电工纯铁_DT4_B-H曲线
- 格式:xls
- 大小:124.50 KB
- 文档页数:13
第一作者简介:王庆东(1995 )ꎬ男ꎬ安徽六安人ꎬ硕士研究生ꎬ研究方向为智能机电系统ꎮDOI:10.19344/j.cnki.issn1671-5276.2022.01.032基于AnsysMaxwell的电磁式磁滞张力器仿真分析王庆东ꎬ夏港东ꎬ秦浩杰ꎬ周文聪ꎬ张昊(南京航空航天大学机电学院ꎬ江苏南京210016)摘㊀要:介绍一种磁滞张力器的结构和工作原理ꎬ借助AnsysMaxwell软件的静态㊁瞬态场求解器对张力器的磁场分布进行了数值计算ꎬ得到了张力器内部的磁力线走向以及转子表面的磁感应强度分布云图ꎬ研究了电流㊁磁极相对角度㊁气隙等参数对磁滞转矩大小的影响ꎮ遵循单一变量原则ꎬ得出各影响因素在各自变化范围内的最优解ꎬ为后续对该类型张力器的设计制造与升级优化提供了依据ꎮ关键词:电磁式ꎻ张力ꎻ磁滞转矩ꎻ仿真中图分类号:TS103.8㊀㊀文献标志码:B㊀㊀文章编号:1671 ̄5276(2022)01 ̄0124 ̄04SimulationandAnalysisofElectromagneticHysteresisTensionerBasedonAnsysMaxwellWANGQingdongꎬXIAGangdongꎬQINHaojieꎬZHOUWencongꎬZHANGHao(CollegeofMechanicalandElectricalEngineeringꎬNanjingUniversityofAeronauticsandAstronauticsꎬNanjing210016ꎬChina)Abstract:Thestructureandworkingprincipleofahysteresistensionerisintroduced.ThemagneticfielddistributionofthetensionerꎬwiththehelpofthestaticandtransientfieldsolverofAnsysMaxwellsoftwareꎬisnumericallycalculatedꎬandthedistributioncloudmapofmagnetictrendintensionerandmagneticinductiononrotorsurfaceisabtained.Theinfluenceofcurrentꎬmagneticpolerelativeangleꎬairgapandotherparametersoverthehysteresistorqueisstudied.Byfollowingthesinglevariableprincipleꎬtheoptimalsolutionofeachinfluencingfactorwithintherangeofvariationisobtainedꎬwhichprovidesthebasisforthesubsequentdesigningꎬmanufacturingandoptimizationofthetensionersofthesametype.Keywords:electromagneticꎻtensionꎻhysteresistorqueꎻsimulation0㊀引言在纺织加工过程中ꎬ纱线张力是一个十分重要的参数ꎬ从纺纱到织造的各个工序ꎬ张力的大小和稳定直接关系到产品质量㊁生产效率以及后续加工的顺利进行[1]ꎮ因此ꎬ纱线张力器成为控制纱线张力必不可少的装置ꎮ目前市售的纱线张力器以机械式为主ꎬ常见的有空气阻尼式以及油阻尼式ꎬ如图1所示[2]ꎮ相比较而言ꎬ传统的机械式纱线张力器往往具有结构简单㊁维修和操作方便等诸多优点ꎬ然而其缺点也尤为明显ꎬ如:1)张力控制精度低ꎬ一致性差ꎻ2)张力器工作过程中始终与纱线产生摩擦ꎬ容易损伤纱线ꎻ3)自动化程度低ꎬ无法由计算机进行控制ꎮ为满足纺织行业不断提高的标准要求ꎬ纱线张力器逐渐朝着自动化㊁智能化方向发展ꎮ近年来国外出现了一种高档纺织机械 电磁式磁滞纱线张力器[3-5]ꎮ相较于传统机械式张力器而言ꎬ该张力器的最大特点是可以通过计算机对纱线张力进行实时的㊁连续的调节ꎮ由于采用计算机进行控制ꎬ既可以灵活地对单根纱线的张力进行控制ꎬ也可以实现大范围的群控[6]ꎮ此外ꎬ该张力器还可以连接到非接触式张力监测系统ꎬ从而实现对纱线张力的闭环控制ꎬ因而具有广阔的应用前景[7]ꎮ本文立足于国内外相关理论研究成果ꎬ借助有限元分析方法对该类型张力器的特性进行研究ꎬ为其日后在国内市场的广泛应用奠定了基础ꎮ(a) /!K (b) !K图1㊀常见纱线张力器1㊀电磁式磁滞张力器的结构及原理电磁式磁滞张力器是基于电磁阻尼原理实现对纱线张力控制的[8]ꎬ其结构如图2所示ꎮ外部静壳体8将整个结构包裹在内ꎬ形成封闭的磁回路并同时隔绝外部磁场的干扰ꎮ磁芯5由具有高磁导率的软磁材料制成ꎬ聚集内部的磁场能量ꎮ转轴7在滚珠轴承3的支撑下ꎬ一端与抱线轮1固连ꎬ另一端通过法兰与转子6连接ꎮ励磁线圈4均421 博看网 . All Rights Reserved.