【附加15套高考模拟试卷】高考领航2020大二轮复习数学(理)模拟精编含答案
- 格式:doc
- 大小:9.61 MB
- 文档页数:178
高考领航2019-2020高考数学(理)模拟题及解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设0.50.5a =,0.50.3b =,0.3log 0.2c =,则a ,b ,c 的大小关系是( ) A .c a b <<B .b a c <<C .c b a <<D .a b c <<2.数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.即:21n n n a a a ++=+.记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( ) A .201920202S a =+B .201920212S a =+C .201920201S a =-D .201920211S a =-3.若由函数sin 22y x π⎛⎫=+ ⎪⎝⎭的图像变换得到sin 23x y π⎛⎫=+ ⎪⎝⎭的图像,则可以通过以下两个步骤完成:第一步,把sin 22y x π⎛⎫=+ ⎪⎝⎭图像上所有点的横坐标变为原来的4倍,纵坐标不变:第二步,可以把所得图像沿x 轴( ) A .向右移3π个单位 B .向右平移512π个单位 C .向左平移3π个单位 D .同左平移512π个单位4.已知抛物线的焦点为,准线为,是抛物线上位于第一象限内的一点,的延长线交于点,且,,则直线的方程为( )A .B .C .D .5.已知,x y 满足约束条件0,3,3,x y x y ≥⎧⎪≤⎨⎪≤⎩且不等式20x y m -+≥恒成立,则实数m 的取值范围为( )A .3m …B .1m …C .0m …D .3m -…6.已知函数()sin()f x x ωϕ=+(0>ω,π||2ϕ<)的最小正周期为π,且图象过点7π(,1)12-,要得到函数π()sin()6g x x ω=+的图象,只需将函数()f x 的图象( ) A .向左平移π2个单位长度 B .向左平移π4个单位长度C .向右平移π2个单位长度D .向右平移π4个单位长度7.设定义在R 上的函数()yf x =满足任意t R ∈都有1(2)()f t f t +=,且(0,4]x ∈时,()'()f x f x x>,则6(2017)f ,3(2018)f ,2(2019)f 的大小关系是( ) A .6(2017)3(2018)2(2019)f f f <<B .3(2018)6(2017)2(2019)f f f <<C .2(2019)3(2018)6(2017)f f f <<D .2(2019)6(2017)3(2018)f f f << 8.已知平面区域34180:{2x y x y +-≤Ω≥≥夹在两条斜率为34-的平行直线之间,且这两条平行直线间的最短距离为m ,若点(),P x y ∈Ω,则z mx y =-的最小值为( )A .95 B .3 C .245D .6 9.已知复数1z ,2z 在复平面内对应的点关于虚轴对称,若112z i =-,则12z z =( ) A .3455i - B .3455i -+ C .3455i -- D .3455i +10.已知函数()()sin (,0,0,)2f x A x x R A πωϕωϕ=+∈>><的部分图象如图所示,则()f x 的解析式是( )A .()()2sin 6f x x x R ππ⎛⎫=+∈ ⎪⎝⎭B .()()2sin 26f x x x R ππ⎛⎫=+∈ ⎪⎝⎭C .()()2sin 3f x x x R ππ⎛⎫=+∈ ⎪⎝⎭D.()() 2sin23f x x x Rππ⎛⎫=+∈⎪⎝⎭11.函数11 ()ln(1)1xe xf xx x-⎧≤=⎨->⎩,若函数()()g x f x x a=-+只一个零点,则a的取值范围是A.{}(0]2-∞U,B.{}[0)2+∞-U,C.(0]-∞,D.[0)+∞,12.已知函数f(x)=2sinxsin(x+3φ)是奇函数,其中(0,)2πϕ∈,则函数g(x)=cos(2x-φ)的图象()A.关于点(,0)12π对称B.关于轴512xπ=-对称C.可由函数f(x)的图象向右平移6π个单位得到D.可由函数f(x)的图象向左平移3π个单位得到二、填空题:本题共4小题,每小题5分,共20分。
备战2020高考全真模拟卷15数学(理)(本试卷满分150分,考试用时120分钟)第I 卷(选择题)一、 单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z 满足()13z i i -=+(i 为虚数单位),则复数z =( )A .12i +B .12i -C .2i +D .2i -【答案】B【解析】【分析】 运用复数的除法运算法则求出复数z ,在根据共轭复数的定义求出复数z .【详解】 由题意()13z i i -=+,可变形为()()()()31324121112i i iiz i i i i ++++====+-+-.则复数12z i =-.故选:B.【点睛】本题考查了复数的除法运算法则和共轭复数的定义,属于基础题.2.已知:1:12p a -<<,[]:1,1q x ∀∈-,220,x ax --<则p 是q 成立的( )A .充分但不必要条件B .必要但不充分条件C .充分必要条件D .既不是充分条件也不是必要条件【答案】A【解析】【分析】构造函数()22f x x ax =--,先解出命题q 中a 的取值范围,由不等式()0f x <对[]1,1x ∀∈-恒成立,得出()()1010f f ⎧-<⎪⎨<⎪⎩,解出实数a 的取值范围,再由两取值范围的包含关系得出命题p 和q 的充分必要性关系。
【详解】构造函数()22f x x ax =--,对[]1,1x ∀∈-,()0f x <恒成立, 则()()110110f a f a ⎧-=-<⎪⎨=--<⎪⎩,解得11a -<<, ()1,11,12⎛⎫-- ⎪⎝⎭Q Ü,因此,p 是q 的充分但不必要条件,故选:A. 【点睛】本题考查充分必要条件的判断,一般利用集合的包含关系来判断两条件的充分必要性:(1)A B Ü,则“x A ∈”是“x B ∈”的充分不必要条件;(2)A B Ý,则“x A ∈”是“x B ∈”的必要不充分条件;(3)A B =,则“x A ∈”是“x B ∈”的充要条件;(4)A B ⊄,则“x A ∈”是“x B ∈”的既不充分也不必要条件。
江苏省南通市2020届高三下学期第二次调研测试数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列关于命题的说法错误的是( )A .命题“若2320x x -+=,则2x =”的逆否命题为“若2x ≠,则2320x x -+≠”B .已知函数()f x 在区间[],a b 上的图象是连续不断的,则命题“若()()0f a f b <,则()f x 在区间(),a b 内至少有一个零点”的逆命题为假命题C .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++≥”D .“若0x 为()y f x =的极值点,则()00f x '=”的逆命题为真命题2.高铁、扫码支付、共享单车、网购并称中国“新四大发明”,近日对全国100个城市的共享单车和扫码支付的使用人数进行大数据分析,其中共享单车使用的人数分别为123100,,,,x x x x L,它们的平均数为x ,方差为2s ;其中扫码支付使用的人数分别为132x +,232x +,332x +,L ,10032x +,它们的平均数为x ',方差为2s ',则x ',2s '分别为( )A .32x +,232s +B .3x ,23sC .32x +,29s D .32x +,292s +3.如图,在ABC △中,AD AB ⊥,3BC BD =u u u r u u u r ,||1AD =u u u r ,则AC AD ⋅=u u u r u u u r( )A .23B .32C .33 D .34..一个空间几何体的三视图如图所示,俯视图为正三角形,则它的外接球的表面积为( )A .4πB .1123πC .283πD .16π5.阅读如图的程序框图,当程序运行后,输出S 的值为( )A .57B .119C .120D .2476.已知是抛物线的焦点,,是该抛物线上两点,,则的中点到准线的距离为( ) A .B .2C .3D .47.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( )A .65B .184C .183D .1768. “牟和方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上(图1),好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如(图2)所示,图中四边形是为体现其直观性所作的辅助线,当其正视图与侧视图完全相同时,它的正视图和俯视图分别可能是( )A .,a bB .,a cC .,c bD .,b d9.在三棱锥P ABC -中,2AB BC ==,22AC =PB ⊥面ABC ,M ,N ,Q 分别为AC ,PB ,AB 的中点,3MN =,则异面直线PQ 与MN 所成角的余弦值为( )A .105B.155C.35D.4510.已知数列{}n a和{}n b的前n项和分别为n S和n T,且0na>,2*634()n n nS a a n N=+-∈,()()1111nn nba a+=--,若对任意的n*∈N,nk T>恒成立,则的最小值为()A.13B.19C.112D.11511.设a b,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是()A.若a b,与α所成的角相等,则a b∥B.若aαβ∥,b∥,αβ∥,则a b∥C.若a b a bαβ⊂⊂P,,,则αβ∥D.若a bαβ⊥⊥,,αβ⊥,则a b⊥r r12.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割圆术,就是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.按照这样的思路刘徽把圆内接正多边形的面积一直算到了正3072边形,如图所示是利用刘徽的割圆术设计的程序框图,若输出的24n=,则p的值可以是( )(参考数据: sin150.2588︒≈,sin7.50.1305︒≈,sin3.750.0654︒≈)A.2.6B.3C.3.1D.14二、填空题:本题共4小题,每小题5分,共20分。
高考数学二模试卷(理科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,有一项是符合题目要求的.1.复数z=(i为虚数单位),则|z|()A.25 B.C.5 D.2.设函数,则其导函数f′(x)是()A.最小正周期为2π的奇函数B.最小正周期为2π的偶函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数3.已知圆C:(x﹣a)2+y2=1,直线l:x=1;则:“”是“C 上恰有不同四点到l的距离为”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.如果等差数列{a n}中,a1=﹣11,,则S11=()A.﹣11 B.10 C.11 D.﹣105.若变量x,y满足约束条件,则z=2x+y的最大值是()A.4 B.3 C.2 D.16.执行如图的程序框图,则输出的λ是()A.﹣4 B.﹣2 C.0 D.﹣2或07.若x>0,y>0,x+2y+2xy=8,则x+2y的最小值是()A.B.3 C.D.48.函数f(x)=cos3x+sin2x﹣cosx的最大值是()A.B.1 C.D.29.已知M=+++…++,则M=()A.B.C.D.10.已知平面向量满足:,若,则的取值范围是()A.B.C.D.二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号位置上.答错位置,书写不清,模棱两可均不得分.11.设随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.68,则P(X>4)= .12.一个几何体的三视图如图,则这个几何体的表面积为.13.在正方体的8个顶点,12条棱的中点,6个面的中心及正方体的中心共27个点中,共线的三点组的个数是.14.已知曲线Γ:ρ=,θ∈R与曲线C:,t∈R相交于A,B两点,又原点O(0,0),则|OA|•|OB|= .15.在△ABC中,内角A,B,C的所对边分别是a,b,c,有如下下列命题:①若A>B>C,则sinA>sinB>sinC;②若,则△ABC为等边三角形;③若sin2A=sin2B,则△ABC为等腰三角形;④若(1+tanA)(1+tanB)=2,则△ABC为钝角三角形;⑤存在A,B,C,使得tanAtanBtanC<tanA+tanB+tanC成立.其中正确的命题为(写出所有正确命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.已知函数f(x)=sin2x+2sinxcosx﹣cos2x,x∈R.求:(Ⅰ)函数f(x)的单调增区间;(Ⅱ)若,求函数f(x)的值域.17.某校一个研究性学习团队从网上查得,某种植物种子在一定条件下的发芽成功的概率为,于是该学习团队分两个小组进行验证性实验.(Ⅰ)第一小组做了5次这种植物种子的发芽实验(每次均种下一粒种子),求他们的实验至少有3次成功的概率;(Ⅱ)第二小组做了若干次发芽实验(每次均种下一粒种子),如果在一次实验中种子发芽成功就停止实验,否则就继续进行下次实验.直到种子发芽成功为止,但实验的次数不超过5次.求这一小组所做的种子发芽实验次数ξ的分布列和期望.18.如图,在四棱锥P﹣ABCD中,底面ABCD是直角梯形,∠BAD=∠CDA=90°,PA⊥平面ABCD,PA=AD=AB=2,CD=1,M,N分别是PD、PB的中点.(1)证明:直线NC∥平面PAD;(2)求平面MNC与地面ABCD所成的锐二面角的余弦值.(3)求三菱锥P﹣MNC的体积V.19.已知函数,(x≥0),又数列{a n}中,a n>0,a1=2,该数列的前n项和记为S n,对所有大于1的自然数n都有S n=f(S n﹣1).(Ⅰ)求{a n}的通项公式;(Ⅱ)记b n=,{b n}其前n项和为T n,证明:T n<n+1.20.已知F1、F2分别是椭圆的左、右焦点,P 是此椭圆上的一动点,并且的取值范围是.(Ⅰ)求此椭圆的方程;(Ⅱ)点A是椭圆的右顶点,直线y=x与椭圆交于B、C两点(C 在第一象限内),又P、Q是椭圆上两点,并且满足,求证:向量共线.21.设函数f(x)=xlnx.(Ⅰ)求f(x)的极值;(Ⅱ)设g(x)=f(x+1),若对任意的x≥0,都有g(x)≥mx 成立,求实数m的取值范围;(Ⅲ)若0<a<b,证明:0<f(a)+f(b)﹣2f()<(b ﹣a)ln2.参考答案与试题解析一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,有一项是符合题目要求的.1.复数z=(i为虚数单位),则|z|()A.25 B.C.5 D.考点:复数代数形式的乘除运算;复数求模.专题:数系的扩充和复数.分析:化简复数z,然后求出复数的模即可.解答:解:因为复数z==,所以|z|==.故选C.点评:本题考查复数的代数形式的混合运算,复数的模的求法,考查计算能力.2.设函数,则其导函数f′(x)是()A.最小正周期为2π的奇函数B.最小正周期为2π的偶函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数考点:导数的运算.专题:导数的概念及应用.分析:函数=﹣cos2x,利用导数的运算法则、函数的奇偶性周期性即可得出.解答:解:∵函数=﹣cos2x,则其导函数f′(x)=2sin2x,∴T==π,f′(﹣x)=﹣2sin2x=﹣f′(x),∴其导函数f′(x)是最小正周期为π的奇函数.故选:D.点评:本题考查了导数的运算法则、函数的奇偶性周期性、诱导公式,考查了推理能力与计算能力,属于基础题.3.已知圆C:(x﹣a)2+y2=1,直线l:x=1;则:“”是“C 上恰有不同四点到l的距离为”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:如图所示,⊙C与直线l.若C上恰有不同四点到l的距离为,可得,即可判断出.解答:解:如图所示,⊙C与直线l.若C上恰有不同四点到l的距离为,则,∴“”是“C上恰有不同四点到l的距离为”的必要不充分条件.故选:B.点评:本题考查了充要条件的判定方法、直线与圆的位置关系,考查了数形结合的思想方法,属于基础题.4.如果等差数列{a n}中,a1=﹣11,,则S11=()A.﹣11 B.10 C.11 D.﹣10考点:等差数列的性质.专题:等差数列与等比数列.分析:根据等差数列的前n项和S n,可知,结合求得公差,然后再由求得答案.解答:解:由,得,由,得=2,∵a1=﹣11,解得d=2,∴=﹣11+5×2=﹣1,∴S11=﹣11,故选:A.点评:本题主要考查等差数列的求和公式.属基础题.5.若变量x,y满足约束条件,则z=2x+y的最大值是()A.4 B.3 C.2 D.1考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.解答:解:作出不等式组对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即B(1,1),代入目标函数z=2x+y得z=2×1+1=3.即目标函数z=2x+y的最大值为3.故选:B.点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.6.执行如图的程序框图,则输出的λ是()A.﹣4 B.﹣2 C.0 D.﹣2或0考点:程序框图.专题:计算题;图表型.分析:根据框图给出的向量和向量的坐标及λ的值,运用向量的数乘及坐标的加法运算求出的坐标,再求数量积,数量积为0,则两向量垂直,算法结束,输出λ的值,否则,执行λ=λ+1,再判断执行,直至数量积为0结束.