5.4二次函数与一元二次方程
- 格式:doc
- 大小:95.00 KB
- 文档页数:4
.3.1二次函数与一元二次方程班级 姓名 【学习目标】1.经历探索二次函数与一元二次方程关系的过程,体会方程与函数之间的联系;2.理解抛物线与x 轴公共点的个数与相应的一元二次方程根的对应关系;3.会求抛物线与坐标轴的交点坐标.【课前自习】1. 根据c bx ax y ++=2的图象和性质填表:函 数图 象a开口对称轴顶 点增 减 性 cbx ax y ++=2向上当x 时,y 随x的增大而减少. 当x 时,y 随x 的增大而 .0<a当x 时,y 随x的增大而减少. 当x 时,y 随x 的增大而 .2.二次函数的顶点式是 ,其中顶点坐标是 ,对称轴是 .3.解下列一元二次方程:①0322=--x x ②0962=+-x x ③0322=+-x x4.对于任何一个一元二次方程02=++c bx ax ,我们可以通过表达式 的值判断方程的根的情况如下:当 >0时,方程有 实数根; 当 =0时,方程有 实数根; 当 <0时,方程 实数根.xyOxyOxy( , )( , )Oxy( , )xy【课堂助学】一、探索归纳:1.观察二次函数的图象,写出它们与x 轴、y 轴的交点坐标: 函数 322--=x x y962+-=x x y322+-=x x y图象交 点与x 轴交点坐标是 与x 轴交点坐标是 与x 轴 与y 轴交点坐标是 与y 轴交点坐标是 与y 轴交点坐标是2.对比《课前自习》第3题各方程的解,你发现什么?3.归纳:⑴一元二次方程02=++c bx ax 的实数根就是对应的二次函数c bx ax y ++=2与x 轴交点的 .⑵二次函数与一元二次方程的关系如下:(一元二次方程的实数根记为21x x 、)二次函数c bx ax y ++=2与一元二次方程02=++c bx ax与x 轴有 个交点 ⇔ac b 42- 0,方程有 的实数根是 .与x 轴有 个交点 这个交点是 点⇔ac b 42- 0,方程有 的实数根是 .与x 轴有 个交点 ⇔ ac b 42- 0,方程 实数根. ⑶二次函数c bx ax y ++=2与y 轴交点坐标是 .练习.判断下列函数的图象与x 轴是否有公共点,有几个公共点,并说明理由. ⑴x x y -=2; ⑵962-+-=x x y ⑶11632++=x x y教师 评价家长 签字xyy=x -6x+9Oxyy=x -2x-3Oxyy=x -2x+3O二、典型例题:例1、已知二次函数342+-=x x y .求该抛物线的图象与坐标轴的交点坐标.归纳:⑴求抛物线c bx ax y ++=2与x 轴的交点坐标只要令 ,转化为求对应方程 的解;若对应方程的实数根为21x x 、,则抛物线与x 轴 的交点坐标是 ,特别当21x x =时,这个交点就是抛物线的 .⑵求抛物线c bx ax y ++=2与y 轴的交点坐标只要令 ,该交点坐标是 . 这也是求任意函数的图象与坐标轴交点坐标的一般方法.【课堂检测】1.抛物线22x x y --=与x 轴的交点坐标是 ,与y 轴的交点坐标是 .2.抛物线c bx ax y ++=2的图象都在x 轴的下方,则函数值y 的取值范围是 .3.抛物线c bx ax y ++=2与x 轴只有一个交点(-3,0),则它的顶点坐标是 .4. 若抛物线42++=bx x y 与x 轴只有1个交点,求b 的值.. 求抛物线822--=x x y 与x 轴的交点之间的距离.【拓展提升】利用下列平面直角坐标系求例①中抛物线342+-=x x y 与坐标轴的交点围成的 △ABC 的周长和面积.xyCBAy=x 2-4x+3抛物线上是否存在点D ,令△ABD 与△ABC 面积相等,如果有,请写出D 点坐标.【课外作业】1.判断下列函数的图象与x 轴是否有公共点,有几个公共点,并说明理由. ①252+-=x x y ②122-+-=x x y ③322-+-=x x y2.二次函数的图象与一元二次方程的根的关系如下:抛物线与x 轴有 个公共点⇔ac b 42- 0,方程有 实数根; 抛物线与x 轴有 个公共点⇔ac b 42- 0,方程有 实数根; 抛物线与x 轴有 个公共点⇔ac b 42- 0,方程 实数根. 3.抛物线c bx ax y ++=2的图象都在x 轴的上方,则函数值y 的取值范围是 . 4.若抛物线92+-=bx x y 与x 轴只有1个交点,则b = . .抛物线c bx ax y ++=2的顶点是(3,0),则它与x 轴有 个交点. 6.已知二次函数1032--=x x y .⑴求该抛物线的图象与坐标轴的交点坐标. ⑵求抛物线与x 轴的交点之间的距离.。
二次函数与一元二次方程方程《深度探讨:二次函数与一元二次方程方程》一、引言在数学的世界里,二次函数与一元二次方程方程是非常重要的概念。
它们不仅在数学理论和实际问题中起着重要作用,还在生活中的方方面面有着广泛的应用。
本文将从深度和广度的角度对这两个概念进行全面评估,并撰写一篇有价值的文章,希望能够帮助读者更全面、深刻地理解这两个概念。
二、二次函数与一元二次方程方程的概念解析1. 二次函数的定义所谓二次函数,就是最高次项是二次项的函数。
一般来说,二次函数的一般形式可以表示为:f(x) = ax^2 + bx + c。
其中,a、b、c为常数,且a不等于0。
二次函数的图像通常是一个开口向上或向下的抛物线。
2. 一元二次方程方程的定义一元二次方程方程是指最高次项为二次项的方程。
一元二次方程方程的一般形式为:ax^2 + bx + c = 0。
其中,a、b、c为常数,且a不等于0。
一元二次方程方程的求解是数学上重要的课题,它涉及到方程的根与系数之间的关系。
三、从简到繁:二次函数与一元二次方程方程的关系在深入探讨二次函数与一元二次方程方程的关系之前,我们先从简单的实例开始。
以y = x^2为例,这是一个简单的二次函数。
当我们令y=0时,就得到了一个一元二次方程方程x^2 = 0。
通过这个简单的实例,我们可以看到二次函数与一元二次方程方程之间的密切联系。
四、深入探讨:二次函数与一元二次方程方程的求解1. 二次函数的求解对于二次函数f(x) = ax^2 + bx + c,其中a不等于0,我们可以通过多种方法来求解。
一种常用的方法是配方法,即通过将二次项化成完全平方的形式,然后进行转换和求解。
2. 一元二次方程方程的求解对于一元二次方程方程ax^2 + bx + c = 0,其中a不等于0,我们可以利用求根公式或配方法来求解方程的根。
然后根据根的情况,可以进一步讨论一元二次方程方程解的情况。
五、总结与回顾:二次函数与一元二次方程方程的应用与意义二次函数与一元二次方程方程在数学上有着非常重要的应用与意义。
二次函数与一元二次方程知识点
1.二次函数与一元二次方程的关系(二次函数与x 轴交点情况):
一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.
