高中物理学业水平测试知识点
- 格式:doc
- 大小:217.50 KB
- 文档页数:11
高中物理学业水平考试知识点
1.牛顿三定律:物体在没有外力作用时保持匀速直线运动,其加速度
恒为零;物体受到外力作用时产生的加速度的大小与外力的大小成正比;
作用力之间相互等同,即施加于物体的外力之和等于由物体施加于外物的
反作用力之和。
2.物质的性质和变化:物质有形态、状态、温度等性质,根据物质的
组成和结构,可以分成各自的类型,常见的分类有液体、气体和固体,物
质可以发生各种不同的化学变化,包括合成、分解、变沉、溶于液体等。
3.弹性力学:弹性力学研究物体受外力作用时的变形及其承受力的大
小和方向,其中包括弹性变形、弹性模量、弹性几何形状计算等。
4.电学:电学研究电荷的运动和相互作用,包括电荷、电场、电势差等,常用电荷定理、完整电路等规律来求解电学问题。
5.热学:热学研究物质受外力作用时会产生的热力学现象,包括温度、热量、热流等的变化,常用的规律有定温定容定热定理,热力学第一定律等。
高中物理学业水平测试知识点(全)物理知识点公式汇总必修1知识点1.质点在某些情况下,我们可以简化物体为一个有质量的点,称为质点。
质点不考虑物体的大小和形状,只关注其具有质量的要素。
(注意:不能以物体的绝对大小作为判断质点的依据)2.参考系为了描述一个物体的运动,我们需要选定某个其他物体做参考,观察物体相对于这个“其他物体”的位置是否随时间变化,以及怎样变化。
这种用来做参考的物体称为参考系。
在描述研究对象相对参考系的运动情况时,可假设参考系是“不动”的。
3.路程和位移路程是物体运动轨迹的长度,是标量。
位移表示物体(质点)的位置变化。
从初位置到末位置作一条有向线段,用这条有向线段表示位移,是矢量。
4.速度平均速度和瞬时速度物体的速度是表征其位置变化快慢的物理量,是位移对时间的变化率,是矢量。
如果在时间t内物体的位移是x,它的速度就可以表示为v=x/t。
由此求得的速度,表示的只是物体在时间间隔t内的平均快慢程度,称为平均速度。
如果t非常非常小,就可以认为速度是瞬时的。
5.匀速直线运动任意相等时间内位移相等的直线运动叫匀速直线运动。
6.加速度加速度是速度的变化量与发生这一变化所用时间的比值,a=△v/△t。
加速度是表征物体速度变化快慢的物理量,与速度v、速度的变化△v均无必然关系。
7.用电火花计时器(或电磁打点计时器)研究匀变速直线运动用电火花计时器(或电磁打点计时器)可以测速度。
对于匀变速直线运动中间时刻的瞬时速度等于平均速度:纸带上连续3个点间的距离除以其时间间隔等于打中间点的瞬时速度。
可以用公式a=△v/△t求加速度(为了减小误差可采用逐差法求)。
注意:a的方向与△v的方向一致,是矢量。
8.匀变速直线运动的规律初速度等于零的匀加速直线运动有以下特点:速度公式:v=voat;位移公式:x=vot+1/2at^2;推论:vtvo2ax;中间时刻速度公式:vtv;中间位移速度公式:vx2△x/t;位移差公式:2△x=at^2.1.瞬时速度和位移比例关系在不同时间内,物体的瞬时速度与时间的比例是不同的,可以表示为2.不同时间内的位移比例除了总时间相同,不同时间内的位移比例也可以不同,可以表示为SⅠ:SⅡ:SⅢ:。
陕西高中学业水平考试物理知识点一、知识概述《陕西高中学业水平考试物理知识点》①基本定义:物理就是研究物质运动最一般规律和物质基本结构的学科。
例如,汽车为什么会跑,篮球为什么会落下,这里面都有物理知识。
②重要程度:物理在高中学科中很重要,对理解自然现象、培养逻辑思维和解决实际问题的能力有很大作用。
比如建筑设计得牢固与否就和物理力学知识有关。
③前置知识:初中物理知识是前置基础,像基本的力学概念,电学的电流、电压知识等。
④应用价值:在生活很多方面都有应用。
比如电路的知识能让我们理解家庭电路的安装和维修;力学知识有助于理解建筑工程、桥梁建设等。
二、知识体系①知识图谱:物理知识点像一张大网,力学、热学、电磁学、光学等构成不同板块。
学业水平考试的知识点分散在这些板块里。