匀缠绕在线圈架上并将磁芯5包含在内侧ꎮ张力器工作时ꎬ线圈4通电ꎬ抱线轮在纱线的主动牵引下转动ꎮ另一端ꎬ由磁滞材料制成的转子6作为耗能元件被动旋转ꎬ消耗磁场能量ꎬ产生阻碍纱线运动的磁滞转矩ꎬ使纱线受到张力作用[9]ꎮ调整线圈4两端电压的大小即可改变磁滞转矩ꎬ实现对纱线张力大小的调节ꎮ线圈未通电时ꎬ转子在磁芯5间自由旋转ꎬ其阻力仅来源于轴承3处的摩擦力ꎮ128-1657843213-13-276548-21 抱线轮ꎻ2 磁芯①ꎻ3 轴承ꎻ4 线圈ꎻ5 磁芯②ꎻ6 转子ꎻ7 轴ꎻ8 外壳ꎮ图2㊀电磁式磁滞张力器结构图该张力器的具体性能要求如表1所示ꎮ表1㊀张力器的性能要求名称具体参数输出力矩/(mN m)10~30范围内线性可调力矩性质力矩恒定工作转速/(r/min)10002㊀仿真模型的建立分析电磁场问题时传统的方法是从模型中抽象出一个等效的磁路ꎬ再采用解析的方法分析其磁场ꎮ由于电磁式磁滞张力器的磁路较为复杂ꎬ这使得利用解析法研究其磁场较为困难[10]ꎬ而有限元法的广泛应用为解决该类问题提供了极大的便利ꎮ本文以课题组研制的一款电磁式磁滞张力器为例ꎬ利用Maxwell软件对该张力器进行仿真分析[11]ꎮ由于张力器的结构不具有空间对称性ꎬ无法将三维磁场计算问题转化为二维来处理ꎬ因而需要建立完整的三维有限元模型[12]ꎮ此外ꎬ为降低问题分析的复杂性ꎬ作出以下假设[13-14]ꎮ1)忽略转子的涡流效应和软磁材料(定子磁芯及外壳)的磁滞损耗ꎻ2)转子的转速保持不变ꎻ3)励磁绕组由空心圆柱体等效替代ꎬ绕组内部电流密度分布均匀ꎮ张力器的主要参数如表2所示ꎬ相关参数定义如图3所示ꎮ定子磁芯及外壳均选择具有高磁导率的电工纯铁DT4ꎬ励磁线圈定义为铜材料copperꎬ选择FeCrCo材料作为转子材料并在软件内部将其定义为磁滞型材料ꎮ软件内部自带的材料库中并不包含DT4和FeCrCo材料ꎬ需要从外界导入两种材料的B-H曲线ꎮ由于忽略了涡流效应的影响ꎬ两种材料的电导率均设为0ꎮ线圈绕组安匝数设为342Aꎬ指定求解域属性为空气ꎮ在瞬态场分析模块中ꎬ还需要额外定义运动区域bandꎬ将转子包含在内ꎬ并设置其绕z轴转速为1000r/minꎮ此外ꎬ设置仿真时长为20msꎬ计算步长为0.2msꎮ表2㊀张力器的主要参数转子外径R2/mm转子内径R1/mm转子厚度Δ/mm气隙大小Lg/mm磁极高度H/mm磁极角度α/(ʎ)磁极个数p15.7541.40.41.778HL gΔL gαR 1R 2D图3㊀相关参数定义3㊀仿真结果借助Maxwell软件的静态磁场求解器ꎬ通过数值计算ꎬ得到了张力器内部磁感应强度分布ꎬ如图4所示ꎮ从图中可以看出ꎬ磁力线主要集中在张力器内部的磁性材料上ꎬ并依次穿过定子磁极㊁气隙㊁转子最终汇聚于张力器外壳ꎬ形成一个封闭的内部磁回路ꎮ图5为转子表面磁感应强度分布云图ꎮB [tesla]1.200 01.120 01.040 00.960 00.880 00.800 00.720 00.640 00.560 00.480 00.400 00.320 00.240 00.160 00.080 00.000 0图4㊀张力器磁感应强度分布及磁力线走向1.411 61.320 01.228 41.136 81.045 20.953 60.862 00.770 40.678 70.587 10.495 50.403 90.312 30.220 70.129 10.037 5B [tesla]图5㊀转子表面的磁感应强度分布云图图6所示为磁滞张力器的转矩输出曲线ꎮ从图中可521 博看网 . All Rights Reserved.