图像与x 轴的交点个数:
① 当240b ac ∆=->时,图像与x 轴交于两点()()1200A x B x ,
,,12()x x ≠,其中12x x ,是一元二次方程()200ax bx c a ++=≠的两根. 12x x ,和的一半恰好是对称轴的横坐标.
② 当0∆=时,图像与x 轴只有一个交点;
③ 当0∆<时,图像与x 轴没有交点.
当0a >时,图像落在x 轴的上方,无论x 为任何实数,都有0y >;
当0a <时,图像落在x 轴的下方,无论x 为任何实数,都有0y <.
2. 抛物线2y ax bx c =++的图像与y 轴一定相交,交点坐标为(0,)c ;
3. 二次函数常用解题方法总结:
(1)求二次函数的图像与x 轴的交点坐标,需转化为一元二次方程;
(2)求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;或者依据函数特点确定自变量能使函数取得最大值的值,并将其带入到表达式中求出最值;
(3)根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a , b ,c 的符号判断图象的位置,要数形结合;
(4)二次函数与一次函数的交点,可通过联立方程求解,从而求出交点坐标。
九下数学《同步练习》§5.4二次函数与一元二次方程(1)隨堂练习1.已知函数y=x2+3x-10.当x=______时,函数值为0,由此可知该函数的图像与x轴的公共点有______个,坐标分别为_________________。
2.已知二次函数y=ax2+bx+c,若其图像与x轴有两个公共点,则b2-4ac_______0;若其图像与x轴有且只有一个公共点,则b2-4ac_______0;若其图像与x轴没有公共点,则b2-4ac_______0。
3.已知二次函数y=x2-5x+c的图像顶点在x轴的上方,则一元二次方程x2-5x+c=0的根的情况是________________________。
4.对于二次函数y=2(x+1)(x-3),下列说法中,正确的是()。
A.其图像与y轴有两个公共点B.其图像与x轴没有公共点C.其图像与x轴有且只有一个公共点D.其图像与x轴有两个公共点5.二次函数y=-3x2-x+4的图像与坐标轴公共点有()。
A.3个B.2个C.1个D.0个6.不画图像,判断下列函数的图像与x轴是否有公共点,如果有,写出公共点的坐标。
(1)y=-2x2-x;(2)y=x2-8x+16 (3)y=3x2-2x+1课后复习7.二次函数y =a(x -5)(x -3)(a ≠0)的图像的对称轴是__________________。
8.若二次函数y =ax 2+bx +c 的图像如图所示,则下列关系式不正确的是( )。
A.a <0B.abc >0C.a +b -c >0D.b 2-4ac >09.已知函数y =mx 2 +(m -3)x -1。
(1)求证:不论m 取何值,这个二次函数的图像都与x 轴有两个公共点;(2)当m =92时,这个二次函数的图像与x 轴交于A 、B 两点,求线段AB 的长; (3)设第(2)题中抛物线的顶点为P ,求△ABP 的面积。
拓展延伸10.我们知道,一元二次方程-x 2 +2x +3=0的根是二次函数y =-x 2+2x +3的图像与x轴的交点的横坐标:x 1=-1,x 2=3。
章节测试题1.【答题】抛物线y=﹣x2+2x+m﹣2与y轴的交点为(0,﹣4),那么m=______.【答案】-2【分析】把点的坐标代入解析式解答即可.【解答】因为抛物线y=﹣x2+2x+m﹣2与y轴的交点为(0,﹣4),所以m﹣2=﹣4,解得m=﹣2.故答案为﹣2.2.【答题】若函数的图像与轴有公共点,则实数a的取值范围______.【答案】a≥-1【分析】根据二次函数与一元二次方程的关系解答即可.【解答】因为二次函数的图像与x轴有公共点,所以,解得: a≥-1,故答案为: a≥-1.3.【答题】若函数y=mx2﹣(m﹣3)x﹣4的图象与x轴只有一个交点,则m的值为______.【答案】0、-1或-9【分析】根据二次函数与一元二次方程的关系解答即可.【解答】当m=0时,原函数解析式为y=3x﹣4,令y=0,则有3x﹣4=0,解得:x=,∴此时函数y=mx2﹣(m﹣3)x﹣4的图象与x轴只有一个交点,∴m=0符合题意;当m≠0时,∵二次函数y=mx2﹣(m﹣3)x﹣4的图象与x轴只有一个交点,∴△=[﹣(m﹣3)]2﹣4×(﹣4)m=0,即m2+10m+9=0,解得:m1=﹣1,m2=﹣9.综上所述:m的值为0、﹣1或﹣9,故答案为0、﹣1或﹣9.4.【答题】抛物线y=9x2﹣px+4与x轴只有一个公共点,则p的值是______.【答案】±12【分析】根据二次函数与一元二次方程的关系解答即可.【解答】解:抛物线与x轴只有一个交点,则△=b2-4ac=0,故:p2-4×9×4=0,解得p=±12.故答案为:±12.5.【答题】已知抛物线y=ax2+4ax+t与x轴的一个交点A(﹣1,0),求抛物线与x轴的另一个交点坐标______.【答案】(-3,0)【分析】根据二次函数与一元二次方程的关系解答即可.【解答】解:由抛物线y=ax2+4ax+t知,该抛物线的对称轴是x=-=-2.∵该抛物线与x轴的两交点一定关于对称轴对称,∴另一个交点为(-3,0).故答案是:(-3,0).6.【答题】若抛物线与轴有两个公共点,则的取值范围是______.【答案】m>-1【分析】根据二次函数与一元二次方程的关系解答即可.【解答】∵与轴相交两点,∴,∴.7.【答题】如果二次函数的顶点在x轴上,那么m =______.【答案】17【分析】根据二次函数与一元二次方程的关系解答即可. 二次函数的顶点在x轴上,说明二次函数的图象与x轴只有一个交点.【解答】解:二次函数的顶点在x轴上,解得:故答案为:8.【答题】一次函数y=x+1与二次函数y=x2﹣x+2的图象有______个交点.【答案】1【分析】根据二次函数与一元二次方程的关系解答即可.【解答】由消去可得得方程:,解得,∴一次函数y=x+1与二次函数y=x2﹣x+2的图象有1个交点.故答案为:1.9.【答题】若抛物线y=mx2+mx-2与x轴只有一个交点,则m= ______ .【答案】-8【分析】根据二次函数与一元二次方程的关系解答即可.【解答】解:抛物线y=mx2+mx-2与x轴只有一个交点,则:解得:或二次项系数故故答案为:10.【答题】抛物线与轴的公共点的个数是______.【答案】2【分析】根据二次函数与一元二次方程的关系解答即可.【解答】∵抛物线解析式为:y=x2−x−1,∴a=1,b=−1,c=−1,∴△=b2−4ac=(−1)2−4×1×(−1)=1+4=5>0,∴抛物线与x轴有两个交点,故答案为:2.11.【答题】已知抛物线y=x2−2x+2-a与x轴有两个不同的交点,则直线y=ax+a不经过第______ 象限。
