第3章图像边缘提取与分割
- 格式:ppt
- 大小:219.07 KB
- 文档页数:58
第六章医学图像分割医学图像分割是医学图像处理和分析的关键步骤,也是其它高级医学图像分析和解释系统的核心组成部分。
医学图像的分割为目标分离、特征提取和参数的定量测量提供了基础和前提条件,使得更高层的医学图像理解和诊断成为可能。
本章首先对医学图像分割的意义、概念、分类及其研究现状进行了概述,然后分别对基于阈值、基于边缘、基于区域和基于模式识别原理的各种常见医学图像分割方法作了详尽而系统的介绍,接着在对图像分割过程中经常用到的二值图像数学形态学基本运算作了简单叙述之后,较为详细地讨论了医学图像分割效果和分割算法性能的常用评价方法。
第一节医学图像分割的意义、概念、分类和研究现状医学图像分割在医学研究、临床诊断、病理分析、手术计划、影像信息处理、计算机辅助手术等医学研究与实践领域中有着广泛的应用和研究价值,具体表现为以下几个方面:(1) 用于感兴趣区域提取,便于医学图像的分析和识别。
如不同形式或来源的医学图像配准与融合,解剖结构的定量度量、细胞的识别与计数、器官的运动跟踪及同步等;(2)用于人体器官、组织或病灶的尺寸、体积或容积的测量。
在治疗前后进行相关影像学指标的定量测量和分析,将有助于医生诊断、随访或修订对病人的治疗方案; (3)用于医学图像的三维重建和可视化。
这有助于外科手术方案的制定和仿真、解剖教学参考及放疗计划中的三维定位等;(4)用于在保持关键信息的前提下进行数据压缩和传输。
这在远程医疗中对实现医学图像的高效传输具有重要的价值;(5)用于基于内容的医学图像数据库检索研究。
通过建立医学图像数据库,可对医学图像数据进行语义学意义上的存取和查找。
所谓医学图像分割,就是根据医学图像的某种相似性特征(如亮度、颜色、纹理、面积、形状、位置、局部统计特征或频谱特征等)将医学图像划分为若干个互不相交的“连通”的区域的过程,相关特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同,也就是说在区域边界上的像素存在某种不连续性。
Canny边缘检测分析毕业论文目录引言 (1)第一章图像分割与边缘检测 (2)1.1图像分割简介 (2)1.2图像分割定义 (2)1.3图像分割基本原理 (3)第二章基于边界的分割——边缘检测 (6)2.1边缘的类型 (6)2.2边缘的类型 (6)2.3边缘的判定 (7)第三章常见边缘检测算法的研究与分析 (9)3.1边缘检测过程概述 (9)3.2典型一阶边缘检测算子 (9)3.2.1梯度算子 (10)3.2.2 Roberts边缘算子 (10)3.2.3 Sobel算子 (11)3.2.4 Prewitt算子 (13)3.3 典型二阶边缘检测算子 (14)WORD版本.3.3.1 Laplacian算子 (14)3.3.2 LOG算子 (16)3.4 各边缘检测算子的仿真结果分析 (18)第四章 Canny边缘检测算子 (20)4.1 Canny边缘检测基本原理: (20)4.2 Canny边缘算子评价指标: (20)4.2.1 Canny提出检测三准则【5】 (20)4.2.2边缘检测滤波器对性能指标的影响【10】 (22)4.2.3 尺度对性能指标的影响【10】 (23)4.3 Canny边缘检测流程 (24)4.4 Canny边缘检测仿真结果及分析 (28)第五章 Canny算子改进 (29)5.1对传统Canny算法局限性分析 (29)5.2滤波改进 (30)5.3阈值改进——自适应的阈值 (31)5.3.1最大熵原算法过程 (31)5.3.2最大熵算法的改进 (32)5.4改进的Canny算法的仿真实验 (33)第六章本实验结果及展望 (36)6.1 本算法的实验结果 (36)WORD版本.6.2实验结果分析 (39)6.3 展望 (39)结论 (40)致谢 (41)参考文献 (42)WORD版本.WORD版本.引言20世纪20年代,图像处理首次应用于改善伦敦和纽约之间海底电缆发送的图片质量,20世纪60年代中期,随电子计算机的发展得到普遍应用。
安徽建筑工业学院毕业设计(论文)课题视频序列图像分割及阴影抑制算法的研究专业电气工程及其自动化班级06城建电气2班学生姓名胡伟学号05290080117指导教师栾庆磊2010年6月5日摘要在智能视频监控领域、影视技术、多媒体应用技术中,常常需要检测出人体或其它物体,并将其与背景分离,即解决实时背景下目标的分割问题。
视频图像的目标分割结果,将对目标分类、跟踪及行为理解等后续处理产生重要影响。
图像分割多年里一直受到研究人员的重视,也提出了数以千计的算法。
现今比较流行的目标分割的方法,有不少是忽略阴影检测的,目标总是与阴影一起被检测出来。
阴影会引起目标的合并、目标形状的失真等一些严重问题,引起分割和跟踪错误。
由于阴影直接影响目标的检测,成为影响后续处理效果的关键因素,有必要进一步研究。
本课题拟根据图像处理的理论基础,对一些传统的边缘检测算子进行了理论分析,用仿真实验测试其边缘检测的效果,对比分析各边缘检测算法效果。
介绍几种常用的彩色空间以及彩色空间的转换算法,系统地阐述了图像分割的各种方法,分析总结了几种常用分割方法的优缺点。
选用RGB彩色空间,利用背景差分法对图像初步分割后,再利用区域生长法去除目标外部的噪声,分割出带影子的目标图像。
然后,分析总结了阴影检测的基本假设和一般框架,及国内外目前主流的阴影检测与抑制算法,指出了这些方法用于去除目标阴影时存在的问题。
