高等数学同济第五版第7章答案
- 格式:doc
- 大小:1.00 MB
- 文档页数:32
习题7-11.判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并指出集合的边界.(1){}(,)0,0x y x y ≠≠;(2){}22(,)14x y x y <+≤;(3){}2(,)x y y x >;(4){}2222(,)(1)1(2)4x y x y x y +-≥+-≤且.解 (1)集合是开集,无界集;边界为{(,)0x y x =或0}y =. (2)集合既非开集,又非闭集,是有界集;边界为2222{(,)1}{(,)4}x y x y x y x y +=+= .(3)集合是开集,区域,无界集;边界为2{(,)}x y y x =. (4)集合是闭集,有界集;边界为2222{(,)(1)1}{(,)(2)4}x y x y x y x y +-=+-=2.已知函数(,)v f u v u =,试求(,)f xy x y +. 解 ()()(,)x y f xy x y xy ++=.3.设(,)2f x y xy =,证明:2(,)(,)f tx ty t f x y =.解)222(,)222f tx ty t xy t t xy t xy ===2(,)t f x y =.4.设y f x ⎛⎫=⎪⎝⎭(0)x >,求()f x . 解由于y f x ⎛⎫==⎪⎝⎭,则()f x =5.求下列各函数的定义域:(1)2222x y z x y+=-; (2)ln()arcsin y z y x x =-+;(3)ln()z xy =; (4)z =;(5)z =(6)u =.解 (1)定义域为{}(,)x y y x ≠±; (2)定义域为{}(,)x y x y x <≤-;(3)定义域为{}(,)0x y xy >,即第一、三象限(不含坐标轴);(4)定义域为2222(,)1x y x y a b ⎧⎫+≤⎨⎬⎩⎭; (5)定义域为{}2(,)0,0,x y x y x y ≥≥≥;(6)定义域为{}22222(,,)0,0x y z x y z x y +-≥+≠.6.求下列各极限:(1)22(,)(2,0)lim x y x xy y x y →+++; (2)(,)(0,0)lim x y →; (3)22(,)(0,0)1lim ()sinx y x y xy →+; (4)(,)(2,0)sin()lim x y xy y→;(5)1(,)(0,1)lim (1)xx y xy →+; (6)22(,)(,)lim()x y x y x y e --→+∞+∞+.解:(1)22(,)(2,0)4lim (2,0)22x y x xy y f x y →++===+;(2)(,)(0,0)00112lim lim 2x y u u u u →→→===;(3)因为22(,)(0,0)lim ()0x y x y →+=,且1s i n1xy≤有界,故22(,)(0,0)1lim ()sin 0x y x y xy →+=; (4)(,)(2,0)(,)(2,0)sin()sin()limlim 212x y x y xy xy x y xy →→==⋅=;(5)111(,)(0,1)(,)(0,1)lim (1)lim (1)y xyxx y x y xy xy e e ⋅→→+=+==;(6)当0x N >>,0y N >>时,有222()()0x y x yx y x y e e ++++<<,而()22(,)(,)22limlim lim lim 0x yu u u x y u u u x y u u e e e e+→+∞+∞→+∞→+∞→+∞+==== 按夹逼定理得22(,)(,)lim()0.x y x y x y e --→+∞+∞+=7.证明下列极限不存在: (1)(,)(0,0)limx y x yx y →+-;(2)设2224222,0,(,)0,0,x yx y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩(,)(0,0)lim (,)x y f x y →.证明 (1)当(,)x y 沿直线y kx =趋于(0,0)时极限(,)(0,0)01limlim 1x y x y kxx y x kx kx y x kx k →→=+++==--- 与k 有关,上述极限不存在.(2)当(,)x y 沿直线y x =和曲线2y x =趋于(0,0)有2242422(,)(0,0)00lim lim lim 01x y x x y x y xx y x x x x y x x x →→→=====+++, 2222442444(,)(0,0)001lim lim lim 22x y x x y xy xx y x x x x y x x x →→→=====++, 故函数(,)f x y 在点(0,0)处二重极限不存在.8.指出下列函数在何处间断:(1)22ln()z x y =+; (2)212z y x=-. 解(1)函数在(0,0)处无定义,故该点为函数22ln()z x y =+的间断点; (2)函数在抛物线22y x =上无定义,故22y x =上的点均为函数212z y x=-的间断点.9.用二重极限定义证明:(,)lim0x y →=.证22102ρ=≤=(,)P x y ,其中||OP ρ==,于是,0ε∀>,20δε∃=>;当0ρδ<<时,0ε-<成立,由二重极限定义知(,)lim0x y →=.10.设(,)sin f x y x =,证明(,)f x y 是2R 上的连续函数.证 设2000(,)P x y ∈R .0ε∀>,由于sin x 在0x 处连续,故0δ∃>,当0||x x δ-<时,有0|sin sin |x x ε-<.以上述δ作0P 的δ邻域0(,)U P δ,则当0(,)(,)P x y U P δ∈时,显然 00||(,)x x P P ρδ-<<,从而000|(,)(,)||sin sin |f x y f x y x x ε-=-<,即(,)sin f x y x =在点000(,)P x y 连续.由0P 的任意性知,sin x 作为x 、y 的二元函数在2R 上连续.习题7-21.设(,)z f x y =在00(,)x y 处的偏导数分别为00(,)x f x y A =,00(,)y f x y B =,问下列极限是什么?(1)00000(,)(,)limh f x h y f x y h →+-; (2)00000(,)(,)lim h f x y f x y h h→--;(3)00000(,2)(,)lim h f x y h f x y h →+-; (4)00000(,)(,)lim h f x h y f x h y h→+--.解 (1)0000000(,)(,)lim(,)x h f x h y f x y z x y A h→+-==; (2)000000000000(,)(,)(,)(,)limlim (,)y h h f x y f x y h f x y h f x y z x y B h h→→----===-; (3)0000000000(,2)(,)(,2)(,)limlim 222h h f x y h f x y f x y h f x y B h h→→+-+-=⋅=;(4)00000(,)(,)limh f x h y f x h y h→+--[][]0000000000000000000000000000(,)(,)(,)(,)lim(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim 2.h h h h f x h y f x y f x y f x h y hf x h y f x y f x h y f x y h f x h y f x y f x h y f x y h h A A A →→→→+-+--=+----=+---=+-=+= 2.求下列函数的一阶偏导数: (1)x z xy y=+; (2)ln tan x z y =;(3)e xyz =; (4)22x y z xy+=;(5)222ln()z x x y =+; (6)z = (7)sec()z xy =; (8)(1)y z xy =+;(9)arctan()z u x y =- (10)zx u y ⎛⎫= ⎪⎝⎭.解(1)1z y x y ∂=+∂,2z x x y y∂=-∂; (2)12211tan sec cot sec z x x x x x y y y y y y -⎛⎫⎛⎫∂=⋅⋅= ⎪ ⎪∂⎝⎭⎝⎭, 12222tan sec cot sec z x x x x x x y y y y y y y-⎛⎫⎛⎫⎛⎫∂=⋅⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭; (3)xy xy z e y ye x ∂=⋅=∂,xy xy ze x xe y∂=⋅=∂; (4)()2222222222()2()1z x xy x y y x y x y y y x x y y x xy ∂⋅-+⋅-+⋅===-∂, ()2222222222()2()1z y xy x y x xy x y x x y x y x y xy ∂⋅-+⋅-+⋅===-∂;(5)232222222222ln()22ln()z x x x x y x x x y x x y x y ∂=++⋅=++∂++, 22222222z x x yy y x y x y∂=⋅=∂++; (6)1z y x xy ∂=⋅=∂1z x y xy ∂=⋅=∂ (7)tan()sec()tan()sec()zxy xy y y xy xy x∂=⋅=∂, tan()sec()tan()sec()zxy xy x x xy xy y∂=⋅=∂; (8)121(1)(1)y y zy xy y y xy x--∂=+⋅=+∂, ln(1)(1)ln(1)1y xy z xy e y xy xy y y xy +⎡⎤∂∂⎡⎤==+⋅++⎢⎥⎣⎦∂∂+⎣⎦; (9)11221()()1()1()z z z zu z x y z x y x x y x y --∂-=⋅-=∂+-+-, 11221()()(1)1()1()z z z zu z x y z x y y x y x y --∂-=⋅-⋅-=-∂+-+-, 221()ln()()ln()1()1()z zz zu x y x y x y x y z x y x y ∂--=⋅-⋅-=∂+-+-; (10)111z z ux z x z x y y y y --⎛⎫⎛⎫∂=⋅= ⎪ ⎪∂⎝⎭⎝⎭,12z zux x z x z y y y y y -⎛⎫⎛⎫⎛⎫∂=⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭, ln z u x x y y y⎛⎫∂=⋅ ⎪∂⎝⎭. 3.设(,)ln 2y f x y x x ⎛⎫=+⎪⎝⎭,求(1,0)x f ,(1,0)y f . 解法一 由于(,0)ln f x x =,所以1(,0)x f x x=,(1,0)1x f =; 由于(1,)ln 12y f y ⎛⎫=+⎪⎝⎭,所以11(1,)212yf y y =⋅+,1(1,0)2y f =.解法二 21(,)122x y f x y y x x x ⎛⎫=⋅- ⎪⎝⎭+,11(,)22y f x y y x x x=⋅+, 10(1,0)110212x f ⎛⎫=⋅-= ⎪⎝⎭+,111(1,0)02212y f =⋅=+. 4.设(,)(f x y x y =+-(,1)x f x . 解法一由于(,1)(11)arcsinf x x x =+-,(,1)()1x f x x '==. 解法二1(,)1x f x y y =,(,1)1x f x =. 5.设2(,)xt yf x y e dt -=⎰,求(,)x f x y ,(,)y f x y .解 2(,)x x f x y e -=,2(,)y f x y e -=-. 6.设yxz xy xe =+,证明z zxy xy z x y∂∂+=+∂∂. 解 由于21y y yx x x z y y y e xe y e x x x ⎛⎫∂⎛⎫=+-⋅=+-⎪ ⎪∂⎝⎭⎝⎭, 1y y x x z x xe x e y x∂=+⋅=+∂, 所以1()yy y yx x x xz z y x y x y e y x e xy e x y xy ye x y x ⎡⎤⎛⎫∂∂⎛⎫+=+-++=+-++ ⎪⎢⎥ ⎪∂∂⎝⎭⎣⎦⎝⎭yxxy xe xy xy z =++=+.7.(1)22,44x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与x 轴正向所成的倾角是多少? (2)1z x ⎧=⎪⎨=⎪⎩在点(1,1处的切线与y 轴正向所成的倾角是多少?解 (1)按偏导数的几何意义,(2,4)x z 就是曲线在点(2,4,5)处的切线对于x 轴正向所成倾角的斜率,而21(2,4)12x x z x ===,即tan 1k α==,于是倾角4πα=. (2)按偏导数的几何意义,(1,1)y z就是曲线在点(1,1处的切线对于y 轴正向所成倾角的斜率,而11(1,1)3y z ===,即1tan 3k α==,于是倾角6πα=.8.求下列函数的二阶偏函数:(1)已知33sin sin z x y y x =+,求2z x y ∂∂∂; (2)已知ln xz y =,求2z x y∂∂∂;(3)已知ln(z x =+,求22z x ∂∂和2zx y∂∂∂;(4)arctan y z x =求22z x ∂∂、22z y ∂∂、2z x y ∂∂∂和2zy x∂∂∂.