例如电磁感应知识点就和电场、磁场知识有联系。
②关联知识:像能量守恒定律就和力学中的动能、势能以及热学中的内能等都有联系。
③重难点分析:重难点包括电场、磁场的概念理解以及复杂的力学受力分析。
电场和磁场概念很抽象,不好理解;力学受力分析要考虑多个力,容易遗漏或多算。
④考点分析:在学业水平考试中,选择题会考查基本的概念,比如牛顿第几定律的内容;计算题会考查知识的综合运用,像既有电场力又有重力的带电物体的运动问题。
三、详细讲解【理论概念类- 牛顿第二定律】①概念辨析:牛顿第二定律说的是物体的加速度跟作用力成正比,跟物体的质量成反比。
简单说,你用越大的力推一个东西,它跑得就越快,但如果这东西本身很重,就会跑慢点。
②特征分析:加速度是矢量,方向和力的方向相同;定律同时涉及到力、质量和加速度三个物理量。
③分类说明:此定律在直线运动和曲线运动的受力分析中都能用。
直线运动中比如小车在水平拉力下的加速情况;曲线运动里面,平抛运动的小球水平方向的加速度也可以用这个定律分析。
④应用范围:适用于宏观物体的低速运动情况。
如果是微观粒子的高速运动就不适用了,像电子高速绕原子核转动就要用到量子力学的知识了。
高中物理学业水平测试知识点总结1.力学-力的大小和方向:力的定义、力的合成和分解、平衡力和非平衡力。
-牛顿三定律:第一定律(惯性定律)、第二定律(牛顿定律)、第三定律(作用-反作用定律)。
-运动学:位移、速度、加速度,匀速和变速运动的图像分析和计算。
-动力学:力的合力和分解、加速度和质量的关系,运动过程的图像分析和计算。
-转动:转动的角速度、角加速度,转动惯量和力矩的关系。
2.动量与能量-动量:动量的定义、动量守恒定律,弹性碰撞和非弹性碰撞。
-动能:动能的定义和计算,功的定义和计算,功和能量的关系。
-动能定理:动能定理的推导和应用,动力学问题的综合运用。
3.热学-温度与热量:温度的定义,热平衡和热力学温标,热量的传递方式(传导、对流、辐射)。
-内能和热力学第一定律:内能的定义和计算,热平衡、热力学过程和热力学第一定律的应用。
4.光学-光的传播:光的直线传播和光的反射。
-光的折射和光的全反射:折射定律和光线的折射;全反射现象和条件。
-光的色散和光的波动性:光的色散现象和原因,光的干涉和衍射现象。
5.电学-电荷和电场:电荷的基本属性,电场的定义和特征。
-电势和电势能:电势的定义和计算,电势差和电势能的关系。
-电流和电阻:电流的定义和计算,欧姆定律,串联和并联电路的计算。
-磁场和电磁感应:磁场的定义和特征,电磁感应现象和方向规律,发电机和电磁铁的原理。
6.核能与放射性-原子核的组成与结构:质子、中子和电子的概念,原子核的质量数和电荷数。
-放射性衰变:α衰变、β衰变和γ射线的特征和产生方式。
-核反应:裂变和聚变的概念和原理,核能的利用和风险。
上述是高中物理学业水平测试的主要知识点总结,需要学生熟练掌握这些知识点,并能够灵活运用于解决相关问题。
除了理论知识,实际操作和实验技巧也是考察的重点,学生应注重动手能力的培养和实践经验的积累。
高中物理学业水平考试第一章 运动的描述第二章 匀变速直线运动的描述要点解读1、质点 参考系和坐标系1.质点:用来代替物体而具有质量的点。
实际物体看作质点的条件:当物体的大小和形状相对于所要研究的问题可以忽略不计时,物体可看作质点。
2.参考系:为了确定物体的位置和描述物体运动而被选作参考的物体或物体系。
选择不同的参考系,观察的结果往往是不一样的。
3.坐标系:为了定量地描述物体的位置及位置变化,需在参考系上建立适当的坐标系。
三要素:原点 正方向和单位长度。
2、描述质点运动的物理量1.时间:时间在时间轴上对应为一线段,时刻在时间轴上对应于一点。
2.位移:用来描述物体位置变化的物理量,是矢量,用由初位置指向末位置的有向线段表示。
路程是标量,它是物体实际运动轨迹的长度。
只有当物体作单方向直线运动时,物体位移的大小才与路程相等。
(矢量:既有大小又有方向。
标量:只有大小,没有方向。
)3.速度:用来描述物体位置变化快慢的物理量,是矢量。
