开关电源的光耦电路设计
- 格式:docx
- 大小:367.66 KB
- 文档页数:6
光耦通常与TL431一起使用。
下面是led电源驱动芯片(开关电源芯片)TMG0321/TMG0165/TMG0265/TMG03655的部分电路。
两电阻串联取样到431R端与内部比较器进行比较.然后根据比出的信号再控制431K端(阳极接光耦那一端)对地的电阻,然后达到控制光耦内部发光二极管的亮度.(光耦内部一边是一发光二极管,一边是一光敏三极管)通过发光的强度.控制另一端三极管的CE端的电阻也就是改变了led电源驱动芯片(开关电源芯片)TMG0321/TMG0165/TMG0265/TMG0365检测脚的电流(1脚:电压反馈引脚,通过连接光耦到地来调整占控比)。
根据电流的大小,led电源驱动芯片(开关电源芯片)TMG0321/TMG0165/TMG0265/TMG0365就会自动调整输出信号的占空比,达到稳压的目的TL431是这样工作的:上图中的431不是用于稳压,而是用作一个电压门限开关。
它与R10、R11一起监测+12V电源的变化,当+12V升高时,431的K极和A极短接,然后将光耦发光二极管的阴极接地,光耦导通,电源芯片TMG0165的第一管脚(FB)被拉低,芯片便调整输出占空比,使+12V电压降低。
当+12V降低时,光耦不导通,电源芯片FB端为高电平,它就调整输出占空比,使+12V升高。
TL431的原理框图如下TL431用作稳压电路时,典型电路如下当输入电压变化时,431会将变化的电压通过电流的作用转化到输入端的电阻上。
其过程为:当输入端电压升高时,431的K极和A极间的三极管CE极电流增大,即电流Ik变大(而R1和R2上的电流不变),输入端的电阻上的压降升高,从而保证Vka不变;当输入端电压降低时,431的K极和A极间的三极管CE极电流减小,即电流Ik减小(而R1和R2上的电流不变),输入端的电阻上的压降减小,从而使Vka不变.。
光耦在开关电源中的应用光耦是一种常见的电子元件,它在开关电源中有着广泛的应用。
本文将从光耦的工作原理、开关电源的基本结构、光耦在开关电源中的作用以及光耦的选型等方面进行详细介绍。
我们来了解一下光耦的工作原理。
光耦是由发光二极管和光敏三极管(也称为光电二极管)构成的。
当给发光二极管正向电压时,它会发出可见光。
而当这个光照射到光敏三极管时,会产生电流。
这样,通过光耦就可以实现一个光电转换的过程。
接下来,我们来了解一下开关电源的基本结构。
开关电源是一种能将交流电变换成直流电的电源装置。
它由输入端、变压器、整流滤波电路、开关管和输出端等部分组成。
输入端接收交流电信号,经过变压器降压后,通过整流滤波电路将交流电转换为直流电。
然后,通过开关管的开关控制,将直流电调整为所需的输出电压。
在开关电源中,光耦扮演着重要的角色。
它主要用于隔离输入端和输出端,以保证安全性和稳定性。
具体来说,光耦一般被用作开关电源的控制器,用于控制开关管的导通和断开。
当输入端的交流电信号通过变压器降压后,经过整流滤波电路转换为直流电后,光耦会将这个电信号转换为光信号,然后通过光敏三极管将光信号再转换为电信号。
这个电信号会用于控制开关管的开关状态,从而实现对输出端电压的调整。
在开关电源中选择合适的光耦也是非常重要的。
首先,要根据开关电源的输入电压和输出电压范围来选择合适的光耦。
其次,要考虑光耦的耐压能力和工作温度范围是否符合要求。
此外,还需要考虑光耦的响应速度和隔离性能等因素。
最后,要对光耦进行可靠性和寿命测试,确保其在开关电源中的稳定性和可靠性。
光耦在开关电源中发挥着重要的作用。
它通过光电转换的方式,实现了输入端和输出端的电气隔离,保证了开关电源的安全性和稳定性。
在选择光耦时,要考虑其特性参数是否符合要求,并进行可靠性和寿命测试。
通过合理选择和应用光耦,可以提高开关电源的性能和可靠性,满足不同应用场景的需求。
光耦在开关电源中的应用十分广泛。
一、工作原理我们先熟悉一款开关电源的工作原理,该电源可输出5V电压,如图1所示。
1. 抗干扰电路在电网输入端首先设置一个NTC5D-9负温度系数热敏电阻,作用是保护后面的整流桥,刚开机时热敏电阻处于冷态,阻值比较大,可以限制输入电流,正常工作时,电阻比较小。
这样对开机时的浪涌电流起到有效的缓冲作用。