解(1)233sin cos z x y y x x ∂=+∂,2223cos 3cos z x y y x x y∂=+∂∂; (2)ln ln 1ln ln x x z y y y y x x x∂=⋅=∂, 2ln ln 1ln 1111ln ln (1ln ln )xx x z y y x y y x y x y x y x--⎛⎫∂=+⋅⋅=+ ⎪∂∂⎝⎭; (3)1z x ⎛⎫∂==∂==,()232222zxx xy∂-==∂+,()23222z yx y xy∂-==∂∂+;(4)222211z y y xx x y y x ∂⎛⎫=⋅-=- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,222111z x y x x y y x ∂=⋅=∂+⎛⎫+ ⎪⎝⎭, ()222222z xy x x y ∂=∂+,()222222z xyy x y ∂-=∂+,()()2222222222222z x y y y x x y x y x y ∂+--=-=∂∂++,()()2222222222222z x y x y x y x x y x y ∂+--==∂∂++. 9.设222(,,)f x y z xy yz zx =++,求(0,0,1xx f ,(1,0,2)xz f ,(0,1,0)yz f -及(2,0,1)zzx f .解 因为22x f y xz =+,2xx f z =,2xz f x =, 22y f xy z =+,2yz f z =,22z f yz x =+,2zz f y =,0zzx f =,所以(0,0,1)2xx f =,(1,0,2)2xz f =,(0,1,0)0yz f -=,(2,0,1)0zzx f =.10.验证: (1)2esin kn ty nx -=满足22y yk t x∂∂=∂∂;(2)r =2222222r r r x y z r∂∂∂++=∂∂∂.证 (1)因为22e sin kn t y kn nx t -∂=-∂,2e cos kn t y n nx x -∂=∂,2222e sin kn ty n nx x-∂=-∂ 所以()2222e sin kn ty y k n nx k t x-∂∂=-=∂∂; (2)因为r x x r ∂==∂,2222231r x x x r x x x r r r r r ∂∂-⎛⎫==-⋅= ⎪∂∂⎝⎭, 由函数关于自变量的对称性,得22223r r y y r ∂-=∂,22223r r z z r ∂-=∂, 所以 2222222222223332r r r r x r y r z x y z r r r r∂∂∂---++=++=∂∂∂. 习题7-31.求下列函数的全微分:(1)2222s tu s t+=-; (2)2222()e x y xyz x y +=+;(3)arcsin(0)xz y y=>; (4)ey x x y z ⎛⎫-+ ⎪⎝⎭=;(5)222ln()u x y z =++; (6)yzu x =.解 (1)()()222222222222()2()4u s s t s s t st s s t s t ∂--+==-∂--, ()()222222222222()2()4u t s t t s t s tt s t s t ∂-++==∂--, ()()()22222222222444d d d (d d )st s tstu s t t s s t ststst=-+=-----;(2)22222222244222222()2()2x y x y x y xyxyxyzx y x y yx y xe x y eex xx y x y +++⎛⎫∂-+-=++=+ ⎪∂⎝⎭,由函数关于自变量的对称性可得224422x y xyzy x e y yxy +⎛⎫∂-=+ ⎪∂⎝⎭, 22444422d 2d 2d x y xyx y y x z ex x y y x y xy +⎡⎤⎛⎫⎛⎫--=+++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦; (3)21d d arcsind d x x x z x y y yy y ⎛⎫⎫===- ⎪⎪⎝⎭⎭)d d y x x y =-;(4)d d d y x y x x y x y y x z e e x y ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎡⎤⎛⎫⎢⎥==-⋅+ ⎪⎢⎥⎝⎭⎣⎦2211d d y x x y y x ex y y x x y ⎛⎫-+ ⎪⎝⎭⎡⎤⎛⎫⎛⎫=--+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦;(5)()2222222221d d ln()d u x y z x y zx y z ⎡⎤=++=++⎣⎦++2222222d 2d 2d 2(d d d )x x y y z z x x y y z z x y z x y z++==++++++; (6)()1d d d ln d ln d yz yz yz yzu x yzx x x z x y x y x z -==++()1d ln d ln d yz x yz x xz x y xy x z -=++.2.求下列函数的全微分:(1)22ln(1)z x y =++在1x =,2y =处的全微分; (2)2arctan 1xz y=+在1x =,1y =处的全微分. 解 (1)因为2222222211d d ln(1)d(1)(2d 2d )11z x y x y x x y y x y x y ⎡⎤=++=++=+⎣⎦++++ 所以12112d (2d 4d )d d 633x y z x y x y ===+=+; (2)因为22221d d arctand 1111x x z y y x y ⎛⎫⎛⎫== ⎪ ⎪++⎛⎫⎝⎭⎝⎭+ ⎪+⎝⎭()22222222211212d d d d 11111y xy xy x y x y y x y y x y y ⎡⎤⎛⎫+⎢⎥=-=- ⎪⎢⎥++++++⎝⎭+⎣⎦ 所以()1222111121d d d d d 113x y x y xy z x y x y y x y ====⎛⎫=-=- ⎪+++⎝⎭. 3. 求函数23z x y =当2x =,1y =-,0.02x ∆=,0.01y ∆=-时的全微分.解 因为()23322322d d 2d 3d 23z x y xy x x y y xy x x y y ==+=∆+∆所以当2x =,1y =-,0.02x ∆=,0.01y ∆=-时全微分为d 4120.080.120.2z x y =-∆+∆=--=-.4.求函数22xyz x y=-当2x =,1y =,0.01x ∆=,0.03y ∆=时的全微分和全增量,并求两者之差.解 因为()()222222222d()d()d d x y xy xy x y xy z x y x y ---⎛⎫== ⎪-⎝⎭- ()()()()()222332222222(d d )(2d 2d )d d x y y x+x y xy x x y y x y y x+x +xy y xyx y -----==-- 所以当2x =,1y =,0.01x ∆=,0.03y ∆=时全微分的值为()()()2332222(,)(2,1)0.01,0.030.25d 0.0277779x y x y x y y x+x +xy yz x y =∆=∆=--∆∆==≈-, 而当2x =,1y =,0.01x ∆=,0.03y ∆=时的全增量为()()()()2222(,)(2,1)0.010.030.028252x y x y x x y y xy z x y x x y y =∆=∆=⎡⎤+∆+∆∆=-≈⎢⎥-+∆-+∆⎢⎥⎣⎦, 全增量与全微分之差为d 0.0282520.0277770.000475z z ∆-≈-=.习题7-41.设2e x yu -=,sin x t =,3y t =,求d d u t. 解3222sin 22d d d cos 23(cos 6)d d d x y x y t t u u x u ye t e t e t t t x t y t---∂∂=+=-⋅=-∂∂. 2.设arccos()z u v =-,而34u x =,3v x =,求d d z x. 解2d d d 123d d d z z u z v x x u x v x ∂∂=+=+∂∂2314x -=3.设22z u v uv =-,cos u x y =,sin v x y =,求z x ∂∂,z y∂∂. 解()()222cos 2sin z z u z v uv v y u uv y x u x v x∂∂∂∂∂=⋅+⋅=-⋅+-⋅∂∂∂∂∂ 23sin cos (cos sin )x y y y y =-,()()()222sin 2cos z z u z v uv v x y u uv x y y u y v y∂∂∂∂∂=⋅+⋅=-⋅-+-⋅∂∂∂∂∂ 33232(sin 2sin cos cos 2cos sin )x y y y y y y =-+-.4.设2ln z u v =,而32u x y =+,y v x =,求z x ∂∂,z y∂∂. 解 222ln 3z z u z v u y u v x u x v x v x ∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅- ⎪∂∂∂∂∂⎝⎭216(32)ln(32)y x y x y x x=+-+, 22112ln 24(32)ln (32)z z u z v u y u v x y x y y u y v y v x x y∂∂∂∂∂=⋅+⋅=⋅+⋅=+++∂∂∂∂∂. 5. 设2(,,)ln(sin )z f u x y u y x ==+,ex yu +=,求z x ∂∂,zy∂∂. 解22112cos sin sin x y z z u f u e y x x u x x u y x u y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++ ()()222cos sin x y x y e y xe y x+++=+, 22112sin sin sin x y z z u f u e x y u y y u y x u y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++ ()()222sin sin x y x y e xe y x+++=+. 6.设222sin()u x y z =++,x r s t =++,y rs st tr =++,z rst =,求u r ∂∂,us∂∂,ut∂∂. 解[]22222()2cos()u u x u y u z x y s t zst x y z r x r y r z r∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr s t rs t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2cos()u u x u y u zx y r t zrt x y z s x s y s z s∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r t r st r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2cos()u u x u y u z x y s r zrs x y z t x t y t z t∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r s r s t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦.7.设arctanxz y=,x u v =+,y u v =-,求z u ∂∂,z v ∂∂,并验证:22z z u vu v u v∂∂-+=∂∂+.解222221111111z z x z y x y xu x u y uy y x y x x y y ⎛⎫∂∂∂∂∂-=⋅+⋅=⋅⋅+⋅-⋅= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭, ()222221111111z z x z yx y xv x v y vy y x y x x y y ⎛⎫∂∂∂∂∂+=⋅+⋅=⋅⋅+⋅-⋅-= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭, 则222222222()()()z z y x y x u v u vu v x y x y u v u v u v ∂∂-+--+=+==∂∂++++-+. 8.设22(,,)z f x y t x y t ==-+,sin x t =,cos y t =,求d d z t. 解d d d 2cos 2(sin )12sin 21d d d z z x z y f x t y t t t x t y t t∂∂∂=⋅+⋅+=--+=+∂∂∂. 9.求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1)22()z f x y =-; (2),x y u f y z ⎛⎫=⎪⎝⎭; (3)(,,)u f x xy xyz =; (4)22(,,ln )xy u f x y e x =-. 解(1)222()z xf x y x ∂'=-∂,222()zyf x y y∂'=--∂; (2)111f u f x y y '∂'=⋅=∂,12122211u x x f f f f y y z y z ⎛⎫∂''''=⋅-+⋅=-+ ⎪∂⎝⎭, 2222u y y f f z z z ∂⎛⎫''=⋅-=- ⎪∂⎝⎭; (3)123u f yf yzf x ∂'''=++∂,23uxf xzf y ∂''=+∂,3u xyf z ∂'=∂; (4)12312xy u xf ye f f x x ∂'''=++∂,122xy u yf xe f y∂''=-+∂. 10.设()z xy xF u =+,而yu x=,()F u 为可导函数,证明: z zxy z xy x y∂∂+=+∂∂.