测量误差基本知识
- 格式:doc
- 大小:195.50 KB
- 文档页数:8
第五章测量误差基本知识5-1 测量误差概述一、测量误差产生的原因对某一个量进行多次重复观测,例如重复观测某一水平角或往返丈量某段距离等,其多次测量的结果总存在着差异,这说明观测值中含有测量误差。
产生测量误差的原因很多,概括起来有下列三个方面:1.仪器的原因测量工作是采用经纬仪、水准仪等测量仪器完成的,测量仪器的构造不可能十分完善,从而使测量结果受到一定影响。
例如,经纬仪的视准轴与横轴不垂直、度盘刻划不均匀,都会使所测角度产生误差;水准仪的视准轴不平行于水准管轴、望远镜十字丝不水平,都会使高差产生误差。
2.观测者的原因由于观测者感觉器官的鉴别能力存在局限性,所以对仪器的各项操作,如经纬仪对中、整平、瞄准、读数等方面都会产生误差。
此外,观测者的技术熟练程度和工作态度也会对观测成果带来不同程度的影响。
3.外界环境的影响测量所处的外界环境(包括温度、风力、日光、大气折光等)时刻在变化,使测量结果产生误差。
例如,温度变化会使钢尺产生伸缩,风吹和日光照射会使仪器的安置不稳定,大气折光会使瞄准产生偏差等。
人、仪器和外界环境是测量工作的观测条件,由于受到这些条件的影响,测量中的误差是不可避免的。
观测条件相同的各次观测称为等精度观测;观测条件不相同的各次观测称为不等精度观测。
二、测量误差的分类测量误差按其对观测结果影响性质的不同分为系统误差和偶然误差两类。
1.系统误差在相同的观测条件下对某一量进行一系列观测,若误差的出现在符号和数值上均相同,或按一定的规律变化,这种误差称为系统误差。
例如,用名义长度为30.000m,而实际鉴定后长度为30.006m的钢卷尺量距,每量一尺段就有0.006m的误差,其量距误差的影响符号不变,且与所量距离的长度成正比。
所以,系统误差具有积累性,对测量结果的影响较大;另一方面,系统误差对观测值的影响具有一定的规律性,且这种规律性总能想办法找到,因此系统误差对观测值的影响可用计算公式加以改正,或采用一定的测量措施加以消除或削弱。
四、测量误差基本知识
1、测量误差分哪两类?它们各有什么特点?测量中对它们的主要处理原则是什么?
2、产生测量误差的原因有哪些?偶然误差有哪些特性?
β
图4-1
6、在一个平面三角形中,观测其中两个水平角(内角)α和β,其测角中误差均为m=±20",根据角α和角β可以计算第三个水平角γ,试计算γ角的中误差mγ。
7、量得某一圆形地物直径为64.780m ,求其圆周的长S 。
设量测直径的中误差为±5㎜,求其周长的中误差m S 及其相对中误差m S /S 。
a P=a ,m a =m a =m a =m a =计算面积,求周长的中误差
(4)已知D=()
h S -,
s m =±5mm ,h m =±5mm ,求D m 。
(5)如图4-2,已知xa m =±40 mm ,ya m =±30 mm ;
S=30.00m ,β=30︒ 15'10",s m =±5.0mm ,βm =±6"。
求P 点坐标的中误差xp m 、yp m 、M (M=yp xp
m m +
)。
P
A B
图 4-2
(6)如图4-3,已知xa m =±40 mm ,ya m =±30 mm ;S=130.00m ,β=130︒ 15'10",s m =±5.0mm ,βm =±6"。
求P 点坐标的中误差xp m 、yp m 、M 。
,,a
和b 可由下式求出:)
sin( ;)sin(βαβα+=
+=b a ,计算中误差a m 和b m 。
11、限差讨论
(1)已知R L m m ==±8.5 ",β=(L+R )/2,f=L -R 。
求容许误差β∆、f ∆(∆取3倍中误差)。
(2)已知f=n i βββββ++++++......-(n -2)⨯180︒;βm =±8.5 ",求f ∆(∆取2倍中误差)。
;求αm
12、何谓不等精度观测?何谓权?权有何实用意义?
13、某点P 离开水准点A 为1.44㎞(路线1),离开水准点B 为0.81㎞(路线2)。
今用水准测量从A 点到P 点测得其高程为16.848m ,又从B 点至P 点测得其高程为16.834m 。
设水准测量高差观测值的权为路线长度(单位为㎞)的倒数,试用加权平均的方法计算P 点的
高程H P及其高程中误差mH(表4-3)。
表4-3
″,
γ
(2)计算单位权中误差;
(3)求β、γ角的中误差mβ和mγ。
17、已知观测值L1、L2、L3的中误差分别为±2″、±3″、±4″,应用公式p i=μ2/m i2完成以下作用;
(1)设L1为单位权观测,求L1、L2、L3的权;
(2)设L2为单位权观测,求L1、L2、L3的权;
(3)设单位权中误差u=±1″,求L1、L2、L3的权;
(4)根据以上结果,写出一组权的比例关系,并说明它与中误差表示精度的区别。
18、设观测一个方向的中误差(为单位权中误差)m0=±4″,求由两个方向组成角度的权。
19、设10km水准路线的权为单位权,其单位权中误差m0=±16mm,求1km水准测量的中误差及其权。
23、甲、乙、丙三人在A、B两水准点间作水准测量。
甲路线观测,高差为a,单位权中误差为±3mm,(以2公里为单位权)。
乙路线观测高差为b,单位权中说差为±2mm(为1公里为单位权)。
丙路线观测高差为c,单位权中误差为±4mm(以4公里为单位权)。
现欲根据a、b、c三值求A、B之间高差的带权平均值,试求三者的权之比。
24、X角为L1、L2两角之和,L1=32°18′14″,是由20次观测结果平均而得,每次观测
中误差为±5″。
L2=80°16′07″,是由16次观测结果平均而得,每次观测中误差为±8″,如以±5″作为单位权中误差,求X角的权。
25、若要在坚强点间布设一条附含水准路线,已知每公里观测中误差等于±5.0mm,欲使平差后线路中点高程中误差不大于±10mm,问该路线长度最多可达几公里?
=
b
28、已知L1、L2是相互独立的观测值,其中分别是σ1和σ2。
又知W1=3L1-L2,W2=L1+L2,而且有:
3X1+X2-W1=0
X1-X2-W2=0
试求X1和X2的中误差σX1,σX2。
29、在同精度直接平差中,设被观测量的最或然值为X,第二个观测值及其改正数分别为L2、V2。
已知σX=±4.6cm,σV2=±10.2cm,试求L2的中误差是多少?
解:∵L2=X-V2,σV22=±10.2cm,∴σL2=±11.2cm,这样解法对不对?为什么?。