针对不同图像的阴影和目标体的特点,拟设计一种去除阴影的算法。
基于边缘信息的阴影抑制算法适用于目标体边缘信息丰富,阴影边缘信息相对简单的阴影去除。
关键词图像分割阴影抑制AbstractIn the field of intelligent video surveillance,video technology,multimedia technology,often need to detect a human body or other objects,separate them with background,that is the context of solving real-time target segmentation. Video image object segmentation results,will target classification,tracking and behavior understanding such an important impact on subsequent processing. Image segmentation has been for many years in research attention,also raised thousands of algorithms.Goal of the current popular methods of segmentation, shadow detection,many are neglected,the goal is always to be detected, together with the shadow.The merger will cause the shadow of goals,objectives and some distortion of the shape of a serious problem,causing segmentation and tracking error.As the shadow directly affect target detection,a follow-up treatment effect affecting the key factors,the need for further research.The aim of this theory based on image processing based on some of the traditional edge detector is theoretically analyzed,using simulation experiments to test their effect on edge detection,contrast analysis of the effect of edge detection algorithm.Introduce some commonly used color space and color space conversion algorithm,systematically expounded the various methods of image segmentation,analyzes and summarizes the advantages and disadvantages of several commonly used e RGB color space, the background difference method using the initial segmentation of the image, then use region growing to remove the target of external noise,split the target image with a shadow.Then,the paper summarizes the basic assumptions shadow detection and the general framework of the current mainstream home and abroad shadow detection and suppression,that the goal of these methodsfor the removal of the existing problems in the shadow.Different images of the shadows and objectives of the body characteristics,be designed to remove the shadow of two algorithms.Based on Edge Information's shadow suppression algorithm is applied to the target of the edge information-rich,relatively simple shadow of the shadow edge removal。
摘要图像增强是指依据图像所存在的问题,按特定的需要突出一幅图像中的某些信息,同时,削弱或去除某些冗余信息的处理方法。
其主要目的是使得处理后的图像对给定的应用比原来的图像更加有效同时可以有效的改善图像质量。