解答:解:由,当λ=﹣4时,,此时4×0+(﹣2)×10=﹣20≠0,所以与不垂直,故执行λ=﹣4+1=﹣3,,此时4×1+(﹣2)×7=﹣10≠0,所以与不垂直,故执行λ=﹣3+1=﹣2,,此时4×2+(﹣2)×4=0,与垂直,算法结束,输出λ的值为﹣2.故选B.点评:本题考查了程序框图中的当型循环,考查了运用向量数量积判断两向量是否垂直,若非零向量,则⇔x1x2+y2y2=0,此题是中低档题.7.若x>0,y>0,x+2y+2xy=8,则x+2y的最小值是()A.B.3 C.D.4考点:基本不等式.专题:不等式.分析:首先分析题目由已知x>0,y>0,x+2y+2xy=8,求x+2y 的最小值,猜想到基本不等式的用法,利用a+b≥2代入已知条件,化简为函数求最值解答:解:考察基本不等式x+2y=8﹣x•(2y)≥8﹣()2(当且仅当x=2y时取等号)整理得(x+2y)2+4(x+2y)﹣32≥0即(x+2y﹣4)(x+2y+8)≥0,又x+2y>0,所以x+2y≥4(当且仅当x=2y时取等号),则x+2y的最小值是4,故选:D.点评:本题主要考查基本不等式的用法,对于不等式a+b≥2在求最大值最小值的问题中应用非常广泛,需要同学们多加注意,属于基础题.8.函数f(x)=cos3x+sin2x﹣cosx的最大值是()A.B.1 C.D.2考点:三角函数的最值.专题:三角函数的求值.分析:化简已知函数换元可得y=t3﹣t2﹣t+1,t∈[﹣1,1],由导数法判单调性可得当t=时,y取最大值,代值计算可得.解答:解:化简可得f(x)=cos3x+sin2x﹣cosx=cos3x+1﹣cos2x﹣cosx令cosx=t,则t∈[﹣1,1],换元可得y=t3﹣t2﹣t+1,t∈[﹣1,1],求导数可得y′=3t2﹣2t﹣1=(3t+1)(t﹣1),令y′=(3t+1)(t﹣1)<0可解得﹣<t<1,令y′=(3t+1)(t﹣1)>0可解得t<﹣或t>1,∴函数y=t3﹣t2﹣t+1在(﹣1,﹣)上单调递增,在(,1)上单调递减,∴当t=时,y取最大值故选:C点评:本题考查三角函数的最值,换元后由导数法判单调性是解决问题的关键,属中档题.9.已知M=+++…++,则M=()A.B.C.D.考点:数列的求和.专题:计算题;导数的综合应用.分析:由二项式定理得到,两边求定积分得答案.解答:解:由,得:=,∴,即=+++…++,∴M=+++…++=,故选:A.点评:本题考查了数列的求和,考查了数学转化思想方法,关键是二项式定理和定积分的应用,是中档题.10.已知平面向量满足:,若,则的取值范围是()A.B.C.D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据已知条件以线段AB所在直线为x轴,线段AB的中垂线为y轴建立平面直角坐标系,P点和M点关于原点对称,点Q在y轴上,从而设出P,M,A,B,Q的坐标:P(x,y),M (﹣x,﹣y),A(a,0),B(﹣a,0),Q(0,﹣),从而根据|PO|=|a|,便得到,根据两点间距离公式从而求出的范围,从而得出||范围.解答:解:如图,以线段AB所在直线为x轴,线段AB的中垂线为y轴,建立平面直角坐标系;=2,∴Q点在y轴上;设P(x,y),M(﹣x,﹣y),A(a,0),Q(0,);△PAB为Rt△;∴|PO|=|a|,又0≤;∴;∴;=;∴;∴;∴的取值范围为.故选:C.点评:考查通过建立平面直角坐标系解决向量问题、几何问题的方法,中垂线上的点到线段两端的距离相等,关于原点对称的点的坐标的关系,以及两点间距离公式.二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号位置上.答错位置,书写不清,模棱两可均不得分.11.设随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.68,则P(X>4)= 0.16 .考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析:根据题目中:“正态分布N(3,1)”,画出其正态密度曲线图:根据对称性,由(2≤X≤4)的概率可求出P(X>4).解答:解:P(3≤X≤4)=P(2≤X≤4)=0.34,观察图得,∴P(X>4)=0.5﹣P(3≤X≤4)=0.5﹣0.34=0.16.故答案为:0.16.点评:本题主要考查正态分布曲线的特点及曲线所表示的意义,注意根据正态曲线的对称性解决问题.12.一个几何体的三视图如图,则这个几何体的表面积为(8+2)cm .考点:由三视图求面积、体积.专题:立体几何.分析:首先根据三视图把几何体的立体图复原出来进一步利用表面积公式求出结果.解答:解:根据三视图得知:该几何体为底面是直角边长为2cm和1cm的直角三角形,高为2cm的直三棱柱则:S表=S侧+2S底=8+2故答案为:(8+2)cm点评:本题考查的知识要点:三视图和几何体的关系,几何体的表面积公式的应用.主要考查学生的应用能力和空间想象能力.13.在正方体的8个顶点,12条棱的中点,6个面的中心及正方体的中心共27个点中,共线的三点组的个数是49 .考点:计数原理的应用;棱柱的结构特征.专题:计算题;概率与统计.分析:根据题意,结合正方体的结构特征,分3种情况讨论:①、三点都在正方体的棱上,②、以6个面的中心为中点,③、以正方体的中心为中点,分别求出每种情况下三点共线的情况数目,由分类计数原理计算可得答案.解答:解:根据题意,在所给的正方体的27个点中,三点共线的情况有3种:①、三点都在正方体的棱上,正方体有12条棱,即有12种情况;②、以6个面的中心为中点,正方体有6个面,每个面有4种情况,共有4×6=24种情况,③、以正方体的中心为中点,共有26÷2=13种情况,则共有12+24+13=49种,即共线的三点组的个数是49;故答案为:49.点评:本题考查分类计数原理的应用,解题的关键在于掌握正方体的结构特点并判断三点共线的情况.14.已知曲线Γ:ρ=,θ∈R与曲线C:,t∈R相交于A,B两点,又原点O(0,0),则|OA|•|OB|= .考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:首先把曲线的极坐标方程转换为直角坐标方程,进一步把参数方程转化为直角坐标方程,建立方程组求出交点的坐标,最后利用两点间的距离公式求出结果.解答:解:曲线Γ:ρ=,θ∈R转化成:,转化成直角坐标方程为:,整理得:3x2+4y2﹣6x﹣9=0,曲线C:,t∈R转化为直角坐标方程为:y=,所以:,解得:或所以:|OA|=2,则:|OA||OB|=.故答案为:.点评:本题考查的知识要点:极坐标方程的互化,参数方程与直角坐标方程的互化,解方程组问题的应用,两点间的距离公式的应用,主要考查学生的应用能力.15.在△ABC中,内角A,B,C的所对边分别是a,b,c,有如下下列命题:①若A>B>C,则sinA>sinB>sinC;②若,则△ABC为等边三角形;③若sin2A=sin2B,则△ABC为等腰三角形;④若(1+tanA)(1+tanB)=2,则△ABC为钝角三角形;⑤存在A,B,C,使得tanAtanBtanC<tanA+tanB+tanC成立.其中正确的命题为①②④(写出所有正确命题的序号)考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:①已知不等式利用正弦定理化简,整理得到结果,即可做出判断;②已知等式利用正弦定理化简,整理得到结果,即可做出判断;③已知等式利用正弦函数的性质化简,整理得到结果,即可做出判断;④已知等式整理后,利用两角和与差的正切函数公式化简,求出C的度数,即可做出判断;⑤由A,B,C为三角形内角,得到tan(A+B)=tan(π﹣C)=﹣tanC,利用两角和与差的正切函数公式化简,整理得到tanA+tanB+tanC=tanAtanBtanC,故本选项错误.解答:解:①∵A>B>C,∴a>b>c,又===2R,∴sinA=,sinB=,sinC=,2R为定值,∴sinA>sinB>sinC,此选项正确;②∵==,由正弦定理得:a=2R•sinA,b=2R•sinB,c=2R•sinC代入,得==,∴==,即tanA=tanB=tanC,∴A=B=C,则△ABC是等边三角形,本选项正确;③∵sin2A=sin2B,∴2A=2B或2A+2B=π,即A=B或A+B=,则△ABC为等腰三角形或直角三角形,本选项错误;④∵(1+tanA)(1+tanB)=2,即1+tanA+tanB+tanAtanB=2,∴tanA+tanB+tanAtanB=1,即tanA+tanB=1﹣tanAtanB,∴=1,即tan(A+B)=1,∴A+B=,即C=,则△ABC为钝角三角形,本选项正确;⑤若A、B、C有一个为直角时不成立,若A、B、C都不为直角,∵A+B=π﹣C,∴tan(A+B)=tan(π﹣C),即=﹣tanC,则tanA+tanB=﹣tanC+tanAtanBtanC,∴tanA+tanB+tanC=tanAtanBtanC,即⑤错误,故答案为:①②④点评:此题考查了同角三角函数间的基本关系,正弦定理,两角和与差的正切函数公式,熟练掌握基本关系是解本题的关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.已知函数f(x)=sin2x+2sinxcosx﹣cos2x,x∈R.求:(Ⅰ)函数f(x)的单调增区间;(Ⅱ)若,求函数f(x)的值域.考点:三角函数中的恒等变换应用;正弦函数的图象.专题:三角函数的求值;三角函数的图像与性质.分析:(Ⅰ)首先通过三角函数的关系式的恒等变换,把函数的关系式变性成正弦型函数,进一步利用整体思想求出函数的单调递增区间.(Ⅱ)进一步利用三角函数的定义域求出正弦型函数的值域.解答:解:(I)函数f(x)=sin2x+2sinxcosx﹣cos2x=,x∈R令解得:,所以:f(x)的单调增区间为:(k∈Z)(II)由,所以:从而有:,故:因此:函数f(x)的值域:点评:本题考查的知识要点:三角函数关系式的恒等变换,利用整体思想求正弦型函数的单调递增区间,利用三角函数的定义域求正弦型函数的值域.主要考查学生的应用能力.17.某校一个研究性学习团队从网上查得,某种植物种子在一定条件下的发芽成功的概率为,于是该学习团队分两个小组进行验证性实验.(Ⅰ)第一小组做了5次这种植物种子的发芽实验(每次均种下一粒种子),求他们的实验至少有3次成功的概率;(Ⅱ)第二小组做了若干次发芽实验(每次均种下一粒种子),如果在一次实验中种子发芽成功就停止实验,否则就继续进行下次实验.直到种子发芽成功为止,但实验的次数不超过5次.求这一小组所做的种子发芽实验次数ξ的分布列和期望.考点:离散型随机变量的期望与方差;相互独立事件.专题:计算题.分析:(I)本题是一个独立重复的实验,利用n次对立重复实验恰好发生k次的概率公式与互斥事件的概率求出他们的实验至少有3次成功的概率;(II)依题意判断出随机变量ξ可取的值及取每一个值的概率值,列出分布列,根据期望的公式求出这一小组所做的种子发芽实验次数ξ的分布列和期望.解答:解:(Ⅰ)至少有3次成功包括3次、4次和5次成功,即:(4分)(Ⅱ)依题意有:ξ1 2 3 4 5P(4分)点评:本题考查等可能事件的概率,考查离散型随机变量的分布列和期望,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.18.如图,在四棱锥P﹣ABCD中,底面ABCD是直角梯形,∠BAD=∠CDA=90°,PA⊥平面ABCD,PA=AD=AB=2,CD=1,M,N分别是PD、PB的中点.(1)证明:直线NC∥平面PAD;(2)求平面MNC与地面ABCD所成的锐二面角的余弦值.(3)求三菱锥P﹣MNC的体积V.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定;二面角的平面角及求法.专题:空间位置关系与距离.分析:(1)由已知想到取PA中点Q,连接NQ,DQ,然后利用三角形的中位线定理证明NC∥DQ,再由线面平行的判断得答案;(2)找出平面MNC与底面ABCD的交线,然后利用三垂线定理得到平面MNC与底面ABCD所成的锐二面角,再通过解直角三角形得答案;(3)利用等积法求出A到平面PMN的距离,得到C到平面PMN 的距离,再求出平面PMN的面积,得到三棱锥C﹣PMN的体积,即三菱锥P﹣MNC的体积V.解答:(1)证明:如图,取PA中点Q,连接NQ,DQ,∵N、Q分别为PB、PA的中点,∴NQ∥AB,NQ=,又DC∥AB,DC=,∴NQ∥DC,NQ=DC,则四边形DCNQ为平行四边形,∴NC∥DQ,DQ⊂面PAD,NC⊄面PAD,∴直线NC∥平面PAD;(2)解:连接BD,∵M、N分别为PD、PB中点,∴MN∥BD,过C作l∥BD,则MN∥l,∴平面MNC∩平面ABCD=l,取AD中点S,连接CS,∴CS⊥l,连接MC,则∠MCS为平面MNC与底面ABCD所成的锐二面角,∵PA=AD=AB=2,CD=1,∴MS=1,SC=,则MC=,∴cos;(3)解:设SC∩BD=R,由题意可得:SR=CR,∴C与S到平面PMN的距离相等,又S为AD的中点,∴S到平面PMN的距离等于A到平面PMN距离的一半,设A到平面PMN距离为h,由PA⊥AB⊥AD,PA=AD=AB=2,则由等积法得:h,解得h=,∴C到平面PMN的距离为,又三角形PMN为边长是的正三角形,∴,∴.点评:本小题主要考查空间线面关系、二面角的度量、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是中档题.19.已知函数,(x≥0),又数列{a n}中,a n>0,a1=2,该数列的前n项和记为S n,对所有大于1的自然数n都有S n=f(S n﹣1).(Ⅰ)求{a n}的通项公式;(Ⅱ)记b n=,{b n}其前n项和为T n,证明:T n<n+1.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)由,S n=f(S n﹣1)知:,可得,利用等差数列的通项公式可得,再利用递推式即可得出a n.(Ⅱ)b n==,利用“裂项求和”即可得出.解答:(Ⅰ)解:由,S n=f(S n﹣1)知:,又a n>0,a1=2,S n>0,∴,即:是以为首项,为公差的等差数列,∴,,∴当n≥2时,a n=S n﹣S n﹣1=4n﹣2,当n=1时也成立,∴a n=4n﹣2.(Ⅱ)证明:=,T n=<n+1.点评:本题考查了等差数列的通项公式、递推式的应用、“裂项求和”方法、不等式的性质、“放缩法”,考查了推理能力与计算能力,属于中档题.20.已知F1、F2分别是椭圆的左、右焦点,P 是此椭圆上的一动点,并且的取值范围是.(Ⅰ)求此椭圆的方程;(Ⅱ)点A是椭圆的右顶点,直线y=x与椭圆交于B、C两点(C 在第一象限内),又P、Q是椭圆上两点,并且满足,求证:向量共线.考点:直线与圆锥曲线的综合问题;平行向量与共线向量;椭圆的标准方程.专题:综合题.分析:(I)由题意设P(x0,y0),F1(﹣c,0),F2(c,0)利用的取值范围所以∠PCQ的平分线垂直于x轴.是,得到a,b的方程,求解即可;(II)有的平分线平行,所以∠PCQ的平分线垂直于x轴,进而建立方程,解出C点,再设出PC方程进而得到QC的方程,把它与椭圆方程联立得到直线PQ的斜率,与直线AB比较即可求证.解答:解:(Ⅰ)设P(x0,y0),F1(﹣c,0),F2(c,0),其中,.从而.由于,即.又已知,所以从而椭圆的方程是.(Ⅱ)因为的平分线平行,所以∠PCQ的平分线垂直于x轴.由解得.不妨设PC的斜率为k,则QC的斜率为﹣k,因此PC和QC的方程分别为y=k(x﹣1)+1,y=﹣k(x﹣1),其中消去y并整理得(1+3k2)x2﹣6k(k﹣1)x+3k2﹣6k﹣1=0(*).∵C(1,1)在椭圆上,∴x=1是方程(*)的一个根.从而,同理,从而直线PQ的斜率为.又知A(2,0),B(﹣1,﹣1),所以,∴向量与共线.点评:(I)此问考查了设处点的坐标,把已知的向量关系的等式建立成坐标之间的关系式,还考查了椭圆的基本性质及求解时运用的方程的思想;(II)此问考查了设出直线把椭圆方程与直线方程进行联立,利用根与系数的关系求出P与Q的坐标,还考查了直线的斜率公式.21.设函数f(x)=xlnx.(Ⅰ)求f(x)的极值;(Ⅱ)设g(x)=f(x+1),若对任意的x≥0,都有g(x)≥mx 成立,求实数m的取值范围;(Ⅲ)若0<a<b,证明:0<f(a)+f(b)﹣2f()<(b ﹣a)ln2.考点:利用导数研究函数的极值;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的概念及应用;导数的综合应用.分析:(Ⅰ)对函数求导,然后令导数为零,再判断导数为零的点左右两侧的导数符号,确定极大值或极小值;(Ⅱ)这是一个不等式恒成立问题,所以可将问题转化为函数的最值问题求解;(Ⅲ)证明此类不等式问题,可以根据要证的式子特点构造函数,然后利用函数的单调性、最值解决问题.解答:解:(Ⅰ)f'(x)=1+lnx,(x>0).令f'(x)=0,解得:,且当时,f'(x)<0,时,f'(x)>0,因此:f(x)的极小值为;(Ⅱ)g(x)=f(x+1)=(x+1)ln(x+1),令h(x)=(x+1)ln(x+1)﹣mx,则h'(x)=ln(x+1)+1﹣m,注意到:h(0)=0,若要h(x)≥0,必须要求h'(0)≥0,即1﹣m≥0,亦即m≤1;另一方面:当m≤1时,h'(x)=ln(x+1)+1﹣m≥0恒成立;故实数m的取值范围为:m≤1;(Ⅲ)构造函数,x>a,又∵x>a,∴0<a+x<2x,F'(x)>0,F(x)在(a,+∞)上是单调递增的;故F(b)>F(a)=0,即:.另一方面,构造函数,G(x)在(a,+∞)上是单调递减的,故G(b)<G(a)=0即:,综上,.点评:本题考查了导数在研究函数的单调性、极值、最值问题中的应用,要注意恒成立问题转化为函数最值问题来解的典范思路,注意体会和总结.。