5.4二次函数与一元二次方程-苏科版九年级数学下册专题巩固训练一、选择题1、下面的表格列出了函数y=ax2+bx+c(a,b,c是常数,且a≠0)的部分x与y的对应值,那么方程ax2+bx+c=0的一个根x的取值范围是( )x … 6.17 6.18 6.19 6.20…y …-0.03-0.010.020.04…A.6<x<6.17 B.6.17<x<6.18 C.6.18<x<6.19 D.6.19<x<6.202、已知二次函数y=(a﹣1)x2﹣2x+1的图象与x轴有两个交点,则a的取值范围是()A.a<2 B.a>2 C.a<2且a≠1 D.a<﹣23、若函数y=x2-2x+b的图象与坐标轴有三个交点,则b的取值范围是()A.b<1且b≠0 B.b>1 C.0<b<1 D.b<14、王芳将如图所示的三条水平直线m1,m2,m3中的一条记为x轴(向右为正方向),三条竖直直线m4,m5,m6中的一条记为y轴(向上为正方向),并在此坐标平面内画出了抛物线y=ax2-6ax-3,则她所选择的x轴和y轴分别为()A.m1,m4B.m2,m5C.m3,m6D.m4,m55、某同学在利用描点法画二次函数y=ax2+bx+c(a≠0)的图象时,先取自变量x的一些值,计算出相应的函数值y,如下表所示:x …0 1 2 3 4 …y …﹣3 0 ﹣1 0 3 …接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是()A.B.C.D.6、已知二次函数y=x2-x+14m-1的图像与x轴有交点,则m的取值范围是()A.m≤5 B.m≥2 C.m<5 D.m>27、若抛物线y=(x﹣2m)2+3m﹣1(m是常数)与直线y=x+1有两个交点,且这两个交点分别在抛物线对称轴的两侧,则m的取值范围是()A.m<2 B.m>2 C.m D.m8、若二次函数y=2x2+mx+8的图像如图所示,则m的值是()B.8 C.±8 D.69、如图,已知二次函数y=13x2+23x−1的图象与x轴交于A、B两点,与y轴交于点C,连接AC,点P是抛物线上的一个动点,记△APC的面积为S,当S=2时,相应的点P的个数是()A.4 个B.3个C.2个D.1个10、已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数图象(如图),当直线y =-x +m 与新图象有4个交点时,m 的取值范围是( )A .-254<m<3B .-254<m<2 C .-2<m <3 D .-6<m <-2 二、填空题11、抛物线y =x 2+2x -3与x 轴的交点坐标是________ 和________ ,一元二次方程x 2+2x -3=0的两根是____________ ,故抛物线y =x 2+2x -3与x 轴交点的________ 就是一元二次方程x 2+2x -3=0的两个根.12、抛物线y =ax 2+bx+c 经过点A (﹣4,0),B (3,0)两点,则关于x 的一元二次方程ax 2+bx+c =0的解是13、已知函数y =-2x 2+4x +b 的部分图像如图所示,2x 2+4x +b =0的解为______________.=ax 2+c 与直线y =mx +n 交于A (-1,p ),B (3,q )两点,则不等式ax 2-mx +c >n 的解集是________.15,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是________.16、二次函数y =ax 2+bx +c 的部分图象如图所示,则ax 2+bx +c >0时,x 的取值范围是_________________,ax 2+bx +c <-1时,x 的取值范围是______________.17、若关于x 的函数y=(a+2)x 2﹣(2a ﹣1)x+a ﹣2的图象与坐标轴有两个交点,则a 的值为_____18、在平面直角坐标系中,抛物线y =x 2+mx -34m 2(m >0)与x 轴交于A ,B 两点.若A ,B 两点到原点的距离分别为OA ,OB ,且满足1OB -1OA =23,则m 的值等于________. 三、解答题19、如图,抛物线y =-x 2+3x +4与x 轴交于A ,B 两点.(1)求线段AB 的长;(2)已知点C(m ,m +1)在第一象限的抛物线上,求△ABC 的面积S.20、如图,二次函数y =(x -2)2+m 的图像与y 轴交于点C ,B 是点C 关于该二次函数图像的对称轴对称的点.已知一次函数y =kx +b 的图像经过该二次函数图像上的点A(1,0)及点B.(1)求二次函数与一次函数的表达式;(2)根据图像,写出满足kx +b ≥(x -2)2+m 的x 的取值范围.211=ax 2-4ax -5(a >0).(1)当a =1时,求抛物线与x 轴的交点坐标及对称轴.(2)①试说明无论a 为何值,抛物线C 1一定经过两个定点,并求出这两个定点的坐标;②将抛物线C 1沿这两个定点所在的直线翻折,得到抛物线C 2,直接写出C 2的表达式.