最新版初三中考数学模拟试卷易错题及答案2747153
- 格式:doc
- 大小:701.50 KB
- 文档页数:17
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.计算2483(21)(21)(21)⨯+++的结果为( ) A .841-B .6421-C .1621-D .3221-2.点P (x ,y )的坐标x ,y 满足0xy =,则P 点在( ) A .x 轴上B .y 轴上C .x 轴或y 轴上D .原点3.任何一个三角形的三个内角中至少有( ) A .一个角大于60°B .两个锐角C .一个钝角D .一个直角4.计算:53x x ÷=( ) A .2xB .53xC .8xD .15.若x a-b -2y a+b-2=11是二元一次方程,那么a ,b 的值分别为( ) A .0,1 B .2,1 C .1,0 D .2,3 6.下列式子中是完全平方式的是( ) A .22b ab a ++B .222++a aC .222b b a +-D .122++a a7.把多项式(m+1)(m-1)+(m-1)提取公因式(m-1)后,余下的部分是( ) A .m+1 B .2m C .2D .m+28.在1()n m n x x -+⋅=中,括号内应填的代数式是( )A .1m n x++B .2m x+C .1m x+D .2m n x++9.下列各式中,是分式的个数有( ) ①2a ;②3a -;③2c d -;④2a b -;⑤s a b +;⑥4y x-. A .1 个B . 2个C .3个D .4个10. 若方程组21(1)(1)2x y k x k y +=⎧⎨-++=⎩的解x 与y 相等,则k 的值为( )A .3B .2C .1D .不能确定11.如图,把图形沿BC 对折,点A 和点D 重合,那么图中共有全等三角形( ) A . 1对B .2对C .3对D .4对12.已知31216a a -+有一个因式为4a +,则把它分解因式得( ) A .2(4)(1)a a a +++B .2(4)(2)a a ++C .2(4)(2)a a +-D .2(4)(1)a a a +-+13.如图,0是正六边形ABCDE 的中心,下列图形可由△OBC 平移得到的是( ) A .△OAFB .△OABC .△OCDD .△OEF14.如果22(3)9x x kx -=++,那么k 的值等于( ) A .3B .-3C .6D .-615.现规定一种运算a ※b ab a b =+-,其中\a 、b 为实数,则a ※b +()b a -※b 等于( ) A .2a b -B . 2b b -C .2bD .2b a -16.已知4821-可以被在 60~70之间的两个整数整除,则这两个数是( ) A . 61,63B .61 ,65C .61,67D .63,6517.下列各图中,正确画出△ABC 的AC 边上的高的是( )A .B .C .D .18.若∠1和∠3是同旁内角,∠1=78°,则下列说法正确的是( ) A .∠3=78°B .∠3=12°C .∠1+∠3=180°D .∠3的度数无法确定19.小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为69千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈同坐在跷跷板的一端,这是爸爸的一端仍然着地.后来小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地.小宝体重可能是( )A .23.3千克B .23千克C .21.1千克D .19.9千克 20.一个长方体的主视图与左视图如图 所示(单位:cm ),则其俯视图的面积是( )A . l2cm 2B . 8cm 2C .6cm 2D .4cm 221.如图,在Rt △ABC 中,tanBBC=AC 等于( ) A .3B .4C.D .6CBA22.晨晨准备用自己节省的零花钱买一台英语复读机,她现在已有 65 元,计划从现在起 以后每个月节省 25 元,直到她至少有 320元钱,设x 个月她至少有 320 元,则可以用 于计算她所需要的月数x 的不等式是( ) A .2565320x -≥B .2565320x +≥C .2565320x -≤D .2565320x +≤23.下列各不等式中,变形正确的是( ) A .36102x x +>+变形得54x > B .121163x x -+<,变形得612(21)x x --<+ C .3214x x -<+变形得3x <- D .733x x +>-,变形得5x < 24.点P (5,-8)关于x 轴的对称点所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限25.如图,CD 是△ABC 的中线,DE 是△ACD 的中线,BF 是△ADE 的中线,若△AEF 的面积是 1cm 2,则△ABC 的面积是( ) A . 4cm 2B .5 cm 2C . 6 cm 2D .8 cm 226.如图,∠AOB=∠COD=90°,则∠AOC=∠B0D ,这是根据 ( ) A .同角的余角相等 B .直角都相等C .同角的补角相等D .互为余角的两个角相等27. 一个数的绝对值比本身大,那么这个数必定是( )A .正数B .负数C .整数D . 028.算式(-3. 14)×47+ (-3. 14)×53 是由下列哪一个算式用分配律变形得到的?( ) A .(-3.14)×(47+53) B .( -3.14)×( -47-53) C .(-3.1)×( (47-53)D .3.14×(-47+53)29.1.22的按键顺序错误的是( ) A . B . C . D .30.若0a b +=,则ab的值是( ) A .-1B .0C .无意义D .-1 或无意义31.在(5)--,2(5)--,5--,2(5)-中,负数有( ) A .0个 B .1个 C .2个 D .3个32.一个正方体的水晶砖,体积为100cm 3,它的棱长大约在( ) A .4cm~5cm 之间B .5cm~6cm 之间C .6cm~7cm 之间D .7cm~8cm 之间33.立方根等于 8的数是( ) A .512B .64C .2D .2±34.有下列计算 :①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯-=-;④(36)(9)4-÷-=-.其中正确的有( ) A . 1个 B . 2个C .3个D .4个35.分式3a x ,22x y x y +-,22a ba b -+,x y x y +-中最简分式有( )A .1 个B .2 个C . 3 个D .4 个36.要锻造直径为200 mm ,厚为18 mm 的钢圆盘,现有直径为40 mm 的圆钢,不计损耗,则应截取的圆钢长为 ( ) A .350 mmB .400 mmC .450 mmD .500 mm37.若2a b -=,1a c -=,则22(2)()a b c c a --+- =( ) A .10B .9C .2D .138.用扇形统计圆统计全县50万人口的民族构成比例,其中表示少数民族的扇形的圆心角为 90°,则在这个县中,少数民族有( ) A .12.5万人B .13万人C .9万人D .10万人39.如果关于x 的不等式(1)1a x a +>+的解集为1x <,那么 a 的取值范围是( ) A .0a >B .0a <C .1a >-D .1a <-40.α、β都是钝角,甲、乙、丙、丁计算1()6αβ+的结果依次为50°、26°、72°、90°,其中有正确的结果,则计算正确的是( ) A .甲B .乙C .丙D .丁41.如图,C 、D 是线段AB 上两点,若CB =4cm ,DB=7cm ,且D 是AC 的中点,则AC 的长等于( ) A .3cmB .6cmC .11cmD .14cm42.已知线段AB ,在BA 的延长线上取一点C ,使CA=3AB ,则线段CA 与线段CB 之比为( ) A .3:4B .2:3C .3:5D .1:243.如果α∠和β∠互补,且αβ∠>∠,则下列表示β∠的余角的式子中:①90β-∠;②90α∠-;③1()2αβ∠+∠;④1()2αβ∠-∠.正确的有( ) A .4个B .3个C .2个D .1个44.如图,直线AB 、CD 相交于点 O ,OE 平分∠AOD ,若∠BOC=80°,则∠AOE 的度数是( ) A .40°B . 50°C . 80°D .100°45 ) A . 2B .±2C . 4D .±446.-2的相反数是( ) A. 2B.-12C .12D.-247.如图所示,在图①中,Rt △OAB 绕其直角顶点0每次旋转90°,旋转3次得到右边的图形,在图②中,四边形OABC 绕0点每次旋转120°,旋转2次得到右边的图形.以下四个图形中,不能通过上述方式得到的是( )48.钟表上的时针从l0点到ll 点,所旋转的角度是 ( ) A .10°B .15°C .30°D .60°49.如图,身高为1.6 m 的某学生想测量一棵大树的高度,她沿着树影BA 由B 向A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2 m ,CA=0.8 m ,那么树的高度为( ) A .4.8 mB .6.4 mC .8 mD .10 m50.下面的图表是护士统计的一位病人一天的体温变化情况:通过图表,估计这个病人下午16:00时的体温是( ) A .38.0℃B .39.1℃C .37.6℃D .38.6℃51.从 1、2、3、4、5 的 5个数中任取 2个,它们的和是偶数的概率是( ) A .110B .15C .25D . 以上都不对52.如图,A 、B 、C 是⊙O 上三点,∠AOB= 50°,∠OBC=40°,则∠OAC= ( ) A .l5°B .25°C .30°D .40°53.