以看出ꎬ输出转矩在初始时刻有轻微震动ꎬ随着时间的推移ꎬ磁滞转矩的数值波动减小ꎬ趋于稳定ꎬ并最终稳定在32mN mK /ms-$D -/(m N ·m )图6㊀磁滞转矩随时间变化曲线3.1㊀气隙对磁滞转矩的影响保持表1中其他参数不变ꎬ仅改变气隙大小ꎬ得到图7所示磁滞转矩与气隙的关系曲线ꎮ从图中可以看出ꎬ随着气隙的增加ꎬ磁滞转矩急剧减小ꎮ由图2可知ꎬ张力器的磁传导回路主要包含定子磁芯㊁气隙㊁转子以及外壳ꎮ而定㊁转子以及外壳都是由磁性材料制成的ꎬ其相对磁导率要远高于空气磁导率ꎬ故而磁场能量主要损失于气隙中ꎮ因此ꎬ在磁动势大小一定的情况下ꎬ磁回路中的气隙越大ꎬ其中的磁场能量损失也就越大ꎬ转子的磁通密度也必然减小ꎬ从而导致磁滞转矩减小ꎮ因此ꎬ理论上减小气隙可以提高磁滞转矩ꎬ但过小的气隙会对机械加工和装配提出更高的精度要求ꎬ使得零件的加工难度加大ꎬ特别是对转子的加工精度要求更高[15]ꎮ故而需要综合考虑各方面因素ꎬ选择合适的气隙大小ꎮ-$D -/(m N ·m )!K /mm图7㊀气隙对磁滞转矩的影响3.2㊀电流对磁滞转矩的影响电流的大小是影响电磁式张力器磁滞转矩大小的重要因素ꎮ张力器工作时ꎬ需要根据实际需要将电流设定在特定的数值ꎮ基于表1中的结构参数在不同气隙大小下进行计算ꎬ得到了如图8所示的关系曲线图ꎮ从图中可以得出ꎬ在不同气隙大小下磁滞转矩随电流变化规律基本保持一致ꎮ当电流较小时磁滞转矩增加缓慢ꎬ而随着电流的不断增加ꎬ磁滞转矩显著增大并与电流近似维持着线性关系ꎮ当电流超过一定范围后ꎬ磁滞转矩的增加幅度趋于平缓ꎬ其原因在于随着电流的增加ꎬ磁性材料的磁感应强度也趋于饱和ꎬ不再随着电流的增大而增大ꎬ增加的电流对转矩的影响很小ꎮ从图中可以看出ꎬ电流在30~70mA范围内ꎬ磁滞转矩与电流之间有着良好的线性关系ꎬ磁滞转矩可以达到40mN mꎬ符合设计要求ꎮ-$D -/(m N ·m )*"/mA图8㊀磁滞转矩与电流关系图3.3㊀磁极相对角度对磁滞转矩的影响张力器的定子磁芯由两部分组成ꎬ且分别置于转子两侧ꎬ如图2所示ꎮ两定子磁芯的端面均有若干齿形磁极ꎬ张力器装配时ꎬ两齿形磁极之间一般错开一定角度ꎬ磁极间相对错开角度α定义如图3所示ꎮ保持表1其他参数不变ꎬ在多组气隙下对张力器在不同磁极相对角度下进行仿真计算ꎬ可以得到磁极相对角度与磁滞转矩的关系ꎬ如图9所示ꎮ-D>/(°)-$D -/(m N ·m )图9㊀磁极相对角度对磁滞转矩的影响定子磁极端面的齿形磁极沿周向等距排列ꎬ磁极个数为8时ꎬ相邻两磁极间的相对角度θ=45ʎꎮ图9中ꎬ在角度α<θ/2时ꎬ磁滞转矩随着相对角度的增加而不断增大ꎬ而当α>θ/2时ꎬ磁滞转矩逐渐减小ꎮ在α=45ʎ时ꎬ两磁极重合ꎬ其磁滞转矩大小与起始位置相等ꎮ转子表面的磁密B可以分解成径向Bn和切向Bτ两部分ꎬ而Bτ是影响磁滞转矩大小的主要因素ꎮ在一定范围内ꎬα增大ꎬ切向磁密Bτ也随之增大ꎬ而超过一定范围后Bτ反而减小ꎮ因此出现了图9所示的关系曲线ꎮ621 博看网 . All Rights Reserved.3.4㊀转子厚度对磁滞转矩的影响在保证其他参数不变的情况下ꎬ随着转子厚度的增加ꎬ气隙逐渐减小ꎬ这就使得转子磁感应强度增大ꎬ磁滞转矩也随之增大ꎬ如图10所示ꎮ然而ꎬ随着转子厚度的不断增大ꎬ磁阻和漏磁也在增加ꎬ在厚度超过一定范围以后ꎬ转子中增加的磁势反而消耗在转子内部的损耗上ꎬ对磁滞转矩的影响降低ꎮ-$D -/(m N ·m )D /mm图10㊀转子厚度对磁滞转矩的影响3.5㊀磁极个数对磁滞转矩的影响改变磁极个数并在多组气隙大小进行数值计算ꎬ得到了图11所示的关系曲线ꎮ磁极个数较少时ꎬ转子的磁通密度低ꎬ从而产生的磁滞转矩也较小ꎮ随着磁极个数的增加ꎬ磁滞转矩迅速增大ꎮ然而ꎬ磁极个数增加时ꎬ各个磁极的漏磁也随之增加ꎬ超过一定范围后ꎬ磁滞转矩反而随着磁极数目的增加而减小ꎮ计算结果表明ꎬ在磁极个数为10--$D - N /·N图11㊀磁极个数对磁滞转矩的影响4㊀结语由以上仿真结果表明:1)电流是影响磁滞转矩大小的关键因素ꎮ磁滞转矩与电流的关系曲线中有一段近似线性的区间ꎬ也是张力器的最佳工作区间ꎬ且满足在10~30mN m范围内线性可调的设计要求ꎮ㊀㊀2)气隙大小的选择关系到张力器的最终性能ꎮ同时ꎬ过小的间隙也会对零部件加工精度和装配提出更高的要求ꎮ因此ꎬ需要综合考量这两方面的要求ꎬ选择大小合适的空气间隙ꎮ3)磁极的相对角度和磁极个数是影响磁滞转矩另一重要因素ꎮ计算结果表明ꎬ在相对角度α=22.5ʎ㊁磁极个数p=10时输出转矩接近60mN mꎬ极大地拓宽了张力器的线性可调范围ꎮ4)转子厚度的增加对磁滞转矩有着明显的影响ꎬ但厚度的增加也使得转子的转动惯量增加ꎬ因而在设计时需要额外考虑动力学方面的影响ꎮ电磁式张力器是一种精密纱线张力控制器ꎮ本文借助AnsysMaxwell软件研究了不同结构参数对张力器性能的影响ꎬ证明了通过有限元方法研究该类型张力器的可行性ꎬ也为日后的设计制造和升级优化奠定了基础ꎮ参考文献:[1]熊秋元ꎬ高晓平.纱线张力检测与控制技术的研究现状与展望[J].棉纺织技术ꎬ2011ꎬ39(6):65 ̄68.[2]尹铭泽ꎬ张昊ꎬ缪宇轩ꎬ等.电磁式张力器的结构设计和张力测试[J].机械制造与自动化ꎬ2020ꎬ49(2):178 ̄181ꎬ187.