(3)若(2)中抛物线C 2的顶点到x 轴的距离为2,求a 的值.22、对于某一函数给出如下定义:对于任意实数m ,当自变量x m ≥时,函数y 关于x 的函数图象为1G ,将1G 沿直线x m =翻折后得到的函数图象为2G ,函数G 的图象由1G 和2G 两部分共同组成,则函数G为原函数的“对折函数”,如函数y x =(2x ≥)的对折函数为(2)4(2)x x y x x ≥⎧=⎨-+<⎩. (1)求函数2(1)4y x =--(1x ≥-)的对折函数;(2)若点(,5)P m 在函数2(1)4y x =--(1x ≥-)的对折函数的图象上,求m 的值;(3)当函数2(1)4y x =--(x n ≥)的对折函数与x 轴有不同的交点个数时,直接写出n 的取值范围.23、已知:如图,抛物线y =ax 2+3ax +c(a >0)与y 轴负半轴交于点C ,与x 轴交于A ,B 两点,点A 在点B 的左侧,点B 的坐标为(1,0),OC =3OB.(1)求抛物线的解析式.(2)若D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值.(3)若点E 在x 轴上,点P 在抛物线上.是否存在以A ,C ,E ,P 为顶点且以AC 为一边的平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.5.4二次函数与一元二次方程 -苏科版九年级数学下册 专题巩固训练(答案)一、选择题 1、下面的表格列出了函数y =ax 2+bx +c (a ,b ,c 是常数,且a ≠0)的部分x 与y 的对应值,那么方程ax 2+bx +c =0的一个根x 的取值范围是( C )x … 6.17 6.18 6.19 6.20 …y … -0.03 -0.01 0.02 0.04 …A .6<x <6.17B .6.17<x <6.18C .6.18<x <6.19D .6.19<x <6.20 2、已知二次函数y =(a ﹣1)x 2﹣2x +1的图象与x 轴有两个交点,则a 的取值范围是( )A .a <2B .a >2C .a <2且a ≠1D .a <﹣2【分析】根据抛物线与x 轴的交点问题得到△=22﹣4(a ﹣1)>0,a ﹣1≠0,然后解不等式即可.【解答】解:由题意得:,解得:.故选:C .3、若函数y =x 2-2x +b 的图象与坐标轴有三个交点,则b 的取值范围是( )A .b <1且b ≠0B .b >1C .0<b <1D .b <1 【答案】A 【解析】 ∵函数y =x 2-2x +b 的图象与坐标轴有三个交点,∴⎩⎪⎨⎪⎧(-2)2-4b >0,b ≠0,解得b <1且b ≠0.4、王芳将如图所示的三条水平直线m 1,m 2,m 3中的一条记为x 轴(向右为正方向),三条竖直直线m 4,m 5,m 6中的一条记为y 轴(向上为正方向),并在此坐标平面内画出了抛物线y =ax 2-6ax -3,则她所选择的x 轴和y 轴分别为( )A .m 1,mB .m ,m 5C .m 3,m 6D .m 4,m 5【答案】A [解析] ∵y =ax -6ax -3=a (x -3)2-3-9a ,∴抛物线的对称轴为直线x =3,∴王芳选择的y 轴为直线m 4.∵抛物线y =ax 2-6ax -3与y 轴的交点为(0,-3),∴抛物线与y 轴的交点在x 轴的下方,∴王芳选择的x 轴为直线m 1.5、某同学在利用描点法画二次函数y =ax 2+bx+c (a ≠0)的图象时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示:x … 0 1 2 3 4 …y … ﹣3 0 ﹣1 0 3 …接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是( A )A .B .C .D .6、已知二次函数y =x 2-x +14m -1的图像与x 轴有交点,则m 的取值范围是( ) A .m ≤5 B .m ≥2 C .m <5 D .m >2[解析] ∵二次函数的图像与x 轴有交点,∴b 2-4ac =(-1)2-4×⎝⎛⎭⎫14m -1≥0,解得m ≤5.故选A.7、若抛物线y=(x ﹣2m )2+3m ﹣1(m 是常数)与直线y=x+1有两个交点,且这两个交点分别在抛物线对称轴的两侧,则m 的取值范围是( A )A .m <2B .m >2C .mD .m8、若二次函数y =2x 2+mx +8的图像如图所示,则m 的值是( )A .-8B .8C .±8D .6[解析] 由图可知,抛物线与x 轴只有一个交点,∴b 2-4ac =m 2-4×2×8=0,解得m =±8.又∵对称轴为直线x =-m 2×2<0,∴m >0,∴m 的值为8.故选B.9、如图,已知二次函数y=13x 2+ 23x −1的图象与x 轴交于A 、B 两点,与y 轴交于点C ,连接AC ,点P 是抛物线上的一个动点,记△APC 的面积为S ,当S=2时,相应的点P 的个数是( C )A .4 个B .3个C .2个D .1个10、已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数图象(如图),当直线y =-x +m 与新图象有4个交点时,m 的取值范围是( )A .-254<m<3B .-254<m<2C .-2<m <3D .-6<m <-2【答案】D 【解析】 如图,当y =0时,-x 2+x +6=0,解得x 1=-2,x 2=3,则A (-2,0),B (3,0).将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方的部分图象的解析式为y =(x +2)(x -3),即y =x 2-x -6(-2≤x ≤3).当直线y =-x +m 经过点A (-2,0)时,2+m =0,解得m =-2;当直线y =-x +m 与抛物线y =x 2-x -6有唯一公共点时,方程x 2-x -6=-x +m 有两个相等的实数根,解得m =-6.所以当直线y =-x +m 与新图象有4个交点时,m 的取值范围为-6<m <-2.