如图,在⊙O 内弦 AB 的弦心距 OD=12OA ,OA 是半径,且OA=2cm ,则图中阴影部分的面积为( )A .2(3π cm 2 B .4(3πcm 2 C .(π cm 2 D .(2π cm 254.设路程为s (km ),速度为v (km /h ),时间为t (h ),当s=100(km )时,在时间的关系式st v= 中,以下说法正确的是( )A .路程是常量,时间、速度都是变量B .路程、时间、速度都是变量C .时间是常量,路程、速度都是变量D .速度是常量,路程、时间都是变量55.如图,在⊙O 中AB=BC=CD ,∠E=40°,∠ACD 的度数等于( ) A .45°B .30°C .15°D .不能确定56.立方体的六个面标有数字:1,2,3,4,5,6,而且相对两个面的数之和相等,下列各图是它的展开图的是 ( )57.已知两个等腰直角三角形斜边的比是 1:2,那么它们的面积比是( )A .1 : 1B .C .1:2D .1:458.下列图形不相似的是( ) A . 所有的圆B .所有的正方形C .所有的等边三角形D .所有的菱形59. 如图,△ABC 中,DE ∥BC ,且 DE 平分△ABC 的面积,则:DE BC 为( )A .B .1:2C .1:3D60. 抛物线y=x 2+6x+8与y 轴交点坐标( ) A .(0,8)B .(0,-8)C .(0,6)D .(-2,0)(-4,0)61.关于二次函数247y x x =+-的最值,叙述正确的是( ) A .当x=2 时,函数有最大值 B .当 x=2时,函数有最小值 C .当 x=-2 时,函数有最大值D .当 x= 一2 时,函数有最小值62.已知α是等腰直角三角形的一个锐角,则sin α的值为( )A .12B .2C .2D .163.一个滑轮起重装置如图所示,滑轮的半径是10cm,当重物上升10cm 时, 滑轮的一条半径OA 绕轴心O 按逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动, 取3.14,结果精确到1°)()A.115°B.60°C.57°D.29°64.在△ABC 中,A=70°,⊙O截△ABC 的三条边所得的弦长相等,则∠BOC 的度数为()A.140°B.l35°C.130°D.125°65.已知两圆半径分别为1与5,圆心距为4,则这两圆的位置关系是()A.外离 B.外切 C.相交 D.内切66.如图,A、B是⊙O上的两点,AC是⊙O的切线,∠OBA=75°,⊙O的半径为1,则OC的长等于()A.2B.2CD67.已知⊙O1和⊙O2相切,两圆的圆心距为9cm,⊙1O的半径为4cm,则⊙O2的半径为()A.5cm B.13cm C.9 cm 或13cm D.5cm 或13cm68.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B. C. D.69.若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有()A.5桶B.6桶C.9桶D.12桶70.在夏日的上午,树影变化的方向是()A.正西→正北B.西偏北→西偏南C.正西→正南D.东偏北→东偏南71.如图表示的是一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()A. B. C . D.72.由6个大小相同的小正方体组合而成的立方体图形如图所示,则关于它的三视图说法正确的是()A.主视图的面积最大B.左视图的面积最大C.俯视图的面积最大D.三个视图的面积一样大73.如图,梯形护坡石坝的斜坡AB 的坡度i =1:3,坝高BC 为2米,则斜坡AB 的长是( )A .B .C .D .6米74.桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )A .B .C .D .75.一件衣服标价132元,若以9折降价出售,仍可获利l0%,则这件衣服的原价是( ) A .118元B .l08元C .106元D .105元76.把抛物线226y x =-+平移后所得的新抛物线在 x 轴上截得的线段长为 2,则原抛物线应( ) A . 向上平移 4 个单位 B .向下平移4个单位 C . 向左平移 4 个单位 D .向右平移4 个单位 77.下列命题中,是真命题的是( ) A .相等的两个角是对顶角B .在同一平面内,垂直于同一条直线的两直线平行C .任何实数的平方都是正实数D .有两边和其中一边的对角分别对应相等的两个三角形全等78.如图,△BDC 是将长方形纸片ABCD 沿对角线BD 折叠得到的,图中(包括实线、虚线在内)共有全等三角形( ) A .3对B .4对C .5对D .6对79.“a ,b ,c 三数中至少有一个正数”的反面是( ) A .a ,b,c 三个都是正数 B .a ,b ,c 至少有一个负数C .a ,b ,c 有两个或三个是负数D .a ,b ,c 全都是非正数80.以三角形的一条中位线和第三边上的中线为对角线的四边形是 ( ) A .梯形B .平行四边形C .四边形D .正方形81.以l 、3为根的一元二次方程是( ) A .x 2+4x ―3=0B .x 2―4x+3=0C .x 2+4x+3=0D .―x 2+4x+3=082.下列等式:⑴632=⨯;⑵2221=;⑶252322=+;⑷27=33; ⑸=+9494+;⑹32)32(2-=-. 成立的个数有( ) A .2个B .3个C .4个D .5个83.如图所示,下面对图形的判断正确的是( ) A .是轴对称图形B .既是轴对称图形,又是中心对称图形C .是轴对称图形,非中心对称图形D .是中心对称图形,非轴对称图形84.如图,天平右盘中的每个砝码的质量都是1g ,则图中显示出某药品A 的质量范围是( ) A .大于2 g B .小于3 gC .大于2 g 或小于3 gD .大于2 g 且小于3 g85.点P 在第二象限,若该点到2,到有y 轴的距离为1,则点P 的坐标是 ( )A .(-1B .(1)C ,-l )D .(1)86.在对2006个数据进行整理的频数分布表中,各组频数之和与频率之和分别等于( ) A .2006,1B .2 006,2 006C .1,2 006D .1,187.的结果的是( ) A .-2B .2C .2±D .1688.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小 组的4位同学拟定的方案,其中正确的是( )A .测量对角线是否相互平分B .测量两组对边是否分别相等C .测量两组对角线是否垂直D .测量其中三个角是否都为直角89.对于反比例函数y =2x ,下列说法不正确...的是( )A .点(―2,―1)在它的图象上B .它的图象在第三象限C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小90.下列各点在函数y=1-2x 的图象上的是( )A .(2.5,-l )B .(0,34)C .(0,12)D .(1,-l )91.当m <0时,化简m 的结果是( )A .-1B .1C .mD .-m92.如图,已知 AE=CF ,BE =DF.要证△ABE ≌△CDF ,还需添加的一个条件是( )A . ∠BAC=∠ACDB . ∠ABE=∠CDFC .∠DAC=∠BCAD . ∠AEB=∠CFD93.m =8,a n =2,则a m+n 等于( )A . 10B .16C .28D .不能确定94.计算3223[()]()x x -÷所得的结果是( )B .-1 B .10x -C .0D .12x -95.如图,直线a 、b 被直线c 所截,现给出下列四个条件:( 1 ) ∠l =∠5;(2) ∠ 1 = ∠7;(3)∠2 +∠3=180°;(4)∠4 = ∠7. 其中能判定 a ∥b 的条件的序号是( )A . (1)(2)B . (1)(3)C .(1)(4)D . (3)(4)96.31254--可以读作( )A .35减负2减负14B .正35,正 2 与正14的和C .正35,负 2与负14的差 D .35减 2减14A.1 个B.2 个C.3 个D.4 个98)A. 9 B.±9C. 3 D.3±99.如果两数的和为负数,那么()A.两数都是负B.一数为负,一数为0C.两数一正、一负,且负数的绝对值比正数的绝对值大D.以上三种都有可能100.下面两图是某班全体学生上学时,乘车、步行、骑车的人数分布条形统计图和扇形统计图(两图均不完整),则下列结论中错误的是()A.该班总人数为50人 B.骑车人数占总人数的20%C.乘车人数是骑车人数的2.5倍D.步行人数为30人101.一副三角板,如图所示叠放在一起,则图中α的度数是()A.75°B.60°C.65°D.55°102.已知△ABC∽△DEF,∠A =∠D =30°,∠B=50°,AC与DF是对应边,则∠F=()A.50°B.80°C.100°D.150°103.如图,BD 是△ABC的角平分线,∠ADB=∠DEB,则与△ABD相似的三角形是()A.△DBC B.△DEC C.△ABC D.△DBE104.下列图形中的直线 1与⊙0的位且关系是相离的是()A .B .C .D .105.如图所示的物体是一个几何体,其主视图是( )106.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121, 130, 133,146, 158, 177,188.则跳绳次数在90~110这一组的频率是( )A .0.1B .0.2C .0.3D .0.7107.若三角形的三个外角的度数之比为2:3:4,则与之相邻的三个内角的度数之比为( )A .4:3:2B .3:2:4C .5:3:1D .3:1:5108. 一扇形纸扇完全打开后,外侧两竹条AB,AC 的夹角为1200, AB 长为30cm ,贴纸部分BD 长为20cm ,则贴纸部分的面积为( )A .28003cm πB . 25003cm πC .800лcm 2D .500лcm 2109.