电容CY1、CY2、CY3、CY4用以滤除从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的不对称杂散信号,电容CX1、CX2用以滤除从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的对称杂散信号,用电感L1抑制从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的频率相同、相位相反的杂散干扰电流信号。
采用高频特性好的瓷片电容和铁芯电感,实现开关稳压电源电路中的高频辐射不污染工频电网和工频电网上的杂散电磁波不会窜入开关稳压电源电路中而干扰和影响其工作,对高频分量或工频的谐波分量具有急剧阻止通过功能,而对于几百赫兹以下的低频分量近似一条短路线。
图1 开关电源的工作原理图2. 整流滤波电路在电路中D1、D2、D3、D4组成全桥整流电路,把输入的交流电压进行全波整流,然后用C1进行滤波,最后变成直流输出供电电压,为后级的功率变换器供电,整流滤波后的电压约为300V。
3. UC3842供电与振荡300V的脉动直流电压,此电压经R12降压后给C4充电,供电UC3842的7脚,当C4的电压达到UC3842的启动电压门槛值时,UC3842开始工作并提供驱动脉冲,由6脚输出推动开关管工作。
一旦开关管工作,反馈绕组的能量经过D6整流,C4滤波,又供电到UC3842的7脚,这时可以不需要R12的启动了。
C9、R11接UC3842的定时端,和内部电路构成振荡电路,振荡的工作频率计算为:f=1.8/(Rt*Ct)代入数据可计算工作频率:f=68.18K4. 稳压电路该电路主要由精密稳压源T L 4 3 1 和线性光耦P C 8 1 7 组成,假设输出电压↑→经过R 1 6 、R 1 9 、R20、RES3的取样电压↑→TL431的1脚电压↑,当该脚电压大于TL431的基准电压2.5V时,TL431的2、3脚导通,→通过光电耦合到UC3842的2脚,于是UC3842的6脚驱动脉冲的占空比↓→开关变压器T1绕组上的能量↓→输出电压↓,达到稳压作用;反之,假设输出电压下降,则稳压过程与上相反。
开关电源的光耦电路随着现代电子产品的普及,电源供应模块作为重要的组件之一被广泛应用在各种电子设备中。
而在电源供应模块中,光耦电路作为一种重要的隔离元件,在开关电源中扮演着至关重要的角色。
光耦电路的作用光耦电路是一种利用光的行为进行信号传递的元件。
在开关电源之中,光耦电路通常用于隔离输入信号和输出信号,以防止由于输入和输出之间的电气连接而导致的干扰和电气隔离问题。
在开关电源中,输出端的电压和电流往往不适合直接用于触发控制信号或作为反馈信号,需要通过具有隔离功能的光耦电路来实现输入和输出的隔离。
光耦电路的工作原理光耦电路由发光二极管和光敏三极管组成,其中发光二极管的工作电压和工作电流决定了其发出的光强度,而光敏三极管的光探测灵敏度又决定了其是否能够从发光二极管发出的光信号中获得足够的激发信号。
当光耦电路的输入端有信号输入时,发光二极管会发出光信号,光敏三极管即可通过光信号实现对输出端信号的控制。
光信号的传递过程既实现了输入输出的隔离,又保证了信号的传输准确性和稳定性。
光耦电路的优势在开关电源中采用光耦电路的优势主要体现在以下几个方面:1.隔离能力强:光耦电路可实现高效的输入输出信号隔离,避免电气连接导致的潜在危险和干扰。
2.响应速度快:光耦电路具有快速的响应速度,可以在瞬间传递信号并实现稳定的控制。
3.体积小巧:光耦电路体积小,适合在空间受限的电子设备中使用。
4.成本低廉:光耦电路在制造成本上相对较低,能够帮助降低整体开关电源的成本。
开关电源中的光耦电路应用在开关电源中,光耦电路通常用于输入输出隔离、反馈控制、瞬时保护等方面。
通过合理设计和应用光耦电路,可以提高开关电源的安全性、稳定性和可靠性,确保其在各种工作环境下的正常运行。
综上所述,光耦电路作为开关电源中的重要组成部分,发挥着至关重要的作用。
其通过光信号的传递实现输入输出信号的隔离,保证了电路工作的稳定性和可靠性。
在未来的电子设备中,光耦电路将继续发挥着重要作用,为电子产品的发展和应用提供强有力的支持。