二、填空题11、抛物线y =x 2+2x -3与x 轴的交点坐标是________ 和________ ,一元二次方程x 2+2x -3=0的两根是____________ ,故抛物线y =x 2+2x -3与x 轴交点的________ 就是一元二次方程x 2+2x -3=0的两个根.答案:(-3,0) (1,0) x 1=-3,x 2=1 横坐标12、抛物线y =ax 2+bx+c 经过点A (﹣4,0),B (3,0)两点,则关于x 的一元二次方程ax 2+bx+c =0的解是 ﹣4或3.13、已知函数y =-2x 2+4x +b 的部分图像如图所示,2x 2+4x +b =0的解为______________.[x =1,∵图像与x 轴的一个交点坐标为(3,0),∴图像与x 轴的另一个交点坐标为(-1,0),∴关于x 的一元二次方程-2x 2+4x +b =0的解为x 1=-1,x 2=3.14、如图,抛物线y =ax 2+c 与直线y =mx +n 交于A (-1,p ),B (3,q )两点,则不等式ax 2-mx +c >n 的解集是___x <-1或x >3 _____.15,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是________.[解析] ∵二次函数y =2x 2-6x +m 的函数值总是正值,a =2>0,∴函数图像与x 轴无交点,即b 2-4ac <0,∴36-8m <0,解得m >92. 16、二次函数y =ax 2+bx +c 的部分图象如图所示,则ax 2+bx +c >0时,x 的取值范围是_________________,ax 2+bx +c <-1时,x 的取值范围是______________.答案:x >3或x <-1,0<x <217、若关于x 的函数y=(a+2)x 2﹣(2a ﹣1)x+a ﹣2的图象与坐标轴有两个交点,则a 的值为_﹣2,2或174 ____18、在平面直角坐标系中,抛物线y =x 2+mx -34m 2(m >0)与x 轴交于A ,B 两点.若A ,B 两点到原点的距离分别为OA ,OB ,且满足1OB -1OA =23,则m 的值等于________. [解析] 设方程x 2+mx -34m 2=0的两根分别为x 1,x 2,且x 1<x 2,则x 1+x 2=-m <0,x 1x 2=-34m 2<0, 所以x 1<0,x 2>0,由1OB -1OA =23,可知OA >OB ,又m >0,x 1+x 2<0, 所以抛物线的对称轴在y 轴的左侧,于是OA =|x 1|=-x 1,OB =x 2,所以1x 1+1x 2=23,即x 1+x 2x 1x 2=23,故-m -34m 2=23,解得m =2.三、解答题19、如图,抛物线y =-x 2+3x +4与x 轴交于A ,B 两点.(1)求线段AB 的长;(2)已知点C(m ,m +1)在第一象限的抛物线上,求△ABC 的面积S.4,∴当y =0时,-x 2+3x +4=0,解得x 1=-1,x 2=4,∴A (-1,0),B (4,0),∴AB =5.(2)∵点C (m ,m +1)在第一象限的抛物线上,∴m +1=-m 2+3m +4,且m >0,解得m =3,∴C (3,4).过点C 作CH ⊥AB 于点H ,则CH =4,∴S =12AB ·CH =12×5×4=10.20、如图,二次函数y =(x -2)2+m 的图像与y 轴交于点C ,B 是点C 关于该二次函数图像的对称轴对称的点.已知一次函数y =kx +b 的图像经过该二次函数图像上的点A(1,0)及点B.(1)求二次函数与一次函数的表达式;(2)根据图像,写出满足kx +b ≥(x -2)2+m 的x 的取值范围.0)的坐标代入y =(x -2)2+m ,得(1-2)2+m =0,解得m =-1,∴二次函数的表达式为y =(x -2)2-1.当x =0时,y =4-1=3,故点C 的坐标为(0,3).由于点C 和点B 关于抛物线的对称轴对称,∴点B 的坐标为(4,3).将A (1,0),B (4,3)分别代入y =kx +b ,得⎩⎨⎧k +b =0,4k +b =3,解得⎩⎨⎧k =1,b =-1, 则一次函数的表达式为y =x -1.(2)∵点A ,B 的坐标分别为(1,0),(4,3),∴当kx +b ≥(x -2)2+m 时,1≤x ≤4.21、已知抛物线C 1:y =ax 2-4ax -5(a >0).(1)当a =1时,求抛物线与x 轴的交点坐标及对称轴.(2)①试说明无论a 为何值,抛物线C 1一定经过两个定点,并求出这两个定点的坐标;②将抛物线C 1沿这两个定点所在的直线翻折,得到抛物线C 2,直接写出C 2的表达式.(3)若(2)中抛物线C 2的顶点到x 轴的距离为2,求a 的值.解:(1)当a =1时,抛物线的表达式为y =x 2-4x -5=(x -2)2-9.令y =0,可得(x -2)2-9=0,解得x 1=-1,x 2=5,∴抛物线与x 轴的交点坐标为(-1,0),(5,0),对称轴为直线x =2.(2)①y =ax 2-4ax -5=(x 2-4x )a -5,当x 2-4x =0,即x 1=0,x 2=4时,原抛物线无论a 为何值一定过点(0,-5)和(4,-5)两个定点. ②将抛物线翻折后过点(0,-5)和(4,-5),开口大小与原来抛物线的开口大小相同,开口方向与原来抛物线的开口方向相反,∴设C 2的表达式为y =-ax 2+bx +c .将(0,-5)和(4,-5)代入,得b =4a ,c =-5,∴抛物线C 2的表达式为y =-ax 2+4ax -5.(3)抛物线C 2的表达式y =-ax 2+4ax -5可化为y =-a (x -2)2+4a -5,∴顶点的纵坐标为4a -5,∴|4a -5|=2, 解得a =74或a =34.22、对于某一函数给出如下定义:对于任意实数m ,当自变量x m ≥时,函数y 关于x 的函数图象为1G ,将1G 沿直线x m =翻折后得到的函数图象为2G ,函数G 的图象由1G 和2G 两部分共同组成,则函数G 为原函数的“对折函数”,如函数y x =(2x ≥)的对折函数为(2)4(2)x x y x x ≥⎧=⎨-+<⎩. (1)求函数2(1)4y x =--(1x ≥-)的对折函数;(2)若点(,5)P m 在函数2(1)4y x =--(1x ≥-)的对折函数的图象上,求m 的值; (3)当函数2(1)4y x =--(x n ≥)的对折函数与x 轴有不同的交点个数时,直接写出n 的取值范围.