证 ()()()z z u u xy x y F u xF u y x xF u x y x y ⎡⎤∂∂∂∂⎡⎤''+=++++⎢⎥⎢⎥∂∂∂∂⎣⎦⎣⎦ []()()()yx y F u F u y x F u x ⎡⎤''=+-++⎢⎥⎣⎦()xy xF u xy z xy =++=+. 11.设[cos()]z y x y ϕ=-,试证:z z zx y y∂∂+=∂∂. 证sin()[cos()]sin()z z y x y x y y x y x yϕϕϕ∂∂''+=--+-+-∂∂ [cos()]z x y yϕ=-=. 12.设,kz y u x F x x ⎛⎫=⎪⎝⎭,且函数,z y F x x ⎛⎫⎪⎝⎭具有一阶连续偏导数,试证: u u uxy z ku x y z∂∂∂++=∂∂∂. 证11222k k u z y kx F x F F x x x -∂⎡⎤⎛⎫⎛⎫''=+-+- ⎪ ⎪⎢⎥∂⎝⎭⎝⎭⎣⎦,1221k k ux F x F y x -∂''=⋅=∂, 1111k k u x F x F z x-∂''=⋅=∂, 11111111k k k k k u u u xy z kx F x zF x yF x yF x zF ku x y z----∂∂∂''''++=--++=∂∂∂. 13.设sin (sin sin )z y f x y =+-,试证:sec sec 1z zxy x y∂∂+=∂∂. 证cos z f x x ∂'=∂,cos (cos )zy y f y∂'=+-∂, sec sec sec cos sec cos sec (cos )1z zxy x xf y y y y f x y∂∂''+=++-=∂∂. 14.求下列函数的二阶偏导数22z x ∂∂,2z x y ∂∂∂,22zy ∂∂(其中f 具有二阶连续偏导数):(1)(,)z f xy y =; (2)22()z f x y =+;(3)22(,)z f x y xy =; (4)(sin ,cos ,)x y z f x y e +=. 解 (1)令s xy =,t y =,则(,)z f xy y =,s 和t 是中间变量.11z s f yf x x ∂∂''=⋅=∂∂,1212d d z s tf f xf f y y y∂∂''''=⋅+⋅=+∂∂. 因为(,)f s t 是s 和t 的函数,所以1f '和2f '也是s 和t 的函数,从而1f '和2f '是以s 和t 为中间变量的x 和y 的函数.故()22111112z z s yf yf y f x x x x x∂∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()211111211112d d z z s t yf f y f f f xyf yf x y y x y y y ⎛⎫∂∂∂∂∂⎛⎫'''''''''''===+⋅+⋅=++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭,()212111221222d d d d z z s t s t xf f x f f f f y y y y yy y y ⎛⎫⎛⎫∂∂∂∂∂∂''''''''''==+=+++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭ 21112222x f xf f ''''''=++. (2)令22s x y =+,则22()z f x y =+是以s 为中间变量的x 和y 的函数.2z s f xf x x ∂∂''=⋅=∂∂,2z sf yf y y∂∂''=⋅=∂∂. 因为()f s 是s 的函数,所以f '也是s 的函数,从而f '是以s 中间变量的x 和y 的函数.故()()222222224z z xf f xf x f x f x x x x∂∂∂∂⎛⎫'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭, ()()22224z z xf xf y xyf x y y x y∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()()222222224z z yf f yf y f y f y y y y⎛⎫∂∂∂∂'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭. (3)令2s xy =2t x y =,则212122z s t f f y f xyf x x x ∂∂∂''''=⋅+⋅=+∂∂∂,212122z s tf f xyf x f y y y∂∂∂''''=⋅+⋅=+∂∂∂. ()221222z z y f xyf x x x x∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭211122212222s t s t y f f yf xy f f x x x x ∂∂∂∂⎛⎫⎛⎫'''''''''=⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭()()2221112221222222y y f xyf yf xy y f xyf '''''''''=++++ 43222111222244yf y f xy f x y f '''''''=+++, ()22122z z y f xyf x y y x y∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭ 21111222122222s t s t yf y f f xf xy f f y y y y ⎛⎫⎛⎫∂∂∂∂''''''''''=+⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()222111122212222222yf y xyf x f xf xy xyf x f ''''''''''=+++++ 32231211122222252yf xf xy f x y f x yf ''''''''=++++, ()221222z z xyf x f y y y y⎛⎫∂∂∂∂''==+ ⎪∂∂∂∂⎝⎭ 211112212222s t s t xf xy f f x f f y y y y ⎛⎫⎛⎫∂∂∂∂'''''''''=+⋅+⋅+⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()2221111221222222xf xy xyf x f x xyf x f '''''''''=++++ 22341111222244xf x y f x yf x f '''''''=+++. (4)令sin u x =,cos v y =,x yw e +=,则1313d cos d x y z u w f f xf e f x x x +∂∂''''=+=+∂∂,2323d sin d x y z v w f f yf e f y y y+∂∂''''=+=-+∂∂. ()2132cos x y z z xf e f x x x x+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭ 1111333133d d sin cos d d x y x y u w u w xf x f f e f e f f x x xx ++∂∂⎛⎫⎛⎫''''''''''=-+++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()1111333133sin cos cos cos x yx y x y x y xf x xf e f e f e xf e f ++++''''''''''=-+++++ ()2231111333sin cos 2cos x y x yx y ef xf xf e xf e f +++''''''''=-+++, ()213cos x y z z xf e f x y y x y+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭121333233d d cos d d x y x y v w v w x f f e f e f f y y yy ++⎛⎫⎛⎫∂∂'''''''''=++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()121333233cos sin sin x yx y x y x y x yf e f e f e yf e f ++++'''''''''=-+++-+ ()2312133233cos sin cos sin x y x yx y x y ef x yf e xf e yf e f ++++'''''''''=-+-+, ()2232sin x y z z yf e f y y y y+⎛⎫∂∂∂∂''==-+ ⎪∂∂∂∂⎝⎭ 2222333233d d cos sin d d x y x y v w v w yf y f f e f e f f y y yy ++⎛⎫⎛⎫∂∂''''''''''=--++++ ⎪ ⎪∂∂⎝⎭⎝⎭ ()()2222333233cos sin sin sin x yx y x y x y yf y yf e f e f e yf e f ++++''''''''''=---+++-+ ()2232222333cos sin 2sin x y x yx y e f yf yf e yf e f +++''''''''=-+-+.习题7-51.设2cos e 0x y x y +-=,求d d yx. 解 设2(,)cos e x F x y y x y =+-,则22d e 2e 2d sin sin x x x y F y xy xyx F y x y x --=-=-=--+. 2.设ln ln 1xy y x ++=,求1d d x yx =. 解 设(,)ln ln 1F x y xy y x =++-,则221d 1d x y y F y xy y x x F x y x x y++=-=-=-++. 当1x =时,由ln ln 1xy y x ++=知1y =,所以1d 1d x yx ==-. 3.设arctany x =,求d d y x. 解设(,)ln arctan y F x y x=,则2222222222211d11d1xyyx x yyFy x yx y x yxy xx F x yx x y x yyx⎛⎫-⋅- ⎪⎝⎭⎛⎫++ ⎪+++⎝⎭=-=-=-=--⋅-++⎛⎫+ ⎪⎝⎭.4.设222cos cos cos1x y z++=,求zx∂∂,zy∂∂.解设222(,,)cos cos cos1F x y z x y z=++-,则2cos sin sin22cos sin sin2xzFz x x xx F z z z∂-=-=-=-∂-,2cos sin sin22cos sin sin2yzFz y y yy F z z z∂-=-=-=-∂-.5.设方程(,)0F x y z xy yz zx++++=确定了函数(,)z z x y=,其中F存在偏导函数,求zx∂∂,zy∂∂.解1212()()xzF F y z Fzx F F y x F''++∂=-=-∂''++,1212()()yzF F x z Fzy F F y x F''++∂=-=-∂''++.6.设由方程(,,)0F x y z=分别可确定具有连续偏导数的函数(,)x x y z=,(,)y y x z=,(,)z z x y=,证明:1x y zy z x∂∂∂⋅⋅=-∂∂∂.证因为yxFxy F∂=-∂,zyFyz F∂=-∂,xzFzx F∂=-∂,所以1y xzx y zF FFx y zy z x F F F⎛⎫⎛⎫⎛⎫∂∂∂⋅⋅=-⋅-⋅-=-⎪⎪ ⎪⎪∂∂∂⎝⎭⎝⎭⎝⎭.7.设(,)u vϕ具有连续偏导数,证明由方程(,)0cx az cy bzϕ--=所确定的函数(,)z f x y=满足z za b cx y∂∂+=∂∂.证令u cx az=-,v cy bz=-,则x u u u c x ϕϕϕ∂=⋅=∂,y v v vc yϕϕϕ∂=⋅=∂,z u v u v u v a b z z ϕϕϕϕϕ∂∂=⋅+⋅=--∂∂. x u z u v c z x a b ϕϕϕϕϕ∂=-=∂+,y v z u vc zy a b ϕϕϕϕϕ∂=-=∂+. 于是 u v u v u vc c z zab a bc x y a b a b ϕϕϕϕϕϕ∂∂+=⋅+⋅=∂∂++. 8.设0ze xyz -=,求22zx∂∂.解 设(,,)zF x y z e xyz =-,则x F yz =-,z z F e xy =-. 于是x zz F z yzx F e xy ∂=-=∂-, ()222()z z zz z ye xy yz e y z z x x x x x e xy ∂∂⎛⎫--- ⎪∂∂∂∂∂⎛⎫⎝⎭== ⎪∂∂∂⎝⎭-()22z z zyzy z yz e y e xy e xy ⎛⎫-⋅- ⎪-⎝⎭=-()2322322z zzy ze xy z y z e exy --=-.9.设(,)z z x y =是由方程2e 0zxz y --=所确定的隐函数,求2(0,1)zx y∂∂∂.解 设2(,,)e z F x y z xz y =--,则x F z =-,e z z F x =-,2y F y =-. 于是x z z F z z x F e x ∂=-=∂-,2y zz F z yy F e x∂=-=∂-, ()()22z z zz z e x z e z z y yx y y x ex ∂∂--⋅⋅∂∂∂∂∂⎛⎫== ⎪∂∂∂∂⎝⎭-()()222z zz zz y y e x ze e x e x e x ----=-()()322z zzy e x yze ex --=-.