山东省青岛市2020届高三下学期第二次模拟考试数学【理】试题及答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项:2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知11abi i=-+,其中,a b 是实数,i 是虚数单位,则||a bi -= A .3 B .2 C .5 D2. 已知集合2{|lg(2)}M x y x x ==-,22{|1}N x x y =+=,则MN =A .[1,2)-B .(0,1)C .(0,1]D .∅A .30B .31C .32D .334. 已知函数22, 0,()|log |,0,x x f x x x ⎧≤=⎨>⎩,则使()2f x =的x 的集合是A .1{,4}4B .{1,4}C .1{1,}4D .1{1,,4}45. 已知MOD 函数是一个求余函数,其格式为其结果为n 除以m 的余数,例如(8,3)2MOD =. 右面是一个算法的程序框图, 当输入的值为25时, 则输出的结果为A .4B .5C .6D .76. 设,x y 满足约束条件2311x x y y x ≥⎧⎪-≥⎨⎪≥+⎩A .3x ≥B .4y ≥C .280x y +-≥D .210x y -+≥ 7. “2-≤a ”是“函数a x x f -=)(在[1,)-+∞上单调递增”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件8. 将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有A .18种B .24种C .36种D .72种9. 定义在R 上的奇函数()f x 满足(1)()f x f x +=-,当1(0,]2x ∈时,)1(log )(2+=x x f ,则()f x 在区间3(1,)2内是A .减函数且()0f x >B .减函数且()0f x <C .增函数且()0f x >D .增函数且()0f x <10. 已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,过F 作斜率为1-的直线交双曲线的渐近线于点P ,点P 在第一象限,O 为坐标原点,若OFP ∆的面积为228a b +,则该双曲线的离心率为 AC第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11. 已知不共线的平面向量a ,b 满足(2,2)a =-,()()a b a b +⊥-,那么||b = ;12. 某班有50名同学,一次数学考试的成绩X 服从正态分布2(110,10)N ,已知(100110)0.34P X ≤≤=,估计该班学生数学成绩在120分以上的有 人;13. 某三棱锥的三视图如图所示,该三棱锥的体积是 ;14.若函数()sin()(0,0)6f x A x A πωω=->>的图象如图所示,则图中的阴影部分的面积为 ;15. 若不等式2222()y x c x xy -≥-对任意满足0x y >>的实数,x y 恒成立,则实数c 的最大值为 .三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16. (本小题满分12分)第14题图侧(左)视图第13题图已知向量2(sin,cos )33x x a k =,(cos ,)3xb k =-,实数k 为大于零的常数,函数()f x a b =⋅,R x ∈,且函数()f x的最大值为12. (Ⅰ)求k 的值;(Ⅱ)在ABC ∆中,,,a b c 分别为内角,,A B C 所对的边,若2A ππ<<,()0f A =,且a =,求AB AC ⋅的最小值.17.(本小题满分12分)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13. (Ⅰ)求甲、乙两人所付乘车费用不相同的概率;(Ⅱ)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.18.(本小题满分12分)如图,在正四棱台1111ABCD A B C D -中,11A B a =,2AB a =,1AA =,E 、F 分别是AD 、AB 的中点.(Ⅰ)求证:平面11EFB D ∥平面1BDC ; (Ⅱ)求二面角1D BC C --的余弦值的大小.注:底面为正方形,从顶点向底面作垂线,垂足是底面中心,这样的四棱锥叫做正四棱锥.用一个平行于正四棱锥底面的平面去截该棱锥,底面与截面之间的部分叫做正四棱台.C1BED 1A1D 1C19.(本小题满分12分)设{}n a 是等差数列,{}n b 是各项都为正整数的等比数列,且111a b ==,13250a b =,82345a b a a +=++,*N n ∈.(Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)若数列{}n d 满足218log 11()2n b n n d d +-++=(*N n ∈),且116d =,试求{}n d 的通项公式及其前n 项和n S .20.(本小题满分13分)已知抛物线1:C 22(0)y px p =>的焦点为F ,抛物线上存在一点G 到焦点的距离为3,且点G 在圆:C 229x y +=上.(Ⅰ)求抛物线1C 的方程;(Ⅱ)已知椭圆2:C 2222 1 (0)x y m n m n+=>>的一个焦点与抛物线1C 的焦点重合,若椭圆2C 上存在关于直线:l 1143y x =+对称的两个不同的点,求椭圆2C 的离心率e 的取值范围.21.(本小题满分14分)已知函数1()1ln a f x x x=-+(a 为实数). (Ⅰ)当1a =时,求函数()f x 的图象在点11(,())22f 处的切线方程;(Ⅱ)设函数2()32h a a a λ=-(其中λ为常数),若函数()f x 在区间(0,2)上不存在极值,且存在a 满足()≥h a 18+λ,求λ的取值范围;(Ⅲ)已知*N n ∈,求证:11111ln(1)12345n n+<++++++. 数学(理科) 参考答案及评分标准一、选择题:本大题共10小题.每小题5分,共50分. D C B A B C A C B C二、填空题:本大题共5小题,每小题5分,共25分.11. 12. 8 13.32 14.232- 15.4 三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16. (本小题满分12分)解:(Ⅰ)由已知2()(sin,cos )(cos ,)333x x xf x a b k k =⋅=⋅- 221cos12223sin cos cos sin (sin cos )3332322332xx x x xk x x k k k k k+=-=-=--……2分222(sin cos )sin()2232322342x x k x kπ=--=-- ……………………5分 因为R x ∈,所以()f x的最大值为1)122k =,则1k = …………………6分(Ⅱ)由(Ⅰ)知,21()sin()2342x f x π=--,所以21()sin()02342A f A π=--=化简得2sin()34A π-=因为2A ππ<<,所以25123412A πππ<-<则2344A ππ-=,解得34A π=…………………………………………………8分因为2222240cos 222b c a b c A bc bc+-+-=-==,所以2240b c +=则22402b c bc ++=≥,所以20(2bc ≤= ……………10分则3cos20(142AB AC AB AC π⋅==-≥ 所以AB AC ⋅的最小值为20(1- …………………………………………………12分 17.(本小题满分12分)解:(Ⅰ)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13则甲、乙两人所付乘车费用相同的概率111111114323433P =⨯+⨯+⨯= ……………2分 所以甲、乙两人所付乘车费用不相同的概率1121133P P =-=-= …………………4分 (Ⅱ)由题意可知,6,7,8,9,10ξ= 则111(6)4312P ξ==⨯=11111(7)43234P ξ==⨯+⨯=1111111(8)4343233P ξ==⨯+⨯+⨯=11111(9)23434P ξ==⨯+⨯=111(10)4312P ξ==⨯= ………………………………………………………………10分所以ξ的分布列为则()67891081243412E ξ=⨯+⨯+⨯+⨯+⨯= ……………………………………12分 18.(本小题满分12分)证明:(Ⅰ)连接11A C ,AC ,分别交11,,B D EF BD 于,,M N P ,连接1,MN C P由题意,BD ∥11B D因为BD ⊄平面11EFB D ,11B D ⊂平面11EFB D ,所以BD ∥平面11EFB D …………2分 又因为11,2A B a AB a ==,所以111122MC A C a == 又因为E 、F 分别是AD 、AB 的中点,所以14NP AC ==所以1MC NP =又因为AC ∥11A C ,所以1MC ∥NP 所以四边形1MC PN 为平行四边形 所以1PC ∥MN因为1PC ⊄平面11EFB D ,MN ⊂平面因为1PC BD P =I ,所以平面11EFB D ∥平面1BDC …………………………………5分(Ⅱ)连接1A N ,因为11A M MC NP ==,又1A M ∥NP 所以四边形1A NPM 为平行四边形,所以PM ∥1A N由题意MP ⊥平面ABCD ,1A N ∴⊥平面ABCD ,1A N AN ∴⊥因为11A B a =,2AB a =,1AA ,所以12A N MP === 因为ABCD 为正方形,所以AC BD ⊥所以,以,,PA PB PM 分别为,,x y z 轴建立如图所示的坐标系则,0)B,(0,,0)D,(,0,0)C,1()C所以(0,,0)BD =-u u u r,1(,)BC =uuu r,(,,0)BC =u u u r ………………………………………………………7分设1111(,,)n x y z =u u r 是平面1BDC 的法向量,则1110n BC n BD ⎧⋅=⎪⎨⋅=⎪⎩u u r uuu ru u r uu u r111100⎧+=⎪∴⎨⎪-=⎩,10y ∴=, 令11z =,则1x =1n =u u r……………………………………………9分设2222(,,)n x y z =u u r 是平面1BCC 的法向量,则2120n BC n BC ⎧⋅=⎪⎨⋅=⎪⎩uu r uuu r uu r uu u r2222200⎧+=⎪∴⎨⎪=⎩令21y =,则21x =-,23z =所以2(1,1,3n =-uu r ………………………………11分所以1212120cos ,7n n n n n n +⋅<>===-u u r uu r u r u u r u u r uu r 所以二面角1D BC C --………………………………………12分 19.(本小题满分12分)解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且(112)50(17)(12)(13)5d q d q d d +=⎧⎨++=++++⎩即(112)5026d q d q +=⎧⎨+=⎩ 解得:22d q =⎧⎨=⎩,或由于{}n b 是各项都为正整数的等比数列,所以22d q =⎧⎨=⎩……………………………………2分 从而1(1)21n a n d n =+-=-,112n n n b q --==. ……………………………………4分 (Ⅱ)12n n b -= 21log n b n +∴=811()2n n n d d -++∴= , 7121()2n n n d d -+++=两式相除:212n n d d +=, 由116d =,81121()1282d d -+==可得:28d =135,,,d d d ∴是以116d =为首项,以12为公比的等比数列;246,,,d d d 是以28d =为首项,以12为公比的等比数列 ……………………………………………………………6分∴当n 为偶数时,1218()22n n n d -=⨯= ……………………………………………………………7分13124()()n n n S d d d d d d -=+++++++22221116[1()]8[1()]112232[1()]16[1()]4848()112221122nnn nn ⨯-⨯-=+=-+-=--- …………9分∴当n 为奇数时,112116()22n n n d +-=⨯=…………………………………………………………10分13241()()n n n S d d d d d d -=+++++++112211221116[1()]8[1()]112232[1()]16[1()]4811221122n n n n n +-+-⨯-⨯-=+=-+-=---∴,2,n n n d ⎧⎪⎪=⎨⎪⎪⎩,48,248,n n n S ⎧-⎪⎪=⎨⎪-⎪⎩…………………12分20.(本小题满分13分)解:(Ⅰ)设点G 的坐标为00(,)x y ,由题意可知022002003292p x x y y px⎧+=⎪⎪+=⎨⎪=⎪⎩………………………2分解得:001,4,x y p ==±=所以抛物线1C 的方程为:28y x = ………………………………………………………4分 (Ⅱ)由(Ⅰ)得抛物线1C 的焦点(2,0)F椭圆2C 的一个焦点与抛物线1C 的焦点重合n 为奇数 n 为偶数 n 为偶数 n 为奇数∴椭圆2C 半焦距2222, 4c m n c =-==……①…………………………………………5分设1122(,),(,)M x y N x y 是椭圆2C 上关于直线:l 1143y x =+对称的两点, :4MN y x λ=-+ 由22221 4x y m n y x λ⎧+=⎪⎨⎪=-+⎩22222222(16)80m n x m x m m n λλ⇒+-+-=……(*) 则42222222644(16)()0m m n m m n λλ∆=-+->,得:222160m n λ+->……②………………………………………………………………7分对于(*),由韦达定理得:21222816m x x m n λ+=+212122224()216n y y x x m n λλ∴+=-++=+MN 中点Q 的坐标为2222224(,)1616m n m n m n λλ++ 将其代入直线:l 1143y x =+得: 222222141164163n m m n m n λλ=⨯+++……③……………………………………………………9分由①②③消去λ,可得:2m <<, 椭圆2C 的离心率2c e m m==,∴137e << ………………………………………………………………………13分 21.(本小题满分14分) 解:(Ⅰ)当1a =时,11()1ln f x x x=-+, 211()f x x x'=-, 则1()4222f '=-=,1()12ln 2ln 212f =-+=-∴函数()f x 的图象在点11(,())22f 的切线方程为:1(ln 21)2()2y x --=-,即2ln 220x y -+-= …………………………………………………………………4分 (Ⅱ)221()a a xf x x x x-'=-=,由()0f x '=x a ⇒= 由于函数()f x 在区间(0,2)上不存在极值,所以0≤a 或2≥a ………………………5分 由于存在a 满足()≥h a 18+λ,所以max ()≥h a 18+λ……………………………………6分对于函数2()32h a a a λ=-,对称轴34a λ= ①当304λ≤或324λ≥,即0λ≤或83λ≥时,2max 39()()48h a h λλ==, 由max ()≥h a 18+λ29188⇒≥+λλ,结合0λ≤或83λ≥可得:19≤-λ或83λ≥②当3014λ<≤,即403λ<≤时,max ()(0)0h a h ==, 由max ()≥h a 18+λ108⇒≥+λ,结合403λ<≤可知:λ不存在; ③当3124λ<<,即4833λ<<时,max ()(2)68h a h λ==-; 由max ()≥h a 18+λ1688⇒-≥+λλ,结合4833λ<<可知:13883≤<λ 综上可知:19≤-λ 或138≥λ………………………………………………………………9分 (Ⅲ)当1a =时,21()xf x x-'=,当(0,1)x ∈时,()0f x '>,()f x 单调递增;当(1,)∈+∞时,()0f x '<,()f x 单调递减,∴11()1ln f x x x=-+在1x =处取得最大值(1)0f =即11()1ln (1)0f x f x x =-+≤=,∴11ln xx x-≤,……………………………………11分 令 1n x n =+,则11ln n n n +<,即1ln(1)ln n n n+-<, ∴ln(1)ln(1)ln1[ln(1)ln ][ln ln(1)](ln 2ln1)n n n n n n +=+-=+-+--++-1111121n n n <++++--. 故11111ln(1)12345n n+<++++++. ………………………………………………14分高考模拟数学试卷总分:150分钟 时量:120分钟一、选择题(每小题5分,共60分)1.命题“0200(0,),2x x x ∃∈+∞<”的否定为A .2(0,),2x x x ∀∈+∞<B .2(0,),2x x x ∀∈+∞> C .2(0,),2xx x ∀∈+∞≥ D .2(0,),2xx x ∃∈+∞≥ 2.设02x π<<,则“2sin 1x x <”是“sin 1x x <”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3、数列n a 的前n 项和为223()n S n n n N *=-∈,若5p q -=,则p q a a -=A .10B .15C .-5D .20 4、一个几何体的三视图如图所示, 则该几何体的体积是 A .23B .1C .43 D .535.已知),,0(πα∈且cos sin αα+=, 则cos sin αα-的值为 A. B. CD6.已知实数,x y 满足1,21.y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩,如果目标函数z x y =-的最小值为1,-则实数m 等于A 、5B 、-2C 、1D 、47.设a ,b 是两个实数,给出下列条件:①a +b>1;②a +b =2;③a +b>2; ④a 2+b 2>2;⑤ab>1.其中能推出:“a,b 中至少有一个大于1”的条件是 A .②③ B .①②③ C .③ D .③④⑤8.若方程 04)1(2=++-x m x 在(0,3]上有两个不相等的实数 根,则m 的取值范围为A .(3,310) B .[3,310) C .[3,310] D .(3,310] 9.已知函数()93xxf x m =⋅-,若存在非零实数0x ,使得()()00f x f x -=成立,则实数m 的取值范围是( )A .12m ≥B .2m ≥C .02m <<D .102m << 10、设函数()y f x =在区间(,)a b 上的导函数()(),f x f x ''在区间(,)a b 上的导函数为()f x '',若在区间(,)a b 上()0f x ''<恒成立,则称函数()f x 在区间(,)a b 上为“凸函数”; 已知()432131262m f x x x x =--在(1,3)上为“凸函数”,则实数m 的取值范围是 A .31(,)9-∞ B .31[,5]9C .(,2)-∞-D .[2,)+∞ 11.若()f x 为奇函数,且0x 是()xy f x e =- 的一个零点,则0x -一定是下列哪个函数的零点 ( ) A .()1xy f x e =+ B .()1xy f x e-=--C .()1x y f x e =-D .()1xy f x e =-+12.已知函数()y f x =是定义在R 上的增函数,函数(1)y f x =-的图象关于点(1,0)对称,若任意的,x y R ∈,不等式22(6x 21)(8)0f x f y y -++-<恒成立,则当3x >时,22x y +的取值范围是 A .(3,7) B .(9,25) C .(13,49) D .(9,49) 二、填空题(每小题5分,共20分)13.计算3--⎰= .14、已知0,0a b >>若2a b +=,则1411a b+++的最小值为 15、计算40tan 40sin 4-=16、在直角梯形ABCD 中,AB ⊥AB ,DC ∥AB ,AD=DC=1,AB=2,E ,F 分别为AB ,BC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示)。