开关电源用光耦817选型和TL431配合设计建议开关电源是一种常用的电源设计,在实际使用中,可以使用光耦817和TL431作为配合设计,以提高电源的性能和可靠性。
下面将详细介绍光耦817和TL431的选型和设计建议。
光耦817是一种常用的光耦器件,其内部包含一个红外发射二极管和一个光敏三极管。
光耦817在开关电源中主要用于隔离输入和输出信号,以提高系统的安全性和稳定性。
选型光耦817时,需要考虑以下几个因素:1.峰值反向电压:开关电源中,输入和输出信号需要隔离,因此光耦817的峰值反向电压需要能够满足系统的工作要求。
2.传输速率:光耦817的传输速率决定了信号传输的快慢,选型时需要根据实际需求选择合适的传输速率。
3.耐热性:开关电源在工作过程中可能会产生较高的温度,因此光耦817需要具有良好的耐热性,能够在高温环境下长时间工作。
4.封装类型:光耦817有多种封装类型,如DIP封装、SOP封装等,选型时需要根据实际应用情况选择合适的封装类型。
TL431是一种常用的可编程精密稳压器,其内部包含一个比较器和一个电流源。
TL431在开关电源中主要用于稳压和参考电压源,以提供稳定的工作电压和精确的参考电压。
选型TL431时,需要考虑以下几个因素:1.工作电压范围:开关电源的工作电压要求可能会有所不同,因此选型TL431时需要根据具体的工作电压范围选择合适的器件。
2.稳定性:TL431的稳定性决定了其输出电压的准确性和稳定性,选型时需要根据实际要求选择具有良好稳定性的器件。
3.温度系数:TL431在不同温度下其输出电压可能会发生变化,选型时需要考虑温度系数,并根据实际需求选择合适的器件。
4.封装类型:TL431有多种封装类型,如TO-92封装、SOT-23封装等,选型时需要根据实际应用情况选择合适的封装类型。
在使用光耦817和TL431进行配合设计时,需要注意以下几个问题:1.输入和输出信号的隔离:使用光耦817将输入和输出信号进行隔离,以确保系统的安全性和稳定性。
开关电源光耦工作原理
开关电源光耦是一种常用的光电转换器件,它能够实现输入和输出电路之间的电气隔离。
它主要由一个发光二极管(LED)和一个光敏三极管(光敏晶体管)组成。
工作原理如下:
1. 输入信号:输入信号通过一个电阻器或其他电路,以一定的电流驱动LED。
LED发出的光线具有一定的波长和功率。
2. 光耦隔离:LED辐射出的光线经过光学隔离层(如透明封装、透明胶带等)传递到光敏晶体管的光敏区。
光敏晶体管光敏区的材料吸收进来的光子,使其发生电离,产生一个电流。
3. 输出信号:光敏晶体管内的光敏电流经过一个电阻或其他输出电路测量,转换成电压信号。
这个电压信号可以在输出电路中被测量、放大、处理等。
该工作原理实现了输入和输出电路的电气隔离,即在输入和输出电路之间没有直接的电气连接。
从而可以避免输入信号中产生的噪声、浪涌或高电压等因素对输出电路产生不良影响。
此外,由于LED和光敏晶体管的物理特性决定了它们对光的敏感度,使得光耦能够有效地进行信号隔离,并具有较高的工作速度和信噪比。
在实际应用中,开关电源光耦常用于电源隔离、噪声滤波、信号传输和触发控制等方面。
光耦在开关电源中的应用开关电源作为电子设备中常见的一种电源供应方式,具有效率高、功率密度大、体积小等优点,在现代电子设备中得到了广泛的应用。
而光耦作为一种重要的电子元件,也在开关电源中扮演着关键的角色。
1. 光耦的工作原理光耦是由发光元件(一般为发光二极管)和光敏元件(一般为光电晶体管或光电三极管)组成的一种集成元件。
光耦的工作原理是利用发光二极管发出的光信号来控制光电晶体管或光电三极管的导通,从而实现输入与输出之间的电气隔离。
在开关电源中,光耦通常被用于隔离输入端的控制信号和输出端的功率电路,起到传递信号、隔离高低压等作用,保证电路的安全稳定运行。
2. 光耦在开关电源中的应用2.1 控制信号隔离开关电源通常需要接收外部的控制信号,如开关机信号、调节电压等。
通过光耦将控制信号隔离,可以有效地防止输入信号对输出电路造成干扰,提高系统的稳定性和可靠性。
2.2 输出反馈隔离在开关电源中,输出端往往需要进行电压、电流等参数的反馈控制,以实现稳定的输出。
光耦可以将输出端的反馈信号传递到控制电路中,同时实现输入输出之间的隔离,避免输出端信号对控制电路造成影响。
