辉光放电glow discharge
- 格式:pdf
- 大小:3.12 MB
- 文档页数:24
辉光放电(Glow discharge)辉光放电是放电等离子体中最常见的一种放电形式,应用也最广泛。
比如,一般的气体激光器(He-Ne 激光器、CO2激光器等)、常用光源(荧光灯)、空心阴极光谱灯等。
同时辉光放电也是放电形式中放电最稳定的放电形式,所以有必要对辉光放电进行较为详细的讨论。
§6.1 辉光放电的产生及典型条件最简单的辉光放电的结构如图6.1(a)。
调节电源电压E或限流电阻R,就会得到如图6.1(b)的V-A特性曲线。
管电压U调节到等于着火电压U b时,放电管内就会从非自持放电过渡到自持放电,此时,放电电流I会继续增大,管压降U下降,进入辉光放电区。
放电管发出明亮的辉光,其颜色由放电气体决定。
限流电阻R应比较大,以保证放电稳定在辉光放电区。
如果限流电阻R很小,放电很容易进入弧光放电区。
辉光放电的特点:比较高的放电管电压U(几百~几千V),小的电流I(mA量级);弧光放电的特点:很低的放电电压U(几十V),大电流放电I(A量级甚至更大)。
辉光放电的典型条件:①放电间隙中的电场分布比较均匀,至少没有很大的不均匀性;例如He-Ne激光器的放电管内电场近似均匀。
②放电管内气体压强不是很高,要求满足(Pd)Ubmin<Pd<200Kpa cm(巴邢曲线的右支),d---放电管内电极间距,(Pd)Ubmin--巴邢曲线最低点U bmin对应的Pd值。
一般P=4Pa~14Kpa时,可出现正常辉光放电,而Pd>200Kpa cm时,非自持放电通常会过渡到火花放电或丝状放电;③放电回路中的电源电压和限流电阻准许放电管的放电电流工作在mA量级,且电源电压应高于着火电压U b,否则不能起辉。
§6.2 辉光放电的组成区域和基本特征对于一对平行平板放电电极,典型的辉光放电外貌如图6.2(a)。
从阿斯顿暗区到负辉区称为阴极位降区或阴极区。
下面对各放电区一一进行介绍。
1、阿斯顿暗区(Aston Dark Space):它是仅靠阴极的一层很薄的暗区,是有Aston首先在H2、He、Ne放电中观察到的放电暗区,所以称为阿斯顿暗区。
辉光发电质谱仪工作原理辉光发电质谱仪(Glow Discharge Mass Spectrometer,GDMS)是一种利用辉光放电技术结合质谱分析方法的仪器。
它主要用于金属、合金和陶瓷等材料的成分分析,具有高灵敏度、高分辨率和广泛的元素适应性等优点。
本文将详细介绍辉光发电质谱仪的工作原理。
一、辉光放电过程辉光放电是指在气体环境中,两个电极间形成正电压差时,气体分子碰撞产生的电离电子被电场加速并与原子或分子碰撞,发生电子输送和能量转移的过程。
具体步骤如下:1. 点火阶段:通过施加高频高压电场,使电极间的气体发生电离,产生电子和正离子。
这些电子和离子在电场的作用下形成电弧,并逐渐形成辉光放电。
2. 积聚阶段:在辉光放电过程中,电子与气体分子碰撞形成正离子,在电场的作用下,正离子聚集在阴极表面,形成电场与雷诺型层。
3. 钝化层形成阶段:电子在阴极表面发生能量转移,产生高能电子轰击和多次散射的效应,使原子或分子从材料表面打出,并在表面形成一层钝化层。
4. 圣戴运输阶段:钝化层上的原子或分子在电场的作用下运输到阳极,形成离子束,并被导入质谱分析部分。
二、辉光发电质谱仪结构辉光发电质谱仪主要由以下几部分组成:1. 离子源:包括放电室和阳极收集器。
放电室内安装有高频高压电源,用于产生辉光放电。
阳极收集器负责接收放电室中产生的离子束。
2. 质谱分析部分:主要由质谱仪和探测器组成。
质谱仪根据离子的质量-电荷比(m/z)进行分离和检测,可以获取样品中不同元素的信息。
探测器用于记录和放大分析信号。
3. 控制系统:包括电源控制和数据采集系统。
电源控制可以对放电条件进行调节和监控,保证辉光发电的稳定性。
数据采集系统用于记录和处理质谱分析得到的结果。
三、辉光发电质谱仪的工作原理如下:1. 放电条件设置:根据待测样品的性质和测试要求,合理设置放电条件,包括放电电流、放电时间和气体环境等。
2. 辉光放电:施加高频高压电场,使气体发生辉光放电。
全国分析检测人员能力培训委员会ATC004 辉光放电原子发射光谱分析技术考核与培训大纲第1版文件编号:ATC004/A:2010-1发布日期:2010年8月1 总则1.1 目标熟悉辉光放电原子发射光谱(Glow Discharge-Optical Emission Spectrum,Glow Discharge-OES)分析技术基本概念及基础理论知识;了解Glow Discharge-OES仪的组成结构及工作原理;具备Glow Discharge-OES仪的实际操作能力;掌握Glow Discharge-OES分析技术在相关领域的应用。
1.2 适用范围本大纲适用于对金属和无机非金属固体样品以及表面处理样品进行成分及深度轮廓分析的辉光放电原子发射光谱分析技术的考核与培训。
适用仪器包括激发源为直流源或射频源,检测器为光电倍增管或CCD的各类辉光放电原子发射光谱仪。
1.3 应具备的基础知识和技能1.3.1 通用基础具备分析化学的基础知识, 光谱相关的基础知识。
1.3.2 分析测试基本操作具备分析化学实验的基本操作能力,具备实验室一般仪器和设备的操作能力。
1.3.3 数据处理基础知识具备数据统计处理和误差理论的基础知识。
2 技术要求2.1 ATC 004-1 Glow Discharge-OES技术基础2.1.1 术语及概念掌握Glow Discharge-OES分析技术基本概念和相关的技术用语。
(1) 光谱及原子发射光谱;(2) 辉光放电;(3) 直流辉光放电、射频辉光放电和脉冲辉光放电;(4) 基态和激发态;(5) 原子线和离子线;(6) 分析线和内标线(参比线);(7) 分析线强度、内标线强度及相对强度;(8) 阳极和阴极;(9) 罗兰圆;(10) 入射狭缝、出射狭缝;(11) 光栅及焦距;(12) 光电倍增管和CCD检测器;(13) 谱线和谱线级次;(14) 色散率和分辨率;(15) 光谱干扰;(16) 光路校准;(17) 分析基体、分析程序和校准曲线;(18) 标准化;(19) 标准样品、标准化样品及类型标准化样品(20) 成分分析(21) 深度轮廓分析、表面分析和界面分析;(22) 溅射率;(23) 溅射率校正;(24) 溅射深度;(25) 溅射坑轮廓;(26) 表面处理层厚度;(27) 涂镀量。
