
对于SSI而言,海德汉有一对同步时针,CLK+/CLK-,还有DATE+/DATE-并且各自的信号成对双绞线,传送时候有协议,所以必须把数据传送完毕,
4.补充知识
对于系统的精度而言,一般应该综合的看,并不是电机的精度高,系统的精度就高,对于编码器而言,可以衡量的精度有线数,就是分辨率,转一圈输出的脉冲数,例如1000线的编码器,360度除以线数就是一个脉冲表示的度数,比如1000线的旋转编码器,那么一个脉冲表示转了0.36度。
灭弧装置,当感性负载较大,突然断电的时候,会有较大的电流电压,产生较大的高次谐波,那么周围的电线像天线一样接受高次谐波。
对于线缆相交的时候,应正交较好,可以隔开干扰。
线数就是每转的脉冲数,分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。
一个16位的绝对旋转编码器,他的分辨率就是2的16次方分之一,因为编码器采用4频,所以他每转一圈就是2的16次方/4=8192,这里的8192就是线数。
5。