2.3 过载保护开关电源在工作过程中,可能会遇到过载等异常情况,为了保护电路和设备,需要及时切断输出电源。
光耦可以作为过载保护的触发器,当检测到输出端过载信号时,通过光耦控制开关电源的关闭,实现对电路的保护。
3. 结语光耦作为一种重要的电子元件,在开关电源中发挥着关键的作用,通过信号隔离、输出反馈和过载保护等功能,保障了开关电源系统的稳定性和可靠性。
未来随着电子技术的不断发展,光耦在开关电源中的应用将会更加广泛,为电子设备的性能提升和安全保障提供更好的支持。
反激开关电源431+光耦环路设计下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言在电子设备中,开关电源作为一种常见的电源形式,具有高效率和小体积等优势,因此被广泛应用于各种领域。
六款简单的开关电源电路设计,内附原理图详解简单的开关电源电路图(一)简单实用的开关电源电路图调整C3和R5使振荡频率在30KHz-45KHz。
输出电压需要稳压。
输出电流可以达到500mA.有效功率8W、效率87%。
其他没有要求就可以正常工作。
简单的开关电源电路图(二)24V开关电源,是高频逆变开关电源中的一个种类。
通过电路控制开关管进行高速的道通与截止,将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!24V开关电源的工作原理是:1.交流电源输入经整流滤波成直流;2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;3.开关变压器次级感应出高频电压,经整流滤波供给负载;4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。
24v开关电源电路图简单的开关电源电路图(三)单端正激式开关电源的典型电路如下图所示。
这种电路在形式上与单端反激式电路相似,但工作情形不同。
当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。
在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。
为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于50%。
由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200 W的功率。
电路使用的变压器结构复杂,体积也较大,正因为这个原因,这种电路的实际应用较少。
简单的开关电源电路图(四)推挽式开关电源的典型电路如图六所示。
它属于双端式变换电路,高频变压器的磁芯工作在磁滞回线的两侧。
电路使用两个开关管VT1和VT2,两个开关管在外激励方波信号的控制下交替的导通与截止,在变压器T次级统组得到方波电压,经整流滤波变为所需要的直流电压。
光耦在开关电源中的作用在现代电子设备中,开关电源被广泛应用于各种电子设备中,例如电脑、手机充电器、家用电器等。
而在开关电源中,光耦作为一个重要的器件扮演着关键的角色。
本文将介绍光耦在开关电源中的作用和原理。
光耦的基本原理光耦器件是由发光器件(LED)和光敏器件(光电晶体管、光敏三极管等)组成的器件。
在开关电源中,光耦的作用主要是实现输入和输出之间的电气隔离。
发光二极管(LED) 发出的光信号被光敏器件接收,产生对应的电信号输出,从而将输入和输出的电路隔离开来,保证电路的安全稳定工作。
光耦在开关电源中的应用1.反馈电路隔离:在开关电源中,通常会使用光耦来隔离反馈电路。
通过光耦将主控芯片与反馈电路隔离开来,避免电流的回馈影响主控芯片的稳定性,同时提高了系统的抗干扰能力。
2.安全隔离:光耦还可以用于实现输入输出电路的安全隔离,避免高电压或高电流的输入对低压电路产生危险。
这种隔离方式在工业控制设备、电力系统等领域应用广泛。
3.信号隔离:在一些需要隔离传输信号的场合,光耦也发挥着重要作用。
通过光耦实现信号的光电转换,可以有效地隔离信号传输,提高系统的稳定性和可靠性。
光耦的优点与应用前景光耦作为一种电气隔离器件,在开关电源中具有独特的优点和应用前景。
首先,光耦具有良好的隔离性能,能够有效地隔离输入输出电路,提高系统的安全性和稳定性。