2020年普通高等学校招生全国统一考试高考仿真模拟卷(十五)(时间:120分钟;满分:150分)第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |y =lg(x +1)},B ={-2,-1,0,1},则(∁R A )∩B =( ) A .{-2,-1} B .{-2} C .{-1,0,1} D .{0,1}2.定义运算⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,则符合条件⎪⎪⎪⎪⎪⎪z 1+i -i 2i =0的复数z 的共轭复数z -在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限3.一组样本数据的频率分布直方图如图所示,试估计此样本数据的中位数为( )A .13B .12C .11.52 D.10094.已知p :函数f (x )=(x -a )2在(-∞,1)上是减函数,q :∀x >0,a ≤x 2+1x恒成立,则綈p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.在△ABC 中,已知AC =19,BC =2,B =2π3,则边AC 上的高为( )A.31919B.35719C.32D. 36.形状如图所示的2个游戏盘中(图①是半径为2和4的两个同心圆,O 为圆心;图②是正六边形,点P 为其中心)各有一个玻璃小球,依次摇动2个游戏盘后,将它们水平放置,就完成了一局游戏,则一局游戏后,这2个盘中的小球都停在阴影部分的概率是( )A.116B.18C.16D.147.执行如图所示的程序框图,若输出的S =18,则判断框内应填入的条件是( )A .k >2?B .k >3?C .k >4?D .k >5?8.已知△ABC 外接圆圆心为O ,半径为1,2AO →=AB →+AC →且|OA →|=|AB →|,则向量BA →在向量BC →方向上的投影为( )A.12B.32C .-12D .-329.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG (点G 是图象的最高点)是边长为2的等边三角形,则f (1)=( )A .- 3 B. 3 C .1D.32第9题图 第10题图10.如图为一个多面体的三视图,则该多面体的体积为( ) A.203 B .7 C.223D.23311.已知函数f (x )=⎩⎪⎨⎪⎧e -x +mx +m 2,x <0e x (x -1),x ≥0(e 为自然对数的底数),若方程f (-x )+f (x )=0有且仅有四个不同的解,则实数m 的取值范围是( )A .(0,e)B .(e ,+∞)C .(0,2e)D .(2e ,+∞)12.已知O 为坐标原点,双曲线C :x 2a 2-y 2=1(a >0)上有一点P ,过点P 作双曲线C 的两条渐近线的平行线,与两渐近线的交点分别为A 、B ,若平行四边形 OAPB 的面积为1,则双曲线C 的离心率为 ( )A. 2B. 3 C .2 D.52 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案第Ⅱ卷二、填空题:本题共4小题,每小题5分.13.一个盒子里装有3个分别标有号码1,2,3的彩色小球,魔术师每次取出一个,记下它的标号后再放回盒子里,共取3次,则取得小球标号最大值是3的取法有________种.14.平均数为1 010的一组数构成等差数列,其末项为2 019,则该数列的首项为__________.15.过点(0,3b )的直线l 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条斜率为正值的渐近线平行,若双曲线C 的右支上的点到直线l 的距离恒大于b ,则双曲线C 的离心率的最大值是__________.16.设函数f (x )的定义域为R ,若存在常数ω>0,使|f (x )|≤ω|x |对一切实数x 均成立,则称f (x )为“条件约束函数”.现给出下列函数:①f (x )=4x ;②f (x )=x 2+2;③f (x )=2xx 2-2x +5;④f (x )是定义在实数集R 上的奇函数,且对一切x 1,x 2均有|f (x 1)-f (x 2)|≤4|x 1-x 2|.其中是“条件约束函数”的序号是________(写出符合条件的全部序号).三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知向量m =⎝⎛⎭⎫3sin x 4,1,n =⎝⎛⎭⎫cos x 4,cos 2x 4. (1)若m ·n =1,求cos ⎝⎛⎭⎫2π3-x 的值;(2)记f (x )=m ·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.18.(本小题满分12分)如图所示多面体中,AD ⊥平面PDC ,ABCD 为平行四边形,E 为AD 的中点,F 为线段BP 上一点,∠CDP =120°,AD =3,AP =5,PC =27.(1)试确定点F 的位置,使得EF ∥平面PDC ;(2)若BF =13BP ,求直线AF 与平面PBC 所成的角的正弦值.19.(本小题满分12分)某校高三数学备课组为了更好地制定二轮复习的计划,开展了试卷讲评后效果的调研,从上学期期末数学试题中选出一些学生易错题,重新进行测试,并认为做这些题不出任何错误的同学为“过关”,出了错误的同学为“不过关”,现随机抽查了年级50人,他们的测试成绩的频数分布如下表: 期末分数段 (0,60) [60,75) [75,90) [90,105)[105,120)[120,150]人数510151055不低于90分与测试“过关”有关?说明你的理由;人数为X ,求X 的分布列及数学期望.下面的临界值表供参考:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ).20.(本小题满分12分)已知函数f (x )=ln xx.(1)记函数F (x )=x 2-x ·f (x )⎝⎛⎭⎫x ∈⎣⎡⎦⎤12,2,求函数F (x )的最大值; (2)记函数H (x )=⎩⎪⎨⎪⎧x 2e ,x ≥s ,f (x ),0<x <s ,若对任意实数k ,总存在实数x 0,使得H (x 0)=k 成立,求实数s 的取值集合.21.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点P ⎝⎛⎭⎫1,32,左、右焦点分别为F 1,F 2.(1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的内切圆半径为327,求以F 2为圆心且与直线l 相切的圆的方程.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数). (1)已知在极坐标系(与平面直角坐标系xOy 取相同的长度单位,且以坐标原点O 为极点,以x 轴的正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎫4,π2,试判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求点Q 到直线l 的距离的最小值. 23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x -a |+⎪⎪⎪⎪12x +1的最小值为2. (1)求实数a 的值;(2)若a >0,求不等式f (x )≤4的解集.高考仿真模拟卷(十五)1.解析:选A.A ={x |x >-1},∁R A ={x |x ≤-1},所以∁R A ∩B ={-2,-1}.选A. 2.解析:选B.由题意得,2z i -[-i(1+i)]=0,则z =-i (1+i )2i =-12-i2,所以z -=-12+i 2,其在复平面内对应的点在第二象限,故选B.3.解析:选D.由频率分布直方图可得第一组的频率是0.08,第二组的频率是0.32,第三组的频率是0.36,则中位数在第三组内,估计样本数据的中位数为10+0.10.36×4=1009,选项D 正确.4.解析:选A.由f (x )=(x -a )2在(-∞,1)上单调递减得a ≥1,由x >0,得x 2+1x =x +1x≥2(当且仅当x =1时等号成立),所以a ≤2,所以綈p 是q 的充分不必要条件.5.解析:选B.由余弦定理可得,AC 2=BC 2+AB 2-2BC ×AB ×cos B ,即(19)2=22+AB 2-2×2×AB cos2π3,整理得AB 2+2AB -15=0,解得AB =3或AB =-5(舍去).设边AC 上的高为h ,则S △ABC =12BC ×AB ×sin B =12AC ×h ,即12×2×3sin 2π3=12×19×h ,解得h =35719.6.解析:选A.一局游戏后,这2个盘中的小球停在阴影部分分别记为事件A 1,A 2, 由题意知,A 1,A 2相互独立,且P (A 1)=14π(42-22)42π=316,P (A 2)=13,所以一局游戏后,这2个盘中的小球都停在阴影部分的概率为P (A 1A 2)=P (A 1)P (A 2)=316×13=116. 故选A.7.解析:选B.第一次运行:k =2,S =0+2=2;第二次运行:k =3,S =2×2+3=7;第三次运行:k =4,S =2×7+4=18,此时输出结果,满足条件.结合选项可知应填“k >3?”.8.解析:选A.因为AB →+AC →=2AO →,所以点O 为BC 的中点,因为O 是三角形的外心,所以△ABC 是直角三角形, 且A 是直角,OA =BO ,因为|OA →|=|AB →|,所以△ABO 是正三角形,所以BA →在BC →方向上的投影等于|BA →|·cos 60°=12.9.解析:选A.由题意得,A =3,T =4=2πω,ω=π2.又因为f (x )=A cos(ωx +φ)为奇函数,所以φ=π2+k π,k ∈Z ,取k =0,则φ=π2,所以f (x )=3cos ⎝⎛⎭⎫π2x +π2,所以f (1)=- 3.10.解析:选B.该几何体为如图所示的几何体EFB 1C 1ABCD ,是从棱长为2的正方体中截去两个三棱锥后的剩余部分,其体积V =VA 1B 1C 1D 1ABCD -VA A 1EF -VD D 1EC 1=23-13×12×1×1×2-13×12×1×2×2=7,故选B.11.解析:选D.因为函数F (x )=f (-x )+f (x )是偶函数,F (0)≠0,所以零点成对出现,依题意,方程f (-x )+f (x )=0有两个不同的正根,又当x >0时,f (-x )=e x -mx +m 2,所以方程可以化为:e x -mx +m2+x e x -e x =0,即x e x =m ⎝⎛⎭⎫x -12, 记g (x )=x e x (x >0),g ′(x )=e x (x +1)>0,设直线y =m ⎝⎛⎭⎫x -12与g (x )的图象相切时的切点为(t ,t e t ),则切线方程为y -t e t =e t (t +1)(x -t ),过点⎝⎛⎭⎫12,0,所以-t e t =e t (t +1)⎝⎛⎭⎫12-t ⇒t =1或-12(舍弃),所以切线的斜率为2e ,由图象可以得m >2e.选D.12.解析:选D.渐近线方程是x ±ay =0,设P (m ,n ),过点P 且平行于x +ay =0的直线为l , 则l 的方程为x +ay -m -an =0, 设l 与渐近线x -ay =0的交点为A , 则A ⎝⎛⎭⎫m +an 2,m +an 2a , |OA |=⎪⎪⎪⎪m +an 21+1a 2,P 点到OA 的距离是d =|m -an |1+a 2. 因为|OA |·d =1,所以⎪⎪⎪⎪m +an 2·1+1a 2·|m -an |1+a 2=1,因为m 2a 2-n 2=1,所以a =2.故选D.13.解析:取得小球标号最大值是3的取法可分三类:①有一次取到3号球,有C 13×2×2=12(种)取法;②有两次取到3号球,有C 23×2=6(种)取法;③三次都取到3号球,有1种取法,所以共有12+6+1=19(种)取法.答案:1914.解析:设该等差数列首项为a ,由题意和等差数列的性质可得2 019+a =1 010×2,解得a =1.故答案为1. 答案:115.解析:根据题意知,直线l 的斜率为b a ,所以直线l 的方程为y =ba x +3b ,因为双曲线右支上的点到直线l 的距离恒大于b ,所以直线y =b a x +3b 与直线y =ba x 的距离大于等于b ,即3ab a 2+b 2≥b ,所以ca ≤3,即e ≤3,所以双曲线的离心率的最大值为3.答案:316.解析:对于①,f (x )=4x ,易知ω=4符合题意,故①是“条件约束函数”;对于②,当x ≠0时,⎪⎪⎪⎪f (x )x =⎪⎪⎪⎪x +2x ,显然当x 趋于无穷大时,⎪⎪⎪⎪f (x )x 趋于无穷大,这时ω不存在,因此②不是“条件约束函数”;对于③,|f (x )|=2|x |(x -1)2+4≤12|x |,所以存在常数ω=12,使|f (x )|≤ω|x |对一切实数x 均成立,故③是“条件约束函数”;对于④,令x 1=x ,x 2=-x ,则|f (x 1)-f (x 2)|=|f (x )-f (-x )|=|2f (x )|≤4|2x |,即|f (x )|≤4|x |,故存在ω=4,使|f (x )|≤ω|x |对一切实数x 均成立.因此④是“条件约束函数”.综上可知①③④是“条件约束函数”.答案:①③④17.解:m ·n =3sin x 4cos x 4+cos 2x4=32sin x 2+12×cos x 2+12=sin ⎝⎛⎭⎫x 2+π6+12.(1)因为m ·n =1, 所以sin ⎝⎛⎭⎫x 2+π6=12,所以cos ⎝⎛⎭⎫x +π3=1-2sin 2⎝⎛⎭⎫x 2+π6=12,所以cos ⎝⎛⎭⎫2π3-x =-cos ⎝⎛⎭⎫x +π3 =-12.(2)因为(2a -c )cos B =b cos C ,由正弦定理得 (2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B =sin C cos B +sin B cos C , 所以2sin A cos B =sin(B +C ).因为A +B +C =π,所以sin(B +C )=sin A , 且sin A ≠0,所以cos B =12,B =π3.所以0<A <2π3.所以π6<A 2+π6<π2,12<sin ⎝⎛⎭⎫A 2+π6<1. 又因为f (x )=m ·n =sin ⎝⎛⎭⎫x 2+π6+12,所以f (A )=sin ⎝⎛⎭⎫A 2+π6+12,故1<f (A )<32.故函数f (A )的取值范围是⎝⎛⎭⎫1,32. 18.解:(1)取线段BP 的中点F ,取PC 的中点O ,连接FO ,DO , 因为F ,O 分别为BP ,PC 的中点, 所以FO 綊12BC .因为四边形ABCD 为平行四边形,ED ∥BC ,且DE =12BC ,所以FO ∥ED 且ED =FO , 所以四边形EFOD 是平行四边形, 所以EF ∥DO .因为EF ⊄平面PDC ,DO ⊂平面PDC ,所以EF ∥平面PDC .(2)以DC 为x 轴,过D 点作DC 的垂线为y 轴,DA 为z 轴建立空间直角坐标系.在△PDC 中,由PD =4,PC =27,∠CDP =120°,及余弦定理,得CD =2,则D (0,0,0),C (2,0,0),B (2,0,3),P (-2,23,0),A (0,0,3), 设F (x ,y ,z ), 则BF →=(x -2,y ,z -3) =13BP →=⎝⎛⎭⎫-43,233,-1, 所以F ⎝⎛⎭⎫23,233,2.AF →=⎝⎛⎭⎫23,233,-1. 设平面PBC 的法向量n 1=(a ,b ,c ),CB →=(0,0,3),PC →=(4,-23,0), 由⎩⎪⎨⎪⎧n 1·CB →=0n 1·PC →=0,得⎩⎨⎧3z =04x -23y =0,令y =1,可得n 1=⎝⎛⎭⎫32,1,0.cos 〈AF →,n 1〉=AF →·n 1|AF →||n 1|=62135,所以直线AF 与平面PBC 所成的角的正弦值为62135.19.