1212t t t x x x -=∆-=∆ t xv ∆∆=(1)平均速度:运动物体的位移与时间的比值,方向和位移的方向相同。
(2)瞬时速度:运动物体在某时刻或位置的速度。
瞬时速度的大小叫做速率。
(3)速度的测量(实验) ①原理:txv ∆∆=。
当所取的时间间隔越短,物体的平均速度v 越接近某点的瞬时速度v 。
然而时间间隔取得过小,造成两点距离过小则测量误差增大,所以应根据实际情况选取两个测量点。
②仪器:电磁式打点计时器(使用4∽6V 低压交流电,纸带受到的阻力较大)或者电火花计时器(使用220V 交流电,纸带受到的阻力较小)。
若使用50Hz 的交流电,打点的时间间隔为0.02s 。
还可以利用光电门或闪光照相来测量。
4.加速度(1)意义:用来描述物体速度变化快慢的物理量,是矢量。
(2)定义: tv a ∆∆=其方向与Δv 的方向相同或与物体受 到的合力方向相同。
(3)当a 与v 0同向时,物体做加速直线运动;当a 与v 0反向时,物体做减速直线运动。
高中物理学业水平考试知识点
1.力学:力学是物理学的基础,涉及物体的运动和静力学。
重要的知
识点包括牛顿三定律、质点和刚体的运动、力、能量和功的关系、动量守恒、弹性碰撞等。
2.电磁学:电磁学研究电荷和电流之间的相互作用以及与磁场的相互
作用。
重要的知识点包括库伦定律、电场和电势、磁场和磁感应强度、电
流和电路以及电磁感应等。
3.光学:光学研究光的传播、反射、折射等现象。
重要的知识点包括
光的直线传播、光的反射和折射、镜片和透镜的成像、光的干涉和衍射等。
4.热学:热学研究物体的热平衡和热量的传递。
重要的知识点包括热
力学第一和第二定律、热传导、热容、相变等。
5.原子物理:原子物理研究微观尺度下的物理现象和性质。
重要的知
识点包括原子结构、原子核、放射性衰变、核反应等。
此外,还有一些跨学科的知识点,如力学与热学的热力学、电磁学与
光学的电磁波等。
为了更好地备考,建议根据不同的知识点制定学习计划,并结合教科书、习题册和学习资源进行系统性的学习和练习。
理解基本概念和公式,
并进行大量的例题练习,有助于加深理解和掌握知识点。
高中物理学业水平考试知识点物理一般指物理学。
物理学(physics)是研究物质最一般的运动规律和物质基本结构的学科。
下面小编给大家分享一些物理学业水平考试知识,希望能够帮助大家,欢迎阅读!物理学业水平考试知识1牛顿第一定律定义:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
惯性1、定义:物体具有的保持原来的匀速直线运动状态或静止状态的性质。
2、惯性是物体的固有属性,惯性不是一种力。
任何物体在任何情况下都具有惯性。
3、惯性的大小只由物体本身的特征决定,与外界因素无关。
4、惯性是不能被克服的,但可以利用惯性做事或防止惯性的不良影响。
5、不要把惯性概念与惯性定律相混淆。
惯性是万物皆有的保持原运动状态的一种属性,惯性定律则是物体不受外力作用时的运动定律。
运动状态1、运动状态指的是物体的速度速度是是矢量,速度不变则运动状态不变,速度改变运动状态也就改变了,所以运动状态不断改变的物体总有加速度。
2、力是使物体产生加速度的原因3、质量是物体惯性大小的量度物理学业水平考试知识2认识运动机械运动:物体在空间中所处位置发生变化,这样的运动叫做机械运动。
运动的特性:普遍性,永恒性,多样性参考系1.任何运动都是相对于某个参照物而言的,这个参照物称为参考系。
2.参考系的选取是自由的。
(1)比较两个物体的运动必须选用同一参考系。
(2)参照物不一定静止,但被认为是静止的。
质点1.在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。
2.质点条件:(1)物体中各点的运动情况完全相同(物体做平动)(2)物体的大小(线度)<<它通过的距离3.质点具有相对性,而不具有绝对性。
4.理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。