其次,光耦器件体积小、重量轻,适合集成在各种电子设备中,具有良好的应用前景。
结语光耦作为开关电源中重要的器件之一,在电子设备中扮演着关键的角色。
通过光耦的电气隔离功能,可以实现输入输出电路之间的隔离,保证系统的安全稳定运行。
随着电子技术的不断发展和进步,光耦作为一种重要的器件将在开关电源领域继续发挥重要作用。
1 目的熟悉UC3843 组成小功率开关电源(TL431+光耦)的设计流程。
.2 设计步骤:2.1 绘线路图、PCB Layout.2.2 变压器计算.2.3 零件选用.2.4 设计验证.3 设计流程介绍(以DA-14B33为例):3.1 线路图、PCB Layout 请参考资识库中说明.3.2 变压器计算:变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就DA-14B33变压器做介绍.3.2.1 决定变压器的材质及尺寸:依据变压器计算公式Gauss x NpxAeLpxIp B 100(max )B(max) = 铁心饱合的磁通密度(Gauss)Lp = 一次侧电感值(uH)Ip = 一次侧峰值电流(A)Np = 一次侧(主线圈)圈数Ae = 铁心截面积(cm 2) B(max) 依铁心的材质及本身的温度来决定,以TDK FerriteCore PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。
3.2.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。
3.2.3 决定变压器线径及线数:当变压器决定后,变压器的Bobbin(电气方面用的,电木及塑胶绕线轴)即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。
3.2.4 决定Duty cycle (工作周期):由以下公式可决定Duty cycle ,Duty cycle 的设计一般以50%为基准,Duty cycle 若超过50%易导致振荡的发生。
开关电源中光耦的作用及工作原理是什么在开关电源电路中,光耦(光电耦合器件)扮演着至关重要的角色,它起到了隔离信号、传递信号、调节电压等多种功能。
光耦由发光二极管和光敏三极管(光控晶体管)组成,通过光的转换来实现输入电路和输出电路之间的隔离。
光耦的作用1.信号隔离:在开关电源中,输入端和输出端处于不同的电位,而光耦能够有效地隔离两端的电气信号,防止噪音干扰和信号失真,提高电路的可靠性和稳定性。
2.信号传递:光耦能够将输入端的电信号转换成光信号,并通过光敏三极管将光信号再转换回电信号输出,起到信号传递的作用,实现输入输出端的信号交互。
3.电压调节:通过控制光耦输入端的电流,可以实现准确地调节输出端的电压,达到电路中电压稳定的目的,保护后续电路元件不受电压波动的影响。
4.电流传输:在开关电源中,光耦还可以作为电流传输的介质,通过光的能量传递来实现输入输出端的电流控制,确保电路的正常运行。
工作原理光耦的工作原理主要分为发光二极管和光敏三极管两个部分。
1.发光二极管:当输入端给发光二极管施加电压时,发光二极管内部的P-N结会发生电场效应,使得P区域的载流子和N区域的载流子重新组合,释放出光子,产生光线。
这些光线会穿过光耦内部的隔离层,照射到光敏三极管上。
2.光敏三极管:光敏三极管接受到发光二极管发出的光信号后,光敏三极管内部的PNP结会发生反向饱和,导通电流。
这个过程可以看作是光信号到达时,改变了光敏三极管的工作状态,导通了输出端的电流信号。
总的来说,光耦实现了输入端信号到输出端信号的转换,光信号的作用不仅是一种隔离和传输,更是一种控制和调节。
通过细致地控制光耦内部的元件和参数,可以在开关电源中实现各种功能的需求,提高电路的性能和效率。
在实际应用中,设计工程师需要根据具体的电路要求选择合适的光耦型号和参数,保证其在开关电源中起到稳定可靠的作用。
同时,合理布局光耦的位置和连接方式,避免因误差和干扰导致光耦功能失效,确保开关电源的正常工作。