[3]石钢ꎬ吕明.磁滞卷绕张力器阻力矩产生机理[J].轻纺工业与技术ꎬ2015ꎬ44(4):28 ̄32.[4]王红军.卡尔 迈耶:适用于细玻纤长丝的新型纱线张力器[J].国际纺织导报ꎬ2014ꎬ42(8):34.[5]贺娟.卡尔 迈耶:AccuTense纱线张力器[J].国际纺织导报ꎬ2008ꎬ36(6):40 ̄42.[6]石钢ꎬ吕明.论纺织工程张力控制技术发展路线图[J].纺织导报ꎬ2011(5):105 ̄108.[7]谢正权ꎬ王新厚.非接触式纱线卷绕张力动态检测方法的研究[J].中国测试ꎬ2009ꎬ35(4):111 ̄114.[8]曹霞.电磁式纱线张力器原理及动态性能测试分析[J].纺织机械ꎬ1997(6):24 ̄26.[9]SHIGꎬLVMꎬHUANGYLꎬetal.Analysisoftheelectromagneticcharacteristicsandstudyonmeasuringthehysteresistorqueexperimentfortheyarntensioner[J].AdvancedMaterialsResearchꎬ2012ꎬ347/348/349/350/351/352/353:22 ̄26.[10]林其壬ꎬ赵佑民.磁路设计原理[M].北京:机械工业出版社ꎬ1987.[11]赵博.Ansoft12在工程电磁场中的应用[M].北京:中国水利水电出版社ꎬ2010.[12]陈东ꎬ范帅.基于Maxwell的盘式制动器辅助电磁制动装置的有限元分析[J].新技术新工艺ꎬ2013(9):32 ̄35.[13]GARGANEEVAGꎬKYUIDKꎬSIPAYLOVANYꎬetal.SimulationofhysteresisclutchesinAnsysMaxwel[C]//201920thInternationalConferenceofYoungSpecialistsonMicro/NanotechnologiesandElectronDevices(EDM).Erlagol(AltaiRepublic)ꎬRussia:IEEEꎬ2019:731 ̄734.[14]孔繁余ꎬ王志强ꎬ张洪利ꎬ等.磁力泵磁性联轴器的磁场分析及性能计算[J].磁性材料及器件ꎬ2009ꎬ40(3):24 ̄27ꎬ31.[15]郑勐ꎬ李言ꎬ尚军ꎬ等.一种微型精密磁滞张力器的设计开发[J].机械科学与技术ꎬ2011ꎬ30(9):1431 ̄1434.收稿日期:20201127721 博看网 . All Rights Reserved.。
1000.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.4磁感强度B (T )101102310410505001000150020002500300035004000450050005500600065007000750080008500900095001000010500110001150012000相对磁导率r00.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.42.52.62.72.82.933.13.23.33.43.53.63.73.83.944.14.24.34.44.54.64.74.84.95铁损P s (W /k g )50Hz60Hz1000.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.42.5磁感强度B (T )10110231041050400800120016002000240028003200360040004400480052005600600064006800720076008000840088009200960010000相对磁导率r00.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.42.52.62.72.82.933.13.23.33.43.53.63.73.83.944.14.24.34.44.550Hz60Hz1000.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.4磁感强度B (T )101102310410505001000150020002500300035004000450050005500600065007000750080008500900095001000010500110001150012000相对磁导率r00.