(为便于研究而建立的一种高度抽象的理想客体)物理学业水平考试知识31 .质点 A用来代替物体的有质量的点称为质点。
高中物理学业水平考试详细知识点总结力和运动- 物理量:位移、速度、加速度、力、质量、力的合成、牛顿的第一、第二、第三定律- 弹力和弹簧劲度常数:胡克定律、简谐振动、弹簧劲度常数的计算- 动能和功:动能定理、功的计算、弹簧的势能和弹性势能- 力学能和机械能守恒定律- 动量:力的作用时间、动量定理、质心、动量守恒热学- 温度和热量:温标、测量温度、热平衡、热量和能量转换、热容、相变- 理想气体:理想气体的性质、状态方程、气体定律、压强和体积变化、气体热力学过程- 热力学第一定律:内能变化、功和热的转化、焦耳定律、工负、定容定压过程、理想气体的内能变化光学- 光的反射:平面镜、球面镜、反射成像、光学成像的公式- 光的折射:折射定律、光的快慢、安培定律、折射光线的追迹法- 光的干涉和衍射:杨氏双缝干涉、单缝衍射、光的干涉和衍射现象的解释- 光的色散和光的波粒性:色散现象、光的波粒二象性电学- 电荷和电场:电荷的性质、电场的概念、电场的计算、电势能、静电场和电势差、电势差的计算- 电流和电阻:电流的定义、电流和导线、电阻和电阻率、欧姆定律、串联和并联电阻、电功和电功率- 电流的磁场效应:安培力、洛伦兹力、电流的磁场、电磁感应- 电磁波:电磁波的产生、应用和性质、光的本质原子核和放射性- 原子核的结构:质子、中子、电子、元素周期表- 放射现象和核变化:放射性物质、放射线的性质、α、β、γ射线的特点- 放射性衰变:放射性衰变的定律、半衰期、衰变常数、放射性年龄的计算- 核反应和核能:核聚变、核裂变、核能的应用和问题以上是高中物理学业水平考试的详细知识点总结,建议学生在备考期间重点复和掌握这些内容,以提高学科水平和考试成绩。
高中物理学业水平考知识点在学习新知识的同时还要复习以前的旧知识,肯定会累,所以要注意劳逸结合。
只有充沛的精力才能迎接新的挑战,才会有事半功倍的学习。
下面带来高中物理学业水平考知识点总结,欢迎大家阅读!高中物理学业水平考知识点总结篇11.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}3.电阻、电阻定律:R=ρL/S{ρ:电阻(Ω/m),L:导体的长度(m),S:导体横截面积(m2)}4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+电流关系I总=I1=I2=I3I并=I1+I2+I3+电压关系U总=U1+U2+U3+U总=U1=U2=U3功率分配P总=P1+P2+P3+P总=P1+P2+P3+10.欧姆表测电阻(1)电路组成(2)测量原理两表笔短接后,调节Ro使电表指针满偏,得Ig=E/(r+Rg+Ro)接入被测电阻Rx后通过电表的电流为Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)由于Ix与Rx对应,因此可指示被测电阻大小(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
高中物理学业水平合格考知识点总结高中物理学业水平合格考知识点一、F等ma,牛顿二定律,产生加速度,原因就是力。
合力与a同方向,速度变量定a向,a变小则u可大,只要a与u同向。
N、T等力是视重,mg乘积是实重;超重失重视视重,其中不变是实重;加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零。
二、位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移1、匀速直线运动的位移图像是一条与横轴平行的直线。
2、匀变速直线运动的位移图像是一条倾斜直线。
3、位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大。
三、产生磨擦力的条件物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力。