什么是辉光放电?(What is a glow discharge and what is it?)A glow discharge is a kind of plasma. It is an ionized gas consisting of equal concentrations of positive and negative charges and a large number of neutral species.In the simplest case, it is formed by applying a potential difference (of a few 100 V to a few kV) between two electrodes that are inserted in a cell (or that form the walls of the cell). The cell is filled with a gas (an inert gas or a reactive gas) at a pressure ranging from a few mTorr to atmospheric pressure. Due to the potential difference, electrons that are emitted from the cathode by the omnipresent cosmic radiation, are accelerated away from the cathode, and give rise to collisions with the gas atoms or molecules (excitation, ionizatio n, dissociation, …). The excitation collisions give rise to excited species, which can decay to lower levels by the emission of light. This process is responsible for the characteristic name of the “glow”discharge. The ionisation collisions create ion‐electron pairs. The ions are accelerated toward the cathode, where they release secondary electrons. These electrons are accelerated away from the cathode and can give rise to more ionization collisions. In its simplest way, the combination of secondary electron emission at the cathode and ionization in the gas, gives rise to a self‐sustained plasma.Due to the various collision processes in the plasma, a large number of different plasma species can be present: electrons, atoms, molecules, several kinds of radicals, several kinds of (positive and negative) ions, excited species, etc. These different species can all be in interaction with each other, making the glow discharge plasma a complicated gas mixture. The aim of our work is to obtain a better insight in the complex processes occurring in glow discharges and related plasmas, and we try to do that by numerical simulations. Different variants to glow discharge plasmasThe glow discharge described above can be called the “basic version”. In this direct current (dc) glow discharge, a continuous potential difference is applied between cathode and anode, giving rise to a constant current. However, this set‐up gives problems when one of the electrodes is non ‐conducting, as is the case in some applications (see below). Indeed, due to the constant current, the electrodes will be charged up, leading to burn‐out of the glow discharge. This problem is overcome by applying an alternating voltage between the two electrodes, as in the capacitively coupled radio‐frequency (cc rf) glow discharge. Indeed, the charge accumulated during one half of the cycle, will be neutralized by the opposite charge accumulated during the next halfcycle. Beside a time‐dependent rf voltage, an alternating voltage can also be applied in a lower