(1)22(1)4(1)(3)4(1)x x y x x ⎧--≥-=⎨+-<-⎩; (2)4m =或-6; (3)n<-1时,与x 轴有4个交点,n=-1时,与x 轴有3个交点;13n -<<与x 轴有2个交点;n=3时,与x 轴有1个交点;n>3时,与x 轴无交点.23、已知:如图,抛物线y =ax 2+3ax +c(a >0)与y 轴负半轴交于点C ,与x 轴交于A ,B 两点,点A 在点B 的左侧,点B 的坐标为(1,0),OC =3OB.(1)求抛物线的解析式.(2)若D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值.(3)若点E 在x 轴上,点P 在抛物线上.是否存在以A ,C ,E ,P 为顶点且以AC 为一边的平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)∵点B 的坐标为(1=3OB ,点C 在y 轴的负半轴上,∴C (0,-3).∵抛物线y =ax 2+3ax +c 经过点B ,C ,∴⎩⎪⎨⎪⎧-3=c ,0=a +3a +c ,解得⎩⎪⎨⎪⎧a =34,c =-3,∴y =34x 2+94x -3. (2)∵y =34x 2+94x -3, 令y =0,则34x 2+94x -3=0,解得x 1=-4,x 2=1,∴A (-4,0). 设D (m ,34m 2+94m -3),其中-4<m <0, 连接OD , 则S 四边形ABCD =S △AOD +S △OCD +S △BOC =12×4×(-34m 2-94m +3)+12×3×(-m )+12×3×1=-32m 2-6m +152=-32(m +2)2+272, ∴当m =-2时,S 四边形ABCD 有最大值,最大值为272. (3)存在.如图所示,①过点C 作CP 1∥x 轴交抛物线于点P 1,过点P 1作P 1E 1∥AC 交x 轴于点E 1,此时四边形ACP 1E 1为平行四边形.∵C (0,-3),∴可设P 1(x ,-3), ∴34x 2+94x -3=-3, 解得x 1=0,x 2=-3,∴P 1(-3,-3);②平移直线AC 交x 轴于点E ,交x 轴上方的抛物线于点P ,当AC =PE 时,四边形ACEP 为平行四边形.∵C (0,-3),∴可设P (x ′,3), ∴34x ′2+94x ′-3=3,即x ′2+3x ′-8=0, 解得x ′=-3+412或x ′=-3-412, 此时存在点P 2(-3+412,3)和P 3(-3-412,3)符合题意. 综上所述,点P 的坐标为(-3,-3)或⎝ ⎛⎭⎪⎫-3+412,3或⎝ ⎛⎭⎪⎫-3-412,3.。
高一数学知识点:二次函数与一元二次方程【导语】以下是作者为大家推荐的有关高一数学知识点,如果觉得很不错,欢迎点评和分享~感谢你的浏览与支持!二次函数(以下称函数)y=ax^2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴以下表:解析式顶点坐标对称轴y=ax^2(0,0)x=0y=a(x-h)^2(h,0)x=hy=a(x-h)^2+k(h,k)x=hy=ax^2+bx+c(-b/2a,[4ac-b^2]/4a)x=-b/2a当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h 个单位得到,当h<0时,则向左平行移动|h|个单位得到.当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;当h0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一样式化为y=a(x-h)^2+k的情势,可肯定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a 时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x?-x?|当△=0.图象与x轴只有一个交点;当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.顶点的横坐标,是获得最值时的自变量值,顶点的纵坐标,是最值的取值.6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一样情势:y=ax^2+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).7.二次函数知识很容易与其它知识综合运用,而形成较为复杂的综合题目。
课题: 5.4 二次函数与一元二次方程讲学稿(2)班级姓名教学过程第一环节复习回顾1 、若方程ax2+bx+c=0的根为x1=-2和x2=3,则二次函数 y=ax2+bx+c的图象与x轴交点坐标是。