下列函数中,属于二次函数的是( )A .y=π2x +1B .y =2-x 2+(x -1)2C .y =-x -2D .y =x 2-12 110.在△ABC 中,∠C = 90°,a 、b 分别是∠A 、∠B 的对边,若a :b=2:5,则 sinA : sinB 的值是 ( )A .25B .52C .425D .254【参考答案】***试卷处理标记,请不要删除一、选择题1.C2.C3.B4.A8.C 9.C 10.A 11.C 12.C 13.A 14.D 15.B 16.D 17.C 18.D 19.C 20.A 21.A 22.B 23.D 24.A 25.D 26.A 27.B 28.A 29.D 30.D 31.C 32.A 33.A 34.B 35.C 36.C 37.A 38.A42.A 43.B 44.A 45.B 46.A 47.D 48.C 49.C 50.D 51.C 52.A 53.B 54.A 55.C 56.A 57.D 58.D 59.A 60.A 61.D 62.B 63.C 64.D 65.D 66.C 67.D 68.D 69.B 70.A 71.C 72.C76.B 77.B 78.D 79.D 80.B 81.B 82.C 83.D 84.D 85.A 86.A 87.B 88.D 89.C 90.D 91.A 92.D 93.B 94.A 95.A 96.D 97.B 98.C 99.D 100.D 101.A 102.C 103.D 104.C 105.C 106.B110.A。
初三模拟试题及答案数学一、选择题(本题共10小题,每小题3分,满分30分)1. 若a、b、c是△ABC的三边长,且a²+b²+c²=ab+ac+bc,那么△ABC的形状是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 不等边三角形2. 已知x²-5x-6=0的两根为x₁和x₂,则x₁+x₂的值为()A. 5B. -5C. 6D. -63. 某商品原价为a元,打八折后售价为b元,那么商品的折扣率为()A. 80%B. 20%C. 25%D. 75%4. 已知函数y=kx+b(k≠0)的图象经过点(1,2)和(-1,0),则k和b的值分别为()A. k=2,b=1B. k=-2,b=1C. k=2,b=-1D. k=-2,b=-15. 一个数的相反数是-3,这个数是()A. 3B. -3C. 0D. 66. 若x=2是方程x²-3x+2=0的根,则方程的另一个根是()A. 1B. 2C. -1D. 07. 已知抛物线y=ax²+bx+c(a≠0)的对称轴为x=-1,那么抛物线与x轴的交点个数为()A. 0B. 1C. 2D. 无法确定8. 已知a、b、c是△ABC的三边长,且满足a²+b²=c²,那么△ABC的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形9. 已知方程x²-6x+8=0的两个根为x₁和x₂,则x₁x₂的值为()A. 8B. 6C. 2D. 110. 已知一个等腰三角形的两边长分别为3和5,那么这个等腰三角形的周长为()A. 11B. 13C. 16D. 14二、填空题(本题共5小题,每小题3分,满分15分)11. 已知等腰三角形的底边长为6,腰长为5,则该三角形的周长为________。
12. 已知函数y=2x+3与y=-x+4的交点坐标为(________,________)。
中考数学模拟测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A.8分钟B.7分钟C.6分钟D.5分钟2.(3分)在﹣,﹣,4,﹣5这四个数中,绝对值最小的数为()A.4B.﹣C.﹣D.﹣53.(3分)用四舍五入法按要求对下列各数取近似值,其中描述错误的是()A.0.67596(精确到0.01)≈0.68B.近似数169.8精确到个位,结果可表示为170C.近似数0.05049精确到0.1,结果可表示为0.1D.近似数9.60×106是精确到百分位4.(3分)下列各式正确的是()A.6a2﹣5a2=a2B.(2a)2=2a2C.﹣2(a﹣1)=﹣2a+1D.(a+b)2=a2+b25.(3分)如图,直线a∥b,∠1=32°,∠2=45°,则∠3的度数是()A.77°B.97°C.103°D.113°6.(3分)对于任意的矩形,下列说法一定正确的是()A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形7.(3分)从甲、乙、丙、丁四人中选一人参加射击比赛,经过三轮初赛,他们平均成绩都是9环,方差分别是S甲2=0.23,S乙2=0.3,S丙2=0.35,S丁2=0.4,从成绩稳定上看,你认为谁去最合适()A.甲B.乙C.丙D.丁8.(3分)一项工程,甲单独做需要m天完成,乙单独做需要n天完成,则甲、乙合作完成工程需要的天数为()A.m+n B.C.D.9.(3分)在同一直角坐标系中,一次函数y=ax﹣b和二次函数y=﹣ax2﹣b的大致图象是()A.B.C.D.10.(3分)如图,正方形ABCD中,AB=6,将△ADE沿AE对折至△AEF,延长EF交BC 于点G,G刚好是BC边的中点,则ED的长是()A.1B.1.5C.2D.2.5二.填空题(共6小题,满分24分,每小题4分)11.(4分)﹣的相反数是;绝对值是.12.(4分)分解因式:3y2﹣12=.13.(4分)一组数据2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是.14.(4分)若方程x2﹣4x+2=0的两个根为x1,x2,则x1(1+x2)+x2的值为.15.(4分)如图所示的几何体中,主视图与左视图都是长方形的是.16.(4分)将正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如图所示方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2019的横坐标是.三.解答题(共8小题,满分66分)17.(6分)解不等式+1≥,并把它的解集在数轴上表示出来.18.(6分)已知:如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=36°,求∠DBC的度数;(3)若AE=8,△CBD的周长为24,求△ABC的周长.19.(6分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:成绩x(单位:分)频数(人数)60≤x<70170≤x<8080≤x<901790≤x<100(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是.20.(8分)如图,直线y1=3x﹣5与反比例函数y2=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积;(3)直接写出y1>y2时自变量x的取值范围.21.(8分)某公司每月生产产品A4万件和同类新型产品B若干万件.产品A每件销售利润为200元,且在产品B销售量每月不超过3万件时,每月4万件产品A能全部销售,产品B的每月销售量y(万件)与每件销售利润x(元)之间的函数关系图象如图所示.(1)求y与x的函数关系式;(2)在保证A产品全部销售的情况下,产品B每件利润定为多少元时公司销售产品A 和产品B每月可获得总利润w1(万元)最大?(3)在不要求产品A全部销售的情况下,已知受产品B销售价的影响产品A每月销售量:(万件)与x(元)之间满足关系z=0.024x﹣3.2,那么产品B每件利润定为多少元时,公司每月可获得最大的利润?并求最大总利润w2(万元).22.(8分)我们在探索“圆”时,学习了圆周角与圆心角的关系定理的推论“直径所对的圆周角是直角”,请利用此推论,完成下面的尺规作图,如果,点P是⊙O外的一点,用圆规和直尺过点P作出⊙O的切线(要求:不写作法,保留作图痕迹,写出结论)23.(12分)如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c 是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.24.(12分)正方形ABCD中,M是AD中点,点P从点A出发沿A﹣B﹣C﹣D的路线匀速运动,到点D停止,点Q从点D出发,沿D﹣C﹣B﹣A路线匀速运动,P、Q两点同时出发,点P的速度是点Q速度的m倍(m>1),当点P停止时,点Q也同时停止运动,设t秒时,正方形ABCD与∠PMQ重叠部分的面积为y,y关于t的函数关系如图2所示,则(1)求正方形边长AB;(2)求m的值;(3)求图2中线段EF所在直线的解析式.试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A.8分钟B.7分钟C.6分钟D.5分钟解:第一分钟通知到1个学生;第二分钟最多可通知到1+2=3个学生;第三分钟最多可通知到3+4=7个学生;第四分钟最多可通知到7+8=15个学生;第五分钟最多可通知到15+16=31个学生;第六分钟最多可通知到31+32=63个学生;答:至少用6分钟.故选:C.2.(3分)在﹣,﹣,4,﹣5这四个数中,绝对值最小的数为()A.4B.﹣C.﹣D.﹣5解:|﹣|=,|﹣|=,|4|=4,|﹣5|=5,∵<4<5,∴在﹣,﹣,4,﹣5这四个数中,绝对值最小的数为﹣,故选:B.3.(3分)用四舍五入法按要求对下列各数取近似值,其中描述错误的是()A.0.67596(精确到0.01)≈0.68B.近似数169.8精确到个位,结果可表示为170C.近似数0.05049精确到0.1,结果可表示为0.1D.近似数9.60×106是精确到百分位解:A.0.67596(精确到0.01)≈0.68,正确,故本选项不合题意;B.近似数169.8精确到个位,结果可表示为170,正确,故本选项不合题意;C.近似数0.05049精确到0.1,结果可表示为0.1,正确,故本选项不符合题意;D.