frequency range, giving rise to an alternating current (ac) glow discharge. This can be considered as a consecution of short discharges, in which the two electrodes alternatingly play the role of cathode and anode. An important type of ac glow discharge, operating at atmospheric pressure, is the dielectric barrier discharge (DBD), where the electrodes are typically covered by a dielectric barrier. A variation to the ac discharge is the pulsed glow discharge, which also consists of short glow discharges (with lengths typically in the milli‐or microsecond range), followed by an afterglow, which is generally characterized by a longer time‐period. The advantage is that high peak electrical powers can be reached for a low average power, resulting in high peak efficiencies for various applications. In addition to applying an electric field (or potential difference), a magnetic field can also be applied to a glow discharge. The most well‐known discharge type with crossed magnetic and electric fields is the magnetron discharge. The electrons circulate in helices around the magnetic field lines and give rise to more ionisation. Hence, magnetrondischarges are typically operated at lower pressures and higher currents than conventional glow discharges. Recently, some new discharge types have been developed, which are also characterized by low pressure and high plasma densities, and which have their main application in the semiconductor industry and for materials technology. The major difference with the conventional glow discharge is that the electrical power is not applied through a potential difference between two electrodes, but through a dielectric window. The two most important “high‐density sources”, are the inductively coupled discharge, where the rf power is inductively coupled to the plasma, and the electron cyclotron resonance reactor, where microwave power and a magnetic field are applied. Microwave power can also be applied in so‐called microwave induced plasmas. V arious discharge types can be classified under this name, among others the resonance cavity plasmas, free expanding plasma torches and surface wave discharges. In fact, the list of discharge plasmas related to glow discharges is longer than this. But because they are at this moment beyond the research interest of our group, we will not go into detail here. More information can be found in: A. Bogaerts, E. Neyts, R. Gijbels and J.J.A.M. van der Mullen, Gas discharge plasmas and their applications, Spectrochimica Acta B, 57, 609‐658 (2002). Applications of glow discharges and related plasmas Glow discharges and related plasmas are used in a large number of application fields. The most important application is probably in the microelectronics industry and in materials