四、质点在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。
质点条件:1、物体中各点的运动情况完全相同(物体做平动)。
2、物体的大小(线度)它通过的距离。
五、电功率是描述电流做功快慢的物理量。
额定功率:是指用电器在额定电压下工作时消耗的功率,铭牌上所标称的功率。
实际功率:是指用电器在实际电压下工作时消耗的功率。
用电器只有在额定电压下工作实际功率才等于额定功率。
六、物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零1、在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向。
2、在N个共点力作用下物体处于平衡状态,则任意第N个力与(N-1)个力的合力等大反向。
3、处于平衡状态的物体在任意两个相互垂直方向的合力为零。
七、恒定电流电荷定向移动时,电流等于q比t。
自由电荷是内因,两端电压是条件。
正荷流向定方向,串电流表来计量。
电源外部正流负,从负到正经内部。
物理合格考的主要知识考点归纳1、热力学第二定律(1)常见的两种表述①克劳修斯表述(按热传递的方向性来表述):热量不能自发地从低温物体传到高温物体。
物理知识点公式汇总必修1知识点1.质点(A )在某些情况下,可以不考虑物体的大小和形状。
这时,我们突出“物体具有质量”这一要素,把它简化为一个有质量的点,称为质点。
(注意:不能以物体的绝对大小作为判断质点的依据)2.参考系(A )要描述一个物体的运动,首先要选定某个其他物体做参考,观察物体相对于这个“其他物体”的位置是否随时间变化,以及怎样变化。
这种用来做参考的物体称为参考系。
描述研究对象相对参考系的运动情况时,可假设参考系是“不动”的 3.路程和位移(A )路程是物体运动轨迹的长度,是标量。
位移表示物体(质点)的位置变化。
从初位置到末位置作一条有向线段,用这条有向线段表示位移,是矢量4.速度 平均速度和瞬时速度(A )如果在时间t ∆内物体的位移是x ∆,它的速度就可以表示为txv ∆∆=(1) 由(1)式求得的速度,表示的只是物体在时间间隔t ∆内的平均快慢程度,称为平均速度。
如果t ∆非常非常小,就可以认为tx∆∆表示的是物体在时刻t 的速度,这个速度叫做瞬时速度。
速度是表征运动物体位置变化快慢的物理量,是位移对时间的变化率,是矢量。
5.匀速直线运动(A )任意相等时间内位移相等的直线运动叫匀速直线运动。
6.加速度(A )加速度是速度的变化量与发生这一变化所用时间的比值,tva ∆∆= a 的方向与△v 的方向一致,是矢量。
加速度是表征物体速度变化快慢的物理量,与速度v 、速度的变化x ∆v 均无必然关系。
(怎样理解?)7.用电火花计时器(或电磁打点计时器)研究匀变速直线运动(A ) 用电火花计时器(或电磁打点计时器)测速度对于匀变速直线运动中间时刻的瞬时速度等于平均速度:纸带上连续3个点间的距离除以其时间间隔等于打中间点的瞬时速度。
可以用公式2aT x =∆求加速度(为了减小误差可采用逐差法求)。
注意:对aT x =∆要正确理解:连续..、相等..的时间间隔位.移差..8.匀变速直线运动的规律(B )速度公式:v t =v o +at 位移公式:x=v o t+21at 2推论:v t 2-v o 2=2ax 中间时刻速度公式:2t v =20tv v v += 中间位移速度公式:22202tx v v v +=位移差公式:2aT x =∆关于初速度等于零的匀加速直线运动(T 为等分时间间隔),有以下特点:1T 末、2T 末、3T 末……瞬时速度之比v 1∶v 2∶v 3∶……∶v n =1∶2∶3∶……∶n 1T 内、2T 内、3T 内……位移之比S 1∶S 2∶S 3……:S n =12∶22∶32∶……∶n 2 第一个T 内、第二个T 内、第三个T 内……位移之比 S Ⅰ∶S Ⅱ∶S Ⅲ∶……∶S N =1∶3∶5∶……∶(2N-1) 从静止开始通过连续相等的位移所用时间之比 t 1∶t 2∶t 3∶……∶t n =1∶2-1)∶3-2)∶… …∶n -1-n9.匀速直线运动的x-t 图象(A )匀速直线运动的x-t 图象一定是一条直线。