由20ze xz y --=,知(0,1)0z =,得2(0,1)2zx y∂=∂∂.10.求由方程xyz +=(,)z z x y =在点(1,0,1)-处的全微分d z .解设(,,)F x y z xyz =x z F zx F xy ∂=-==∂+,y z F zy F xy ∂=-==∂+,d d d z zz x y x y x y ∂∂=+=∂∂,(1,0,1)d d z x y -=.11.求由下列方程组所确定的函数的导数或偏导数:(1)设22222,2320,z x y x y z ⎧=+⎪⎨++=⎪⎩求d d y x ,d d z x; (2)设0,1,xu yv yu xv -=⎧⎨+=⎩求u x ∂∂,u y ∂∂,v x ∂∂,vy ∂∂; (3)设sin ,cos ,uux e u v y e u v ⎧=+⎪⎨=-⎪⎩求u x ∂∂,u y ∂∂,v x ∂∂,vy∂∂. 解 (1)分别在两个方程两端对x 求导,得d d 22,d d d d 2460.d d zy x y x xy z x y z x x ⎧=+⎪⎪⎨⎪++=⎪⎩称项,得d d 22,d d d d 23.d d y z y x x xy z y z x xx ⎧-=-⎪⎪⎨⎪+=-⎪⎩ 在 2162023y D yz y y z-==+≠的条件下,解方程组得213d 6(61)d 622(31)x x z yxz x x z x D yz y y z ------+===++. 222d 2d 6231y xy x z xy xx D yz y z --===++. (2)此方程组确定两个二元隐函数(,)u u x y =,(,)v v x y =,将所给方程的两边对x 求导并移项,得,.uv x y u x xu v y x v xx ∂∂⎧-=-⎪⎪∂∂⎨∂∂⎪+=-⎪∂∂⎩ 在220x yJ x y y x-==+≠的条件下,22u y v x u xu yvx y x x y y x ---∂+==--∂+, 22x uy v v yu xvx y x x yy x--∂-==-∂+. 将所给方程的两边对y 求导,用同样方法在220J x y =+≠的条件下可得22u xv yu y x y∂-=∂+,22v xu yv y x y ∂+=-∂+. (3)此方程组确定两个二元隐函数(,)u u x y =,(,)v v x y =是已知函数的反函数,令(,,,)sin u F x y u v x e u v =--,(,,,)cos u G x y u v y e u v =-+.则 1x F =,0y F =,sin u u F e v =--,cos v F u v =-, 0x G =,1y G =,cos u u G e v =-+,sin v G u v =-.在sin cos (,)(sin cos )0(,)cos sin u u u e v u v F G J ue v v u u v e v u v---∂===-+≠∂-+-的条件下,解方程组得1cos 1(,)1sin 0sin (,)(sin cos )1uu v u F G vu v x J x v J e v v -∂∂=-=-=-∂∂-+, 0cos 1(,)1cos 1sin (,)(sin cos )1uu v u F G vu v y J y v J e v v -∂∂-=-=-=-∂∂-+, sin 11(,)1cos (,)[(sin cos )1]cos 0u uu ue v v F G v e x J u x J u e v v e v --∂∂-=-=-=∂∂-+-+, sin 01(,)1sin (,)[(sin cos )1]cos 1u uu u e v v F G v e x J u x J u e v v e v --∂∂+=-=-=∂∂-+-+.习题7-61.求下列曲线在指定点处的切线方程和法平面方程: (1)2x t =,1y t =-,3z t =在(1,0,1)处; (2)1t x t =+,1t y t+=,2z t =在1t =的对应点处;(3)sin x t t =-,1cos y t =-,4sin2t z =在点2π⎛- ⎝处; (4)2222100,100,x y y z ⎧+-=⎪⎨+-=⎪⎩在点(1,1,3)处. 解 (1)因为2t x t '=,1t y '=-,23t z t '=,而点(1,0,1)所对应的参数1t =,所以(2,1,3)=-T .于是,切线方程为11213x y z --==-. 法平面方程为2(1)3(1)0x y z --+-=,即 2350x y z -+-=.(2)因为2211(1)(1)t t t x t t +-'==++,22(1)1t t t y t t -+'==-,2t z t '=,1t =对应着点1,2,12⎛⎫⎪⎝⎭,所以 1,1,24⎛⎫=- ⎪⎝⎭T .于是,切线方程为 1212148x y z ---==-. 法平面方程为 281610x y z -+-=.(3)因为1cos t x t '=-,sin t y t '=,2cos 2t t z '=,点1,12π⎛- ⎝对应在的参数为2t π=,所以(=T .于是,切线方程为112x y π-+=-=. 法平面方程为402x y π++--=. (4)将2222100,100,x y y z ⎧+-=⎪⎨+-=⎪⎩的两边对x 求导并移项,得 d 22,d d d 220,d d yy x xy z y z xx ⎧=-⎪⎪⎨⎪+=⎪⎩ 由此得 2002d 420d 422x z y xz x y x yz y y z --===-,2220d 420d 422y x y z xy xy x yz z y z-===.(1,1,3)d 1d y x =-,(1,1,3)d 1d 3z x =.从而 1,1,3=- ⎪⎝⎭T . 故所求切线方程为113331x y z ---==-. 法平面方程为 3330x y z -+-=.2.在曲线x t =,2y t =,3z t =上求一点,使此点的切线平行于平面24x y z ++=.解 因为1t x '=,2t y t '=,23t z t '=,设所求点对应的参数为0t ,于是曲线在该点处的切向量可取为200(1,2,3)t t =T .已知平面的法向量为(1,2,1)=n ,由切线与平面平行,得0⋅=T n ,即2001430t t ++=,解得01t =-和13-.于是所求点为(1,1,1)--或111,,3927⎛⎫-- ⎪⎝⎭. 3.求下列曲面在指定点处的切平面和法线方程: (1)222327x y z +-=在点(3,1,1)处; (2)22ln(12)z x y =++在点(1,1,ln 4)处; (3)arctany z x =在点1,1,4π⎛⎫ ⎪⎝⎭处. 解(1)222(,,)327F x y z x y z =+--,(,,)(6,2,2)x y z F F F x y z ==-n ,(3,1,1)(18,2,2)=-n .所以在点(3,1,1)处的切平面方程为9(3)(1)(1)0x y z -+---=,即 9270x y z +--=. 法线方程为311911x y z ---==-. (2)22(,,)ln(12)F x y z x y z =++-,222224(,,),,11212x y z x yF F F x y x y ⎛⎫==- ⎪++++⎝⎭n ,(1,1,ln 4),1,12=- ⎪⎝⎭n .所以在点(1,1,ln 4)处的切平面方程为2234ln 20x y z +--+=.法线方程为 12ln 2122y z x ---==-. (3)(,,)arctanyF x y z z x=-, 2222(,,),,1x y z y xF F F x y x y ⎛⎫-==- ⎪++⎝⎭n , 1,1,411,,122π⎛⎫ ⎪⎝⎭⎛⎫=-- ⎪⎝⎭n . 所以在点1,1,4π⎛⎫⎪⎝⎭处的切平面方程为 202x y z π-+-=. 法线方程为 114112z x y π---==-. 4.求曲面2222321x y z ++=上平行于平面460x y z ++=的切平面方程.解 设222(,,)2321F x y z x y z =++-,则曲面在点(,,)x y z 处的一个法向量(,,)(2,4,6)x y z n F F F x y z ==.已知平面的法向量为(1,4,6),由已知平面与所求切平面平行,得246146x y z ==,即12x z =,y z =. 代入曲面方程得 22223214z z z ++=. 解得 1z =±,则12x =±,1y =±. 所以切点为 1,1,12⎛⎫±±± ⎪⎝⎭. 所求切平面方程为 21462x y z ++=±5.证明:曲面(,)0F x az y bz --=上任意点处的切平面与直线x yz a b==平行(a ,b 为常数,函数(,)F u v 可微).证 曲面(,)0F x az y bz --=的法向量为1212(,,)F F aF bF ''''=--n ,而直线的方向向量(,,1)a b =s ,由0⋅=n s 知⊥n s ,即曲面0F =上任意点的切平面与已知直线x yz a b==平行. 6.求旋转椭球面222316x y z ++=上点(1,2,3)--处的切平面与xOy 面的夹角的余弦.解 令222(,,)316F x y z x y z =++-,曲面的法向量为(,,)(6,2,2)x y z F F F x y z ==n ,曲面在点(1,2,3)--处的法向量为1(1,2,3)(6,4,6)--==--n n ,xOy 面的法向量2(0,0,1)=n ,记1n 与2n 的夹角为θ,则所求的余弦值为1212cos θ⋅===n n n n . 7.证明曲面3xyz a =(0a >,为常数)的任一切平面与三个坐标面所围成的四面体的体积为常数.证 设3(,,)F x y z xyz a =-,曲面上任一点(,,)x y z 的法向量为(,,)n yz xz xy =,该点的切平面方程为()()()0yz X x xz Y y xy Z z -+-+-=,即 33yzX xzY xyZ a ++=.这样,切平面与三个坐标面所围成的四面体体积为33331333962a a a V a yz xz xy =⋅⋅⋅=.习题7-71.求函数22z x y =+在点(1,2)处沿从点(1,2)到点(2,2的方向的方向导数.。
同济高等数学教材答案详解高等数学作为大学数学课程的重要组成部分,对于学生的学业发展具有重要的影响。
而同济高等数学教材作为一本经典的教材,为学生的学习提供了很好的指导和帮助。
然而,由于教材中的习题比较繁多,有些难度较高,学生在学习过程中可能会遇到一些困惑和问题。
因此,本篇文章将对同济高等数学教材中的部分答案进行详解,以期帮助学生更好地理解和掌握相关知识。
第一章:极限与连续1.1极限的概念及其性质1.2无穷小量与无穷大量在第一章中,我们将学习极限的概念及其性质,以及无穷小量与无穷大量的相关知识。
这是数学分析的基础,对于理解后续章节的内容非常关键。
第二章:一元函数微分学2.1函数的概念与性质2.2导数的概念与性质2.3基本初等函数的导数第二章是微积分的基础,我们将学习函数的概念与性质,导数的概念与性质,以及基本初等函数的导数。
这些知识对于求解函数的极值、研究函数的图像等问题非常重要。
第三章:函数的高阶导数与微分3.1高阶导数的概念与性质3.2高阶导数的计算3.3微分的概念与性质在第三章中,我们将进一步学习函数的高阶导数的概念与性质,并学习如何计算高阶导数。
同时,我们还将学习微分的概念与性质,以及微分在几何上的意义。
第四章:函数的应用4.1多项式函数与有理函数的性质4.2函数的单调性与曲线的凹凸性4.3函数的极值与最值第四章将介绍函数的应用,包括多项式函数与有理函数的性质,函数的单调性与曲线的凹凸性,以及函数的极值与最值。
这些知识将帮助我们更好地理解函数的特性,并在实际问题中应用。
第五章:不定积分5.1不定积分的定义与性质5.2基本积分公式与换元积分法5.3分部积分法与三角函数的积分在第五章中,我们将学习不定积分的定义与性质,以及基本积分公式与换元积分法的应用。
同时,我们还将学习分部积分法与三角函数的积分,通过这些知识,我们可以求解一些常见的不定积分。
第六章:定积分与其应用6.1定积分的概念与性质6.2牛顿莱布尼兹公式6.3定积分的计算与应用第六章是关于定积分的学习,我们将学习定积分的概念与性质,并介绍牛顿莱布尼兹公式的推导与应用。
word 完美格式第八章 多元函数微分法及其应用第一节 多元函数的基本概念本节主要概念,定理,公式和重要结论理解多元函数的概念,会表达函数,会求定义域; 理解二重极限概念,注意A y x f y x y x =→),(lim ),(),(00是点),(y x 以任何方式趋于),(00y x ;注意理解本节中相关概念与一元函数中相应内容的区分与联系。