一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器<EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1<热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小<RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4为安规电容,L2、L3为差模电感。
② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
开关电源中光耦的工作原理是什么呢在开关电源中,光耦扮演着至关重要的角色,其工作原理在整个系统中起着连接和隔离的作用。
光耦是光电器件的一种,由发光二极管(LED)和光敏三极管(光电晶体管)组成。
而在开关电源中,光耦主要用于实现输入端和输出端之间的隔离,以确保电气信号在高效且安全的条件下传输。
光耦的工作原理可以简单概括为:当输入信号加到LED上时,LED会发光,其光线照射到光敏三极管上,导致光敏三极管发生光电效应,从而在输出端产生电信号。
这一过程实现了输入端和输出端之间的电气隔离,有效地防止了输入端的干扰信号对输出端的影响。
在开关电源中,光耦通常被用于隔离高压和低压部分,以确保高压部分的安全性。
当开关电源的输入端传入交流电信号时,经过整流等处理后会被转换成直流电压,然后通过开关器件(如MOS管)进行控制,最终输出恒定的直流电压。
而光耦的作用就是在控制信号传输时,将输入端高压信号隔离,通过光电转换实现对输出端的控制。
另外,光耦在开关电源中还常用于反馈回路中,以实现对输出电压和输出电流的监测和调节。
通过监测输出端的电压和电流信号,可以实现开关电源的稳定性和效率的控制,并在需要时进行保护性控制。
这种反馈回路的设计使得开关电源在不同负载情况下能够自动调整工作状态,提高整个系统的稳定性和可靠性。
综上所述,光耦在开关电源中作为一种重要的隔离器件,通过光电转换实现了输入端和输出端之间的电气隔离,保证了系统的稳定性和安全性。
同时,光耦在反馈回路中的运用也为开关电源的控制和调节提供了有效的手段,使整个系统更加智能化和高效化。
在未来的开关电源设计中,光耦将继续扮演着重要的角色,为电源系统的可靠性和性能提升发挥着重要作用。
1。
开关电源中光耦的作用及工作原理在开关电源中,光耦是一个非常重要的元件,它扮演着传递信号和隔离电气的关键角色。
光耦是由一个发光二极管和一个光敏三极管组成的器件,能够将输入端的电信号转换成输出端的光信号进行隔离传输,从而实现输入和输出端的电气隔离。
下面将详细介绍光耦在开关电源中的作用及工作原理。
首先,光耦在开关电源中的作用主要有两个方面。
其一是实现信号的隔离传输。
在开关电源中,通常存在输入端和输出端之间的电气隔离要求,这时就可以使用光耦来将输入信号转换成光信号进行传输,避免了信号干扰和电气冲击。
其二是实现开关控制的电气隔离。
通过光耦,可以实现对开关电源的控制信号进行隔离传输,避免了开关控制电路与被控电路之间的相互影响,提高了系统的稳定性和可靠性。
其次,光耦的工作原理可以简要描述如下。
当输入端的电信号加到发光二极管上时,发光二极管就会发出光信号,这个光信号照射到光敏三极管上,使光敏三极管产生电压和电流变化,从而在输出端得到与输入信号对应的输出信号。
通过这种光电转换的方式,实现了输入和输出端的电气隔离,同时保障信号的传输质量和稳定性。
在开关电源中使用光耦时,需要注意以下几点。
首先,要选择适合的光耦型号和工作参数,确保其满足系统的电气隔离和信号传输需求。
其次,要合理设计光耦的电路连接方式和工作环境,避免电磁干扰和温度影响导致光耦性能不稳定。
最后,要定期检测和维护光耦元件,保证其正常工作和有效隔离传输。
总之,光耦作为开关电源中的重要元件,扮演着信号隔离和传输的关键角色。
通过光电转换的方式,实现了输入和输出端的电气隔离,提高了系统的稳定性和可靠性。
在应用光耦时,需要充分理解其工作原理和注意事项,确保其正常工作和良好的隔离效果,从而为开关电源系统的稳定运行提供保障。
1。
TL431和PC817在开关电源中的应用电路设计一、TL431的应用电路设计:1.电压调节稳压电路:将TL431连接在开关电源的反馈回路中,可以实现电压调节功能。
具体连接方式如下图所示:```C1C2输入电源,—,—-,—-+,—-++,+,—+—-电压输出R1+,—TL431```其中,C1和C2为输入电源的输入和输出电容,R1为电阻,用于调节输出电压的分压比例。