随着时间的增大,如果物体的位移越来越大或斜率为正,则物体向正向运动,速度为正,否则物体做负向运动,速度为负。
匀速直线运动的v-t 图象是一条平行于t 轴的直线,匀速直线运动的速度大小和方向都不描述上述四个图像所反映的运动性质 10.匀变速直线运动的v-t 图象(A)匀变速直线运动的v-t 图象为一直线,直线的斜率大小表示加速度的数值,即a=k ,可从图象的倾斜程度可直接比较加速度的大小。
v-t 图象与坐标轴所包围的面积表示某一过程发生的位移 11.自由落体运动(A )物体只在重力作用下从静止开始下落的运动,叫做自由落体运动。
自由落体运动是初速度为0加速度为g 的匀加速直线运动。
公式:V t =gt h=21gt 212.伽利略对自由落体运动的研究(A ) 13.力(A )物体与物体之间的相互作用称做力。
(理解力的物质性、相互性、矢量性) 施力物体同时也是受力物体,受力物体同时也是施力物体。
t t t t 甲 乙 丙 丁按力的性质分,常见的力有重力、弹力、摩擦力、电场力、磁场力物体与物体之间存在四种基本相互作用:万有引力、电磁相互作用、强相互作用、弱相互作用。
14.重力(A )地面附近的一切物体都受到地球的引力,由于地球的吸引而使物体受到的力叫做重力。
G=mg (g=9.8N/Kg ) 方向: 重力的作用点:重心。
不考虑地球自转,地球表面物体的重力等于万有引力.mg=G2RMm15.形变与弹力(A )物体在力的作用下形状或体积发生改变,叫做形变。
有些物体在形变后能够恢复原状,这种形变叫做弹性形变。
发生形变的物体由于要恢复原状,对跟它接触的物体产生力的作用,这种力叫做弹力。
判断弹力的方向应注意到接触处的情况:平面产生成受到的弹力(压力或支持力)垂直于平面;曲面上某处的弹力垂直于曲面该处的切面;某一个点的弹力垂直于与它接触的平面(或曲面)的切线.弹簧的弹力与弹簧的形变量成正比 F=KX (即:胡克定律。
X 涵义:伸长或缩短的长度) 16.滑动摩擦力 静摩擦力(A )两个相互接触而保持相对静止的物体,当他们之间存在滑动趋势时,在它们的接触面上会产生阻碍物体间相对滑动的力,这种力叫静摩擦力。
两个互相接触挤压且发生相对运动的物体,在它们的接触面上会产生阻碍相对运动的力,这个力叫做滑动摩擦力。
无论是静摩擦力或滑动摩擦力,所谓的“滑动趋势”“相对运动”其参考系对象均指与之接触的“接触面”,而不是另外的物体。
或者这样理解:“静”、“动”仅对接触面而言。
(运动的物体可能受静摩擦力,静止的物体可能受滑动摩擦力。
你怎样理解?举例说明)产生摩擦力的条件(1)两物体相互接触(2)接触的物体必须相互挤压发生形变,有弹力(3)两物体有相对运动或相对运动的趋势(4)两接触面不光滑一般说来,静摩擦力根据力的平衡条件来求解,滑动摩擦力根据F=N F 求解,请正确理解N F 的涵义(是什么?).另外滑动摩擦力大小与接触面积、运动速度有关吗?17.力的合成与分解(B )平行四边行定则:两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向。
力的分解是力的合成的逆运算。
合力可以等于分力,也可以小于或大于分力.要正确处理平衡问题(如物体保持静止、匀速直线运动)首要的是学会对物体进行受力分析,规范作出受力示意图,将某个力分解或将某些力合成,这点要根据具体的问题选择最优化的方法,在平时的练习中善于观察、总结。
18.探究、实验:力的合成的平行四边形定则(A ) 19.共点力作用下物体的平衡(A )如果一个物体受到N 个共点力的作用而处于平衡状态,那么这N 个力的合力为零 20.牛顿第一定律(A )一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.这就是牛顿第一定律。