解:(1)依题意得2×2列联表如下:K 2=50×(12×6-18×14)26×24×30×20=22552≈4.327>3.841, 因此有95%的把握认为期末数学成绩不低于90分与测试“过关”有关.(2)在期末分数段[105,120)的5人中,有3人测试“过关”,随机选3人,抽取到过关测试“过关”的人数X 的可能取值为1,2,3.P (X =1)=C 22C 13C 35=310,P (X =2)=C 12C 23C 35=610,P (X=3)=C 33C 35=110,X 的分布列为E (X )=1×310+2×610+3×110=1810=1.8.20.解:(1)由题意可知,F (x )=x 2-ln x ,F ′(x )=2x -1x ,x ∈⎣⎡⎦⎤12,2, 令F ′(x )=0,得x =22. 因为F ⎝⎛⎭⎫12=14+ln 2,F (2)=4-ln 2,F ⎝⎛⎭⎫22=1+ln 22, 且F (2)>F ⎝⎛⎭⎫12,F (2)>F ⎝⎛⎭⎫22, 所以当x =2时,函数F (x )取得最大值,最大值为4-ln 2. (2)因为对任意实数k ,总存在实数x 0,使得H (x 0)=k 成立, 所以函数H (x )的值域为R ,函数y =x2e 在[s ,+∞)上单调递增,其值域为⎣⎡⎭⎫s 2e ,+∞. 函数y =f (x )=ln xx ,y ′=1-ln x x 2.当x =e 时,y ′=0.当x >e 时,y ′<0,函数y =ln xx在[e ,+∞)上单调递减, 当0<x <e 时,y ′>0,函数y =ln xx在(0,e)上单调递增.①若s >e ,则函数y =ln xx 在(0,e)上单调递增,在(e ,s )上单调递减,其值域为⎝⎛⎦⎤-∞,1e ,又s 2e >1e,不符合题意. ②若0<s ≤e ,则函数y =ln x x 在(0,s )上单调递增,其值域为⎝⎛⎦⎤-∞,ln s s ,由题意得s 2e ≤ln ss,即s 2-2eln s ≤0. 令u (s )=s 2-2eln s ,u ′(s )=2s -2e s =2(s 2-e )s, 当s >e 时,u ′(s )>0,u (s )在(e ,e)上单调递增;当0<s <e 时,u ′(s )<0,u (s )在(0,e)上单调递减.所以当s =e 时,u (s )有最小值u (e)=0,从而u (s )≥0恒成立(当且仅当s =e 时,u (s )=0).故u (s )=0,所以s = e.综上所述,实数s 的取值集合为{e}. 21.解:(1)由c a =12,得a =2c ,所以a 2=4c 2,b 2=3c 2,将点P ⎝⎛⎭⎫1,32的坐标代入椭圆方程得c 2=1, 故所求椭圆方程为x 24+y 23=1.(2)设直线l 的方程为x =ty -1,代入椭圆方程得(4+3t 2)y 2-6ty -9=0,显然判别式大于0恒成立,设A (x 1,y 1),B (x 2,y 2),△AF 2B 的内切圆半径为r 0,则有y 1+y 2=6t4+3t 2,y 1y 2=-94+3t 2,r 0=327,所以S △AF 2B =S △AF 1F 2+S △BF 1F 2 =12|F 1F 2|·|y 1-y 2| =12|F 1F 2|·(y 1+y 2)2-4y 1y 2 =12t 2+14+3t 2,而S △AF 2B =12|AB |r 0+12|BF 2|r 0+12|AF 2|r 0=12r 0(|AB |+|BF 2|+|AF 2|) =12r 0(|AF 1|+|BF 1|+|BF 2|+|AF 2|) =12r 0·4a =12×8×327=1227, 所以12t 2+14+3t 2=1227,解得t 2=1,因为所求圆与直线l 相切, 所以半径r =2t 2+1=2, 所以所求圆的方程为(x -1)2+y 2=2.22.解:(1)将点P 的极坐标⎝⎛⎭⎫4,π2化为直角坐标为P (0,4),因为P (0,4)满足方程x -y +4=0,所以点P 在直线l 上.(2)法一:因为点Q 是曲线C 上的点,故可设点Q 的坐标为(3cos α,sin α), 所以点Q 到直线l 的距离 d =|3cos α-sin α+4|2=⎪⎪⎪⎪2cos ⎝⎛⎭⎫α+π6+42,所以当cos ⎝⎛⎭⎫α+π6=-1时,d 取得最小值,且d min = 2.法二:曲线C 的普通方程为x 23+y 2=1,平移直线l 到l ′,使l ′与曲线C 相切, 设l ′:x -y +m =0,由⎩⎪⎨⎪⎧x -y +m =0,x 23+y 2=1得x 2+3(x +m )2=3, 即4x 2+6mx +3m 2-3=0,由Δ=36m 2-48(m 2-1)=48-12m 2=0,解得m =±2,所以当m =2时,曲线C 上的点Q 到直线l 的距离最小,且最小值d =|4-2|2= 2.23.解:(1)当a ≥-2时,f (x )=⎩⎪⎨⎪⎧32x +1-a ,x >a ,-12x +1+a ,-2≤x ≤a ,-32x +a -1,x <-2,所以f (x )min =1+a2=2,a =2.当a <-2时,f (x )=⎩⎪⎨⎪⎧32x +1-a ,x >-2,12x -a -1,a <x ≤-2,-32x +a -1,x ≤a ,所以f (x )min =-a2-1=2,a =-6.综上可知a =2或a =-6.(2)由(1)知,当a >0时a =2.不等式f (x )≤4,即|x -2|+12|x +2|≤4.由(1)知f (x )=⎩⎪⎨⎪⎧32x -1,x >2,-12x +3,-2≤x ≤2-32x +1,x <-2,,当x >2时,由32x -1≤4,得x ≤103,所以2<x ≤103;当-2≤x ≤2时,由-12x +3≤4,得x ≥-2,所以-2≤x ≤2; 当x <-2时,由-32x +1≤4,得x ≥-2,无解.所以不等式的解集为⎣⎡⎦⎤-2,103.。
河南省开封市2020届高三下学期定位考试(4月)数学(理)试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设函数f(x)=cos(x+3π),则下列结论错误的是 A .f(x)的一个周期为−2πB .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6πD .f(x)在(2π,π)单调递减2.某几何体的三视图如右图所示,则该几何体的表面积是( )A .202162π+B .202164π+C .242164π+D .242162π+3.在一组样本数据()11,x y ,()22,x y ,…,(),n n x y (2n …,1x ,2x …n x 不全相等)的散点图中,若所有样本点(),(1,2,,)i i x y i n =L 都在直线y=3?x+1-上,则这组样本数据的样本相关系数为( ) A .-3B .0C .-1D .14.已知直线l :4x-3y+6=0和抛物线C :24y x =,P 为C 上的一点,且P 到直线l 的距离与P 到C 的焦点距离相等,那么这样的点P 有( ) A .0个 B .1个 C .2个 D .无数个5.已知双曲线()2222:10,0x y C a b a b-=>>的左焦点F ,右顶点为E ,过F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若ABE ∆是钝角三角形,则该双曲线离心率的取值范围是( ) A .()1,2B .(2,12+C .()12,++∞D .()2,+∞6.设i 为虚数单位,m R ∈,“复数()1m m i -+是纯虚数”是“1m =”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件7.《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问: 五人各得几何?”其意思为: 有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少个橘子.这个问题中,得到橘子最多的人所得的橘子个数是( ) A .15B .16C .18D .218.函数2sin(2)3y x π=- ([0,])x π∈为增函数的区间是( )A .5[0,]12π B .[0,]2πC .511[,]1212ππD .11[,]12ππ9.执行如图所示的程序框图,输出20172018S =,那么判断框内应填( )A .2017?k …B .2018?k …C .2017?k …D .2018?k …10.已知过球面上三点A ,B ,C 的截面到球心距离等于球半径的一半,且6AC BC ==,4AB =,则球面面积为( ) A .42πB .48πC .54πD .60π11.已知集合{|04}A x x =<<,*{|21,}B x x n n N ==+∈,则A B I 等于( ) A .{}1,3B .{1,2,3}C .{3}D .{1}12.已知双曲线1C :22142x y -=,双曲线2C 的焦点在y 轴上,它的渐近线与双曲线1C 相同,则双曲线2C 的离心率为( ) A 3 B .2C 5D .1二、填空题:本题共4小题,每小题5分,共20分。
四川省南充市2020届高三二诊测试(数学理)试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设函数()()212log1f x x=+112x++,则使得()()21f x f x≤-成立的x的取值范围是()A.(],1-∞B.[)1,+∞C.1,13⎡⎤⎢⎥⎣⎦D.[)1,1,3⎛⎤-∞⋃+∞⎥⎝⎦2.函数()2sin()(0)3f x xπωω=+>的图象在[0,1]上恰有两个最大值点,则ω的取值范围为()A.[2,4]ππ B.9[2,)2ππC.1325[,)66ππD.25[2,)6ππ3.如图是为了求出满足321000->n n的最小偶数n,那么在和两个空白框中,可以分别填入( )A.1000>A和1=+n n B.1000>A和2=+n nC.1000≤A和1=+n n D.1000≤A和2=+n n4.在ABC∆中,cos cosa Ab B=,则ABC∆的形状为()A.等腰三角形B.直角三角形C.等腰或直角三角形 D.等腰直角三角形5.在平面直角坐标系中,(4,0),(1,0)A B--,点(,)(0)P a b ab≠满足||2||AP BP=,则2241a b+的最小值为()A.4 B.3 C.32D.946.已知函数32()(0)g x ax bx cx d a=+++≠的导函数为()f x,且230a b c++=,(0)(1)0,f f>设12,x x 是方程()0f x=的两根,则12x x-的取值范围是()A.2 [0,)3B.4[0,)9C.12(,)33D.14(,)997.若直线l不平行于平面a,且l a⊄,则A.a内的所有直线与l异面B.a内不存在与l平行的直线C.a内存在唯一的直线与l平行D.a内的直线与l都相交8.我国古代数学典籍《九章算术》第七章“盈不足”中有一问题:“今有蒲生一日,长三尺,莞生一日,长一尺.蒲生日自半.莞生日自倍.问几何日而长等?”(蒲常指一种多年生草本植物,莞指水葱一类的植物)现欲知几日后,莞高超过蒲高一倍.为了解决这个新问题,设计如图所示的程序框图,输入3A=,1a=.那么在①处应填_______和输出i的值为()A.2?S T> 4 B.2?S T< 4C.2?T S> 3 D.2?T S< 39.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有()种A.120 B.260 C.340 D.42010.已知函数2(1),0()43,0xe xf xx xx+⎧≤⎪=⎨+->⎪⎩,函数()y f x a=-有四个不同的零点,从小到大依次为1234,,,x x x x则1234x x x x++的取值范围为()A.(]5,3+eB.[4,4)e+ C.[)4+∞,D.(4,4)e+11.已知集合{}*230A x N x x =∈-<,则满足条件B A ⊆的集合B 的个数为( ) A .2B .3C .4D .812.已知函数()()()31ln 3ln 3xx f x x ⎡⎤=-⎢⎥⎢⎥⎣⎦g ,且()20f x ->,则实数x 的取值范围是( ) A .(),2-∞ B .()2,+∞C .()(),22,-∞+∞U D .(),-∞+∞二、填空题:本题共4小题,每小题5分,共20分。
山东省青岛市2020届高三下学期第二次模拟考试数学【理】试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.将函数()2sin 16f x x π⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是() A .函数()g x 的图象关于点,012π⎛⎫- ⎪⎝⎭对称B .函数()g x 的周期是2π C .函数()g x 在0,6π⎛⎫ ⎪⎝⎭上单调递增 D .函数()g x 在,06π⎛⎫ ⎪⎝⎭上最大值是12.设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12F F 、,122F F c =,过2F 作x 轴的垂线与双曲线在第一象限的交点为A ,已知3(,)2aQ c ,222F Q F A c >=,点P 是双曲线C 右支上的动点,且111232PF PQ F F +>恒成立,则双曲线的离心率的取值范围是( ) A .10(,)+∞ B .7(1,)6 C .710(,)6D .10(1,)3.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,||ϕπ<)的部分图象如图所示,则()f x 的解析式为( )A .()23sin()84x f x ππ=+ B .3()23sin()84x f x ππ=+C .()23sin()84x f x ππ=- D .3()23sin()84x f x ππ=-4.己知P 是圆22(1)1x y -+=上异于坐标原点O 的任意一点,直线OP 的倾斜角为θ,若||OP d =,则函数()d f θ=的大致图象是()A .B .C .D .5.《孙子算经》是中国古代重要的数学著作.其中的一道题“今有木,方三尺,高三尺,欲方五寸作枕一枚.问:得几何?”意思是:“有一块棱长为3尺的正方体方木,要把它作成边长为5寸的正方体枕头,可作多少个?”现有这样的一个正方体木料,其外周已涂上油漆,则从切割后的正方体枕头中任取一块,恰有一面涂上油漆的概率为( ) A .B .C .D .6.已知实数x 、y 满足不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则3z x y =-+的最大值为( )A .3B .2C .32-D .2-7.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是A .316B .38C .14D .188.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,60A =︒,3a =4b =,则B =( )A .30B =︒或150B =︒B .150B =︒C .30B =︒D .60B =︒9.设01p <<,随机变量ξ的分布列是则当p 在(0,1)内增大时( ) A .()E ξ减小,()D ξ减小B .()E ξ减小,()D ξ增大C .()E ξ增大,()D ξ减小 D .()E ξ增大,()D ξ增大 10.函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,则ϕ=( )A .6πB .3πC .6π-D .3π-11.在我国古代数学名著《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的棱柱称为堑堵.已知在堑堵111ABC A B C -中,90ABC ∠=︒,12AB AA ==, 22BC =,则1CA 与平面11ABB A 所成角的大小为( )A .30oB .45oC .60oD .90o12.已知数列{}n a 的前n 项和n S 满足2n n S a n +=()*n N ∈,则7a =( )A .73 B .12764 C .32132 D .38564二、填空题:本题共4小题,每小题5分,共20分。