习题 8-11.求下列函数表达式:(1)xy y x y x f +=),(,求),(y x xy f +解:(,)()x yxy f xy x y xyx y ++=++(2)22),(y x y x y x f -=-+,求),(y x f解:(,)()()(,)f x y x y x y x y f x y xy +-=-+⇒= 2.求下列函数的定义域,并绘出定义域的图形: (1)221)1ln(yx x y x z --+-+=解:22221011010x y x y x y x y x +->⎧+>⎧⎪-->⇒⎨⎨+<⎩⎪≥⎩(2))12ln(2+-=y x z 解:2210x y -+>(3) |)|||1ln(),(y x y x f --= 解:1||||0||||1x y x y -->⇒+< 3.求下列极限:(1)22)1,0(),(1limy x xyx y x ++-→解:22(,)(0,1)1lim1x y x xyx y →-+=+ (2)xy xy y x 42lim)0,0(),(+-→解一:(,)(0,0)(,)(0,0)(,)(0,0)18lim2lim2lim 4x y x y x y xyxy →→→=-=-=-(3)yxy x y x )sin()2(lim )0,1(),(+→(4)2222011limy x y x y x +-+→→解一:(,)(1,0)(,)(1,0)sin()sin()lim (2)lim [(2)]3x y x y xy xy x x x y xy→→+=+=解二:(,)(1,0)(,)(1,0)(,)(1,0)sin()lim (2)lim (2)lim (2)3x y x y x y xy xyx x x x y y →→→+=+=+= (4)22220011limyx y x y x +-+→→解一:2222222200000011lim lim()022x x x y y y x y y x x y x y →→→→→→==⋅=++解二:222222000000x x x y y y y x y →→→→→→===+ 4.证明下列函数当)0,0(),(→y x 时极限不存在:(1)2222),(yx y x y x f +-=解:222222222222001lim lim 1x x y kxx y x k x k x y x k x k →→=---==+++ (2)22222)(),(y x y x y x y x f -+= 解:224222400lim lim 1()x x y x x y x x y x y x →→===+- 2222200lim 0()x y x y x y x y →==+- 5.下列函数在何处是间断的? (1) yx z -=1解:x y =(2)x y xy z 2222-+=解:22y x =第二节 偏导数word 完美格式本节主要概念,定理,公式和重要结论1.偏导数:设),(y x f z =在),(00y x 的某一邻域有定义,则xy x f y x x f y x f x x ∆∆∆),(),(lim),(0000000-+=→, yy x f y y x f y x f y y ∆∆∆),(),(lim ),(0000000-+=→. ),(00y x f x 的几何意义为曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(0000y x f y x M 处的切线对x 轴的斜率.),(y x f 在任意点),(y x 处的偏导数),(y x f x 、),(y x f y 称为偏导函数,简称偏导数.求),(y x f x 时,只需把y 视为常数,对x 求导即可. 2.高阶偏导数),(y x f z =的偏导数),(),,(y x f y x f y x 的偏导数称为二阶偏导数,二阶偏导数的偏导数称为三阶偏导数,如此类推. 二阶偏导数依求导次序不同,有如下4个:xy zy x z y z x z ∂∂∂∂∂∂∂∂∂∂222222,,,,其中后两个称为混合偏导数. 若两个混合偏导数皆为连续函数,则它们相等,即可交换求偏导数的次序.高阶混合偏导数也有类似结果.习题 8-21.求下列函数的一阶偏导数:(1)xy y xz +=解:21,z z xy x x y y y∂∂=+=-+∂∂ (2)xyz arctan =解:2222222111,1()1()z y y z x y y x x x y y x x y x x∂--∂=⋅==⋅=∂+∂+++ (3))ln(22y x x z ++=解:(1z x ∂=+=∂z y ∂==∂ (4))ln(222z y x u ++=解:222222222222,,u x u y u z x x y z y x y z z x y z∂∂∂===∂++∂++∂++ (5)⎰=yzxzt dt e u 2解:22222222,,x z y z y z x z u u u ze ze ye xe x y z∂∂∂=-==-∂∂∂ (6)x y y x z cos sin = 解:2211cos cos sin sin ,cos cos sin sin z x y y x y u x x y x y x y y x x y x y y y x x y x ∂∂=+=--∂∂ (7)y x xy z ++=)1( (8))cos(ϕθϕθ-=+e u解:(1)[ln(1)],(1)[ln(1)]11x y x y z x y u x y xy xy y xy xy x x xy y xy ++∂+∂+=+++=+++∂+∂+ (8))cos(ϕθϕθ-=+e u解:[cos()sin()],[cos()sin()]u u e e θϕθϕθϕθϕθϕθϕθϕ++∂∂=---=-+-∂∂ 2.求下列函数在指定点处的一阶偏导数: (1)yxy x z arcsin)1(2-+=,求)1,0(x z 解:20(0,1)lim0x x x z x∆→∆==∆ (2)xyx e x z yarctan)1(2-+=,求)0,1(y z 解:01(1,0)lim1y y y e z y∆∆→-==-∆ 3.求下列函数的高阶偏导数:(1))ln(xy x z =, 求22x z ∂∂,22yz ∂∂,y x z∂∂∂2解:ln()1,z z x xy x y y∂∂=+=∂∂ 22222211,,z z x z x x y y x y y∂∂∂==-=∂∂∂∂ (2))2(cos 2y x z +=,求22x z ∂∂,22yz ∂∂,y x z ∂∂∂2,x y z ∂∂∂2解:2cos(2)sin(2)sin 2(2)z x y x y x y x∂=-++=-+∂word 完美格式4cos(2)sin(2)2sin 2(2)zx y x y x y y∂=-++=-+∂ 222222cos 2(2),8cos 2(2),4cos 2(2)z z zx y x y x y x y x y∂∂∂=-+=-+=-+∂∂∂∂ (3)⎰+=22 y x xtdt e z , 求22x z ∂∂, yx z∂∂∂2解:22222222222,2(12),4x y x x y x x y z z z xe e x e e xye x x x y+++∂∂∂=-=+-=∂∂∂∂ 4.设⎪⎩⎪⎨⎧=+≠++-=0 00),(22222233y x y x y x xy y x y x f ,求)0,0(xy f 和)0,0(yx f .解:00(0)(0,0)00(0,0)lim lim 0x x x f x f f x x ∆→∆→∆--===∆∆,00(0,)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→∆--===∆∆4224222224(,),0()x x x y y f x y y x y x y +-=+≠+ 4224222224(,),0()y x x y y f x y x x y x y --=+≠+ 54000(0,)(0,0)(0,0)lim lim 1x x xy y y y f y f y f y y∆→∆→-∆-∆-∆===-∆∆54000(,0)(0,0)(0,0)lim lim 1x x yx x x x f x f x f x x ∆→∆→∆-∆-∆===∆∆5.设)11(y x e z +-=, 求证z y z y x z x222=∂∂+∂∂ 解: 1111()()2211,x y x y z z e ex x y y-+-+∂∂==∂∂ 111111()()()2222221122x yx y x y z z x y x e y e e z x y x y -+-+-+∂∂+=⋅+⋅==∂∂ 6.设222z y x r ++=, 证明r zr y r x r 2222222=∂∂+∂∂+∂∂证明: 22222223,r x r x r r x r r x x r x r x r r r ∂--∂∂-∂=====∂∂由轮换对称性, 2222222323,r r y r r z y r z r∂-∂-==∂∂ 222222222223321r r r r x y z r x y z r r r∂∂∂---++===∂∂∂ 第三节 全微分本节主要概念,定理,公式和重要结论1.全微分的定义若函数),(y x f z =在点),(00y x 处的全增量z ∆表示成22),(y x o y B x A z ∆+∆=+∆+∆=∆ρρ则称),(y x f z =在点),(00y x 可微,并称Bdy Adx y B x A +=+∆∆为),(y x f z =在点),(00y x 的全微分,记作dz .2.可微的必要条件:若),(y x f z =在),(00y x 可微,则 (1)),(y x f 在),(00y x 处连续;(2)),(y x f 在),(00y x 处可偏导,且),(),,(0000y x f B y x f A y x ==,从而dy y x f dx y x f dz y x ),(),(0000+=.一般地,对于区域D 内可微函数, dy y x f dx y x f dz y x ),(),(+=.3.可微的充分条件:若),(y x f z =在),(00y x 的某邻域内可偏导,且偏导数在),(00y x 处连续,则),(y x f z =在),(00y x 可微。
习题7-11 设u a b 2c v a 3b c 试用a 、b 、c 表示2u 3v 解 2u 3v 2(a b 2c )3(a 3b c )2a 2b 4c 3a 9b 3c 5a 11b 7c2 如果平面上一个四边形的对角线互相平分 试用向量证明这是平行四边形 证明 →→→OA OB AB -= →→→OD OC DC -=而→→OAOC -= →→OBOD -=所以→→→→→→AB OA OB OB OA DC -=-=+-=这说明四边形ABCD 的对边AB CD 且AB //CD 从而四边形ABCD 是平行四边形3 把ABC 的BC 边五等分 设分点依次为D 1、D 2、D 3、D4 再把各分点与点A 连接试以→c =AB 、→a =BC 表示向量→A D 1、→A D 2、→A D 3、→AD 4解 →→→ac 5111--=-=BD BA A D →→→ac 5222--=-=BD BA A D →→→ac 5333--=-=BD BA A D →→→ac 5444--=-=BD BA A D4 已知两点M 1(0 1 2)和M 2(1 1 0) 试用坐标表示式表示向量→21M M 及→212M M -解 →)2 ,2 ,1()2 ,1 ,0()0 ,1 ,1(21--=--=M M →)4 ,4 ,2()2 ,2 ,1(2221-=---=-M M5 求平行于向量a(6 76)的单位向量解 11)6(76||222=-++=a平行于向量a (6 7 6)的单位向量为)116 ,117 ,116(||1-=a a 或)116 ,117 ,116(||1--=-a a6 在空间直角坐标系中 指出下列各点在哪个卦限?A (1 2 3)B (2 3 4)C (2 3 4)D (2 3 1) 解 A 在第四卦限 B 在第五卦限 C 在第八卦限 D 在第三卦限7 在坐标面上和坐标轴上的点的坐标各有什么特征?指出下列各点的位置 A (3 4 0) B (0 4 3) C (3 0 0) D (0 1 0) 解 在xOy 面上 的点的坐标为(x y 0) 在yOz 面上 的点的坐标为(0 y z ) 在zOx 面上 的点的坐标为(x 0 z ) 在x 轴上 的点的坐标为(x 0 0) 在y 轴上 的点的坐标为(0 y 0) 在z 轴上 的点的坐标为(0 0 z )A 在xOy 面上B 在yOz 面上C 在x 轴上D 在y 轴上8 求点(a b c )关于(1)各坐标面 (2)各坐标轴 (3)坐标原点的对称点的坐标解 (1)点(a b c )关于xOy 面的对称点为(a b c ) 点(a b c )关于yOz 面的对称点为(a b c ) 点(a b c )关于zOx 面的对称点为(a b c ) (2)点(a b c )关于x 轴的对称点为(a b c ) 点(a b c )关于y 轴的对称点为(a b c ) 点(a b c )关于z 轴的对称点为(a b c ) (3)点(a b c )关于坐标原点的对称点为(a b c )9 自点P 0(x 0 y 0 z 0)分别作各坐标面和各坐标轴的垂线 写出各垂足的坐标 解 在xOy 面、yOz 面和zOx 面上 垂足的坐标分别为(x 0 y 0 0)、(0 y 0 z 0)和(x 0 0 z 0)在x 轴、y 轴和z 轴上 垂足的坐标分别为(x 0 0 0) (0 y 0 0)和(0 0 z 0)10 过点P 0(x 0 y 0 z 0)分别作平行于z 轴的直线和平行于xOy 面的平面 问在它们上面的点的坐标各有什么特点?解 在所作的平行于z 轴的直线上 点的坐标为(x 0 y 0 z ) 在所作的平行于xOy 面的平面上 点的坐标为(x y z 0)11 一边长为a 的立方体放置在xOy 面上 其底面的中心在坐标原点 底面的顶点在x 轴和y 轴上 求它各顶点的坐标 解 因为底面的对角线的长为a 2 所以立方体各顶点的坐标分别为 )0 ,0 ,22(a - )0 ,0 ,22(a )0 ,22 ,0(a - )0 ,22 ,0(a) ,0 ,22(a a - ) ,0 ,22(a a ) ,22 ,0(a a - ) ,22 ,0(a a12 求点M (4 3 5)到各坐标轴的距离解 点M 到x 轴的距离就是点(4 3 5)与点(4 0 0)之间的距离 即345)3(22=+-=x d点M 到y 轴的距离就是点(4 3 5)与点(0 3 0)之间的距离 即 415422=+=y d点M 到z 轴的距离就是点(4 3 5)与点(0 0 5)之间的距离 即5)3(422=-+=z d13 在yOz 面上 求与三点A (3 1 2)、B (4 2 2)和C (0 5 1)等距离的点解 设所求的点为P (0 y z )与A 、B 、C 等距离 则 →2222)2()1(3||-+-+=z y PA →2222)2()2(4||++++=z y PB→222)1()5(||-+-=z y PC由题意 有 →→→222||||||PC PB PA ==即 ⎩⎨⎧-+-=++++-+-=-+-+2222222222)1()5()2()2(4)1()5()2()1(3z y z y z y z y 解之得y 1 z 2 故所求点为(0 1 2)14 试证明以三点A (4 1 9)、B (10 1 6)、C (2 4 3)为顶点的三角形是等腰三角直角三角形 解 因为→7)96()11()410(||222=-+--+-=AB →7)93()14()42(||222=-+-+-=AC→27)63()14()102(||222=-+++-=BC所以→→→222||||||AC AB BC += →→||||AC AB =因此ABC 是等腰直角三角形 15 设已知两点1) ,2 ,4(1M 和M 2(30 2) 计算向量→21M M 的模、方向余弦和方向角解 →)1 ,2 ,1()12 ,20 ,43(21-=---=M M→21)2()1(||22221=++-=M M21cos -=α 22cos =β 21cos =γ32πα= 43 πβ= 3πγ=16 设向量的方向余弦分别满足(1)cos 0 (2)cos 1 (3)cos cos 0 问这些向量与坐标轴或坐标面的关系如何? 