牛顿第一运动定律表明,物体具有保持原来匀速直线运动状态或静止状态的性质,我们把这个性质叫做惯性。
牛顿第一定律又叫做惯性定律。
量度物体惯性大小的物理量是它们的质量。
质量越大,惯性越大,质量不变,惯性不变。
21.探究加速度与力、质量的关系(B )研究方法:控制变量法,先保持质量m 不变,研究a 与F 之间的关系,再保持F 不变,研究a 与m 之间的关系。
数据分析上作a-F 图象和a-m1图象 22.牛顿第二定律(B )物体的加速度跟物体受到的作用力成正比,跟物体的质量成反比。
加速度的方向与合力方向一致。
F 合=ma牛顿第二定律用最简洁的方式揭示了自然界中纷繁复杂现象背后的规律,使人们对力和运动的关系有了深刻、正确的认识,其意义十分重大。
在研究匀变速直线运动的时候,涉及到加速度,一般要对物体进行受力分析,用牛顿第二定律建立方程23.牛顿第三定律(A )两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。
作用力和反作用力性质一定相同,作用在两个不同的物体上.而一对平衡力一定作用在同一个物体上,力的性质可以相同,也可以不同.24.力学单位制(A )在力学范围内,国际单位制规定长度、质量、时间为三个基本物理量。
它们的单位米、千克、秒为基本单位。
必修2知识点25.功(A )力对物体所做的功等于力的大小、位移的大小、力和位移夹角的余弦三者的乘积。
功的定义式:αcos ⋅=FL W (适用于恒力做功)注意:ο0=α时,FL W =;但ο90=α时,0=W ,力不做功;ο180=α时,FL W -=. 功虽有正负之分,但功是标量,其负值表示阻力做功。
26功率(A )功与完成这些功所用时间的比值。
平均功率:tWP =; 功率是表示物体做功快慢的物理量。
力与速度方向一致时:P=Fv27.重力势能 重力势能的变化与重力做功的关系(A )物体的重力势能等于它所受重力与所处高度的乘积,mgh E P =。
重力势能的值与所选取的参考平面有关。
重力势能的变化与重力做功的关系:重力做多少功重力势能就减少多少,克服重力做多少功重力势能就增加多少. 重力对物体所做的功等于物体重力势能的减少量:P G E W ∆-=。
重力做功的特点:重力对物体所做的功只与物体的是始末位置有关,而跟物体的具体运动路径无关。
28.弹性势能(A ) 29.动能(A )物体由于运动而具有的能量。
221mv E k =物体质量越大,速度越大则物体的动能越大。
※30.探究、实验:做功与物体动能变化的关系(A )31.动能定理(A )合力在某个过程中对物体所做的功,等于物体在这个过程中动能的变化。
表达式:12k k E E W -=合或k E W ∆=合。
动能定理适用于恒力作用、变力作用;适用于直线运动、曲线运动;是解决非匀变速运动的最好途径,在动力学问题中应增强运用动能定理解题的主动意识。
32.机械能守恒定律(B )机械能:机械能是动能、重力势能、弹性势能的统称,可表示为: E (机械能)=E k (动能)+E p (势能)机械能守恒定律:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
)(E E E E K2P2K1P1恒量E =+=+,式中K1P1E E 、是物体处于状态1时的势能和动能,K2P2E E 、 是物体处于状态2时的势能和动能。
使用该式应先选取某个位置作为零势能参考平面。
还可以使用“转化式”△E k (增)=△E p (减) (或△E k (减)=△E p (增),无需选参考平面) 33.用电火花计时器(或电磁打点计时器)验证机械能守恒定律(A ) 实验目的:通过对自由落体运动的研究验证机械能守恒定律。
速度的测量:做匀变速运动的纸带上某点的瞬时速度,等于相邻两点间的平均速度。
下落高度的测量:等于纸带上两点间的距离比较V 2与2gh 相等或近似相等,则说明机械能守恒34.能量守恒定律(A )能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。