technology, for surface treatment, etching of surfaces (e.g., for the fabrication of integrated circuits), deposition of thin protective coatings, plasma polymerisation, plasma modification of polymers and other surfaces. The exciting and light emitting character of discharge plasmas is also used for several interesting applications, such as in the light industry (e.g., fluorescence lamps, neon advertisements), as gas lasers, and as flat plasma display panels for the new generation of flat, large area television screens. Because a lot of chemical reactions take place in the plasma, several types of discharges (mainly atmospheric pressure glow discharges and dielectric barrier discharges) find also increasing interest for environmental applications (e.g., the destruction of volatile organic compounds) and biomedical applications (e.g., the sterilisation of materials).Finally, an application of glow discharges that is of special interest to our group is its use in analytical chemistry, for the spectrochemical trace analysis of (mainly solid) materials.。
第六章、辉光放电(Glow discharge)辉光放电是放电等离子体中最常见的一种放电形式,应用也最广泛。
比如,一般的气体激光器(He-Ne 激光器、CO2激光器等)、常用光源(荧光灯)、空心阴极光谱灯等。
同时辉光放电也是放电形式中放电最稳定的放电形式,所以有必要对辉光放电进行较为详细的讨论。
§6.1 辉光放电的产生及典型条件最简单的辉光放电的结构如图6.1(a)。
调节电源电压E或限流电阻R,就会得到如图6.1(b)的V-A特性曲线。
管电压U调节到等于着火电压U b时,放电管内就会从非自持放电过渡到自持放电,此时,放电电流I会继续增大,管压降U下降,进入辉光放电区。
放电管发出明亮的辉光,其颜色由放电气体决定。
限流电阻R应比较大,以保证放电稳定在辉光放电区。
如果限流电阻R很小,放电很容易进入弧光放电区。
辉光放电的特点:比较高的放电管电压U(几百~几千V),小的电流I(mA量级);弧光放电的特点:很低的放电电压U(几十V),大电流放电I(A量级甚至更大)。
辉光放电的典型条件:①放电间隙中的电场分布比较均匀,至少没有很大的不均匀性;例如He-Ne激光器的放电管内电场近似均匀。
②放电管内气体压强不是很高,要求满足(Pd)Ubmin<Pd<200Kpa cm(巴邢曲线的右支),d---放电管内电极间距,(Pd)Ubmin--巴邢曲线最低点U bmin对应的Pd值。
一般P=4Pa~14Kpa时,可出现正常辉光放电,而Pd>200Kpa cm时,非自持放电通常会过渡到火花放电或丝状放电;③放电回路中的电源电压和限流电阻准许放电管的放电电流工作在mA量级,且电源电压应高于着火电压U b,否则不能起辉。
§6.2 辉光放电的组成区域和基本特征对于一对平行平板放电电极,典型的辉光放电外貌如图6.2(a)。
从阿斯顿暗区到负辉区称为阴极位降区或阴极区。
下面对各放电区一一进行介绍。
1、阿斯顿暗区(Aston Dark Space):它是仅靠阴极的一层很薄的暗区,是有Aston首先在H2、He、Ne放电中观察到的放电暗区,所以称为阿斯顿暗区。
2012年2月February2012岩 矿 测 试ROCKANDMINERALANALYSISVol.31,No.147~56收稿日期:2011-10-24;接受日期:2011-10-29基金项目:中国计量科学研究院基础科研项目(AKY1031)作者简介:徐常昆,硕士研究生,核燃料循环与材料专业。
E mail:changkunxu@gmail.com。
通讯作者:周涛,博士,副研究员,从事化学计量与无机质谱研究工作。
E mail:zhoutao@nim.ac.cn。
文章编号:02545357(2012)01004710辉光放电质谱应用和定量分析徐常昆1,周 涛2 ,赵永刚1(1.中国原子能科学研究院,北京 102413;2.中国计量科学研究院,北京 100013)摘要:辉光放电质谱(GDMS)是利用辉光放电源作为离子源的一种无机质谱方法。
GDMS采用固体进样,样品准备过程简单、分析速度快、基体效应小、线性范围宽,是痕量分析的一种重要分析手段,在国外已经成为高纯金属和半导体分析的行业标准方法。
GDMS可以进行深度分析,选择合适的放电条件,可以在样品表面获得平底坑,深度分辨率可以满足对微米量级的层状样品进行测量。
目前商业化的GDMS都是直流放电源,这些仪器需要用第二阴极法或混合法才能对非导电材料进行测量,从而限制了GDMS在非导体材料分析方面的应用。
GDMS放电源和单接收方式并不能满足同位素丰度精确测量的要求,在精确度要求不高的情况下,GDMS在固体样品同位素丰度的快速测量方面还是有一定的应用价值。
文章总结了近几年国内外GDMS在各领域的应用进展和定量分析技术发展方向。
GDMS已经成为一种高纯导电材料分析的重要方法;在深度分析、非导电材料分析、固体同位素丰度快速测量中有一定的应用前景。
在定量测量方面,由于受到基体、测量条件等影响因素较多,缺乏合适的基体匹配的标准物质用于校正,GDMS主要停留在定性和半定量分析阶段。