解 (1)当cos 0时 向量垂直于x 轴 或者说是平行于yOz 面 (2)当cos 1时 向量的方向与y 轴的正向一致 垂直于zOx 面 (3)当cos cos 0时 向量垂直于x 轴和y 轴 平行于z 轴 垂直于xOy 面17 设向量r 的模是4 它与轴u 的夹角是60 求r 在轴u 上的投影 解 22143cos ||j Pr =⋅=⋅=πr r u18 一向量的终点在点B (2 1 7) 它在x 轴、y 轴和z 轴上的投影依次为44 7 求这向量的起点A 的坐标解 设点A 的坐标为(x y z ) 由已知得⎪⎩⎪⎨⎧=--=--=-774142z y x解得x2 y3 z 0点A 的坐标为A (23 0) 19 设m 3i 5j 8k n 2i 4j 7k 和p5ij 4k 求向量a 4m 3n p在x 轴上的投影及在y 轴上的分向量 解因为a 4m 3n p 4(3i 5j 8k )3(2i 4j 7k )(5i j 4k )13i 7j 15k 所以a 4m 3n p 在x 轴上的投影为13 在y 轴上的分向量7j习题7-21 设a =3i -j -2k b =i +2j -k 求(1)a ×b 及a b (2)(-2a )×3b 及a 2b(3)a 、b 夹角的余弦解 (1)a ×b =3´1+(-1)´2+(-2)´(-1)=3kj i kj i b a 75121 213++=---=⨯(2)(-2a )×3b =-6a ×b = -63=-18a 2b =2(ab )=2(5i +j +7k )=10i +2j +14k(3)21236143||||||) ,cos(^==⋅=b a b a b a 2 设a 、b 、c 为单位向量 且满足a +b +c =0 求a ×b +b ×c +c ×a 解 因为a +b +c =0 所以(a +b +c )×(a +b +c )=0 即 a ×a +b ×b +c ×c +2a ×b +2a ×c +2c ×a =0于是 23)111(21)(21-=++-=⋅+⋅+⋅-=⋅+⋅+⋅c c b b a a a c c b b a3 已知M 1(1-1 2)、M 2(33 1)和M 3(3 1 3) 求与→21M M 、→32M M 同时垂直的单位向量解 →)1 ,4 (2,2)1 ,13 ,13(21-=-+-=M M →)2 ,2 ,0()13 ,31 ,33(32-=---=M M→→kj i k j i n 446220 1423221--=--=⨯=M M M M172161636||=++=n)223(171)446(1721k j i k j i e --±=--±=为所求向量4 设质量为100kg 的物体从点M 1(3 1 8)沿直线称动到点M 2(1 4 2) 计算重力所作的功(长度单位为m 重力方向为z 轴负方向) 解F =(0 0 -1009 8)=(0 0 -980) →)6 ,3 ,2()82 ,14 ,31(21--=---==M M SW =F ×S =(0 0 -980)×(-2 3 -6)=5880(焦耳)5 在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处 有一与→1OP 成角1的力F 1作用着 在O 的另一侧与点O 的距离为x 2的点P 2处 有一与→2OP 成角1的力F 1作用着问1、2、x 1、x 2、|F 1|、|F 2|符合怎样的条件才能使杠杆保持平衡?解 因为有固定转轴的物体的平衡条件是力矩的代数和为零 再注意到对力矩正负的规定可得 使杠杆保持平衡的条件为x 1|F 1|×sin 1x 2|F 2|×sin 20 即 x 1|F 1|×sin 1x 2|F 2|×sin 2 6 求向量a =(4 -3 4)在向量b =(2 2 1)上的投影解 2)142324(31)1 ,2 ,2()4 ,3 ,4(1221||1||j Pr 222=⨯+⨯-⨯=⋅-++=⋅=⋅=⋅=b a b b b a e a a b b7 设a =(3 5 -2) b =(2 1 4) 问l 与m 有怎样的关系 能使得l a +m b与z 轴垂直?解 l a +m b =(3l +2m , 5l +m , -2l +4m ), l a +m b 与z 轴垂Ûl a +m b ^kÛ(3l +2m , 5l +m , -2l +4m )×(0, 0, 1)=0, 即-2l +4m =0, 所以l =2m . 当l =2m 时, l a +m b 与z 轴垂直. 8 试用向量证明直径所对的圆周角是直角 证明 设AB 是圆O 的直径 C 点在圆周上则→→OAOB -= →→||||OA OC = 因为→→→→→→→→→→→→0||||)()()()(22=-=+⋅-=-⋅-=⋅OA OC OA OC OA OC OB OC OA OC BC AC所以→→BCAC ⊥ ∠C 909 设已知向量a 2i 3j k b i j 3k 和c i 2j 计算 (1)(a ×b )c (a ×c )b (2)(a b )(b c ) (3)(a b )×c解 (1)a ×b 21(3)(1)138 a ×c 21(3)(2)8 (a ×b )c (a ×c )b 8c 8b8(c b )8[(i2j )(ij 3k )]8j24k(2)a b3i4j4kbc 2i 3j 3kkj kj i c b b a --=--=+⨯+332443)()((3)kj i kj i b a +--=--=⨯58311132(a b )×c81(5)(2)10210 已知→j i 3+=OA →k j 3+=OB , 求D OAB 的面积.解 根据向量积的几何意义 →→||OB OA ⨯表示以→OA 和→OB 为邻边的平行四边形的面积于是D OAB 的面积为→→||21OB OA S ⨯=因为→→kj i kj i +--==⨯33310301OB OA →→191)3()3(||223=+-+-=⨯OB OA所以三角形D OAB 的面积为→→1921||21=⨯=OB OA S 12 试用向量证明不等式||332211232221232221b a b a b a b b b a a a ++≥++++其中a 1、a 2、a 3、b 1、b 2、b 3为任意实数 并指出等号成立的条件解 设a (a 1 a 2 a 3) b (b 1 b 2 b 3) 则有||||) ,cos(||||^b a b a b a b a ⋅≤⋅=⋅于是 ||332211232221232221b a b a b a b b b a a a ++≥++++其中当),cos(^b a 1时 即a 与b 平行是等号成立习题7-31 一动点与两定点(2, 3, 1)和(4, 5, 6)等距离, 求这动点的轨迹方程. 解 设动点为M (x y z ) 依题意有(x 2)2(y 3)2(z 1)2(x 4)2(y 5)2(z 6)2即 4x 4y 10z 6302 建立以点(1, 3, -2)为球心, 且通过坐标原点的球面方程. 解 球的半径14)2(31222=-++=R球面方程为(x 1)2(y 3)2(z 2)214即 x 2y 2z 22x 6y 4z 03 方程x 2+y 2+z 2-2x +4y +2z =0表示什么曲面? 解 由已知方程得(x 22x 1)(y 24y 4)(z 22z 1)141即 2222)6()1()2()1(=++++-z y x所以此方程表示以(1 21)为球心 以6为半径的球面4 求与坐标原点O 及点(2 3 4)的距离之比为12的点的全体所组成的曲面的方程 它表示怎样曲面?解 设点(x y z )满足题意 依题意有21)4()3()2(222222=-+-+-++z y x z y x化简整理得9116)34()1()32(222=+++++z y x它表示以)34 ,1 ,32(---为球心 以2932为半径的球面 5 将zOx 坐标面上的抛物线z 2=5x 绕x 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的z 换成22z y +±得旋转曲面的方程y 2z 25x6 将zOx 坐标面上的圆x2z 29绕z 轴旋转一周 求所生成的旋转曲面的方程.解 将方程中的x 换成22y x +±得旋转曲面的方程x2y 2z 297 将xOy 坐标面上的双曲线4x 2-9y 2=36分别绕x 轴及y 轴旋转一周, 求所生成的旋转曲面的方程.解 双曲线绕x 轴旋转而得的旋转曲面的方程为4x 29y 29z 236双曲线绕y 轴旋转而得的旋转曲面的方程为4x 24z 29y 2368 画出下列方程所表示的曲面: (1)222)2()2(ay a x =+-(2)19422=+-y x ;(3)14922=+z x ;(4)y 2z 0(5)z =2-x 2.9 指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形 (1)x 2解在平面解析几何中 x 2表示平行于y 轴的一条直线 在空间解析几何中 x 2表示一平行于yOz 面的平面(2)y x 1解 在平面解析几何中 y x 1表示一条斜率是1 在y 轴上的截距也是1的直线 在空间解析几何中,y x 1表示一平行于z 轴的平面(3)x 2y 24解 在平面解析几何中 x 2y 24表示中心在原点 半径是4的圆 在空间解析几何中 x 2y 24表示母线平行于z 轴 准线为x 2y 24的圆柱面(4)x 2y 21解 在平面解析几何中 x 2y 21表示双曲线 在空间解析几何中 x 2y 21表示母线平行于z 轴的双曲面10 说明下列旋转曲面是怎样形成的:(1)1994222=++z y x ;解 这是xOy 面上的椭圆19422=+y x 绕x 轴旋转一周而形成的 或是zOx 面上的椭圆19422=+z x 绕x 轴旋转一周而形成的(2)14222=+-z y x解 这是xOy 面上的双曲线1422=-y x 绕y 轴旋转一周而形成的 或是yOz 面上的双曲线1422=+-z y 绕y 轴旋转一周而形成的(3)x 2y 2z 21解 这是xOy 面上的双曲线x 2y 21绕x 轴旋转一周而形成的 或是zOx 面上的双曲线x 2z 21绕x 轴旋转一周而形成的(4)(z a )2x 2y 2解 这是zOx 面上的曲线(z a )2x 2绕z 轴旋转一周而形成的 或是yOz 面上的曲线(z a )2y 2绕z 轴旋转一周而形成的 11 画出下列方程所表示的曲面(1)4x 2y 2z 24(2)x 2y 24z 24(3)94322y x z +=习题7 41 画出下列曲线在第一卦限的图形:(1)⎩⎨⎧==21y x(2)⎩⎨⎧=---=0422y x y x z ;(3) ⎩⎨⎧=+=+222222az x a y x .2 指出下方程组在平面解析几何中与在空间解析几何中分别表示什么图形: (1)⎩⎨⎧-=+=3215x y x y解 在平面解析几何中 ⎩⎨⎧-=+=3215x y x y 表示直线y 5x 1与y 2x 3的交点)317 ,34(-- 在空间解析几何中 ⎩⎨⎧-=+=3215x y x y 表示平面y 5x1与y 2x3的交线 它表示过点)0 ,317 ,34(-- 并且行于z 轴(2)⎪⎩⎪⎨⎧==+319422y y x解 在平面解析几何中⎪⎩⎪⎨⎧==+319422y y x 表示椭圆19422=+y x 与其切线y3的交点(03)在空间解析几何中 ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆柱面19422=+y x 与其切平面y 3的交线 3 分别求母线平行于x 轴及y 轴而且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解 把方程组中的x 消去得方程3y 2z 216 这就是母线平行于x 轴且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程. 把方程组中的y 消去得方程3x 22z216 这就是母线平行于y 轴且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程. 4 求球面x 2+y 2+z 2=9与平面x +z =1的交线在xOy 面上的投影的方程.解 由x z 1得z 1x 代入x 2+y 2+z 2=9得方程2x 22x y 28 这是母线平行于z轴 准线为球面x 2+y 2+z 2=9与平面x +z =1的交线的柱面方程 于是所求的投影方程为 ⎩⎨⎧==+-082222z y x x5 将下列曲线的一般方程化为参数方程:(1)⎩⎨⎧==++x y z y x 9222 ;解 将yx 代入x 2y 2z 29得2x 2z 29 即13)23(2222=+z x令tx cos 23= 则z 3sin t故所求参数方程为 tx cos 23= ty cos 23= z 3sin t(2)⎩⎨⎧==+++-04)1()1(222z z y x .