近似数9.60×106是精确到万位,故本选项符合题意.故选:D.4.(3分)下列各式正确的是()A.6a2﹣5a2=a2B.(2a)2=2a2C.﹣2(a﹣1)=﹣2a+1D.(a+b)2=a2+b2解:A.6a2﹣5a2=a2,正确;B.(2a)2=4a2,错误;C.﹣2(a﹣1)=﹣2a+2,错误;D.(a+b)2=a2+2ab+b2,错误;故选:A.5.(3分)如图,直线a∥b,∠1=32°,∠2=45°,则∠3的度数是()A.77°B.97°C.103°D.113°解:给图中各角标上序号,如图所示.∵直线a∥b,∴∠4=∠2=45°,∴∠5=45°.∵∠1+∠3+∠5=180°,∴∠3=180°﹣32°﹣45°=103°.故选:C.6.(3分)对于任意的矩形,下列说法一定正确的是()A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形解:A、矩形的对角线相等,但不垂直,故此选项错误;B、矩形的邻边都互相垂直,对边互相平行,故此选项错误;C、矩形的四个角都相等,正确;D、矩形是轴对称图形,也是中心对称图形,故此选项错误.故选:C.7.(3分)从甲、乙、丙、丁四人中选一人参加射击比赛,经过三轮初赛,他们平均成绩都是9环,方差分别是S甲2=0.23,S乙2=0.3,S丙2=0.35,S丁2=0.4,从成绩稳定上看,你认为谁去最合适()A.甲B.乙C.丙D.丁解:∵0.23<0.3<0.35<0.4,∴S甲2<S乙2<S丙2<S丁2,∴甲的成绩稳定,∴选甲最合适,故选:A.8.(3分)一项工程,甲单独做需要m天完成,乙单独做需要n天完成,则甲、乙合作完成工程需要的天数为()A.m+n B.C.D.解:根据题意,得甲的工作效率为,乙的工作效率为.所以甲、乙合作完成工程需要的天数为:1÷(+)=故选:C.9.(3分)在同一直角坐标系中,一次函数y=ax﹣b和二次函数y=﹣ax2﹣b的大致图象是()A.B.C.D.解:A、由一次函数y=ax﹣b的图象可得:a>0,﹣b>0,此时二次函数y=﹣ax2﹣b 的图象应该开口向下,顶点的纵坐标﹣b大于零,故A正确;B、由一次函数y=ax﹣b的图象可得:a<0,﹣b>0,此时二次函数y=﹣ax2﹣b的图象应该开口向上,顶点的纵坐标﹣b大于零,故B错误;C、由一次函数y=ax﹣b的图象可得:a<0,﹣b>0,此时二次函数y=﹣ax2+b的图象应该开口向上,故C错误;D、由一次函数y=ax﹣b的图象可得:a>0,﹣b>0,此时抛物线y=﹣ax2﹣b的顶点的纵坐标大于零,故D错误;故选:A.10.(3分)如图,正方形ABCD中,AB=6,将△ADE沿AE对折至△AEF,延长EF交BC 于点G,G刚好是BC边的中点,则ED的长是()A.1B.1.5C.2D.2.5解:连接AG,由已知AD=AF=AB,且∠AFG=∠ABG=∠D=90°,∵AG=AG,∴△ABG≌△AFG(HL),∴BG=BF∵AB=BC=CD=DA=6,G是BC的中点,∴BG=BF=3,设DE=x,则EF=x,EC=6﹣x,在Rt△ECG中,由勾股定理得:(x+3)2=32+(6﹣x)2,解得x=2,即DE=2.故选:C.二.填空题(共6小题,满分24分,每小题4分)11.(4分)﹣的相反数是;绝对值是.解:﹣的相反数是;绝对值是,故答案为:,.12.(4分)分解因式:3y2﹣12=3(y+2)(y﹣2).解:3y2﹣12=3(y2﹣4)=3(y+2)(y﹣2),故答案为:3(y+2)(y﹣2).13.(4分)一组数据2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是5.解:∵整数a是这组数据中的中位数,∴a=4,∴这组数据的平均数=(2.2+3.3+4.4+4+11.1)=5.故答案为5.14.(4分)若方程x2﹣4x+2=0的两个根为x1,x2,则x1(1+x2)+x2的值为6.解:根据题意x1+x2=4,x1•x2=2,∴x1(1+x2)+x2=x1+x2+x1•x2=4+2=6.故答案为:6.15.(4分)如图所示的几何体中,主视图与左视图都是长方形的是(1)(3)(4).解:图(2)的左视图为三角形,图(5)的主视图和左视图为等腰梯形,主视图与左视图都是长方形的是(1)(3)(4);故答案为:(1)(3)(4).16.(4分)将正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如图所示方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2019的横坐标是22019﹣1.解:当x=0时,y=x+1=1,∴A(0,1),当y=0时,x=﹣1,∴直线与x轴的交点(﹣1,0)∴B1(1,1),易得△A1B1A2、△A2B2A3、△A3B3A4、△A4B4A5……均是等腰直角三角形,可得:每一个正方形的边长都是它前一个正方形边长的2倍,因此:B2的横坐标为1+1×2=1+2=20+21=3=22﹣1,B3的横坐标为1+1×2+2×2=1+2+4=20+21+22=7=23﹣1,B4的横坐标为24﹣1,B5的横坐标为25﹣1,……B2019的横坐标为22019﹣1,故答案为:22019﹣1.三.解答题(共8小题,满分66分)17.(6分)解不等式+1≥,并把它的解集在数轴上表示出来.解:去分母,得2(1+2x)+6≥3(1+x)去括号得,2+4x+6≥3+3x,再移项、合并同类项得,x≥﹣5.在数轴上表示为:.18.(6分)已知:如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=36°,求∠DBC的度数;(3)若AE=8,△CBD的周长为24,求△ABC的周长.解:(1)证明:∵AB的垂直平分线MN交AC于点D,∴DB=DA,∴△ABD是等腰三角形;(2)∵△ABD是等腰三角形,∠A=36°,∴∠ABD=∠A=36°,∠ABC=∠C=(180°﹣36°)÷2=72°∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°;(3)∵AB的垂直平分线MN交AC于点D,AE=8,∴AB=2AE=16,∵△CBD的周长为24,∴AC+BC=24,∴△ABC的周长=AB+AC+BC=16+24=40.19.(6分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:成绩x(单位:分)频数(人数)60≤x<70170≤x<80280≤x<901790≤x<10010(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是.解:(1)补全图表如下:(2)估计该校初一年级360人中,获得表彰的人数约为360×=120(人);(3)将印有龚扇、剪纸、彩灯、恐龙图案分别记为A、B、C、D,画树状图如下:则共有12种等可能的结果数,其中小红送给弟弟的两枚纪念章中,恰好有恐龙图案的结果数为6,所以小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率为,故答案为:.20.(8分)如图,直线y1=3x﹣5与反比例函数y2=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积;(3)直接写出y1>y2时自变量x的取值范围.解:(1)∵点B(n,﹣6)在直线y=3x﹣5上,∴﹣6=3n﹣5,解得n=﹣,∴B(﹣,﹣6),∵反比例函数的图象也经过点B,∴,解k=3;答:k和n的值为3、﹣.(2)设直线y=3x﹣5分别与x轴、y轴相交于点C、点D,当y=0时,即,∴,当x=0时,y=3×0﹣5=﹣5,∴OD=5,∵点A(2,m)在直线y=3x﹣5上,∴m=3×2﹣5=1.即A(2,1),∴S△AOB=S△AOC+S△COD+S△BOD=.答:△AOB的面积未经.(3)根据图象可知:或x>2.21.(8分)某公司每月生产产品A4万件和同类新型产品B若干万件.产品A每件销售利润为200元,且在产品B销售量每月不超过3万件时,每月4万件产品A能全部销售,产品B的每月销售量y(万件)与每件销售利润x(元)之间的函数关系图象如图所示.(1)求y与x的函数关系式;(2)在保证A产品全部销售的情况下,产品B每件利润定为多少元时公司销售产品A 和产品B每月可获得总利润w1(万元)最大?(3)在不要求产品A全部销售的情况下,已知受产品B销售价的影响产品A每月销售量:(万件)与x(元)之间满足关系z=0.024x﹣3.2,那么产品B每件利润定为多少元时,公司每月可获得最大的利润?并求最大总利润w2(万元).解:(1)设y=kx+b,从图象中可知函数经过点(200,6),(300,3),∴,∴,∴y=﹣0.03x+12;(2)由题意得:w1=4×200+(﹣0.03x+12)x=﹣0.03x2+12x+800=﹣0.03(x﹣200)2+2000,∵y≤3,﹣0.03x+12≤3,∴x≥300,∵x≥200时,w1随x的增大而减小,∴当x=300时,w1有最大值,∴产品B的每件利润为300元时,公司每月利润w1最大;(3)w2=200×(0.024x﹣3.2)+(﹣0.03x+12)x=﹣0.03x2+16.8x﹣640=﹣0.03(x﹣280)2+1712,当x=280时,w2最大值为1712万元,∴产品B每件利润定为280元时,每月可获得最大利润为1712万元.22.(8分)我们在探索“圆”时,学习了圆周角与圆心角的关系定理的推论“直径所对的圆周角是直角”,请利用此推论,完成下面的尺规作图,如果,点P是⊙O外的一点,用圆规和直尺过点P作出⊙O的切线(要求:不写作法,保留作图痕迹,写出结论)解:如图,点A和点B为以OP为直径的圆与⊙O的交点,则P A和PB为所求.23.