2、判断函数 y=x2+2x-5与x轴的交点情况是()A 两个交点B 一个交点C 没有交点D 不能确定3、已知函数y=x2+4x-5求:⑴此函数图象与x轴和y轴的交点坐标;⑵此函数对称轴﹑顶点坐标﹑并说出函数的增减性;⑶思考:根据函数图象直接写出不等式 x2+4x-5 > 0 的解集.第二环节仔细观察、大胆联想问题:函数y = ax2 +bx +c的图象如下图所示,根据图象给出的信息你能得到些什么结论?第三环节新课学习、用心想一想你能根据函数y=x2+2x-5的图象,探索方程x2+2x-5=0的根的取值范围吗?第四环节大胆尝试、练一练利用二次函数y=x2+2x-5的图象,探索方程x2+2x-5=0的另一根的近似值(精确到0.1)第五环节归纳提高利用二次函数的图象求相应一元二次方程的近似解,一般步骤为:小结:这节课我学会了课堂作业1、练一练,利用二次函数的图象,探索方程x2+x-3=0的根的取值范围解:⑴列表如下:(2)在平面直角坐标系中描点,连线,画图象(3)观察图象,估算方程的近似解(精确到0.1).A 、4<x<5B 、5<x<6C 、6<x<7D 、5<x<73、已知二次函数y=ax 2+bx+c (a≠0)的图象如下图所示,下列说法错误的是( )A 、图象关于直线x=1对称B 、函数ax 2+bx+c (a≠0)的最小值是﹣4C 、﹣1和3是方程ax 2+bx+c (a≠0)的两个根 D 、当x <1时,y 随x 的增大而增大4、利用图象法解不等式0342<+-x x 解:先画出函数342+-=x x y 的图象家庭作业1、下列一元二次方程中,必有一根在相邻自然数3与4之间的是( )A 、x 2-2x +1=0 B 、x 2-3x +1=0 C 、x 2-4x +1=0D 、x 2-5x +1=02判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)一个解x 的范围是( ) A 、3<x <3.23B 、3.23<x <3.24C 、3.24<x <3.25D 、3.25<x <3.26 3、★关于方程x 2-2007x +1=0,下列说法错误的是( )A 、必有一根满足0<x 1<1B 、必有一根满足2006<x 2<2007C 、必有一根满足1003<x 1<1004D 、两根均满足0<x <2007(第4题) 4、已知二次函数y =ax 2+bx +c (a ≠0)的顶点坐标(―1,―3.2)及部分图象如上图,由图象可知关于x 的方程ax 2+bx +c =0的两个根分别是x 1=1.3和x 2=__________。
二次函数与一元二次方程的根与系数关系二次函数和一元二次方程在数学中都是重要的概念,并且它们之间存在着密切的联系。
在本文中,我们将探讨二次函数与一元二次方程的根与系数之间的关系,并研究它们之间的一些特性。
一、二次函数的定义与一元二次方程的定义首先,我们先来了解二次函数和一元二次方程的定义。
二次函数是形如 f(x) = ax^2 + bx + c 的函数,其中 a、b、c 是实数,且a ≠ 0。
一元二次方程是形如 ax^2 + bx + c = 0 的方程,其中 a、b、c 是实数,且 a≠ 0。
二、二次函数的图像与一元二次方程的根的关系二次函数的图像是抛物线,它的开口方向取决于二次项的系数 a 的正负。
当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
一元二次方程的根就是方程的解,也就是使得方程等式成立的x 值。
根据二次函数的图像性质,我们可以得出以下结论:1. 当二次函数的抛物线与 x 轴相交时,方程有两个实根;2. 当二次函数的抛物线与 x 轴相切时,方程有一个实根;3. 当二次函数的抛物线与 x 轴无交点时,方程没有实根。
因此,通过观察二次函数的图像,我们可以确定一元二次方程的根的情况。
三、二次函数的系数与一元二次方程的根的关系接下来,我们来研究二次函数的系数与一元二次方程的根之间的关系。
1. 根据一元二次方程的求根公式可知,方程的根的判别式 D = b^2 - 4ac。
判别式 D 的值能够决定方程的根的性质。
具体来说:a) 当 D > 0 时,方程有两个不相等的实根;b) 当 D = 0 时,方程有两个相等的实根;c) 当 D < 0 时,方程没有实根,而是存在两个共轭复根。
2. 通过对比二次函数和一元二次方程的一般形式可知,二次函数的系数与一元二次方程的根之间存在着如下关系:a) 二次函数的顶点坐标为 (-b/2a, f(-b/2a));b) 一元二次方程的根与顶点坐标的关系为 x1 + x2 = -b/a,x1 * x2 = c/a。
类比旧知迎新知 同中析异现本质
——利用图像法对一元二次方程根的判别式的探究活动设计
江苏省兴化市楚水初级中学 张建权
1 教学现状分析
在苏科版九年级下册《5.4二次函数与一元二次方程》一节的第1课时中,教材首先提出了一个问题:二次函数y =2ax +bx +c 与一元二次方程2
ax +bx +c =0有怎样的关系?针对这个问题,教材给出了两个小贴士,其中一个从y 的取值角度说明当y 的值确定后,就得到一个一元二次方程,如y =0,得到2ax +bx +c =0;另一个从二次函数的图像角度说明抛物线与x 轴的交点的横坐标就是一元二次方程2ax +bx +c =0的解,随后教材结合四个具体的一元二次方程及对应的二次函数图像,得出一元二次方程的判别式和对应的抛物线与x 轴的交点情况的关系。
在一次组内教研活动中,一位同仁就开了这节课,这位老师基本按照教材内容的编排进行讲授,数形结合和等价关系的转化处理得当,应该说效果不错,但在课后评课时,点评意见出现了不统一。
部分老师认为,前面已经学习了一次函数图像与x 轴的交点的求法,令y =0,得到关于x 的方程,方程的解就是交点的横坐标,对于本节课,可将此方法直接迁移运用,显得衔接自然,因此本节课的重点就是理解并熟练运用一元二次方程的判别式;另一部分老师认为,本节课中的等价关系的转化过于顺畅,似乎没有辨析的过程,会导致学生对本节课的内容理解不透彻,同时也使本节课只有承前,没有启后,对第2课时一元二次方程根的估值没有进行知识和方法上的铺垫。
两个教师阵营似乎都有道理,一方也很难说服另一方,笔者认为,造成教师意见相左的原因是缺乏一个契合度很高并且有深度的探究活动,将本节课的数学知识的本质揭示出来,从而使学生对问题的本质有一个深入的认识和掌握。
经过苦思冥想,笔者设计了一个探究活动,第二天在本班进行尝试,并邀请几位前辈观摩指导,事后得到他们很高的评价。
现将该探究活动整理成文,供同行分享借鉴,不当之处,请批评指正。
2 探究活动的设计(截选)
片断1:对抛物线与x 公共点轴个数的情形讨论
教师:抛物线y =2ax +bx +c 与y 轴有几个公共点?