解 将z0代入(x 1)2y 2(z 1)24得(x 1)2y 23令t x cos 31+= 则t y sin 3=于是所求参数方程为 tx cos 31+= t y sin 3= z 06 求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程解 由前两个方程得x2y 2a 2 于是螺旋线在xOy 面上的投影曲线的直角坐标方程为⎩⎨⎧==+0222z a y x由第三个方程得b z =θ代入第一个方程得bza x cos = 即axb z arccos =于是螺旋线在zOx 面上的投影曲线的直角坐标方程为 ⎪⎩⎪⎨⎧==0arccos y axb z由第三个方程得bz=θ代入第二个方程得bz a ysin = 即ayb z arcsin=于是螺旋线在yOz 面上的投影曲线的直角坐标方程为 ⎪⎩⎪⎨⎧==a yb z x arcsin 07 求上半球2220y x a z --≤≤与圆柱体x 2+y 2£ax (a >0)的公共部分在xOy 面和zOx 面上的投影.解 圆柱体x 2+y 2£ax 在xOy 面上的投影为x 2+y 2£ax 它含在半球2220y x a z --≤≤在xOy 面上的投影x 2y 2a 2所以半球与圆柱体的公共部分在xOy 面上的投影为x 2+y 2£ax为求半球与圆柱体的公共部分在zOx 面上的投影 由圆柱面方程x 2+y 2ax 得y 2ax x 2 代入半球面方程222y x a z --= 得ax a z -=2(0x a ) 于是半球与圆柱体的公共部分在zOx 面上的投影为 ax a z -≤≤20(0x a ) 即z 2ax a 2 0x a z 08. 求旋转抛物面z =x 2+y 2(0£z £4)在三坐标面上的投影.解 令z 4得x 2y 24 于是旋转抛物面z =x 2+y 2(0£z £4)在xOy 面上的投影为x 2y 24令x 0得z y 2 于是旋转抛物面z =x 2+y 2(0£z £4)在yOz 面上的投影为y 2z 4令y 0得z x 2 于是旋转抛物面z =x 2+y 2(0£z £4)在zOx 面上的投影为x 2z 4习题7 51. 求过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程. 解 所求平面的法线向量为n (3 7 5) 所求平面的方程为 3(x 3)7(y 0)5(z 1)0 即3x -7y +5z -4=02. 求过点M 0(2, 9, -6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程. 解 所求平面的法线向量为n (2, 9, -6) 所求平面的方程为 2(x 2)9(y 9)6(z 6)0 即2x 9y 6z 12103. 求过(1, 1, -1)、(-2, -2, 2)、(1, -1, 2)三点的平面方程. 解 n 1(1, -1, 2)(1, 1, -1)(0 2 3) n 1(1, -1, 2)(-2, -2, 2)(3 1 0) 所求平面的法线向量为 kj i kj i n n n 69301332021++-=-=⨯=所求平面的方程为3(x 1)9(y 1)6(z 1)0 即x 3y 2z 04. 指出下列各平面的特殊位置 并画出各平面 (1)x 0解 x 0是yOz 平面 (2)3y 10解 3y 10是垂直于y 轴的平面 它通过y 轴上的点)0 ,31,0((3)2x 3y 60解 2x 3y 60是平行于z 轴的平面 它在x 轴、y 轴上的截距分别是3和2(4)03=-y x解 03=-y x 是通过z 轴的平面 它在xOy 面上的投影的斜率为33(5)y z 1解 y z 1是平行于x 轴的平面 它在y 轴、z 轴上的截距均为1 (6)x 2z 0解 x 2z 0是通过y 轴的平面 (7)6x 5z 0解 6x 5z 0是通过原点的平面5 求平面2x -2y +z +5=0与各坐标面的夹角的余弦. 解 此平面的法线向量为n (2 2 1) 此平面与yOz 面的夹角的余弦为321)2(22||||) ,cos(cos 122^=+-+=⋅⋅==i n i n i n α此平面与zOx 面的夹角的余弦为 321)2(22||||) ,cos(cos 122^-=+-+-=⋅⋅==j n j n j n β此平面与xOy 面的夹角的余弦为311)2(21||||) ,cos(cos 122^=+-+=⋅⋅==k n k n k n γ6. 一平面过点(1, 0, -1)且平行于向量a =(2, 1, 1)和b =(1, -1, 0), 试求这平面方程.解 所求平面的法线向量可取为 kj i kj i b a n 3011112-+=-=⨯=所求平面的方程为(x 1)(y 0)3(z 1)0 即x y 3z 407 求三平面x 3y z 1 2x y z 0 x 2y 2z 3的交点 解 解线性方程组⎪⎩⎪⎨⎧=++-=--=++3220213z y x z y x z y x得x 1 y 1 z 3 三个平面的交点的坐标为(11 3)8 分别按下列条件求平面方程:(1)平行于zOx 面且经过点(2, -5, 3);解 所求平面的法线向量为j (0 1 0) 于是所求的平面为 0×(x 2)5(y 5)0×(z 3)0 即y 5 (2)通过z 轴和点(-3, 1, -2);解 所求平面可设为Ax By 0因为点(-3, 1, -2)在此平面上 所以 3A B 0 将B 3A 代入所设方程得 Ax 3Ay 0 所以所求的平面的方程为 x 3y 0(3)平行于x 轴且经过两点(4 0 2)和(5 1 7) 解 所求平面的法线向量可设为n (0 b c ) 因为点(4 0 2)和(5 1 7)都在所求平面上 所以向量n 1(5 1 7)(4 0 2)(1 1 9)与n 是垂直的 即b 9c 0 b 9c 于是 n (0 9c c )c (0 9 1) 所求平面的方程为9(y 0)(z 2)0 即9y z 20 9. 求点(1, 2, 1)到平面x +2y +2z -10=0的距离. 解 点(1, 2, 1)到平面x +2y +2z -10=0的距离为1221|1012221|222=++-⨯+⨯+=d习题7 61. 求过点(4, -1, 3)且平行于直线51123-==-z yx 的直线方程.解 所求直线的方向向量为s (2 1 5) 所求的直线方程为531124-=+=-z y x2. 求过两点M 1(3, -2, 1)和M 2(-1, 0, 2)的直线方程.解 所求直线的方向向量为s (-1, 0, 2)(3, -2, 1)(4 2 1) 所求的直线方程为112243-=+=--x y x3. 用对称式方程及参数方程表示直线⎩⎨⎧=++=+-421z y x z y x .解 平面x y z 1和2x y z 4的法线向量为n 1(1 1 1) n 2(2 11) 所求直线的方向向量为 kj i kj i n n s 3211211121++-=-=⨯=在方程组⎩⎨⎧=++=+-421z y x z y x 中 令y 0得⎩⎨⎧=+=+421z x z x 解得x 3 z 2 于是点(3 0 2)为所求直线上的点 所求直线的对称式方程为 32123+==--z yx参数方程为x 32t y t z23t4. 求过点(2, 0, -3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.解 所求平面的法线向量n 可取为直线⎩⎨⎧=+-+=-+-012530742z y x z y x 的方向向量即kj i kj i n 111416253421)2 ,5 ,3()4 ,2 ,1(++-=--=-⨯-=所平面的方程为16(x 2)14(y0)11(z 3)0 即16x 14y 11z 6505 求直线⎩⎨⎧=+-=-+-02309335z y x z y x 与直线⎩⎨⎧=-++=+-+0188302322z y x z y x 的夹角的余弦解 直线⎩⎨⎧=+-=-+-02309335z y x z y x 与⎩⎨⎧=-++=+-+0188302322z y x z y x 的方向向量分别为kj i kj i s -+=--=431233351 kj i kj i s 105101831222+-=-=两直线之间的夹角的余弦为 010)5(10)1(4310)1()5(4103||||) ,cos(2222222121^21=+-+-++⨯-+-⨯+⨯=⋅⨯=s s s s s s6 证明直线⎩⎨⎧=++-=-+7272z y x z y x 与直线⎩⎨⎧=--=-+028363z y x z y x 平行解 直线⎩⎨⎧=++-=-+7272z y x z y x 与⎩⎨⎧=--=-+028363z y x z y x 的方向向量分别为kj i kj i s 531121211++=--= kj i kj i s 15391123632---=---=因为s 23s 1 所以这两个直线是平行的7. 求过点(0, 2, 4)且与两平面x +2z =1和y -3z =2平行的直线方程.解 因为两平面的法线向量n 1(1 0 2)与n 2(0 1 3)不平行 所以两平面相交于一直线 此直线的方向向量可作为所求直线的方向向量s 即kj i kj i s ++-=-=32310201所求直线的方程为 14322-=-=-z y x8. 求过点(3, 1, -2)且通过直线12354zy x =+=-的平面方程. 解 所求平面的法线向量与直线12354zy x =+=-的方向向量s 1(5 2 1)垂直 因为点(3 1 2)和(4 3 0)都在所求的平面上 所以所求平面的法线向量与向量s 2(4 3 0)(3 1 2)(1 4 2)也是垂直的 因此所求平面的法线向量可取为kj i kj i s s n 229824112521--=-=⨯=所求平面的方程为 8(x 3)9(y 1)22(z 2)0 即8x 9y 22z 5909 求直线⎩⎨⎧=--=++003z y x z y x 与平面x yz 10的夹角解 直线⎩⎨⎧=--=++003z y x z y x 的方向向量为)2(2242111311)1 ,1 ,1()3 ,1 ,1(k j i k j i kj i s -+=-+=--=--⨯=平面x y z 10的法线向量为n (1 1 1) 因为s ×n 214(1)(2)(1)0所以s n从而直线⎩⎨⎧=--=++003z y x z y x 与平面x y z 10的夹角为010 试确定下列各组中的直线和平面间的关系(1)37423zy x =-+=-+和4x2y 2z 3解 所给直线的方向向量为s (2 7 3) 所给平面的法线向量为n (42 2)因为s ×n (2)4(7)(2)3(2)0 所以s n 从而所给直线与所给平面平行 又因为直线上的点(3 4 0)不满足平面方程4x 2y 2z 3 所以所给直线不在所给平面上(2)723zy x =-=和3x 2y 7z 8 解 所给直线的方向向量为s (3 2 7) 所给平面的法线向量为n (32 7)因为s n 所以所给直线与所给平面是垂直的 (3)431232--=+=-z y x 和xy z 3解 所给直线的方向向量为s (3 1 4) 所给平面的法线向量为n (1 11)因为s ×n 3111(4)10 所以s n 从而所给直线与所给平面平行 又因为直线上的点(2 2 3)满足平面方程x y z 3 所以所给直线在所给平面上11 求过点(1 2 1)而与两直线 ⎩⎨⎧=-+-=+-+01012z y x z y x 和⎩⎨⎧=+-=+-002z y x z y x平行的平面的方程解 直线⎩⎨⎧=-+-=+-+01012z y x z y x 的方向向量为kj i kj i s 32111121)1 ,1 ,1()1 ,2 ,1(1--=--=-⨯-=直线⎩⎨⎧=+-=+-002z y x z y x 的方向向量为kj kj i s --=--=-⨯-=111112)1 ,1 ,1()1 ,1 ,2(1所求平面的法线向量可取为 kj i kj i s s n -+-=----=⨯=11032121所求平面的方程为(x 1)(y 2)(z 1)0 即x y z 0 12. 求点(-1, 2, 0)在平面x +2y -z +1=0上的投影.解 平面的法线向量为n (1 2 1) 过点(1 2 0)并且垂直于已知平面的直线方程为12211-=-=+z y x将此方程化为参数方程x 1t y 22t z t 代入平面方程x +2y -z +1=0中得(1t )2(22t )(t )10 解得32-=t 再将32-=t 代入直线的参数方程得35-=x 32=y 32=z 于是点(-1, 2, 0)在平面x +2y -z +1=0上的投影为点)32 ,32 ,25(-13 求点P (3 1 2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离解 直线⎩⎨⎧=-+-=+-+04201z y x z y x 的方向向量为kj kj i s 33112111)1 ,1 ,2()1 ,1 ,1(--=--=-⨯-=过点P 且与已知直线垂直的平面的方程为3(y 1)3(z 2)0 即y z 10 解线性方程组⎪⎩⎪⎨⎧=-+=-+-=+-+0104201z y z y x z y x 得x 1 21-=y 23=z点P (3 1 2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离就是点P (31 2)与点)23,21 ,1(-间的距离 即 223)232()211()13(22=-++-+-=d14 设M 0是直线L 外一点 M 是直线L 上任意一点 且直线的方向向量为s 试证 点M 0到直线L 的距离 →||||0s s ⨯=M M d解 设点M 0到直线L 的距离为d L 的方向向量→MN =s 根据向量积的几何意义 以→M M 0和→MN 为邻边的平行四边形的面积为→→→||||00s ⨯=⨯M M MN M M又以→M M 0和→MN 为邻边的平行四边形的面积为→||||s ⋅=⋅d MN d 因此→||||0s s ⨯=⋅M M d →||||0s s ⨯=M M d15 求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面4xy z 1上的投影直线的方程解 过直线⎩⎨⎧=---=+-0923042z y x z y x 的平面束方程为(23)x (4)y (12)z 90为在平面束中找出与已知平面垂直的平面 令(4 1 1)×(23 412)0 即4×(23)(1)×(4)1×(12)0解之得1113-=λ 将1113-=λ代入平面束方程中 得17x31y 37z 117故投影直线的方程为⎩⎨⎧=--+=+-011737311714z y x z y x16 画出下列各曲面所围成的立体图形(1)x 0 y 0 z 0 x 2 y 1 3x 4y 2z 120(2)x 0 z 0 x 1 y 2 4y z =(3)z 0z 3 x y 0 03=-y x x2y 21(在第一卦限)(4)x 0 y 0 z 0 x2y 2R 2 y 2z 2R 2(在第一卦限)总习题七 1. 