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.42.52.62.72.82.933.13.23.33.43.53.63.73.83.944.14.24.34.44.54.64.74.84.95铁损P s (W /k g )50Hz60Hz1000.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.4磁感强度B (T )101102310410505001000150020002500300035004000450050005500600065007000750080008500900095001000010500110001150012000相对磁导率r00.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.42.52.62.72.82.933.13.23.33.43.53.63.73.83.944.14.24.34.44.54.64.74.84.95铁损P s (W /k g )50Hz60Hz1000.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.4磁感强度B (T )101102310410505001000150020002500300035004000450050005500600065007000750080008500900095001000010500110001150012000相对磁导率r00.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.42.52.62.72.82.933.13.23.33.43.53.63.73.83.944.14.24.34.44.54.64.74.84.955.15.25.35.45.55.65.75.85.96铁损P s (W /k g )50Hz60Hz1000.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.4磁感强度B (T )101102310410505001000150020002500300035004000450050005500600065007000750080008500900095001000010500110001150012000相对磁导率r0.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.42.52.62.72.82.933.13.23.33.43.53.63.73.83.944.14.24.34.44.54.64.74.84.955.15.25.35.45.55.65.75.85.966.1铁损P s (W /k g )60Hz50Hz1000.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.4磁感强度B (T )101102310410505001000150020002500300035004000450050005500600065007000750080008500900095001000010500110001150012000相对磁导率r00.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.42.52.62.72.82.933.13.23.33.43.53.63.73.83.94铁损P s (W /k g )50Hz 60Hz1000.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.4磁感强度B (T )101102310410505001000150020002500300035004000450050005500600065007000750080008500900095001000010500110001150012000相对磁导率r00.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.42.52.62.72.82.933.13.23.33.43.53.63.73.83.944.14.24.34.44.5铁损50Hz60Hz1000.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.4磁感强度B (T )101102310410505001000150020002500300035004000450050005500600065007000750080008500900095001000010500110001150012000相对磁导率r00.