学生:一个。
教师:一定存在吗?
学生:一定存在。
教师:一定是一个吗?
学生:一定。
教师:看来,准确地说是“有且只有”一个公共点,这个公共点为(0,c)。
现在不考虑y 轴,只考虑x 轴(PPT 中隐去y 轴,呈现出x 轴),抛物线与x 轴是不是也有且只有一个公共点呢?请大家思考一下,进行小组讨论,并画出示意图。
经过小组讨论、合作交流,最后得出六中情形,如图1所示。
图1
片断2:类比直线与圆的位置关系对六种情形进行分类
教师:很明显,这六种情形可以分为几类?
学生:三类。
教师:哪三类呢?
学生1:没有公共点、一个公共点和两个公共点三类情形。
教师:很好。
如何给这三类情形分别命名呢?
学生2:没有公共点是相离,一个公共点是相切,两个公共点是相交。
教师:这位同学是通过类比直线与圆的位置关系来命名的,非常棒!
片断3:利用顶点位置和开口方向对三类情形进行分析
教师:前面我们学习直线与圆的位置关系的时候,已经知道通过公共点的个数判断是哪一种情形是不可靠的,因为有时候通过肉眼观察是不准确的,于是我们引出了利用数量关系来刻画位置关系,哪位同学来复述一下?
学生3:当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交。
教师:很好!可是抛物线没有半径,更没有所谓的圆心到x轴的距离啊,怎么办呢?假设抛物线开口向上,请大家仔细观察下面这个过程(PPT中将抛物线从有两个公共点的情形上移至没有公共点,如图2),什么时候抛物线与x轴没有公共点呢?
图2
学生4:只要抛物线在x轴的上方。
教师:如何说明抛物线在x轴上方呢?(见学生没有反应)如何保证我们班的学生的身高都比小明高?
学生:只要班上最矮的学生比小明高就可以了。
学生5:只要抛物线的顶点在x轴的上方就可以了。
教师:为什么?
学生5:因为抛物线的顶点是它的最低点。
教师:非常好!抛物线的顶点在x轴的上方,说明什么?
学生6:它的纵坐标大于0。
教师:由此,你可以得到什么关系式?
学生6:a
b a
c 442
->0。
教师:因为抛物线开口向上,所以a >0,从而得到什么呢?
学生:2
b -4a
c <0。
教师:好,那开口向下呢? 学生7:a
b a
c 442
-<0,且a <0,也能得到2b -4ac <0。
教师:由此我们可以得出:当抛物线与x 轴没有公共点时,则2
b -4a
c <0。
那么当抛物线与x 轴有一个公共点、两个公共点时,你又能得到什么结论呢?
学生8:当抛物线与x 轴有一个公共点时,则2b -4ac =0。
学生9:当抛物线与x 轴有两个公共点时,则2b -4ac <0。
教师:以上三类情形都出现了2b -4ac ,这让你想起了什么?
学生:一元二次方程。
教师:什么样的一元二次方程?
学生: 2ax +bx +c =0。
教师:二次函数y =2ax +bx +c 与一元二次方程2ax +bx +c =0有怎样的关系?(见学生没有反应) 从y =2ax +bx +c 到2ax +bx +c =0只需要干什么?
学生10:令y =0。
教师:我们在什么情况下会令一个函数y =0?
学生11:求函数图像与x 轴的交点坐标。
(以下教学过程按照教材进行)
片断4:对ac 异号必有两个公共点的图像法分析
教师:(一组习题完成后)这一组例题习题中的系数有什么共性?
学生12:ac 异号。
教师:前面我们学过,只要ac 异号,一元二次方程2ax +bx +c =0必有两个不相等的实数根,之前我们是通过代数推理得到这个结论的,你能用图像法得到这个结论吗?请大家画出示意图进行说明。
学生13:当a >0、c <0时,抛物线与x 轴一定有两个公共点(如图3(1))。
图3
学生14:当a<0、c>0时,抛物线与x轴一定有两个公共点(如图3(2))。
3 两点心得体会
结合本人的教学流程和反思以及同仁们的点评,笔者有如下几点心得体会。
3.1 关于用教材教的问题
前文已提过,本节课的教材内容虽设置了一些思考活动,但学生容易想到结合前面所学知识,从而快速解决问题,使得本节课的思考量可谓极少。
教材主要是从代数层面,将本节内容和一次函数图像与x轴的交点问题进行类比,借助于数形结合思想观察二次函数图像与x轴的位置关系,从而得到相关结论。
笔者则从几何层面,将本节内容和直线与圆的位置关系进行类比,一方面加深了这节课思考的“厚度”,另一方面也延续了用数量关系刻画位置关系这一重要的数学思想方法。
正如一位前辈所说,“教材作为一种文本,其内容的浓缩性和文本简约性往往以牺牲知识发生发展过程、数学建模过程和思考过程为代价,教材不可以有太多的闲笔,但教学不能没有适当的闲趣”。
3.2 关于探究活动的思考
对于探究活动,笔者认为应把握三个方面:契合度、问题设置和思想性。
探究活动绝不能为了探究而探究,笔者所设置的探究活动的契合度无疑是非常高的,可谓“直捣黄龙”;类比直线与圆的位置关系的探究,问题设置紧扣主题、步步为营、自然顺畅,在不同之处、认知障碍之处寻求突破,引导学生换一种数量关系来刻画抛物线与x轴的位置关系是本节课的一大亮点;完成探究活动之后,再引出教材开头的问题,看似迂回曲折,实则用心良苦,不仅仅是为学生提供一个新的角度看问题,而是将问题的本质揭示出来,以帮助学生深刻理解,在此过程中,类比思想、数形结合思想、集合思想、极限思想等得到淋漓尽致的体现。
另外,这节课所设置的探究活动及对例题的反思活动对下一课时的读懂函数图像、利用二次函数图像求一元二次方程的根的近似值具有思想上的延续和方法上借鉴作用,以及对后续的高中函数的学习都有深刻的影响,可谓燎原之“星星之火”。