通过调节R1的阻值,可以实现对输出电压的调节。
2.参考电压源:在开关电源中,TL431还可以作为一个精密的参考电压源,用于控制其他电路的工作状态。
具体电路如下:```输入电源,—,TL431(参考电压),—+,其他电路```在这个电路中,TL431的参考电压可以被其他电路进行检测和控制,从而实现精密的电压调节和保持功能。
二、PC817的应用电路设计:1.光耦隔离器:PC817可以用作开关电源中的光耦隔离器,用于隔离输入和输出电路,从而实现安全和稳定的电气隔离。
具体电路如下:```输入电路,—,—PC817(输入侧),—PC817(输出侧),—,—输出电路```输入侧的PC817将输入电路与输出电路隔离开来,输出侧的PC817将接收到的输入信号进行调整并传输给输出电路。
这种隔离电路可以保护输出电路免受输入电路的干扰,提高系统的安全性和稳定性。
2.隔离控制电路:PC817还可以用作开关电源中的隔离控制电路,用于控制其他电路的开关状态。
具体电路如下:```输入电路,—,,PC817(控制信号),—+,其他电路```在这个电路中,输入电路的信号通过PC817进行隔离,并在输出端控制其他电路的开关状态。
这种隔离控制电路常用于开关电源中的保护电路,可以有效地隔离控制信号和其他电路,提高系统的稳定性和安全性。
总结:。
开关电源光耦反馈原理
开关电源光耦反馈原理是通过光耦结构实现电源开关控制回路的反馈控制。
在开关电源中,开关管负责实现输入电源的开关控制,通过对开关管的驱动控制,可以实现电源输出的稳定性和保护功能。
光耦是一种将输入和输出电路隔离的器件,它由发光二极管和光敏三极管组成。
在光采集端,发光二极管根据控制信号的输入情况,发出特定的光强度。
而在光发射端,则有光敏三极管检测和接收到的光信号,进而转化为电信号,用于反馈回路的控制。
在开关电源中,光耦通常被用于反馈控制回路的隔离和保护功能,其工作原理可以简单描述如下:
1. 控制信号输入:控制信号传递给发光二极管,通过改变二极管的电流或电压,从而实现光强度的调节。
2. 光信号传输:发光二极管发射的光束经过隔离介质(如空气或透明塑料)传输到光敏三极管的接收端。
3. 光-电转换:光敏三极管接收到光信号后,会产生相应的电流或电压,将光信号转化为电信号。
4. 反馈控制:光敏三极管输出的电信号用于反馈回路的控制,通过与输入信号进行比较、调整,从而实现对开关管的驱动控制。
通过光耦反馈控制,开关电源可以实现对输出电压、电流、功率等参数的精确控制和保护,提高了电源的稳定性和可靠性。
此外,光耦的隔离功能还可以减少输入和输出电路之间的相互影响和干扰,提高系统的抗干扰能力和安全性。
开关电源光耦传输比
开关电源光耦传输比是指在开关电源中,光耦传输比的值。
光耦传输比是指输出端的光电流与输入端电流之间的比值,它直接影响到光耦的传输效果和性能。
开关电源是一种将交流电转换为直流电供应给电子设备的电源,其工作过程中需要使用一些电子元件来控制电流和电压的转换。
其中光耦是一种常用的元件,用于隔离电路、传输信号和控制开关等功能。
光耦传输比是光耦的主要性能指标之一,它反映了光信号的输入和输出的比例关系。
光耦传输比越高,意味着在输入端电流较小的情况下,可以获得较大的输出光电流。
高传输比对于提高光耦的传输效率和信号传输质量非常重要。
光耦传输比的大小受到光耦结构设计和材料特性的影响。
一般来说,采用高效的光耦结构和优质的材料可以提高传输比。
在实际应用中,我们通常需要根据具体的需求选择合适的光耦,以满足电路设计和性能要求。
总之,开关电源光耦传输比是影响光耦传输效果和性能的重要参数。
了解并选择合适的光耦传输比,可以提高开关电源的工作效率和信号传输质量,保证电子设备的正常运行和性能表现。
光耦(opticalcoupler)亦称光电隔离器、光耦合器或光电耦合器。
它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳内。
当输入端加电信号时发光二极管发出光线,光敏三极管接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。
典型应用电路如下图1-1所示。