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.42.52.62.72.82.933.13.23.33.43.53.63.73.83.944.14.24.34.44.54.64.74.84.95铁损50Hz60Hz1000.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.4磁感强度B (T )101102310410505001000150020002500300035004000450050005500600065007000750080008500900095001000010500110001150012000相对磁导率r00.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.42.52.62.72.82.933.13.23.33.43.53.63.73.83.944.14.24.34.44.54.64.74.84.95铁损P s (W /k g )50Hz60Hz1000.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.4磁感强度B (T )101102310410505001000150020002500300035004000450050005500600065007000750080008500900095001000010500110001150012000相对磁导率r50WW400直流磁化曲线00.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.42.52.62.72.82.933.13.23.33.43.53.63.73.83.944.14.24.34.44.54.64.74.84.955.15.25.35.45.55.65.75.85.96铁损P s (W /k g )50WW400铁损曲线50Hz60Hz1000.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.4磁感强度B (T )101102310410505001000150020002500300035004000450050005500600065007000750080008500900095001000010500110001150012000相对磁导率r50WW470直流磁化曲线00.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.42.52.62.72.82.933.13.23.33.43.53.63.73.83.944.14.24.34.44.54.64.74.84.955.15.25.35.45.55.65.75.85.96铁损P s (W /k g )50WW470铁损曲线50Hz60Hz1000.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.4磁感强度B (T )50WW600直流磁化曲线101102310410505001000150020002500300035004000450050005500600065007000750080008500900095001000010500110001150012000相对磁导率r00.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.42.52.62.72.82.933.13.23.33.43.53.63.73.83.944.14.24.34.44.54.64.74.84.955.15.25.35.45.55.65.75.85.966.16.26.36.46.56.66.76.86.97铁损P s (W /k g )50WW600铁损曲线50Hz60Hz1000.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.4磁感强度B (T )50WW700直流磁化曲线101102310410505001000150020002500300035004000450050005500600065007000750080008500900095001000010500110001150012000相对磁导率r0.