(12分)如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c 是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入解析式得,,解得,,∴抛物线的解析式为;(2)如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,∴,∵OB为定值,∴当PF取最大值时,有最大值,设P(x,),其中﹣4<x<0,则F(x,x+4),∴PF==,∵且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,;(3)∵点C(2,0),∴CO=2,(i)如图2,点F在y轴上时,若P在第二象限,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴,解得,,x=﹣1+(舍去).∴,如图3,点F在y轴上时,若P在第一象限,同理可得点P的纵坐标为2,此时P2点坐标为(﹣1+,2)(ii)如图4,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,∴,解得x=2(舍去),x=﹣2,∴,如图5,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴,解得,(舍去),∴,综合以上可得P点坐标为,,.24.(12分)正方形ABCD中,M是AD中点,点P从点A出发沿A﹣B﹣C﹣D的路线匀速运动,到点D停止,点Q从点D出发,沿D﹣C﹣B﹣A路线匀速运动,P、Q两点同时出发,点P的速度是点Q速度的m倍(m>1),当点P停止时,点Q也同时停止运动,设t秒时,正方形ABCD与∠PMQ重叠部分的面积为y,y关于t的函数关系如图2所示,则(1)求正方形边长AB;(2)求m的值;(3)求图2中线段EF所在直线的解析式.解:(1)当t=0时,y=144=AB2,解得:AB=12;(2)当0≤t≤4时,如图1所示,y=S正方形ABCD﹣S△APM﹣S△DQM=144﹣[×DM×QD+AM×AP]=144﹣[×6t+×6×mt]即:y=144﹣3t﹣3mt,将点K(4,96)代入上式并解得:m=3;(3)当4<t≤8时,此时,点P在BC上,点Q在CD上,如下图2所示:y=S正方形ABCD﹣S△梯形ABPM﹣S△DQM=144﹣[6t+(3t﹣12+6)×12]=180﹣21t,当t=8时,y=12,故点E(8,12),同理可得点F(9,0),将点E、F的坐标代入一次函数表达式:y=kx+b得:,解得:,故线段EF所在直线的解析式为:y=﹣12x+108中考数学模拟试卷一.选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,工人师傅安装门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.三角形的稳定性2.新冠状病毒疫情发生以来,截止2月5日全国红十字会共接收社会捐赠款物约6.5993×109元.数据6.5993×109可以表示为()A.0.65993亿B.6.5993亿C.65.993亿D.659.93亿3.下列四个手机APP图标中,是轴对称图形的是()A.B.C.D.4.已知a+b=m,ab=n,则(a﹣b)2等于()A.m2﹣n B.m2+n C.m2+4n D.m2﹣4n5.一个几何体由四个棱长为1正方体搭成,从正面和从左面看到的形状如图所示.则从上面看这个几何体的形状(其中小正方形中的数字表示在该位置的小正方体的个数),不可能的是()A.B.C.D.6.已知,在△ABC中,BC>AB>AC,根据图中的作图痕迹及作法,下列结论一定成立的是()A.AP⊥BC B.∠APC=2∠ABC C.AP=CP D.BP=CP7.已知等式3a=b+2c,那么下列等式中不一定成立的是()A.3a﹣b=2c B.4a=a+b+2c C.a b c D.38.如图,AD是△ABC的角平分线,点E是AB边上一点,AE=AC,EF∥BC,交AC于点F.下列结论正确的是()①∠ADE=∠ADC;②△CDE是等腰三角形;③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE.A.①②⑤B.①②③④C.②④⑤D.①③④⑤9.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛,在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.59.59.59.5方差/环2 5.1 4.7 4.5 5.1请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁10.下列计算正确的是()A.22018•(﹣0.5)2017=﹣2B.a3+a3=a6C.a5•a2=a10D.11.如图,海平面上,有一个灯塔分别位于海岛A的南偏西30°和海岛B的南偏西60°的方向上,则该灯塔的位置可能是()A.O1B.O2C.O3D.O412.元旦,是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春”.中国古代曾以腊月、十月等的月首为元旦.1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,人民商场举行促销活动,促销的方法是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x元(x>100),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣20B.80%(x﹣20)C.20%x﹣20D.20%(x﹣20)13.若3×32m×33m=321,则m的值为()A.2B.3C.4D.514.下列计算中,则正确的有()①;②;③(a+b)÷(a+b)•a+b;④.A.1个B.2个C.3个D.4个15.如图,点I是Rt△ABC的内心,∠C=90°,AC=3,BC=4,将∠ACB平移使其顶点C与I重合,两边分别交AB于D、E,则△IDE的周长为()A.3B.4C.5D.716.已知函数y=2x与y=x2﹣c(c为常数,﹣1≤x≤2)的图象有且仅有一个公共点,则常数c的值为()A.0<c≤3或c=﹣1B.﹣l≤c<0或c=3C.﹣1≤c≤3D.﹣1<c≤3且c≠0二.填空题(本大题有3个小题,共11分,17、18小题每题4分:19小题每空1分,把答案写在题中横线上)17.当c=25,b=24时,.18.若a,b互为相反数,则a2﹣b2=.19.如图,有一个圆O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).若设T1,T2的边长分别为a,b,圆O的半径为r,则r:a=;r:b=;正六边形T1,T2的面积比S1:S2的值是.三.解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知:2A﹣B=3a2+2ab,A=﹣a2+2ab﹣3.(1)求B;(用含a、b的代数式表示)(2)比较A与B的大小.21.(9分)两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次.小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计并制成了图表(如图)奖金金额获奖人数20元15元10元5元商家甲超市5101520乙超市232025(1)在甲超市摇奖的顾客获得奖金金额的中位数是,在乙超市摇奖的顾客获得奖金金额的众数是;(2)请你补全统计图1;(3)请你分别求出在甲、乙两超市参加摇奖的50名顾客平均获奖多少元?(4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获得奖金10元的概率是多少?22.(9分)用黑白两种颜色的正六边形地砖按如图所示的方式,拼成若干个图案:(1)当黑色地砖有1块时,白色地砖有块,当黑色地砖有2块时,白色地砖有块;(2)第n(n为正整数)个图案中,白色地砖有块;(3)第几个图案中有2018块白色地砖?请说明理由.23.(9分)定义:有且仅有一组对角相等的凸四边形叫做“准平行四边形”.例如:凸四边形ABCD中,若∠A=∠C,∠B≠∠D,则称四边形ABCD为准平行四边形.(1)如图①,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°,延长BP到Q,使AQ=AP.求证:四边形AQBC是准平行四边形;(2)如图②,准平行四边形ABCD内接于⊙O,AB≠AD,BC=DC,若⊙O的半径为5,AB=6,求AC的长;(3)如图③,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,若四边形ABCD是准平行四边形,且∠BCD≠∠BAD,请直接写出BD长的最大值.24.(10分)如图,平面直角坐标系中,一次函数y x+4的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,3).(1)求m的值及l2的解析式;(2)求S△AOC﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且l1,l2,l3不能围成三角形,直接写出k的值.25.(10分)定义:如果三角形的两个内角α与β满足α+2β=90°,那么称这样的三角形为“类直角三角形”.尝试运用(1)如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分线.①证明△ABD是“类直角三角形”;②试问在边AC上是否存在点E(异于点D),使得△ABE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.类比拓展(2)如图2,△ABD内接于⊙O,直径AB=13,弦AD=5,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且∠CAD=∠AOD,当△ABC是“类直角三角形”时,求AC的长.26.