高考仿真模拟卷·数学(理)·参考答案与解析高考仿真模拟卷(一)1.解析:选B.由已知得A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2}, 所以A ∩B ={-1,0,1,2},故选B.2.解析:选A.因为i -1i +1=(i -1)(1-i )(i +1)(1-i )=i ,所以该复数在复平面上对应的点的坐标为(0,1).故选A.3.解析:选B.由于随机变量X 服从正态分布N (3,σ2),又P (X ≤4)=0.84,所以P (X ≥4)=P (X ≤2)=0.16,P (2<X <4)=1-0.32=0.68.4.解析:选B.由题意得,BA →·BC →=0,BA →·CA →=|BA →|2=36,所以BA →·BD →=BA →·(BC →+CD →)=BA →·⎝⎛⎭⎫BC →+23CA →=0+23×36=24,故选B. 5.解析:选B.程序运行过程如下: 首先初始化数据,S =0,i =1,第一次循环,执行S =S +ln ⎝⎛⎭⎫1+1i =0+ln 2=ln 2,i =i +1=2,此时不应跳出循环; 第二次循环,执行S =S +ln ⎝⎛⎭⎫1+1i =ln 2+ln 32=ln 3,i =i +1=3,此时不应跳出循环; 第三次循环,执行S =S +ln ⎝⎛⎭⎫1+1i =ln 3+ln 43=ln 4,i =i +1=4,此时不应跳出循环; 第四次循环,执行S =S +ln ⎝⎛⎭⎫1+1i =ln 4+ln 54=ln 5,i =i +1=5,此时应跳出循环; i =4时,程序需要继续执行,i =5时,程序结束, 故在判断框内应填i ≤4?.故选B.6.解析:选B.由题意,可得⎩⎪⎨⎪⎧2a 1+7d =23,5a 1+5×42d =35, 解得d =3,故选B.7.解析:选C.依题意,注意到f (-x )=1-2-x 1+2-x ·cos(-x )=2x (1-2-x )2x (1+2-x )cos x =2x -12x +1cos x =-f (x ),因此函数f (x )是奇函数,其图象关于原点对称,结合各选项知,选项A ,B 均不正确;当0<x <1时,1-2x1+2x<0,cos x >0,f (x )<0,结合选项知,C 正确,选C.8.解析:选D.由三视图可知,该手工制品是由两部分构成,每一部分都是相同圆锥的四分之一,且圆锥的底面半径为3,高为4,故母线长为5,故每部分的表面积为2×12×4×3+14×12×6π×5+14×9π=12+6π,故两部分表面积为24+12π.9.解析:选D.由题可得sin ⎝⎛⎭⎫2×3π8+φ=0,又0<φ<π2,所以φ=π4,所以f (x )=sin ⎝⎛⎭⎫2x +π4,由π2+2k π≤2x +π4≤3π2+2k π(k ∈Z ),得f (x )的单调递减区间是⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ). 10.解析:选C.三辆车的出车顺序可能为:123、132、213、231、312、321, 方案一坐3号车的可能:132、213、231,所以P 1=36;方案二坐3号车的可能:312、321,所以P 1=26;所以P 1+P 2=56.故选C.11.解析:选D.设双曲线的左焦点为F 1,由双曲线的对称性可知四边形MF 2PF 1为平行四边形.所以|MF 1|=|PF 2|,MF 1∥PN . 设|PF 2|=m ,则|MF 2|=3m , 所以2a =|MF 2|-|MF 1|=2m , 即|MF 1|=a ,|MF 2|=3a .因为∠MF 2N =60°,所以∠F 1MF 2=60°, 又|F 1F 2|=2c ,在△MF 1F 2中,由余弦定理可得4c 2=a 2+9a 2-2·a ·3a ·cos 60°, 即4c 2=7a 2,所以c 2a 2=74,所以双曲线的离心率e =c a =72.故选D. 12.解析:选D.由已知可得y =2e x 与y =ln x -ln 2=ln x2互为反函数,即y =2e x 与y =lnx -ln 2的图象关于直线x -y =0对称,|PQ |的最小值为点Q 到直线x -y =0的最小距离的2倍,令Q (t ,ln t -ln 2),过点Q 的切线与直线x -y =0平行,函数y =ln x -ln 2的导数为y ′=1x ,其斜率为k =1t =1,所以t =1,故Q (1,-ln 2),点Q 到直线x -y =0的距离为d =|1-(-ln 2)|12+(-1)2=1+ln 22,所以|PQ |min =2d =2(1+ln 2).13.解析:消费支出超过150元的人数为(50×0.004+50×0.002)×100=30. 答案:3014.解析:作出不等式组所表示的平面区域如图中阴影部分所示,设z =a·OP →=x -y ,则y =x -z ,易知当y =x -z 经过⎩⎪⎨⎪⎧x +y -5=0,x -2y +1=0的交点(3,2)时,z =x -y 取得最大值,且z max =1. 答案:115.解析:采用补体法,由空间点坐标可知,该四面体的四个顶点在一个长方体上,该长方体的长宽高分别为3,1,5,长方体的外接球即为该四面体的外接球,外接球的直径即为长方体的体对角线3+1+5=3,所以球半径为32,体积为43πr 3=9π2.答案:9π216.解析:因为f (x )是奇函数,f (-x )=-f (x ),所以a n +1-⎝⎛⎭⎫a n +cos n π2=0,a n +1=a n+cosn π2.a 1=1,a 2=a 1+cos π2=1,a 3=a 2+cos 2π2=0,a 4=a 3+cos 3π2=0,如此继续,得a n +4=a n .S 2 019=504(a 1+a 2+a 3+a 4)+a 1+a 2+a 3=504×2+1+1+0=1 010.答案:1 010 17.解:因为3(b 2+c 2)=3a 2+2bc ,所以b 2+c 2-a 22bc =13,由余弦定理得cos A =13,所以sin A =223.(1)因为sin B =2cos C ,所以sin(A +C )=2cos C , 所以223cos C +13sin C =2cos C ,所以23cos C =13sin C ,所以tan C = 2. (2)因为S =22,所以12bc sin A =22,所以bc =32.① 由余弦定理a 2=b 2+c 2-2bc cos A , 可得4=b 2+c 2-2bc ×13,所以b 2+c 2=5.②因为b >c >0,所以联立①②可得b =322,c =22.18.解:(1)由已知,得P (A )=C 22C 23+C 23C 23C 48=635.所以事件A 的概率为635. (2)随机变量X 的所有可能取值为1,2,3,4.由已知得P (X =k )=C k 5C 4-k3C 48(k =1,2,3,4).所以随机变量X 的分布列为:随机变量X 的数学期望E (X )=1×114+2×37+3×37+4×114=52.19.解:(1)证明:因为AB ⊥侧面BB 1C 1C ,BC 1⊂侧面BB 1C 1C ,故AB ⊥BC 1,在△BCC 1中,BC =1,CC 1=BB 1=2,∠BCC 1=π3,BC 21=BC 2+CC 21-2BC ·CC 1·cos ∠BCC 1=12+22-2×1×2×cos π3=3,所以BC 1=3,故BC 2+BC 21=CC 21,所以BC ⊥BC 1,而BC ∩AB =B ,所以C 1B ⊥平面ABC .(2)由(1)可知,AB ,BC ,BC 1两两垂直.以B 为原点,BC ,BA ,BC 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.则B (0,0,0),A (0,1,0),B 1(-1,0,3),C (1,0,0),C 1(0,0,3). 所以CC 1→=(-1,0,3),所以CE →=(-λ,0,3λ),E (1-λ,0,3λ), 则AE →=(1-λ,-1,3λ),AB 1→=(-1,-1,3). 设平面AB 1E 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ⊥AE →n ⊥AB 1→,即⎩⎨⎧(1-λ)x -y +3λz =0-x -y +3z =0,令z =3,则x =3-3λ2-λ,y =32-λ,故n =⎝ ⎛⎭⎪⎫3-3λ2-λ,32-λ,3是平面AB 1E 的一个法向量.因为AB ⊥平面BB 1C 1C ,BA →=(0,1,0)是平面BB 1E 的一个法向量, 所以|cos 〈n ,BA →〉|=⎪⎪⎪⎪⎪⎪n ·BA →|n ||BA →|=⎪⎪⎪⎪⎪⎪32-λ1×⎝ ⎛⎭⎪⎫3-3λ2-λ2+⎝⎛⎭⎫32-λ2+(3)2=32. 两边平方并化简得2λ2-5λ+3=0,所以λ=1或λ=32(舍去).20.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,-2). 所以直线BM 的方程为y =12x +1或y =-12x -1.(2)证明:当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为y =k (x -2)(k ≠0),M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由⎩⎪⎨⎪⎧y =k (x -2),y 2=2x ,得ky 2-2y -4k =0,可知y 1+y 2=2k ,y 1y 2=-4.直线BM ,BN 的斜率之和为k BM +k BN =y 1x 1+2+y 2x 2+2=x 2y 1+x 1y 2+2(y 1+y 2)(x 1+2)(x 2+2).①将x 1=y 1k +2,x 2=y 2k +2及y 1+y 2,y 1y 2的表达式代入①式分子,可得x 2y 1+x 1y 2+2(y 1+y 2)=2y 1y 2+4k (y 1+y 2)k =-8+8k =0.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM =∠ABN .综上,∠ABM =∠ABN .21.解:(1)易知函数f (x )的定义域为(0,+∞), h (x )=f (x )x =ln x -k (x -1)x (x >0),则h ′(x )=1x -k x 2=x -kx2,当k ≤0时,h ′(x )>0对任意的x >0恒成立,所以h (x )是(0,+∞)上的增函数,此时h (x )不存在极值.当k >0时,若0<x <k ,则h ′(x )<0;若x >k ,则h ′(x )>0.所以h (x )是(0,k )上的减函数,是(k ,+∞)上的增函数,故h (x )的极小值为h (k )=ln k -k +1,不存在极大值. 综上所述,当k ≤0时,h (x )不存在极值; 当k >0时,h (x )极小值=ln k -k +1,不存在极大值.(2)由(1)知当k ≤0或k =1时,f (x )=0,即h (x )=0仅有唯一解x =1,不符合题意. 当0<k <1时,h (x )是(k ,+∞)上的增函数,当x >1时,有h (x )>h (1)=0, 所以f (x )=0没有大于1的根,不符合题意.当k >1时,由f ′(x )=0,即f ′(x )=1+ln x -k =0,解得x 0=e k -1, 若x 1=kx 0=k e k -1,又x 1ln x 1=k (x 1-1),所以k e k -1ln(k e k -1)=k (k e k -1-1),即ln k -1+e 1-k =0.令v (x )=ln x -1+e 1-x ,则v ′(x )=1x-e 1-x =e x -e x x ex ,令s (x )=e x -e x ,s ′(x )=e x-e ,当x >1时,总有s ′(x )>0,所以s (x )是(1,+∞)上的增函数,即s (x )=e x -e x >s (1)=0,故当x >1时,v ′(x )>0,v (x )是(1,+∞)上的增函数,所以v (x )>v (1)=0, 即ln k -1+e 1-k =0在(1,+∞)上无解. 综上可知,不存在满足条件的实数k .22.解:(1)由⎩⎨⎧x =1+2ty =2t,得x -y =1,所以直线l 的极坐标方程为ρcos α-ρsin α=1, 即2ρ(cos αcos π4-sin αsin π4)=1,即2ρcos ⎝⎛⎭⎫α+π4=1.由ρ=sin θ1-sin 2θ,所以ρ=sin θcos 2θ,所以ρcos 2θ=sin θ,所以(ρcos θ)2=ρsin θ, 即曲线C 的直角坐标方程为y =x 2. (2)设P (x 0,y 0),则y 0=x 20,所以P 到直线l 的距离d =|x 0-y 0-1|2=|x 0-x 20-1|2=⎪⎪⎪⎪-⎝⎛⎭⎫x 0-122-342,所以当x 0=12时,d min =328,此时P ⎝⎛⎭⎫12,14, 所以当P 点为⎝⎛⎭⎫12,14时,P 到直线l 的距离最小,最小值为328. 23.解:(1)由已知可得 f (x )=⎩⎪⎨⎪⎧4,x ≥22x ,-2<x <2,-4,x ≤-2所以,f (x )≥2的解集为{x |x ≥1}. (2)证明:由(1)知,|x +2|-|x -2|≤4,1y +11-y =⎝⎛⎭⎫1y +11-y [y +(1-y )]=2+1-y y +y 1-y ≥4(当且仅当y =12时取等号),所以|x +2|-|x -2|≤1y +11-y.高考仿真模拟卷(二)1.解析:选A.A ={x |x <-1或x >2},B ={x |1<x <4},所以A ∩B =(2,4).故选A. 2.解析:选B.由z (1+i)=i 得z =i1+i ,所以|z |=|i||i +1|=12=22,故答案为B. 3.解析:选B.因为向量a =(x ,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,所以2x -4=0,2y =-4,解得x =2,y =-2,所以a =(2,1),b =(1,-2),所以a +b =(3,-1),所以|a +b |= 32+(-1)2=10.4.解析:选A.因为f (-x )=|-x |ln|-x |x 4=|x |ln|x |x4=f (x ),所以f (x )是偶函数, 可得图象关于y 轴对称,排除C ,D ;当x >0时,f (x )=ln xx 3,f (1)=0,f ⎝⎛⎭⎫12<0,排除B. 5.解析:选A.因为sin ⎝⎛⎭⎫π2-α=cos α=35,所以sin α=±45,因为α∈⎝⎛⎭⎫0,π2,所以sin α=45,所以tan α=43,所以tan 2α=2tan α1-tan 2α=831-169=-247,故选A.6.解析:选A.设所选2部专著中至少有一部是魏晋南北朝时期专著为事件A , 所以P (A )=C 23C 210=115,因此P (A )=1-P (A )=1-115=1415,故本题选A.7.解析:选B.第一次运行,i =10,满足条件,S =1×10=10,i =9; 第二次运行,i =9满足条件,S =10×9=90,i =8; 第三次运行,i =8满足条件,S =90×8=720,i =7; 此时不满足条件,输出的S =720.故条件应为8,9,10满足,i =7不满足,所以条件应为i >7.8.解析:选C.因为1=log 2 0182 018>a =log 2 018 2 019>log 2 018 2 018=12,b =log 2 019 2 018<log 2 0192 019=12,c =2 01812 019>2 0180=1,故本题选C.9.解析:选C.由递推公式可得:当n 为奇数时,a n +2-a n =4,数列{a 2n -1}是首项为1,公差为4的等差数列, 当n 为偶数时,a n +2-a n =0,数列{a n }是首项为2,公差为0的等差数列, S 2 017=(a 1+a 3+…+a 2 017)+(a 2+a 4+…+a 2 016) =1 009+12×1 009×1 008×4+1 008×2=2 017×1 010-1.本题选择C 选项.10.解析:选A.设P (x 0,x 0),所以切线的斜率为12x 0,又因为在点P 处的切线过双曲线的左焦点F (-1,0),所以12x 0=x 0x 0+1,解得x 0=1,所以P (1,1),因此2c =2,2a =5-1,故双曲线的离心率是5+12,故选A.11.解析:选D.b c +c b =b 2+c 2bc ,这个形式很容易联想到余弦定理cos A =b 2+c 2-a 22bc ,①而条件中的“高”容易联想到面积,12a ×36a =12bc sin A ,即a 2=23bc sin A ,②将②代入①得:b 2+c 2=2bc (cos A +3sin A ),所以b c +cb =2(cos A +3sin A )=4sin ⎝⎛⎭⎫A +π6,当A =π3时取得最大值4,故选D.12.解析:选A.依题意得,AB =2AD =2,∠DAB =π3,由余弦定理可得BD =3,则AD 2+DB 2=AB 2,则∠ADB =π2,又四边形ABCD 是等腰梯形,故四边形ABCD 的外接圆直径为AB ,设AB 的中点为O 1,球的半径为R ,因为SD ⊥平面ABCD ,所以R 2=12+⎝⎛⎭⎫SD 22=54,则S =4πR 2=5π,故选A. 13.解析:因为S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入得d =-2.故S n =13n -n (n -1)=-n 2+14n ,根据二次函数性质,当n =7时,S n 最大且最大值为49.答案:4914.解析:由题意得(1-3x )8展开式的通项为T r +1=C r 8(-3x )r=(-1)r C r 8x r3,r =0,1,2, (8)所以(a +3x )(1-3x )8展开式的常数项为(-1)0C 08·a =a =4,所以(4+3x )(1-3x )8展开式中x 2项的系数为4·(-1)6C 68x 63+3x ·(-1)3C 38x 33=-56x 2,所以展开式中x 2的系数是-56.故答案为-56. 答案:-5615.解析:法一:因为DE →=12DO →,DO →=OB →=12DB →,所以DE →=12DO →=14DB →,所以DE →=13EB →,由DF ∥BC ,得DF →=13CB →,所以CF →=CD →+DF →=CD →+13CB →=CO →+OD →+13(CO →+OB →)=43CO →+23OD →=-23AC →+13BD →,所以λ=-23,μ=13,λ+μ=-13.法二:不妨设ABCD 为矩形,建立平面直角坐标系如图,设AB =a ,BC =b ,则A (0,0),B (a ,0),C (a ,b ),D (0,b ),O ⎝⎛⎭⎫a 2,b 2,设E (x ,y ),因为DE →=12DO →,所以(x ,y -b )=12⎝⎛⎭⎫a 2,-b 2,所以x =a 4,y =34b ,即E ⎝⎛⎭⎫a 4,34b ,设F (0,m ),因为CF →∥CE →,CF →=(-a ,m -b ),CE →=⎝⎛⎭⎫-34a ,-14b ,所以14ab +34a (m -b )=0,解得m =23b ,即F ⎝⎛⎭⎫0,23b ,CF →=⎝⎛⎭⎫-a ,-13b .又AC →=(a ,b ),BD →=(-a ,b ),由CF →=λAC →+μBD →,得⎝⎛⎭⎫-a ,-13b =λ(a ,b )+μ(-a ,b )=((λ-μ)a ,(λ+μ)b ),所以λ+μ=-13.答案:-1316.解析:由题意得ln x +x =kx 有两个不同的解,k =ln xx +1,则k ′=1-ln x x 2=0⇒x =e ,因此当0<x <e 时,k ∈⎝⎛⎭⎫-∞,1+1e ,当x >e 时,k ∈⎝⎛⎭⎫1,1+1e ,从而要使ln x +x =kx 有两个不同的解,需k ∈⎝⎛⎭⎫1,1+1e . 答案:⎝⎛⎭⎫1,1+1e 17.解:(1)因为f (x )=3sin(3π+x )·cos(π-x )+cos 2⎝⎛⎭⎫π2+x ,所以f (x )=3(-sin x )·(-cos x )+(-sin x )2=32sin 2x +1-cos 2x 2=sin ⎝⎛⎭⎫2x -π6+12. 