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.42.52.62.72.82.933.13.23.33.43.53.63.73.83.944.14.24.34.44.54.64.74.84.955.15.25.35.45.55.65.75.85.966.16.26.36.46.56.66.76.86.977.17.27.37.47.57.67.77.87.988.18.28.38.48.5铁损50WW700铁损曲线60Hz50Hz1000.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.4磁感强度B (T )101102310410505001000150020002500300035004000450050005500600065007000750080008500900095001000010500110001150012000相对磁导率r00.20.40.60.811.21.41.61.822.22.42.62.833.23.43.63.844.24.44.64.855.25.45.65.866.26.46.66.877.27.47.67.888.28.48.68.899.29.49.69.810铁损P s (W /k g )50Hz60Hz1000.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.4磁感强度B (T )101102310410505001000150020002500300035004000450050005500600065007000750080008500900095001000010500110001150012000相对磁导率r11.21.41.61.822.22.42.62.833.23.43.63.844.24.44.64.855.25.45.65.866.26.46.66.877.27.47.67.888.28.48.68.899.29.49.69.81010.210.410.610.811铁损P s (W /k g )50Hz60Hz1000.10.20.30.40.50.60.70.80.911.11.21.31.41.51.61.71.81.922.12.22.32.4磁感强度B (T )101102310410505001000150020002500300035004000450050005500600065007000750080008500900095001000010500110001150012000相对磁导率r00.20.40.60.811.21.41.61.822.22.42.62.833.23.43.63.844.24.44.64.855.25.45.65.866.26.46.66.877.27.47.67.888.28.48.68.899.29.49.69.81010.210.410.610.81111.211.411.611.812铁损P s (W /k g )60Hz50Hz。
高梯度磁选机磁场影响因素的几点论述刘建义,陈宏武,周少川(岳阳大力神电磁机械有限公司,湖南岳阳414100)【摘要】本文主要概述了立环高梯度磁选机的构造、工作原理,以及影响磁场强度的三个主要因素:1. 线圈安匝数2. 磁路及磁路材料3. 磁介质材料及结构。
关键词:背景场强;梯度场强;磁路结构及材料;线圈安匝数;磁介质材料及结构。
DLS系列立环高梯度磁选机是我公司(岳阳大力神电磁机械有限公司)结合国内外强磁磁选机的特点,自行研制开发的一种新型强磁磁选机。
该系列产品是目前国内外性能最好、技术最先进的强磁磁选设备之一。
该机采用转环立式旋转、反冲精矿,并配有高频振动机构,它具有富集比大、对给矿粒度、浓度和品位波动适应性强、工作可靠、操作维护方便等优点。
同时适用范围广泛,既能对弱磁性矿物进行选矿,例如:赤铁矿、褐铁矿、菱铁矿、钛铁矿、铬铁矿、黑钨矿、钽铌矿等;又能对非金属矿物进行除铁、提纯,例如:石英、长石、霞石、萤石、硅线石、锂辉石、高岭土等。
影响立环高梯度磁选机磁选效果的最主要因素是磁路结构、背景场强、梯度场强的大小及分布。
背景磁场越大,吸附力就越大;背景场强越大,其在磁介质中所产生的梯度场强也越大,磁选效果就越好。
如何提高背景磁场及梯度场强,就是我们现在要探讨的问题。
根据立环磁选机及磁介质盒的结构和特点,我们研究下面几个因素对磁场的影响:1.线圈安匝数;2. 磁路及其材料; 3. 磁介质材料及结构。