光耦的主要优点是:信号单向传输,输入端与输出端完全实现了前端与负载完全的电气隔离,输出信号对输入端无影响,减小电路干扰,简化电路设计,工作稳定,无触点,使用寿命长,传输效率高。
光耦合器是70年代发展起来的新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。
在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。
光耦典型电路
常用于反馈的光耦型号有TLP521、PC817等。
这里以TLP521为例,介绍这类光耦的特性。
图2-1所示为光耦内部结构图以及引脚图。
TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic越大。
副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大系数,该系数随温度变化而变化,且受温度影响较大。
作反馈用的光耦正是利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。
此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。
通常选择TL431结合TLP521进行反馈。
这时,TL431的工作原理相当于一个内部基准为2.5 V的电压误差放大器(输出的电压进行误差放大比较,然后将取样电压经过光电偶合器反馈控制脉宽占空比,达到稳定电压的目的),所以在其1脚与3脚之间,要接补偿网络。
TL431是由德州仪器生产的可控精密稳压源,实物如图2-3所示。
它的输出电压用两个电阻就可以任意的设置到从2.5V到36V范围内的任何值。
该器件的典型动态阻抗为0.2Ω,在很多应用中用它代替稳压二极管,例如,数字电压表,运放电路,可调压电源,开关电源等。
图2-2所示为TL431引脚排列与使用连线图。
常见的光耦反馈第1种接法。
Vo为输出电压,Vd为芯片的供电电压。
com 信号接芯片的误差放大器输出脚。
注意左边的地为输出电压地,右边的地为芯片供电电压地,两者之间用光耦隔离。
图2-3所示接法的工作原理如下:当输出电压升高时,TL431的1脚(相当于电压误差放大器的反向输入端)电压上升,3脚(相当于电压误差放大器的输出脚) 电压下降,光耦TLP521的原边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,com引脚电压下降,占空比减小,输出电压减小;反之,当输出电压降低时,调节过程类似。
高于反相端电位的形式,利用运放的一种特性—当运放输出电流过大(超过运放电流输出能力)时,运放的输出电压值将下降,输出电流越大,输出电压下降越多。
因此,采用这种接法的电路,一定要把PWM(脉冲宽度调制)芯片的误差放大器的两个输入引脚接到固定电位上,且必须是同向端电位高于反向端电位,使误差放大器初始输出电压为高。
图2-3所示接法的工作原理是:当输出电压升高时,原边电流If增大,输出电流Ic增大,由于Ic已经超过了电压误差放大器的电流输出能力,com脚电压下降,占空比减小,输出电压减小;反之,当输出电压下降时,调节过程类似。
常见的第3种接法,如图2-4所示。
与第一种基本相似,不同之处在于多了一个电阻R6,该电阻的作用是对TL431额外注入一个电流,避免TL431因注入电流过小而不能正常工作。
实际上如适当选取电阻值R3,电阻R6可以省略。
调节过程基本上同1接法一致。
常见的第4种接法,如图2-4所示。
该接法与第2种接法类似,区别在于com端与光耦第4脚之间多接了一个电阻R4,其作用与第3种接法中的R6一致,其工作原理基本同接法2。
反馈方式1、3适用于任何占空比(接通时间与周期之比)情况,而反馈方式2、4比较适合于在占空比比较小的场合使用。
小结
开关电源的光耦主要是隔离、提供反馈信号和开关作用。
开关电源电路中光耦的电源是从高频变压器次级电压提供的,当输出电压低于稳压管电压是给信号光耦接通,加大占空比,使得输出电压升高;反之则关断光耦减小占空比,使得输出电压降低。
旦高频变压器次级负载超载或开关电路有故障,就没有光耦电源提供,光耦就控制着开关电路不能起振,从而保护开关管不至被击穿烧毁。