(12分)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.答案解析一.选择题(共16小题)1.如图,工人师傅安装门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.三角形的稳定性解:常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是三角形具有稳定性.故选:D.2.新冠状病毒疫情发生以来,截止2月5日全国红十字会共接收社会捐赠款物约6.5993×109元.数据6.5993×109可以表示为()A.0.65993亿B.6.5993亿C.65.993亿D.659.93亿解:6.5993×109=65.993亿.故选:C.3.下列四个手机APP图标中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.4.已知a+b=m,ab=n,则(a﹣b)2等于()A.m2﹣n B.m2+n C.m2+4n D.m2﹣4n解:(a﹣b)2=(a+b)2﹣4ab=m2﹣4n.故选:D.5.一个几何体由四个棱长为1正方体搭成,从正面和从左面看到的形状如图所示.则从上面看这个几何体的形状(其中小正方形中的数字表示在该位置的小正方体的个数),不可能的是()A.B.C.D.解:从正面看,这个几何体有两列,从左面看这个几何体有两行,结合正面和从左面看到的形状,可知第一行第二列不可能是2个,故选:D.6.已知,在△ABC中,BC>AB>AC,根据图中的作图痕迹及作法,下列结论一定成立的是()A.AP⊥BC B.∠APC=2∠ABC C.AP=CP D.BP=CP解:如图所示:MN是AB的垂直平分线,则AP=BP,故∠PBA=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠ABC.故选:B.7.已知等式3a=b+2c,那么下列等式中不一定成立的是()A.3a﹣b=2c B.4a=a+b+2c C.a b c D.3解:A、原等式两边都减去b即可得3a﹣b=2c,此选项正确;B、原等式两边都加上a即可得4a=a+b+2c,此选项正确;C、原等式两边都除以3即可得a b c,此选项正确;D、在a≠0的前提下,两边都除以a可得3,故此选项不一定成立;故选:D.8.如图,AD是△ABC的角平分线,点E是AB边上一点,AE=AC,EF∥BC,交AC于点F.下列结论正确的是()①∠ADE=∠ADC;②△CDE是等腰三角形;③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE.A.①②⑤B.①②③④C.②④⑤D.①③④⑤解:①∵AD是△ABC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,,∴△AED≌△ACD,∴∠ADE=∠ADC故①正确;②∵△AED≌△ACD,∴ED=DC,∴△CDE是等腰三角形;故②正确;③∵DE=DC,∴∠DEC=∠DCE,∵EF∥BC,∴∠DCE=∠CEF,∴∠DEC=∠CEF,∴CE平分∠DEF,故③正确;④∵DE=DC,∴点D在线段EC的垂直平分线上,∵AE=AC,∴点A在线段EC的垂直平分线上,∴AD垂直平分CE.故④正确;⑤∵AD垂直平分CE,∴当四边形ACDE是矩形时,AD=CE,故⑤不正确;故选:B.9.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛,在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.59.59.59.5方差/环2 5.1 4.7 4.5 5.1请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁解:∵S甲2=5.1,S乙2=4.7,S丙2=4.5,S丁2=5.1,∴S甲2=S2丁>S乙2>S2丙,∴最合适的人选是丙.故选:C.10.下列计算正确的是()A.22018•(﹣0.5)2017=﹣2B.a3+a3=a6C.a5•a2=a10D.解:A、原式=2×(﹣2×0.5)2017=﹣2,正确;B、原式=2a3,错误;C、原式=a7,错误;D、原式b,错误,故选:A.11.如图,海平面上,有一个灯塔分别位于海岛A的南偏西30°和海岛B的南偏西60°的方向上,则该灯塔的位置可能是()A.O1B.O2C.O3D.O4解:由题意知,若灯塔位于海岛A的南偏西30°、南偏西60°的方向上,如图所示,灯塔的位置可以是点O1,故选:A.12.元旦,是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春”.中国古代曾以腊月、十月等的月首为元旦.1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,人民商场举行促销活动,促销的方法是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x元(x>100),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣20B.80%(x﹣20)C.20%x﹣20D.20%(x﹣20)解:由题意可得,若某商品的原价为x元(x>100),则购买该商品实际付款的金额是:80%x﹣20(元),故选:A.13.若3×32m×33m=321,则m的值为()A.2B.3C.4D.5解:已知等式整理得:35m+1=321,可得5m+1=21,解得:m=4,故选:C.14.下列计算中,则正确的有()①;②;③(a+b)÷(a+b)•a+b;④.。
2021年九年级中考模拟考试数学试题一.选择题(共10小题,满分30分)1.(3分)下列各组数,互为相反数的是()A.﹣2与B.|﹣|与C.﹣2与(﹣)2D.2与2.(3分)下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个3.下列等式错误的是()A.(2mn)2=4m2n2 B.(﹣2mn)2=4m2n2C.(2m2n2)3=8m6n6D.(﹣2m2n2)3=8m6n6 4.(3分)甲乙两名同学本学期参加了相同的5次数学考试,老师想判断这两位同学的数学成绩谁更稳定,老师需比较这两人5次数学成绩的()A.平均数B.中位数C.众数D.方差5.(3分)如图,把一个长方形纸片沿EF折叠后,点C、D分别落在M、N的位置.若∠EFB=65°,则∠AEN等于()A.25°B.50°C.65°D.70°6.(3分)一个几何体由若干大小相同的小正方体组成,它的俯视图和左视图如图所示,那么组成该几何体所需小正方体的个数最少为()A.4B.5C.6D.77.如图,火车匀速通过隧道(隧道长大于火车长)时,火车在隧道内的长度y随着火车进入隧道的时间x的变化而变化的大致图象是()A.B.C.D.8.小李去买套装6色水笔和笔记本(单价均为整数),若购买4袋笔和6本笔记本,他身上的钱还差22元,若改成购买1袋笔和2本笔记本,他身上的钱会剩下34元.若他把身上的钱都花掉,购买这两种物品(两种都买)的方案有()A.3种B.4种C.5种D.6种9.(3分)在一只不透明的口袋中放入只有颜色不同的白球6个,黑球8个,黄球n个,搅匀后随机从中摸取一个恰好是黄球的概率为,则放入的黄球个数n=()A.4B.5C.6D.710.(3分)已知二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点B的坐标为(1,0)其图象如图所示,下列结论:①abc>0;②2a﹣b=0;③一元二次方程ax2+bx+c =0的两个根是﹣3和1;④当y>0时,﹣3<x<1;⑤当x>0时,y随x的增大而增大:⑥若点E(﹣4,y1),F(﹣2,y2),M(3,y3)是函数图象上的三点,则y1>y2>y3,其中正确的有()个A.5B.4C.3D.2二.填空题(共7小题,满分12分)11.在全国上下众志成城抗疫情、保生产、促发展的时刻,三峡集团2月24日宣布:在广东、江苏等地投资580亿元,开工建设25个新能源项目,预计提供17万个就业岗位将“580亿元”用科学记数法表示为元.12.如图,∠BCA=∠DAC,请你添加一个条件:,可得△ACB≌△CAD.13.(3分)已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是.14.(3分)若关于x的方程+=2的解为正数,则m的取值范围是.15.(3分)如图,矩形ABCD的顶点A,B,D分别落在双曲线y═(k>0)的两个分支上,AB 边经过原点O,CB边与x轴交于点E.且EC=EB.若点A的横坐标为1,则k=.16.在等腰三角形ABC中,BC边上的高恰好等于BC边长的一半,则∠BAC等于.17.(3分)如图,直线y=x+4与y轴交于A1,按如图方式作正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,点A1,A2,A3…在直线y=x+4上,点C1,C2,C3,…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1,S2,S3…,S n,则S n的值为(用含n的代数式表示,n为正整数).18.如图,在ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知120BAC∠=︒,16AB AC+=,MN的长为π,则图中阴影部分的面积为__________.三、解答题(本大题共7小题,共66分.解答应与出文字说明、证明过程或演算步骤.)19.(7分)解不等式组131722324334x xx x x⎧+<-⎪⎪⎨--⎪≥+⎪⎩,并写出它的所有整数解.20.(7分)为了提高学生的综合素养,某校开设了五门手工活动课.