1.立环磁选机构造及工作原理1.1设备构造DLS磁选机主要由高频振动机构、转环、励磁线圈、上下铁轭及各种矿斗、供水装置等组成。
DLS立环高梯度磁选机结构图1.高频振动机构2. 下铁轭3. 励磁线圈4.转环5. 上铁轭6. 给矿斗7. 漂洗水斗8.精矿斗9.中矿斗10.尾矿斗 11.液位箱 12. 精矿冲洗装置 13. 转环驱动机构 14.机架F—给矿 W—清水 C—精矿 M—中矿 T—尾矿1.2工作原理转环内装有导磁不锈钢棒介质盒或不锈钢网磁介质堆。
第20卷 第12期 中 国 水 运 Vol.20 No.12 2020年 12月 China Water Transport December 2020收稿日期:2020-07-09作者简介:张永亮,女,上海理工大学机械工程学院,副教授,主要研究方向为机械动力学及加工精度、智能材料切削减震技术。
通讯作者:王可意(1996-),男,上海理工大学机械工程学院,硕士,主要研究方向为机械动力学及加工精度、智能材料切削减震技术。
磁流变液挤压模式下力学性能研究张永亮,王可意,石建光,张帅帅(上海理工大学 机械工程学院,上海 200093)摘 要:磁流变液是一种新型的智能材料,可以进行固液两相的转变,而且响应速度快,在工业上有广阔的应用前景。
本文为研究磁流变液在不同磁场作用下的力学性能,建立了用于测试磁流变液挤压试验装置,并通过comsol 对此试验装置磁路的磁感应强度分布进行了仿真分析,利用此测力装置进行试验,研究了磁流变液在不同外加磁场强度下的挤压特性。
关键词:磁流变液;测力装置;磁场强度;挤压特性中图分类号:TB381 文献标识码:A 文章编号:1006-7973(2020)12-0155-03引言磁流变液属可控流体,在零磁场情况下,磁流变液表现为流动性能良好的液体,在强磁场作用下可在短时间固化,去掉磁场后又恢复到原来的状态,可控性高[1]。
磁流变可广泛应用于减振、振动控制、降噪等领域。
常见的磁流变液应用器件大多数都是基于剪切模式设计的,但磁流变液的剪切应力强度偏低,阻碍其工程应用。
近年来,国内外已有部分专家学者进行磁流变液的挤压模式研究,结果表明磁流变液挤压强度比剪切强度要高一个数量级以上,人们将注意力逐渐转向磁流变液的挤压模式的研究。
廖昌荣[2]等人介绍了磁流变液的流变学特性的检测方法与工作原理,进一步指出了磁流变液的流变学特性检测技术研究动向。
吴淼[3]等人针对非牛顿流体研究了一种流变测试系统,为磁流变材料流变特性测量提供了一种新的思路。
金属无损磁粉探伤基本知识一、有关金属无损探伤的问题1、什么叫金属无损探伤金属无损探伤就是在不破坏金属材料(零配件)原有化学组成结构和金相组织的前提下,对金属材料(零配件)进行检查,从外表到内部检查其是否有缺陷。
2、金属无损探伤的种类金属无损探伤的种类目前分五大种类:(1)、磁粉探伤(简称:MT);主要用于铁磁性金属材料的表面和近表面探伤,不能用于奥氏体不锈钢、铜、铝、镁、钛等有色金属的探伤。
(2)、液体渗透探伤(简称:PT);主要用于金属材料(包含铁磁性金属材料和奥氏体不锈钢、铜、铝、镁、钛等有色金属材料)表面有开裂裂纹的表面探伤,不能检测表面未开裂的表层下的裂纹。
(3)、射线拍片探伤(简称:RT);对金属材料采用X射线拍片,主要用于金属材料内部缺陷的检查。
(4)、超声波探伤(简称:UT);对金属材料采用超声波探测,利用超声波对金属材料的回波波形来检测金属材料的缺陷,同样主要用于金属材料内部缺陷的检查。
(5)、涡流探伤(简称:ET);涡流检测是建立在电磁感应原理基础上的一种无损检测方法,它适用于导电材料。
当把一块导体置于交变磁场之中,在导体中就有感应电流存在,即产生涡流。
利用导体中涡流的变化来检测金属的缺陷,涡流探伤也属于表面探伤,主要用于导电长形棒材、管材的表面探伤。
MT、PT、ET都属于金属材料的表面或近表面缺陷探伤;RT和UT属于金属材料的内部缺陷探伤。
目前还有一种利用检测元件(如磁带、霍尔元件、磁敏元件等)制成的探头通过扫描工件上的漏磁场,经过信号处理装置,记录缺陷漏磁场的方法进行探伤,这种探伤叫漏磁探伤,优点是不需要磁粉,减少污染和成本,可实现全自动化。
缺点是只适用于几何形状比较规则的原材料,而且检测灵敏度也低于磁粉探伤,所以目前应用较少。
二、磁粉探伤基础知识1、磁粉探伤的基本原理磁粉探伤的基础是缺陷处因漏磁场与磁粉的相互作用,在漏磁场处产生磁粉痕迹,从而显示缺陷。
铁磁材料工件磁化后,在表面和近表面的缺陷处磁力线发生变形,逸出工件表面形成磁极(N、S极)并形成可检测的漏磁场。