填空(1)设在坐标系[O ; i , j , k ]中点A 和点M 的坐标依次为(x 0, y 0, z 0)和(x , y , z ), 则在[A ; i , j , k ]坐标系中, 点M 的坐标为___________, 向量→OM 的坐标为___________. 解 M (x x 0 y y 0 zz 0) →), ,(z y x OM =提示 自由向量与起点无关 它在某一向量上的投影不会因起点的位置的不同而改变(2)设数l 1、l 2、l 3不全为0, 使l 1a +l 2b +l 3c =0, 则a 、b 、c 三个向量是__________的. 解 共面(3)设a =(2, 1, 2), b =(4, -1, 10), c =b -l a , 且a ^c , 则l =____________. 解3提示 因为a ^c , 所以a ×c 0 又因为由a ×c a ×b a ×a 241(1)210(221222)279 所以3(4)设a 、b 、c 都是单位向量, 且满足a +b +c =0, 则a ×b +b ×c +c ×a =____________. 解 23-提示 因为a +b +c =0 所以(a +b +c )×(a +b +c )=0即 a ×a +b ×b +c ×c +2a ×b +2a ×c +2c ×a =0 于是 23)111(21)(21-=++-=⋅+⋅+⋅-=⋅+⋅+⋅c c b b a a a c c b b a(5)设|a |=3, |b |=4, |c |=5, 且满足a +b +c =0, 则|a ´b +b ´c +c ´a |=____________.解36 提示 c (a b )a ´b +b ´c +c ´a a b b (a b )(a b )a a b b a b a 3a b |a ´b +b ´c +c ´a |3|a b |3|a |×|b |3×3×436 2. 在y 轴上求与点A (1, -3, 7)和点B (5, 7, -5)等距离的点. 解 设所求点为M (0 y 0) 则有12(y 3)27252(y 7)2(5)2即 (y 3)2(y 7)2解得y 2 所求的点为M (0 2 0)3. 已知D ABC 的顶点为A (3,2,-1)、B (5,-4,7)和C (-1,1,2), 求从顶点C 所引中线的长度.解 线段AB 的中点的坐标为)3 ,1 ,4()271 ,242 ,253(-=+--+ 所求中线的长度为30)23()11()14(222=-+--++=d4. 设D ABC 的三边→a =BC 、→b =CA 、→c =AB , 三边中点依次为D 、E 、F , 试用向量a 、b 、c 表示→AD 、→BE 、→CF , 并证明→→→0=++CF BE AD . 解 →→→ac 21+=+=BD AB AD →→→ba 21+=+=CE BC BE →→→cb 21+=+=AF CA CF→→→0=+-=++=++)(23)(23c c c b a CF BE AD5. 试用向量证明三角形两边中点的连线平行于第三边, 且其长度等于第三边长度的一半.证明 设D E 分别为AB AC 的中点 则有→→→→→)(21AB AC AD AE DE -=-=→→→→→ABAC AC BA BC -=+=所以 →→BC DE 21=从而DE //BC且||21||BC DE =6. 设|a b ||a b |, a =(3, -5, 8), b =(-1, 1, z ), 求z .解a b (2 4 8z ) a b (4 6 8z ) 因为|a b ||a b |, 所以222222)8()6(4)8()4(2z z -+-+=++-+解得z 17. 设3||=a , |b |=1, 6) ,(^π=b a , 求向量a +b 与a -b 的夹角.解 |a b |2(a b )×(a b )|a |2|b |22a ×b |a |2|b |22|a |×|b |cos(a^b )76cos 3213=++=π|a b |2(a b )×(a b )|a |2|b |22a ×b |a |2|b |22|a |×|b |cos(a^b )16cos 3213=-+=π设向量a +b 与a -b 的夹角为则721713||||||||||||)()(cos 22=⋅-=-⋅+-=-⋅+-⋅+=b a b a b a b a b a b a b a θ72arccos =θ8. 设a +3b ^7a -5b , a -4b ^7a -2b , 求) ,(^b a .解 因为a +3b ^7a -5b , a -4b ^7a -2b ,所以 (a +3b )×(7a -5b )=0, (a -4b )×(7a -2b )=0,即 7|a |2+16a ×b -15|b |2 =0, 7|a |2-30a ×b +8|b |2=0, 又以上两式可得b a b a ⋅==2||||,于是 21||||) ,cos(^=⋅⋅=b a b a b a , 3) ,(^π=b a .9. 设a =(2, -1, -2), b =(1, 1, z ), 问z 为何值时) ,(^b a 最小?并求出此最小值.解 2^2321||||) ,cos(z z +-=⋅⋅=b a b a b a .因为当2) ,(0^π<<b a 时, ) ,cos(^b a 为单调减函数. 求) ,(^b a 的最小值也就是求22321)(z z z f +-=的最大值.令0)2(431)(2/32=+--⋅='z z z f , 得z =-4. 当z =-4时, 22) ,cos(^=b a , 所以422arccos ) ,(min ^π==b a .10 设|a |4 |b |36) ,(^π=b a , 求以a2b 和a 3b 为边的平行四边形的面积解 (a 2b )(a 3b )3a b 2b a 5b a 以a 2b 和a 3b 为边的平行四边形的面积为3021435) ,sin(||||5||5|)3()2(|^=⋅⋅⋅=⋅=⨯=-⨯+b a a b a b b a b a11 设a (2 3 1) b (1 2 3) c (2 1 2) 向量r 满足r ^a r ^b Prj c r 14 求r 解 设r (x y z )因为r ^a r ^b 所以r ×a 0 r ×b 0 即 2x 3y z 0 x 2y 3z 0又因为Prj c r14 所以14||1=⋅c c r 即2x y 2z 42 解线性方程组⎪⎩⎪⎨⎧=++=+-=+-4222032032z y x z y x z y x得x 14 y 10 z 2 所以r (14 10 2)另解 因为r ^a r ^b所以r 与k j i kj i b a ---=--=⨯57321132平行故可设r(75 1) 又因为Prj c r14 所以14||1=⋅c c r r ×c 42 即(725112)42 2 所以r (14 10 2)12 设a (1 3 2) b (2 3 4) c (3 12 6) 证明三向量a 、b 、c 共面 并用a 和b 表示c证明 向量a 、b 、c 共面的充要条件是(a b )×c 0 因为 ki kj i b a 36432231--=---=⨯(a b )×c (6)(3)012(3)6所以向量a 、b 、c 共面 设c a b 则有 (2 33 24)(3 12 6)即有方程组⎪⎩⎪⎨⎧=-=--=+-642123332μλμλμλ解之得5 1 所以c 5a b13. 已知动点M (x ,y ,z )到xOy 平面的距离与点M 到点(1, -1, 2)的距离相等, 求点M 的轨迹方程.解 根据题意 有222)2()1()1(||-+++-=z y x z或 z 2(x 1)2(y 1)2(z 2)2化简得(x 1)2(y 1)24(z 1) 这就是点M 的轨迹方程14. 指出下列旋转曲面的一条母线和旋转轴:(1)z =2(x 2+y 2);解 旋转曲面的一条母线为zOx 面上的曲线z 2x2旋转轴为z 轴(2)136936222=++z y x解 旋转曲面的一条母线为xOy 面上的曲线193622=+y x 旋转轴为y 轴(3)z 23(x 2y 2)解 旋转曲面的一条母线为yOz 面上的曲线y z 3= 旋转轴为z 轴(4)144222=--z y x解 旋转曲面的一条母线为xOy 面上的曲线1422=-y x 旋转轴为x 轴15 求通过点A (3 00)和B (0 0 1)且与xOy 面成3π角的平面的方程 解 设所求平面的法线向量为n (a b c )→)1 ,0 ,3(-=BA xOy 面的法线向量为k(00 1)按要求有→=⋅BA n 3cos ||||π=⋅⋅k n k n即 ⎪⎩⎪⎨⎧=++=-2103222c b a c c a解之得c 3a a b 26±= 于是所求的平面的方程为 0326)3(=+±-z y x即 3326=++z y x 或3326=+-z y x16. 设一平面垂直于平面z =0, 并通过从点(1, -1, 1)到直线⎩⎨⎧==+-01x z y 的垂线, 求此平面方程.解 直线⎩⎨⎧==+-001x z y 的方向向量为s (0 11)(1 0 0)(0 11) 设点(1, -1, 1)到直线⎩⎨⎧==+-001x z y 的垂线交于点(x 0y 0 z 0) 因为点(x 0 y 0 z 0)在直线⎩⎨⎧==+-01x z y 上 所以(x 0 y 0 z 0)(0 y 0 y 01) 于是 垂线的方向向量为s 1(1 y 01 y 0) 显然有s ×s 10 即y 01y 00 210-=y 从而)21 ,21 ,1() ,1 ,1(001--=+-=y y s所求平面的法线向量可取为 j i k j i k s k n --=-+-⨯=⨯=21)2121(1所求平面的方程为 0)1()1(21=+---y x 即x 2y 1017. 求过点(-1, 0, 4), 且平行于平面3x -4y +z -10=0, 又与直线21311zy x =-=+相交的直线的方程.解 过点(-1, 0, 4), 且平行于平面3x -4y +z -10=0的平面的方程为 3(x 1)4(y 0)(z 4)0 即3x -4y +z -1=0 将直线21311zy x =-=+化为参数方程x 1t y 3t z 2t 代入平面方程3x -4y +z -1=0 得3(1t )4(3t )2t 1解得t 16 于是平面3x -4y +z -1=0与直线21311zy x =-=+的交点的坐标为(15 1932) 这也是所求直线与已知直线的交点的坐标 所求直线的方向向量为s (15 19 32)(-1, 0, 4)(16 19 28) 所求直线的方程为 28419161-==+z yx18. 已知点A (1, 0, 0)及点B (0, 2, 1), 试在z 轴上求一点C , 使ABC 的面积最小. 解 设所求的点为C (0 0 z ) 则→) ,0 ,1(z AC -= →)1 ,2 ,0(--=z BC因为 →→kj i kj i 2)1(212001+-+=---=⨯z z z z BC AC所以ABC 的面积为→→4)1(421||2122+-+=⨯=z z BC AC S令04)1(4)1(284122=+-+-+⋅=z z z z dz dS 得51=z 所求点为)51 ,0 ,0(C19. 求曲线⎩⎨⎧-+-=--=2222)1()1(2y x z y x z 在三个坐标面上的投影曲线的方程. 解 在xOy 面上的投影曲线方程为⎩⎨⎧=--=-+-02)1()1(2222z y x y x , 即⎩⎨⎧=+=+022z yx y x .在zOx 面上的投影曲线方程为⎩⎨⎧=---±+-=0)12()1(222y z x x z , 即⎩⎨⎧==+--++002342222y z x z xz x .在yOz 面上的投影曲线方程为⎩⎨⎧=-+---±=0)1()12(222x y z y z , 即⎩⎨⎧==+--++002342222x z y z yz y .20. 求锥面22y x z +=与柱面z 2=2x 所围立体在三个坐标面上的投影. 解 锥面与柱面交线在xOy 面上的投影为 ⎩⎨⎧=+=0222z y x x , 即⎩⎨⎧==+-01)1(22z y x ,所以, 立体在xOy 面上的投影为⎩⎨⎧=≤+-01)1(22z y x . 锥面与柱面交线在yOz 面上的投影为 ⎪⎩⎪⎨⎧=+=0)21(222x y z z , 即⎪⎩⎪⎨⎧==+-01)22(222x y z ,所以, 立体在yOz 面上的投影为⎪⎩⎪⎨⎧=≤+-01)22(222x y z .锥面22y x z +=与柱面z 2=2x 与平面y =0的交线为 ⎩⎨⎧==0||y x z 和⎩⎨⎧==02y xz所以, 立体在zOx 面上的投影为⎩⎨⎧=≤≤02y x z x 21 画出下列各曲面所围立体的图形(1)抛物柱面2y 2x 平面z 0及1224===zy x(2)抛物柱面x 21z 平面y 0 z 0及x y 1(3)圆锥面22y x z +=及旋转抛物面z 2x 2y 2 (4)旋转抛物面x 2y 2z 柱面y 2x 平面z 0及x 1。