按照类别分为:A“剪纸”、B“沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如下两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为________;统计图中的a=________,b=________;(2)通过计算补全条形统计图;(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.21.(10分)如图,已知反比例函数kyx=的图象与直线y ax b=+相交于点(2,3)A-,(1,)B m.(1)求出直线y ax b=+的表达式;(2)在x轴上有一点P使得PAB△的面积为18,求出点P的坐标.22.(10分)如图,在ABC中,AB=BC,以△ABC的边AB为直径作⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.(1)试证明DE是⊙O的切线;(2)若⊙O的半径为5,AC=10,求此时DE的长.23.(10分)今年史上最长的寒假结束后,学生复学,某学校为了增强学生体质,鼓励学生在不聚集的情况下加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元.(1)求购买一根跳绳和一个毽子分别需要多少元;(2)某班需要购买跳绳和毽子的总数量是54,且购买的总费用不能超过260元;若要求购买跳绳的数量多于20根,通过计算说明共有哪几种购买跳绳的方案.24.(10分)如图,菱形ABCD 的边长为1,=60ABC ∠︒,点E 是边AB 上任意一点(端点除外),线段CE 的垂直平分线交BD ,CE 分别于点F ,G ,AE ,EF 的中点分别为M ,N .(1)求证:AF EF =;(2)求MN NG +的最小值;(3)当点E 在AB 上运动时,CEF ∠的大小是否变化?为什么?25.(12分)已知抛物线22232(0)y ax ax a a =--+≠. (1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式; (3)设点()1,P m y ,()23,Q y 在抛物线上,若12y y <,求m 的取值范围.。
2024年河南省九年级中考数学模拟试卷(六)一、单选题1.实数3-,2,12024,02024,)A.-3 B.12024C.20240D2.生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是()A.B.C.D.3.下列说法中错误的是()A.将油滴入水中,油会浮出水面是一个必然事件B.1、2、3、4这组数据的中位数是2.5C.一组数据的方差越小,这组数据的稳定性越差D.要了解某种灯管的使用寿命,一般采用抽样调查4.不等式组2111313412x xxx+≥⎧⎪-⎨-<⎪⎩的解集在数轴上表示正确的是()A.B.C.D.5.如图,直线AB∥CD,∠M=90°,∠CEF=120°,则∠MPB=()A .30°B .60°C .120°D .150°6.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为( ) A .1( 4.5)12x x +=-B .1( 4.5)12x x +=+C .1(1) 4.52x x +=-D .1(1) 4.52x x -=+7.人体红细胞的直径约为0.0000077米,数据0.0000077用科学记数法表示为7.710n ⨯,则n 的值是( ) A .5B .5-C .6D .6-8.如图,在菱形ABCD 中,8AB =,120BAD ∠=︒,点O 是对角线BD 的中点,OE CD ⊥于点E ,则OE 的长为( )A .B C .4 D .29.已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:下列结论错误的是( ) A .该函数有最大值B .该函数图象的对称轴为直线1x =C .当2x >时,函数值y 随x 增大而减小D .方程20ax bx c ++=有一个根大于310.如图,A 是平面直角坐标系中y 轴上的一点,AO =AO 为底构造等腰ABO V ,且120ABO ∠=︒,将ABO V 沿着射线OB 方向平移,每次平移的距离都等于线段OB 的长,则第2024次平移结束时,点B 的对应点2024B 的坐标为( )A .()B .()C .(D .(二、填空题11.分解因式:34x x -=.12.已知关于x 的一元二次方程240x x a --=有两个不相等的实数根,则a 的取值范围是. 13.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89,方差分别是21.2S =甲,22.3S =乙,211.5S =丙,你认为适合选参加决赛.(填“甲”“乙”或“丙”)14.如图,B 、E 是以AD 为直接的半圆O 的三等分点,弧BE 的长为23π,作BC ⊥AE ,交AE 的延长线于点C ,则图中阴影部分的面积为.15.如图,在平行四边形ABCD 中,4AB =,6AD =,120A ∠=︒,点F ,N 分别为CD ,AB 的中点,点E 在边AD 上运动,将EDF V 沿EF 折叠,使得点D 落在D ¢处,连接BD ',点M 为BD '中点,则MN 的最小值是.三、解答题16.(1)计算:111245-⎛⎫⎛⎫÷--+ ⎪ ⎪⎝⎭⎝⎭;(2)化简: 11111a a a a ⎛⎫+÷ ⎪+--⎝⎭. 17.如图,一次函数y x b =+与反比例函数ky x=的图象相交于点A ,B 两点,点B 的坐标为()4,2--.(1)分别求出一次函数和反比例函数的解析式; (2)已知点C 坐标为()2,0,求ABC V 的面积.18.某校开展了以“不忘初心,牢记使命”为主题的知识竞赛,现从该校八、九年级各随机抽取10名学生的成绩进行整理、描述和分析(成绩用m 表示),共分成四个组:A . 8085m ≤<,B . 8590m ≤<, C . 9095m ≤<,D . 95100m ≤≤.另外给出了部分信息如下: 八年级10名学生的成绩: 99, 80,99,86, 99,96,90,100,89,82. 九年级10名学生的成绩在C 组的数据:94,90,94. 八、九年级抽取学生成绩统计表九年级抽取学生成绩扇形统计图根据以上信息,解答下列问题: (1)上面图表中的a =,b =, c =;(2)扇形统计图中“D 组”所对应的圆心角的度数为;(3)该校九年级共有840名学生参加了知识竞赛活动,估计九年级参加此次知识竞赛活动成绩为较好(90≤m <95)的学生有多少人?(4)现准备从九年级中D 组中的甲、乙、丙、丁四个学生中随机选取两个参加市区的比赛,请用树状图或列表法求出恰好选中甲和丁的概率.19.如图,某建筑物楼顶挂有广告牌BC ,张伟准备利用所学的三角函数知识估测该建筑CO的高度.由于场地有限,不便测量,所以张伟从点A 沿坡度为i =30米到达点P ,测得广告牌底部C 点的仰角为45︒,广告牌顶部B 点的仰角为53︒,张伟的身高忽略不计,已知广告牌12BC =米,求建筑物CO 的高度.(参考数据:sin530.8︒≈,cos530.6︒≈,tan53 1.3︒≈)20.重庆市涪陵区是中国规模最大、最集中的榨菜产区,享有中国“榨菜之乡”的美誉.已知3件鲜脆榨菜丝和4件麻辣萝卜干的进价共240元,5件鲜脆榨菜丝和2件麻辣萝卜干的进价共260元.(1)请分别求出每件鲜脆榨菜丝和麻辣萝卜干的进价.(2)某特产店计划用不超过5600元购进鲜脆榨菜丝和麻辣萝卜干共150件,且鲜脆榨菜丝的数量不少于麻辣萝卜干数量的32.在销售过程中,每件鲜脆榨菜丝的售价为50元,每件麻辣萝卜干的售价为42元.为了方便顾客选择喜欢的口味,特产店拿出一件鲜脆榨菜丝和一件麻辣萝卜干作为样品让顾客免费品尝(此样品不再销售给顾客).若剩下的特产全部都卖完,该特产店应如何进货,可使利润最大?最大利润为多少元? 21.阅读与思考下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.阿基米德折弦定理从圆上任意一点出发的两条弦所组成的折线,称为该圆的一条折弦,如图1.古希腊数学家阿基米德发现,若PA ,PB 是O e 的折弦.C 是»AB 的中点,CE PA ⊥于点E ,则AE PE PB =+.这就是著名的“阿基米德折弦定理”. 证明如下:如图2,在AE 上截取AF PB =,连接CA ,CF ,CP ,CB .则FAC PBC ∠=∠(依据1).∵C 是»AB 的中点,∴AC BC =n n,∴AC BC =. 在FAC V 和PBC V 中,AC BC = FAC PBC ∠=∠AF BP =∴()FAC PBC SAS V V ≌,∴CF CP =. ∵CE PA ⊥于点E ,∴FE PE =(依据2).∴AE FE AF PE PB =+=+.任务:(1)填空:材料中的依据1是指________________;依据2是指________________. (2)如图3,BC 是O e 的直径,D 是»AC 上一点,且满足45DAC ∠=︒,若12AB =,O e 的半径为10,求AD 的长.22.如图,已知抛物线 ²y x bx c =-++₁的顶点 D 的坐标为()14,,与x 轴的正半轴交于点 A ,与y 轴交于点B ,连接AB .(1)求b ,c 的值;(2)点(),P m n 在抛物线y 1上,当2m <时, 请根据图象直接写出n 的取值范围;(3)将抛物线1y 向右平移1个单位得到抛物线2y ,1y 与2y 交于点 C ,将点C 向下平移k 个单位,使得点C 落在线段AB 上,求k 的值.23.随着教育教学改革的不断深入,数学教学如何改革和发展,如何从“重教轻学”向自主学习探索为主的方向发展,是一个值得思考的问题.从数学的产生和发展历程来看分析,不外乎就是三个环节:【观察猜想】-【探究证明】-【拓展延伸】.下面同学们从这三个方面试看解决下列问题:已知:如图1所示将一块等腰三角板BMN 放置与正方形ABCD 的B ∠重含,连接 AN 、CM ,E 是AN 的中点,连接BE .【观察猜想】(1)CM 与 BE 的数量关系是________,CM 与BE 的位置关系是___________; 【探究证明】(2)如图2所示,把三角板 BMN 绕点B 逆时针旋转(090)αα<<,其他条件不变,线段CM与BE 的关系是否仍然成立,并说明理由; 【拓展延伸】(3)若旋转角45α=︒,且2NBE ABE ∠=∠,求BCBN的值.。