由2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,即函数f (x )的单调递增区间是⎣⎡⎦⎤k π-π6,k π+π3,k ∈Z .(2)由f (A )=32得,sin ⎝⎛⎭⎫2A -π6+12=32,所以sin ⎝⎛⎭⎫2A -π6=1,因为0<A <π,所以0<2A <2π,-π6<2A -π6<11π6,所以2A -π6=π2,所以A =π3,因为a =2,b +c =4,① 根据余弦定理得,4=b 2+c 2-2bc cos A =b 2+c 2-bc =(b +c )2-3bc =16-3bc , 所以bc =4,② 联立①②得,b =c =2.18.解:(1)依题意得,a =0.04×5×1 000=200,b =0.02×5×1 000=100.(2)设抽取的40名学生中,成绩为优秀的学生人数为x ,则x 40=350+300+1001 000,解得x=30,即抽取的40名学生中,成绩为优秀的学生人数为30. 依题意,X 的可能取值为0,1,2,P (X =0)=C 210C 240=352,P (X =1)=C 110C 130C 240=513,P (X =2)=C 230C 240=2952,所以X 的分布列为X 0 1 2 P3525132952所以X 的数学期望E (X )=0×352+1×513+2×2952=32.19.解:(1)证明:取BC 的中点Q ,连接NQ ,FQ ,则NQ =12AC ,NQ ∥AC .又MF =12AC ,MF ∥AC ,所以MF =NQ ,MF ∥NQ ,则四边形MNQF 为平行四边形,即MN ∥FQ .因为FQ ⊂平面FCB ,MN ⊄平面FCB , 所以MN ∥平面FCB .(2)由AB ∥CD ,AD =DC =CB =1,∠ABC =60°可得∠ACB =90°,AC =3,BC =1,AB =2.因为四边形ACFE 为矩形,所以AC ⊥平面FCB ,则∠AFC 为直线AF 与平面FCB 所成的角,即∠AFC =30°,所以FC =3.因为FB =10,所以FC ⊥BC ,则可建立如图所示的空间直角坐标系C -xyz ,所以A (3,0,0),B (0,1,0),M ⎝⎛⎭⎫32,0,3,MA →=⎝⎛⎭⎫32,0,-3,MB →=⎝⎛⎭⎫-32,1,-3. 设m =(x ,y ,z )为平面MAB 的法向量,则⎩⎪⎨⎪⎧MA →·m =0,MB →·m =0,即⎩⎨⎧32x -3z =0,-32x +y -3z =0.取x =23,则m =(23,6,1)为平面MAB 的一个法向量.又n =(3,0,0)为平面FCB 的一个法向量, 所以cos 〈m ,n 〉=m·n |m||n|=23×37×3=237.则平面MAB 与平面FCB 所成角的余弦值为237.20.解:(1)由题意知,b 等于原点到直线y =x +2的距离,即b =21+1=2,又2a =4,所以a =2,c 2=a 2-b 2=2,所以椭圆C 的两个焦点的坐标分别为()2,0,()-2,0.(2)由题意可设M (x 0,y 0),N (-x 0,-y 0),P (x ,y ),则x 20a 2+y 20b 2=1,x 2a 2+y 2b2=1, 两式相减得y 2-y 20x 2-x 20=-b 2a 2,又k PM =y -y 0x -x 0,k PN =y +y 0x +x 0, 所以k PM ·k PN =y -y 0x -x 0·y +y 0x +x 0=y 2-y 20x 2-x 20=-b 2a 2,所以-b 2a 2=-14,又a =2,所以b =1,故椭圆C 的方程为x 24+y 2=1.21.解:(1)f ′(x )=1x -k x 2=x -kx2,x >0.当k ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增,无极值.当k >0时,当0<x <k 时,f ′(x )<0,当x >k 时,f ′(x )>0,故f (x )的单调递减区间是(0,k ),单调递增区间是(k ,+∞),f (x )的极小值为h (k )=f (k )=ln k +1.当k >0时,h (k )≤ak 恒成立,即ln k +1≤ak ,即a ≥ln k +1k恒成立.令φ(k )=ln k +1k ,则φ′(k )=1-(1+ln k )k 2=-ln kk 2,令φ′(k )=0,得k =1,当0<k <1时,φ′(k )>0,φ(k )单调递增,当k >1时,φ′(k )<0,φ(k )单调递减,故k =1为φ(k )在(0,+∞)上唯一的极大值点,也是最大值点,所以φ(k )max =φ(1)=1,所以a ≥1,即实数a 的取值范围是[1,+∞).(2)证明:由(1)知,当k >0时,f (x )在(0,k )上单调递减,在(k ,+∞)上单调递增,设α<β,则一定有0<α<k <β.构造函数g (x )=f (x )-f (2k -x )=ln x +k x -ln (2k -x )-k2k -x ,0<x <k ,g ′(x )=1x +12k -x -k x 2-k(2k -x )2=2kx (2k -x )-2k (x 2-2kx +2k 2)x 2(2k -x )2 =-4k (x -k )2x 2(2k -x )2. 因为0<x <k ,所以g ′(x )<0,即g (x )在(0,k )上单调递减,又f (k )-f (2k -k )=0,所以g (x )>0,所以f (x )>f (2k -x ).因为0<α<k ,所以f (α)>f (2k -α),因为f (α)=f (β),所以f (β)>f (2k -α),因为0<α<k ,所以2k -α>k ,又函数f (x )在(k ,+∞)上单调递增,所以β>2k -α,所以α+β>2k .22.解:(1)x 2=⎣⎡⎦⎤2sin ⎝⎛⎭⎫α+π42=(sin α+cos α)2=sin 2α+1=y ,所以C 1的普通方程为y =x 2.将ρ2=x 2+y 2,ρsin θ=y 代入C 2的方程得x 2+y 2=4y -3,所以C 2的直角坐标方程为x 2+y 2-4y +3=0.(2)将x 2+y 2-4y +3=0变形为x 2+(y -2)2=1,它的圆心为C (0,2).设P (x 0,y 0)为C 1上任意一点,则y 0=x 20,从而|PC |2=(x 0-0)2+(y 0-2)2=x 20+(x 20-2)2=x 40-3x 20+4=⎝⎛⎭⎫x 20-322+74,所以当x 20=32时,|PC |min =72, 故曲线C 1上的点与曲线C 2上的点的距离的最小值为72-1. 23.解:(1)由已知可得f (x )=⎩⎪⎨⎪⎧1-2x ,x <0,1,0≤x <1,2x -1,x ≥1,所以f (x )min =1,所以只需|m -1|≤1,解得-1≤m -1≤1, 所以0≤m ≤2,所以实数m 的最大值M =2. (2)证明:因为a 2+b 2≥2ab , 所以ab ≤1,所以ab ≤1,当且仅当a =b 时取等号,① 又ab ≤a +b 2,所以ab a +b ≤12,所以ab a +b ≤ab2,当且仅当a =b 时取等号,②由①②得,ab a +b ≤12,所以a +b ≥2ab . 高考仿真模拟卷(三)1.解析:选C.因为A =(-2,1),B =(-∞,0)∪(1,+∞),所以∁R B =[0,1],A ∩(∁R B )=[0,1),选C.2.解析:选A.由复数z 1与z 3所对应的点关于原点对称,z 3与z 2关于实轴对称可得, 复数z 1与z 2所对应的点关于虚轴对称,z 1=3+4i ,所以z 2=-3+4i , 所以z 1·z 2=(3+4i)(-3+4i)=-25.3.解析:选C.抛掷红、蓝两枚骰子,第一个数字代表红色骰子,第二个数字代表蓝色骰子,当红色骰子点数为偶数时,有18种,分别为:(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),其中两颗骰子点数之和不小于9的有6种,分别为:(4,5),(4,6),(6,3),(6,4),(6,5),(6,6),所以当已知红色骰子的点数为偶数时,两颗骰子的点数之和不小于9的概率是P =618=13.故选C.4.解析:选B.本题可以转为等差数列问题:已知首项a 1=5,前30项的和S 30=390,求公差d .由等差数列的前n 项公式可得,390=30×5+30×292d ,解得d =1629.5.解析:选A.因为函数f (x )=x ln |x |,可得f (-x )=-f (x ),f (x )是奇函数,其图象关于原点对称,排除C ,D ;当x >0时,f ′(x )=ln x +1,令f ′(x )>0得x >1e ,得出函数f (x )在⎝⎛⎭⎫1e ,+∞上是增函数,排除B ,故选A.6.解析:选D.由m ⊥OA →,得3x +4y =0,即y =-34x ,所以tan α=-34,tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan αtan π4=tan α+11-tan α=-34+11-⎝⎛⎭⎫-34=17.7.解析:选D.设奇数项的公差为d ,偶数项的公比为q ,由a 3+a 4=7,a 5+a 6=13,得1+d +2q =7,1+2d +2q 2=13,解得d =2,q =2,所以a 7+a 8=1+3d +2q 3=7+16=23,故选D.8.解析:选C.第一次循环r =70,m =105,n =70;第二次循环r =35,m =70,n =35;第三次循环r =0,m =35,n =0.故输出的m 等于35.9.解析:选A.在△ADC 中,因为AC =32,AD =3,cos ∠ADC =cos ⎝⎛⎭⎫∠ABC +π2=-sin ∠ABC =-33,所以代入AC 2=AD 2+DC 2-2AD ·DC ·cos ∠ADC ,可得DC 2+2DC -15=0,舍掉负根有DC =3.所以BC =DC cot ∠ABC =3 2.AB =AD +BD =AD +DCsin ∠ABC =3+33=4 3.于是根据三角形的面积公式有:S △ABC =12AB ·BC ·sin ∠ABC =12·43·32·33=6 2.故选A.10.解析:选C.由AB =BC =2,AC =2,可知∠ABC =π2,取AC 的中点M ,则点M 为△ABC 外接圆的圆心,又O 为四面体ABCD 的外接球球心,所以OM ⊥平面ABC ,且OM 为△ACD 的中位线,所以DC ⊥平面ABC , 故三棱锥D -ABC 的体积为V =13×12×2×2×23=233.故选C.11.解析:选B.由题意知四边形F 1F 2PQ 的边长为2c ,连接QF 2,由对称性可知,|QF 2|=|QF 1|=2c ,则三角形QPF 2为等边三角形.过点P 作PH ⊥x 轴于点H ,则∠PF 2H =60°,因为|PF 2|=2c ,所以在直角三角形PF 2H 中,|PH |=3c ,|HF 2|=c ,则P (2c ,3c ),连接PF 1,则|PF 1|=23c .由双曲线的定义知,2a =|PF 1|-|PF 2|=23c -2c =2(3-1)c ,所以双曲线的离心率为c a =13-1=3+12.12.解析:选B.令g (x )=f (x )x 2,则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3,由于x ∈(0,1),且xf ′(x )>2f (x ),所以g ′(x )>0,故函数g (x )在(0,1)上单调递增.又α,β为锐角三角形的两个内角,则π2>α>π2-β>0,所以1>sin α>sin ⎝⎛⎭⎫π2-β>0,即1>sin α>cos β>0,所以g (sin α)>g (cos β),即f (sin α)sin 2α>f (cos β)cos 2β,所以cos 2βf (sin α)>sin 2αf (cos β). 13.解析:依题意,得1a +4b =12⎝⎛⎭⎫1a +4b ·(a +b ) =12⎣⎡⎦⎤5+⎝⎛⎭⎫b a +4a b ≥12⎝⎛⎭⎫5+2b a ·4a b=92,当且仅当⎩⎪⎨⎪⎧a +b =2,b a =4a b ,a >0,b >0,即a =23,b =43时取等号,即1a +4b 的最小值是92. 答案:9214.解析:依题意,结合茎叶图,将题中的数由小到大依次排列得到:86,86,90,91,93,93,93,96,因此这8位学生得分的众数是93,中位数是91+932=92.答案:93,9215.解析:由AB →·AC →=6,∠A =60°,可得|AB →|·|AC →|=12,又在△ABC 中,13=AB 2+AC 2-2AB ·AC cos A ,所以AB 2+AC 2=25,因为AB >AC ,所以AB =4,AC =3.以A 为坐标原点,AB 所在的直线为x 轴建立如图所示的平面直角坐标系,则B (4,0),C ⎝⎛⎭⎫32,332,所以BC →=⎝⎛⎭⎫-52,332,因为M 是BC 的中点,所以M ⎝⎛⎭⎫114,334,H ⎝⎛⎭⎫114,0,所以MH →=⎝⎛⎭⎫0,-334,所以MH →·BC →=-278.答案:-27816.解析:函数f (x )=a ln x -x +a +3x 在定义域(0,+∞)内无极值等价于f ′(x )≥0或f ′(x )≤0在定义域(0,+∞)内恒成立.因为f ′(x )=ax -1-a +3x 2=-x 2+ax -(a +3)x 2,设g (x )=-x 2+ax -(a +3),则g (x )≥0或g (x )≤0在(0,+∞)内恒成立,可分两种情况进行讨论,即方程g (x )=-x 2+ax -(a +3)=0无解或只有小于等于零的解,因此Δ≤0或⎩⎪⎨⎪⎧Δ≥0,a2≤0,g (0)≤0,解得-2≤a ≤6或-3≤a ≤-2.故实数a 的取值范围为[-3,6]. 答案:[-3,6]17.解:(1)记甲运动员击中n 环为事件A n (n =1,2,3,…,10);乙运动员击中n 环为事件B n (n =1,2,3,…,10);甲运动员击中的环数不少于9环为事件A 9∪A 10,乙运动员击中的环数不少于9环为事件B 9∪B 10,根据已知事件A 9与事件A 10互斥,事件B 9与事件B 10互斥,事件A 9∪A 10与B 9∪B 10相互独立.P (A 9∪A 10)=P (A 9)+P (A 10)=1-0.2-0.15=0.65, P (B 9∪B 10)=P (B 9)+P (B 10)=0.2+0.35=0.55.所以甲、乙两名射击运动员击中的环数都不少于9环的概率等于0.65×0.55=0.357 5. (2)设甲、乙两名射击运动员击中的环数分别为随机变量X 、Y ,根据已知得X 、Y 的可能取值为:7,8,9,10.甲运动员射击环数X 的概率分布列为甲运动员射击环数X E (X )=7×0.2+8×0.15+9×0.3+10×0.35=8.8. 乙运动员射击环数Y 的概率分布列为乙运动员射击环数Y E (Y )=7×0.2+8×0.25+9×0.2+10×0.35=8.7.因为E (X )>E (Y ), 所以从随机变量均值意义的角度看,选甲去比较合适. 18.解:(1)当n =1时,a 1=S 1=2-a ; 当n ≥2时,a n =S n -S n -1=2n -1.因为{a n }为等比数列,所以2-a =1,解得a =1.所以a n =2n -1. 设数列{b n }的公差为d .因为b 2+5,b 4+5,b 8+5成等比数列, 所以(b 4+5)2=(b 2+5)(b 8+5),又b 1=3,所以(8+3d )2=(8+d )(8+7d ), 解得d =0(舍去)或d =8.所以b n =8n -5. (2)由a n =2n -1,得log 2a n =2(n -1),所以{log2a n }是以0为首项,2为公差的等差数列,所以T n =n (0+2n -2)2=n (n -1).由b n =8n -5,T n >b n ,得n (n -1)>8n -5, 即n 2-9n +5>0,因为n ∈N *,所以n ≥9. 故所求n 的最小正整数为9.19.解:(1)设BD =x (0<x <3),则CD =3-x .由AD ⊥BC ,∠ACB =45°知,△ADC 为等腰直角三角形,所以AD =CD =3-x . 由折起前AD ⊥BC 知,折起后,AD ⊥DC ,AD ⊥BD ,且BD ∩DC =D ,所以AD ⊥平面BCD .又∠BDC =90°, 所以S △BCD =12BD ·CD =12x (3-x ).于是V ABCD=13AD ·S △BCD=13(3-x )·12x (3-x )=112·2x (3-x )·(3-x )≤112⎣⎡⎦⎤2x +(3-x )+(3-x )33=23(当且仅当2x =3-x ,即x =1时,等号成立),故当x =1,即BD =1时,三棱锥A -BCD 的体积最大.(2)以D 为原点,建立如图所示的空间直角坐标系D -xyz . 由(1)知,当三棱锥A -BCD 的体积最大时,BD =1,AD =CD =2.于是可得D (0,0,0),B (1,0,0),C (0,2,0),A (0,0,2),M (0,1,1),E ⎝⎛⎭⎫12,1,0,所以BM →=(-1,1,1).设N (0,λ,0),则EN →=⎝⎛⎭⎫-12,λ-1,0. 因为EN ⊥BM ,所以EN →·BM →=0,即⎝⎛⎭⎫-12,λ-1,0·(-1,1,1)=12+λ-1=0,故λ=12,N ⎝⎛⎭⎫0,12,0. 所以当DN =12(即N 是CD 上靠近点D 的一个四等分点)时,EN ⊥BM .设平面BMN 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ⊥BN →,n ⊥BM →,及BN →=⎝⎛⎭⎫-1,12,0, 得⎩⎪⎨⎪⎧-x +12y =0,-x +y +z =0,所以⎩⎪⎨⎪⎧y =2x ,z =-x .取x =1得n =(1,2,-1).设EN 与平面BMN 所成角的大小为θ,则由EN →=⎝⎛⎭⎫-12,-12,0, 可得sin θ=|cos 〈n ,EN →〉|=⎪⎪⎪⎪⎪⎪n ·EN →|n |·|EN →|=⎪⎪⎪⎪-12-16×22=32, 即θ=60°,故EN 与平面BMN 所成角的大小为60°.20.解:(1)证明:因为f ′(x )=x e x ≥0,即f (x )在[0,1]上单调递增,所以f (x )≥f (0)=0,结论成立.