图像增强技术主要包含直方图修改处理、图像平滑化处理、图像尖锐化处理和彩色处理技术等。
本文先对图像增强的原理进行概述,然后对图像增强的方法分类并给出直方图增强、平滑和锐化等几种常用的增强方法、彩色图像增强的理论基础,通过MATLAB实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的技术要点,并对其图像增强方法进行性能评价。
关键词MATLAB ;图像锐化;边界提取AbstractImage enhancement is based on the problems existing in the images, according to the specific need to highlight some of the information in an image, at the same time, to weaken or remove some redundant information processing method. Its main purpose is to make the image after processing for a given application is more effective than the original image at the same time can effectively improve the image quality. Image enhancement technology mainly includes histogram modification, image smoothing processing, image intensification processing and color processing technology, etc. This article first overview of the principle of image enhancement and image enhancement method of classification and histogram enhancement, smoothing and sharpening of several common enhancement method, the theoretical basis of color image enhancement, through practical processing effect of MATLAB experiment compared the advantages and disadvantages of various algorithms, discussed the main technical points of the different enhancement algorithm, and its image enhancement method for performance evaluation.Key wordsMATLAB;image sharpening; edge extraction·目录摘要 0Abstract (1)第一章绪论 (3)1.1 图像锐化及边界提起发展背景和意义 (3)1.2 图像锐化处理的现状和研究方法 (3)1.3MATLAB简介 (4)1.4 MATLAB对图像处理的特点 (4)第二章基于MATLAB的图像锐化 (5)2.1图像锐化概述 (5)2.2 线性锐化滤波器 (5)2.3 非线性锐化滤波器 (6)2.3.1 Roberts算子 (6)2.3.2 Prewitt锐化算子 (7)2.3.3 Sobel锐化算子 (8)2.3.4 一阶微分锐化的效果比较 (9)2.3.5 二阶微分锐化其算法为: (9)第三章基于MATLAB的边界提取 (11)3.1图像边界提取的概念 (11)3.2微分算子法 (11)3.2.1 Sobel算子 (12)3.2.3 prewitt算子 (12)3.2.4 Laplacian算子 (13)3.2.5 Canny边缘检测法 (13)3.2.6各种方法边界提取的图像 (15)3.2.7结论 (17)参考文献 (18)致谢 (19)第一章绪论1.1 图像锐化及边界提起发展背景和意义数字图像处理(Digital Image Processing)又称为计算机图像处理,它最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
基于技术的图像识别与处理应用指南第1章图像识别与处理基础 (4)1.1 图像识别概述 (4)1.1.1 图像识别的基本流程 (4)1.1.2 图像识别的主要方法 (4)1.2 图像处理基本概念 (4)1.2.1 图像处理的基本操作 (4)1.2.2 常用图像处理算法 (5)1.3 技术在图像识别与处理中的应用 (5)1.3.1 深度学习模型在图像识别中的应用 (5)1.3.2 技术在图像处理中的应用 (5)第2章图像预处理技术 (5)2.1 图像增强 (5)2.1.1 直方图均衡化 (6)2.1.2 伽马校正 (6)2.1.3 自适应直方图均衡化 (6)2.2 图像滤波 (6)2.2.1 均值滤波 (6)2.2.2 中值滤波 (6)2.2.3 高斯滤波 (6)2.2.4 双边滤波 (6)2.3 边缘检测与轮廓提取 (6)2.3.1 边缘检测 (7)2.3.2 轮廓提取 (7)2.3.3 Canny边缘检测 (7)第3章特征提取与匹配 (7)3.1 传统特征提取算法 (7)3.1.1 SIFT算法 (7)3.1.2 SURF算法 (7)3.1.3 ORB算法 (7)3.2 深度学习特征提取方法 (7)3.2.1 卷积神经网络(CNN) (7)3.2.2 迁移学习 (8)3.2.3 对抗网络(GAN) (8)3.3 特征匹配技术 (8)3.3.1 暴力匹配 (8)3.3.2 最近邻匹配 (8)3.3.3FLANN匹配器 (8)3.3.4 RANSAC匹配 (8)第4章深度学习基础 (8)4.1 卷积神经网络(CNN) (8)4.1.1 卷积神经网络简介 (8)4.1.3 池化层 (9)4.1.4 全连接层 (9)4.1.5 常见卷积神经网络结构 (9)4.2 深度信念网络(DBN) (9)4.2.1 深度信念网络简介 (9)4.2.2 稀疏自编码器 (9)4.2.3 限制玻尔兹曼机 (9)4.2.4 DBN的训练方法 (9)4.3 循环神经网络(RNN) (9)4.3.1 循环神经网络简介 (9)4.3.2 RNN的基本结构 (10)4.3.3 长短时记忆网络(LSTM) (10)4.3.4 门控循环单元(GRU) (10)第5章目标检测技术 (10)5.1 传统目标检测方法 (10)5.1.1 基于特征匹配的目标检测 (10)5.1.2 基于模板匹配的目标检测 (10)5.1.3 基于机器学习的目标检测 (10)5.2 基于深度学习的目标检测算法 (10)5.2.1 RCNN系列算法 (10)5.2.2 单次多框检测器(SSD) (11)5.2.3 YOLO系列算法 (11)5.2.4 RetinaNet (11)5.3 目标跟踪技术 (11)5.3.1 基于相关滤波的目标跟踪 (11)5.3.2 基于深度学习的目标跟踪 (11)5.3.3 基于优化方法的目标跟踪 (11)第6章语义分割与实例分割 (11)6.1 语义分割概述 (11)6.2 基于深度学习的语义分割算法 (12)6.2.1 卷积神经网络(CNN)基础 (12)6.2.2 全卷积神经网络(FCN) (12)6.2.3 编码器解码器结构 (12)6.2.4 区域分割网络(RCNN系列) (12)6.3 实例分割技术 (12)6.3.1 实例分割概述 (12)6.3.2 Mask RCNN (12)6.3.3 PointRend (12)6.3.4 SOLO系列 (12)第7章图像识别应用案例 (13)7.1 自然场景文本识别 (13)7.1.1 背景介绍 (13)7.1.2 技术要点 (13)7.2 人脸识别技术 (13)7.2.1 背景介绍 (13)7.2.2 技术要点 (13)7.2.3 应用案例 (14)7.3 交通场景识别 (14)7.3.1 背景介绍 (14)7.3.2 技术要点 (14)7.3.3 应用案例 (14)第8章计算机视觉与技术的融合 (14)8.1 增强现实与虚拟现实技术 (14)8.1.1 增强现实技术 (14)8.1.2 虚拟现实技术 (15)8.2 视觉导航 (15)8.2.1 视觉感知 (15)8.2.2 路径规划 (15)8.3 自动驾驶技术 (16)8.3.1 环境感知 (16)8.3.2 决策与控制 (16)第9章图像处理与技术的行业应用 (16)9.1 医疗影像诊断 (16)9.1.1 概述 (16)9.1.2 应用案例 (16)9.2 工业检测与自动化 (17)9.2.1 概述 (17)9.2.2 应用案例 (17)9.3 农业领域应用 (17)9.3.1 概述 (17)9.3.2 应用案例 (17)第10章伦理与法律问题 (17)10.1 数据隐私与保护 (17)10.1.1 数据收集与存储 (17)10.1.2 数据使用与共享 (18)10.1.3 数据安全与合规 (18)10.2 人工智能伦理问题 (18)10.2.1 公平性与歧视 (18)10.2.2 人类就业与权益 (18)10.2.3 人工智能道德责任 (18)10.3 法律法规与政策建议 (19)10.3.1 完善法律法规体系 (19)10.3.2 加强监管与执法 (19)10.3.3 政策支持与引导 (19)第1章图像识别与处理基础1.1 图像识别概述图像识别是指利用计算机技术对图像进行自动分类和识别的过程。
人工智能图像识别技术指南第1章引言 (3)1.1 图像识别技术概述 (3)1.2 人工智能与图像识别的关系 (3)1.3 图像识别技术的应用领域 (3)第2章图像处理基础 (4)2.1 数字图像处理概述 (4)2.2 图像变换 (4)2.3 图像滤波与增强 (4)2.4 边缘检测与分割 (4)第3章特征提取与表示 (4)3.1 特征提取方法 (4)3.2 特征表示与度量 (4)3.3 常用特征提取算法 (4)3.4 特征选择与优化 (4)第4章深度学习基础 (4)4.1 神经网络简介 (4)4.2 卷积神经网络(CNN) (4)4.3 深度学习训练技巧 (4)4.4 深度学习框架介绍 (4)第5章目标检测技术 (4)5.1 目标检测概述 (4)5.2 基于候选框的目标检测方法 (4)5.3 基于深度学习的目标检测算法 (4)5.4 目标检测数据集与评估指标 (4)第6章图像分类技术 (4)6.1 图像分类概述 (4)6.2 传统图像分类算法 (4)6.3 深度学习图像分类算法 (4)6.4 数据不平衡与过拟合问题 (4)第7章场景识别与分割 (4)7.1 场景识别概述 (4)7.2 基于特征的场景识别方法 (4)7.3 深度学习场景识别算法 (4)7.4 图像分割技术 (5)第8章人体姿态估计 (5)8.1 人体姿态估计概述 (5)8.2 基于传统方法的姿态估计 (5)8.3 基于深度学习的姿态估计 (5)8.4 人体姿态估计的应用场景 (5)第9章人脸识别技术 (5)9.1 人脸识别概述 (5)9.3 深度学习人脸识别算法 (5)9.4 人脸识别中的挑战与解决方案 (5)第10章视频分析与行为识别 (5)10.1 视频分析概述 (5)10.2 目标跟踪技术 (5)10.3 行为识别方法 (5)10.4 深度学习在视频分析中的应用 (5)第11章医学图像识别 (5)11.1 医学图像概述 (5)11.2 医学图像预处理与增强 (5)11.3 医学图像分割与标注 (5)11.4 深度学习在医学图像诊断中的应用 (5)第12章图像识别技术的挑战与展望 (5)12.1 数据安全与隐私保护 (5)12.2 算法可解释性与可靠性 (5)12.3 通用性与自适应学习 (5)12.4 未来发展趋势与展望 (5)第1章引言 (5)1.1 图像识别技术概述 (5)1.2 人工智能与图像识别的关系 (6)1.3 图像识别技术的应用领域 (6)第2章图像处理基础 (6)2.1 数字图像处理概述 (7)2.2 图像变换 (7)2.3 图像滤波与增强 (7)2.4 边缘检测与分割 (7)第3章特征提取与表示 (7)3.1 特征提取方法 (7)3.2 特征表示与度量 (8)3.3 常用特征提取算法 (8)3.4 特征选择与优化 (9)第4章深度学习基础 (9)4.1 神经网络简介 (9)4.2 卷积神经网络(CNN) (9)4.3 深度学习训练技巧 (10)4.4 深度学习框架介绍 (10)第5章目标检测技术 (11)5.1 目标检测概述 (11)5.2 基于候选框的目标检测方法 (11)5.3 基于深度学习的目标检测算法 (11)5.4 目标检测数据集与评估指标 (11)第6章图像分类技术 (12)6.1 图像分类概述 (12)6.3 深度学习图像分类算法 (12)6.4 数据不平衡与过拟合问题 (12)第7章场景识别与分割 (13)7.1 场景识别概述 (13)7.2 基于特征的场景识别方法 (13)7.3 深度学习场景识别算法 (13)7.4 图像分割技术 (14)第8章人体姿态估计 (14)8.1 人体姿态估计概述 (14)8.2 基于传统方法的姿态估计 (14)8.3 基于深度学习的姿态估计 (14)8.4 人体姿态估计的应用场景 (15)第9章人脸识别技术 (15)9.1 人脸识别概述 (15)9.2 基于特征的人脸识别方法 (15)9.3 深度学习人脸识别算法 (16)9.4 人脸识别中的挑战与解决方案 (16)第10章视频分析与行为识别 (17)10.1 视频分析概述 (17)10.2 目标跟踪技术 (17)10.3 行为识别方法 (17)10.4 深度学习在视频分析中的应用 (17)第11章医学图像识别 (17)11.1 医学图像概述 (18)11.2 医学图像预处理与增强 (18)11.3 医学图像分割与标注 (18)11.4 深度学习在医学图像诊断中的应用 (18)第12章图像识别技术的挑战与展望 (19)12.1 数据安全与隐私保护 (19)12.2 算法可解释性与可靠性 (19)12.3 通用性与自适应学习 (19)12.4 未来发展趋势与展望 (20)好的,以下是一份关于人工智能图像识别技术指南的目录:第1章引言1.1 图像识别技术概述1.2 人工智能与图像识别的关系1.3 图像识别技术的应用领域第2章图像处理基础2.1 数字图像处理概述2.2 图像变换2.3 图像滤波与增强2.4 边缘检测与分割第3章特征提取与表示3.1 特征提取方法3.2 特征表示与度量3.3 常用特征提取算法3.4 特征选择与优化第4章深度学习基础4.1 神经网络简介4.2 卷积神经网络(CNN)4.3 深度学习训练技巧4.4 深度学习框架介绍第5章目标检测技术5.1 目标检测概述5.2 基于候选框的目标检测方法5.3 基于深度学习的目标检测算法5.4 目标检测数据集与评估指标第6章图像分类技术6.1 图像分类概述6.2 传统图像分类算法6.3 深度学习图像分类算法6.4 数据不平衡与过拟合问题第7章场景识别与分割7.1 场景识别概述7.2 基于特征的场景识别方法7.3 深度学习场景识别算法7.4 图像分割技术第8章人体姿态估计8.1 人体姿态估计概述8.2 基于传统方法的姿态估计8.3 基于深度学习的姿态估计8.4 人体姿态估计的应用场景第9章人脸识别技术9.1 人脸识别概述9.2 基于特征的人脸识别方法9.3 深度学习人脸识别算法9.4 人脸识别中的挑战与解决方案第10章视频分析与行为识别10.1 视频分析概述10.2 目标跟踪技术10.3 行为识别方法10.4 深度学习在视频分析中的应用第11章医学图像识别11.1 医学图像概述11.2 医学图像预处理与增强11.3 医学图像分割与标注11.4 深度学习在医学图像诊断中的应用第12章图像识别技术的挑战与展望12.1 数据安全与隐私保护12.2 算法可解释性与可靠性12.3 通用性与自适应学习12.4 未来发展趋势与展望第1章引言1.1 图像识别技术概述图像识别技术作为人工智能领域的一个重要分支,主要研究如何让计算机实现对图像的自动识别和处理。