(2)令g (x )=e x -1x ,则g ′(x )=(x -1)e x +1x 2>0,x ∈(0,1),所以,当x ∈(0,1)时,g (x )<g (1)=e -1, 要使e x -1x<b ,只需b ≥e -1.要使e x -1x >a 成立,只需e x -ax -1>0在x ∈(0,1)上恒成立.令h (x )=e x -ax -1,x ∈(0,1),则h ′(x )=e x -a ,由x ∈(0,1),得e x ∈(1,e),①当a ≤1时,h ′(x )>0,此时x ∈(0,1),有h (x )>h (0)=0成立,所以a ≤1满足条件; ②当a ≥e 时,h ′(x )<0,此时x ∈(0,1),有h (x )<h (0)=0,不符合题意,舍去; ③当1<a <e 时,令h ′(x )=0,得x =ln a ,可得当x ∈(0,ln a )时,h ′(x )<0,即x ∈(0,ln a )时,h (x )<h (0)=0,不符合题意,舍去.综上,a ≤1.又b ≥e -1,所以b -a 的最小值为e -2.21.解:(1)由焦点坐标为(1,0),可知p2=1,所以p =2,所以抛物线C 的方程为y 2=4x .(2)证明:当直线l 垂直于x 轴时,△ABO 与△MNO 相似, 所以S △ABO S △MNO =⎝⎛⎭⎫|OF |22=14;当直线l 与x 轴不垂直时,设直线AB 的方程为y =k (x -1). 设M (-2,y M ),N (-2,y N ),A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,整理得k 2x 2-(4+2k 2)x +k 2=0,所以x 1·x 2=1.所以S △ABOS △MNO=12·|AO |·|BO |·sin ∠AOB 12·|MO |·|NO |·sin ∠MON=|AO ||MO |·|BO ||NO |=x 12·x 22=14. 综上,S △ABO S △MNO =14. 22.解:(1)由已知可得圆心O 的直角坐标为⎝⎛⎭⎫-22,-22,所以圆心O 的极坐标为⎝⎛⎭⎫1,5π4.(2)由直线l 的极坐标方程可得直线l 的直角坐标方程为x +y -1=0,所以圆心O 到直线l 的距离d =|-2-1|2,圆O 上的点到直线l 的距离的最大值为|-2-1|2+r =3,解得r =2-22. 23.解:(1)显然a ≠0,当a >0时,解集为⎣⎡⎦⎤-1a ,3a ,则-1a =-6,3a =2,无解; 当a <0时,解集为⎣⎡⎦⎤3a ,-1a ,令-1a =2,3a =-6,得a =-12. 综上所述,a =-12.(2)当a =2时,令h (x )=f (2x +1)-f (x -1)=|4x +1|-|2x -3|=⎩⎪⎨⎪⎧-2x -4,x ≤-14,6x -2,-14<x <32,2x +4,x ≥32, 由此可知,h (x )在⎝⎛⎦⎤-∞,-14上单调递减,在⎝⎛⎭⎫-14,32上单调递增,在⎣⎡⎭⎫32,+∞上单调递增,则当x =-14时,h (x )取到最小值-72,由题意知,-72≤7-3m ,则实数m 的取值范围是⎝⎛⎦⎤-∞,72.高考仿真模拟卷(四)1.解析:选B.因为M ={x |1≤x <3},N ={1,2},所以M ∩N ={1,2}.故选B. 2.解析:选C.由(z -1)i =4+2i ,得z -1=4+2i i =2-4i ,所以z =3-4i ,所以|z |=5.3.解析:选D.由题意知,四所中学报名参加某高校2017年自主招生考试的学生总人数为100,抽取的学生人数与学生总人数的比值为50100=12.所以应从A ,B ,C ,D 四所中学抽取的学生人数分别为20,15,5,10.4.解析:选C.因为a 5=a 2q 3<0,a 2<0,所以q >0,所以a n <0恒成立,所以S n -S n -1=a n <0,{S n }单调递减,故为充分条件;S n -S n -1=a n <0⇒a 2<0,a 5<0,故为必要条件.故选C.5.解析:选B.依题意得cos C =a 2+b 2-c 22ab =12,C =60°,因此△ABC 的面积等于12ab sinC =12×3×32=34.6.解析:选A.因为a =log 123<log 122=-1,0<b =⎝⎛⎭⎫130.2<1,c =2>1,所以a <b <c . 7.解析:选A.由(a -2b )·a =a 2-2a ·b =0,得a ·b =a 22=|a |22=8,从而a 在b 方向上的投影为a ·b |b |=82=4,故选A.8.解析:选C.第一次循环S =2,n =2,第二次循环S =6,n =3,第三次循环S =2,n =4,第四次循环S =18,n =5,第五次循环S =14,n =6,第六次循环S =78,n =7,需满足S ≥K ,此时输出n =7,所以18<K ≤78,所以整数K 的最大值为78.9.解析:选B.设长方体三条棱的长分别为a ,b ,c , 由题意得⎩⎪⎨⎪⎧ab =6bc =8ac =12,解得⎩⎪⎨⎪⎧a =3b =2c =4.再结合题意可得,铁球的直径最大只能为2. 故选B.10.解析:选B.设Q (x 0,y 0),中点M (x ,y ),则P (2x -x 0,2y -y 0)代入x 2+y 2=9, 得(2x -x 0)2+(2y -y 0)2=9, 化简得:⎝⎛⎭⎫x -x 022+⎝⎛⎭⎫y -y 022=94, 又x 20+y 20=25表示以原点为圆心半径为5的圆,故易知M 的轨迹是在以⎝⎛⎭⎫x 02,y 02为圆心,以32为半径的圆绕原点一周所形成的图形,即在以原点为圆心,宽度为3的圆环带上,即应有x 2+y 2=r 2(1≤r ≤4),那么在C 2内部任取一点落在M 内的概率为16π-π25π=1525=35.故选B.11.解析:选A.由题意得,F (c ,0),该双曲线的一条渐近线为y =-ba x ,将x =c 代入y=-b a x 得y =-bc a,所以bca =2a ,即bc =2a 2,所以4a 4=b 2c 2=c 2(c 2-a 2),所以e 4-e 2-4=0,解得e 2=1+172,故选A.12.解析:选A.二次函数f (x )=x 2+(a +8)x +a 2+a -12图象的对称轴为直线x =-a +82,由f (a 2-4)=f (2a -8)及二次函数的图象,可以得出a 2-4+2a -82=-a +82,解得a =-4或a=1,又a <0,所以a =-4,所以f (x )=x 2+4x ,所以f (n )-4a n +1=n 2+4n +16n +1=(n +1)2+2(n +1)+13n +1=n +1+13n +1+2≥2(n +1)·13n +1+2=213+2,又n ∈N *,所以当且仅当n +1=13n +1,即n =13-1时等号成立,当n =2时,f (n )-4a n +1=283,n =3时,f (n )-4a n +1=294+2=374<283,所以最小值为374,故选A.13.解析:因为函数f (x )=tan x +sin x +2 017,所以f (-x )=-tan x -sin x +2 017,从而f (-x )+f (x )=4 034,又f (m )=2,所以f (-m )=4 032.答案:4 03214.解析:不等式组表示的平面区域如图中阴影部分所示,假设z =x +ay 在点C (2,1)处取得最小值,则2+a =4,a =2,此时y =-12x +12z ,其在点C (2,1)处取得最小值,符合题意.假设z =x +ay 在点B (2,5)处取得最小值,则2+5a =4,a =25,此时y =-52x +52z ,其在点C 处取得最小值,不符合题意.假设z =x +ay 在点A (8,-1)处取得最小值,则8-a =4,a =4,此时y =-14x +14z ,其在点A处取得最小值,符合题意.所以a 的值为2或4.答案:2或415.解析:由S n =2n -1,得a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1-2n -1+1=2n -1,a 1=1适合上式,所以a n =2n -1. 则b n =a 2n -7a n +6=⎝⎛⎭⎫a n -722-254.所以当n =3时(b n )min =⎝⎛⎭⎫4-722-254=-6.故答案为-6. 答案:-616.解析:该球形容器最小时,十字立方体与球内接,此时球直径2R 等于由两个正四棱柱组合而成的几何体的对角线,即2R =42+42+22=6,球形容器的表面积为4πR 2=36π.答案:36π17.解:(1)f (x )=23sin x cos x +cos 2x -sin 2x =3sin 2x +cos 2x =2⎝⎛⎭⎫32sin 2x +12cos 2x=2sin ⎝⎛⎭⎫2x +π6, 所以函数f (x )的最小正周期T =π.(2)由题意可知,不等式f (x )≥m 有解,即m ≤f (x )max .因为x ∈⎣⎡⎦⎤0,π2, 所以2x +π6∈⎣⎡⎦⎤π6,7π6, 故当2x +π6=π2,即x =π6时,f (x )取得最大值,且最大值为f ⎝⎛⎭⎫π6=2.从而可得m ≤2 . 18.解:(1)由题意知,ξ的所有可能取值为0,10,20,30. P (ξ=0)=15×14×13=160,P (ξ=10)=45×14×13+15×34×13+15×14×23=960=320,P (ξ=20)=45×34×13+45×14×23+15×34×23=2660=1330,P (ξ=30)=45×34×23=25.所以ξ的分布列为所以E (ξ)=0×160+10×320+20×1330+30×25=1336.(2)记“甲队得30分,乙队得0分”为事件A ,“甲队得20分,乙队得10分”为事件B ,则A ,B 互斥.又P (A )=⎝⎛⎭⎫343×160=91 280,P (B )=C 23⎝⎛⎭⎫342×14×320=811 280,故甲、乙两队总得分之和为30分且甲队获胜的概率为P (A +B )=P (A )+P (B )=901 280=9128. 19.解:(1)证明:连接BG ,因为BC ∥AD ,AD ⊥底面AEFB ,所以BC ⊥底面AEFB ,又AG ⊂底面AEFB ,所以BC ⊥AG ,因为AB =12EF ,且AB ∥EF ,所以AB 綊EG ,因为AB=AE ,所以四边形ABGE 为菱形,所以AG ⊥BE ,又BC ∩BE =B ,BE ⊂平面BCE ,BC ⊂平面BCE ,所以AG ⊥平面BCE .(2)由(1)知四边形ABGE 为菱形,AG ⊥BE ,AE =EG =BG =AB =4, 设AG ∩BE =O ,所以OE =OB =23,OA =OG =2, 以O 为坐标原点,建立如图所示的空间直角坐标系,则O (0,0,0),A (-2,0,0),E (0,-23,0),F (4,23,0),C (0,23,4),D (-2,0,4),所以AC →=(2,23,4),AE →=(2,-23,0),设平面ACE 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧AC →·n =0,AE →·n =0,所以⎩⎨⎧2x +23y +4z =0,2x -23y =0,令y =1,则x =3,z =-3,即平面ACE 的一个法向量为n =(3,1,-3),易知平面AEF 的一个法向量为AD →=(0,0,4),设二面角C -AE -F 的大小为θ,由图易知θ∈⎝⎛⎭⎫0,π2,所以cos θ=|n ·AD →||n |·|AD →|=437×4=217.20.解:(1)由题意知,F (x )=f (x )h (x )=x 2ln x ,F ′(x )=2x ln x +x (x >0). 令F ′(x )>0,得x >1e,故F (x )的单调递增区间为⎝⎛⎭⎫1e ,+∞;令F ′(x )<0,得0<x <1e ,故F (x )的单调递减区间为⎝⎛⎭⎫0,1e .(2)由题意知,G (x )=e x -bx ,故G ′(x )=e x -b ,又b >0,令G ′(x )=e x -b =0,得x =ln b ,故当x ∈(-∞,ln b )时,G ′(x )<0,此时G (x )单调递减;当x ∈(ln b ,+∞)时,G ′(x )>0,此时G (x )单调递增.故G (x )min =b -b ln b ,所以m ≤b -b ln b ,则mb ≤b 2-b 2ln b . 设r (b )=b 2-b 2ln b (b >0),则r ′(b )=2b -(2b ln b +b )=b -2b ln b ,由于b >0,令r ′(b )=0,得ln b =12,b =e ,当b ∈(0,e)时,r ′(b )>0,r (b )单调递增;当b ∈(e ,+∞)时,r ′(b )<0,r (b )单调递减,所以r (b )max =e 2,即当b =e ,m =12e 时,mb 取得最大值e2.21.解:(1)因为点P (2,t )到焦点F 的距离为52,所以2+p 2=52,解得p =1,故抛物线C 的方程为y 2=2x ,P (2,2), 所以l 1的方程为y =45x +25,联立得⎩⎪⎨⎪⎧y =45x +25,y 2=2x ,可解得x Q =18,又|QF |=x Q +12=58,|PF |=52,所以|QF ||PF |=5852=14.(2)设直线l 2的方程为x =ny +m (m ≠0),代入抛物线方程可得y 2-2ny -2m =0, 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2n ,y 1y 2=-2m ,① 由OA ⊥OB 得,(ny 1+m )(ny 2+m )+y 1y 2=0, 整理得(n 2+1)y 1y 2+nm (y 1+y 2)+m 2=0,②将①代入②解得m =2或m =0(舍去),满足Δ=4n 2+8m >0, 所以直线l 2:x =ny +2,因为圆心M (a ,0)到直线l 2的距离d =|a -2|1+n 2, 所以|DE |=212-(a -2)21+n 2,显然当a =2时,|DE |=2,所以存在实数a =2,使得|DE |为定值.22.解:(1)如图,设圆C 上任意一点A (ρ,θ),则∠AOC =θ-π3或π3-θ.由余弦定理得4+ρ2-4ρcos(θ-π3)=4,所以圆C 的极坐标方程为ρ=4cos ⎝⎛⎭⎫θ-π3.作图如图所示.(2)在直角坐标系中,点C 的坐标为(1,3),可设圆C 上任意一点P (1+2cos α,3+2sin α),又令M (x ,y ),由Q (5,-3),M 是线段PQ 的中点,得M 的参数方程为⎩⎨⎧x =6+2cos α2y =2sin α2(α为参数),即⎩⎪⎨⎪⎧x =3+cos αy =sin α(α为参数),所以点M 的轨迹的普通方程为(x -3)2+y 2=1.23.解:(1)由于a =1,故f (x )=⎩⎪⎨⎪⎧1-x ,x <1.x -1,x ≥1.当x <1时,由f (x )≥12(x +1),得1-x ≥12(x +1),解得x ≤13;当x ≥1时,由f (x )≥12(x +1),得x -1≥12(x +1),解得x ≥3.综上,不等式f (x )≥12(x +1)的解集为⎝⎛⎦⎤-∞,13∪[3,+∞). (2)当a <2时,g (x )=⎩⎪⎨⎪⎧a -2,x ≤a ,2x -2-a ,a <x <2,2-a ,x ≥2,g (x )的值域A =[a -2,2-a ],由A ⊆[-1,3],得⎩⎪⎨⎪⎧a -2≥-1,2-a ≤3,解得a ≥1,又a <2,故1≤a <2; 当a ≥2时,g (x )=⎩⎪⎨⎪⎧a -2,x ≤2,-2x +2+a ,2-a ,x ≥a ,2<x <a ,g (x )的值域A =[2-a ,a -2],由A ⊆[-1,3],得⎩⎪⎨⎪⎧2-a ≥-1,a -2≤3,解得a ≤3,又a ≥2,故2≤a ≤3. 综上,a 的取值范围为[1,3].高考仿真模拟卷(五)1.解析:选C.A ={x |x ≤3},B ={2,3,4}, 所以A ∩B ={2,3},故选C.2.解析:选D.由已知可得z =1+i 2-i =(1+i )(2+i )(2-i )(2+i )=1+3i 5=15+35i ,所以z =15-35i.3.解析:选A.所给圆的圆心为坐标原点,半径为2,当弦长大于2时,圆心到直线l 的距离小于1,即|m |5<1,所以-5<m <5,故所求概率P =5-(-5)9-(-6)=23.4.解析:选C.因为4a 1,a 3,2a 2成等差数列,所以2a 3=4a 1+2a 2,又a 3=a 1q 2,a 2=a 1q ,则2a 1q 2=4a 1+2a 1q ,解得q =2或q =-1,故选C.5.解析:选A.a =b =1时,两条直线ax -y +1=0与直线x -by -1=0平行, 反之由ax -y +1=0与直线x -by -1=0平行,可得ab =1,显然不一定是a =b =1, 所以,必要性不成立,所以“a =b =1”是“直线ax -y +1=0与直线x -by -1=0平行”的充分不必要条件. 故选A.6.解析:选A.BD →=AD →-AB →,所以BC →= 2 BD →=2(AD →-AB →),所以BC →·AB →=2(AD →-AB →)·AB →= 2 AD →·AB →- 2 AB →2=0-2×22=-4 2.7.解析:选C.该程序框图的功能是计算S =2+lg 12+lg 23+…+lg nn +1=2-lg(n +1)的值.要使输出的S 的值为-1,则2-lg(n +1)=-1,即n =999,故①中应填n <999?.8.解析:选C.F (1,0),故直线AB 的方程为y =x -1,联立方程组⎩⎪⎨⎪⎧y 2=4x y =x -1,可得x 2-6x +1=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知x 1+x 2=6,x 1x 2=1.由抛物线的定义可知:|F A |=x 1+1, |FB |=x 2+1,所以||F A |-|FB ||=|x 1-x 2|=(x 1+x 2)2-4x 1x 2=36-4=4 2. 故选C.9.解析:选B.如图所示,在同一坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线在y 轴上的截距.由图可知,当a >1时,直线y =-x +a 与曲线y =f (x )只有一个交点.10.解析:选C.由题意得BC =CD =a ,∠BCD =90°,所以。