九年级中考数学模拟考试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分)1.的相反数的倒数是()A.B.﹣3C.3D.2.若一个正多边形的一个外角是60°,则这个正多边形的边数是()A.10B.9C.8D.63.总投资54亿元的万家丽高架快速路建成,不仅疏解了中心城区的交通,还形成了我市的快速路网,54亿用科学记数法表示为()A.0.54×109B.5.4×109C.54×108D.5.4×1084.在平面直角坐标系中,以点(﹣3,4)为圆心,以3个单位长度为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相切C.与x轴相离,与y轴相交D.与x轴相切,与y轴相离5.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,那么两者的方差的大小关系是()A.<B.>C.=D.不能确定7.如图,是由一个圆柱体和一个长方体组成的几何体,其俯视图是()A.B.C.D.8.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为()A.40B.47C.96D.1909.如图,△ABC内接于⊙O,∠ACB=90°,BD=5,则BC的长为()A.12B.8C.10D.10.周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,一直到何老师,他和参加跳舞的所有学生跳过舞()A.15B.14C.13D.12二、填空题(每小题3分,共18分)11.分解因式:3x3﹣3x=.12.若式子在实数范围内有意义,则x的取值范围为.13.如图,△ABC与△A1B1C1为位似图形,点O是它们的位似中心,位似比是1:3,那么△A1B1C1的面积是.14.圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为.15.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,EF∥AB,且AD:DB=3:5.16.如图,点A在反比例(x>0)图象上,交x轴于点C、D.若点B的坐标为(0,2)则图中阴影部分面积为.三、解答题(第17、18、19题6分,第20、21题8分,第22、23题9分,第24、25题10分,共72分)17.计算:.18.先化简,再求值:,其中a满足a2+2a﹣3=0.19.“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OBA=45°,CD =20km.若汽车行驶的速度为50km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).20.历下区某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有人,扇形统计图中m=,n=,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图求出恰好1男1女参加比赛的概率。
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.把多项式22481a b -分解因式,其结果正确的是( ) A . (49)(49)a b a b -+ B .(92)(92)b a b a -+ C .2(29)a b -D .(29)(29)a b a b -+2.方程组⎩⎨⎧=-=+134723y x y x 的解是( )A . ⎩⎨⎧=-=31y xB .⎩⎨⎧-==13y xC .⎩⎨⎧-=-=13y xD .⎩⎨⎧-=-=31y x 3.如图,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ) A .400cm 2B .500cm 2C .600cm 2D .4000cm 24.=⋅-n m a a 5)(( ) A .ma+-5B .ma+5C . nm a+5D .nm a+-55.下列事件是必然事件的是( ) A .明天是晴天B .打开电视,正在播放广告C .两个负数的和是正数D .三角形三个内角的和是180° 6.下列说法正确的是( )A .足球在草地上滚动,可看作足球在作平移变换B .我们可以把“火车在一段笔直的铁轨上行驶了一段距离”看作“火车沿着铁轨方向作平移变换”C .小明第一次乘观光电梯,随着电梯的上升,他高兴地对同伴说:太棒了,•我现在比大楼还高呢,我长高了D .在图形平移变换过程中,图形上可能会有不动点7.一个三角形的三边长分别是5,6,7,另一个三角形和它是相似图形,其最长边长为10.5, 则另一个三角形的周长是( ) A .23B .27C .29D .338.现实生活中存在大量的平移现象,下列现象属于平移变换的是( ) A .行进中自行车车轮的运动 B .急刹车后汽车在路面上的滑动 C .人与镜子中的像D .台球在桌面上从一点到另一点的运动 9.下面的计算正确的是( ) A . 4312a a a ⋅=B .222()a b a b +=+ C .22(2)(2)4x y x y x y -+--=-D .3752a a a a ⋅÷=10. 在△ABC 中,如果∠A —∠B= 90°,那么△ABC 是( )A .直角三角形B .钝角三角形C .锐角三角形D .锐角三角形或钝角三角形 11.若||a a >-,则a 的取值范围是( ) A .0a >B .0a ≥C .0a <D .D. 自然数12.计算200820090.04(25)⨯-的结果正确的是( ) A .2009B . -25C .1D .-113.下列各多项式分解因式正确的个数是( )①432318273(69)x y x y x y x y +=+;②3222()x y x y xy x xy +=+;③3222+622(3)x x x x x x +=+;④232224682(234)x y x y xy xy xy x y -+-=-+-A .3 个B . 2 个C .1 个D .0 个14.如图所示,已知 AB ∥CD ,则与 ∠1相等的角 (∠1 除外)共有( ) A .5 个B .4 个C .3 个D .个15. 根据图中所给数据,能得出( ) A .a ∥b ,c ∥dB .a ∥b ,但c 与d 不平行C .c ∥d ,但a 与b 不平行D .a 与b ,c 与d 均不互相平行16.下列命题不正确的是( ) A .在同一三角形中,等边对等角 B .在同一三角形中,等角对等边C .在等腰三角形中与顶角相邻的外角等于底角的2倍D .等腰三角形是等边三角形17.将直角三角形的三边都扩大3倍后,得到的三角形是( ) A .直角三角形B .锐角三角形C .钝角三角形D .无法确定18.一个几何体的三视图如图所示,则这个几何体是( )A .长方体B .六棱锥C .六棱柱D .圆柱19.将一个立方体沿某些棱展开后,能够得到的平面图形是( )A .B .C .D .20.不等式2(1)3m x +>的解集为( ) A .231x m >+ B .231x m <+ C .231x m ≥+ D .231x m ≤+ 21.若方程3(1)1(3)5m x m x x ++=--的解是负数,则 m 的取值范围是( ) A .54m >-B .54m >C .54m <-D .54m <22.王英同学从A 地沿北偏西60方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,这时王英同学离A 地的距离是( )A .150mB .C .100mD .23.已知函数y =x -5,令x =21、1、23、2、25、3、27、4、29、5,可得函数图象上的十个点.在这十个点中随机取两个点P (x 1,y 1)、Q (x 2,y 2),则P 、Q 两点在同一反比例函数图象上的概率是( ) A .91B .454 C .457 D .5224.袋中有同样大小的4个小球,其中 3个红色,1个白色. 从袋中任意地同时摸出两个球,这两个球颜色相同的概率是( ) A . 12B . 13C .23D . 1425.已知线段AB ,在BA 的延长线上取一点C ,使CA=3AB ,则线段CA 与线段CB 之比为( ) A .3:4B .2:3C .3:5D .1:226. 在|7|-,|5|,(3)-+,|0|-中,负数共有( ) A .1 个B .2 个C .3 个D .4 个27.某校有在校师生共2000人,如果每人借阅10册书,那么中国国家图书馆共2亿册书,可以供多少所这样的学校借阅? ( ) A .100000所B .10000所C .1000所D .2000所28.数学课上老师给出下面的数据,精确的是( ) A .2002年美国在阿富汗的战争每月耗费10亿美元 B .地球上煤储量为5万亿吨以上 C .人的大脑有l ×1010个细胞 D .七年级某班有51个人 29.近似数91.60万精确到( ) A .百位B .千位C .百分位D .千分位30.4-(-7)等于( ) A . 3B . 11C . -3D . -1131.已知240mx y +++,且x 、y 互为相反数,则m 的值为( ) A . 4B .-4C . 2D .-232.下列长度的三条线段,能够组成三角形的是 ( ) A .2.5,2.5,5 B . l ,6,6C .2,8,4D .10,7,233.分式3a x ,22x y x y +-,22a b a b -+,x y x y +-中最简分式有( )A .1 个B .2 个C . 3 个D .4 个34.一个水池有甲、乙两个水龙头,单独开甲龙头,4 h 可把空水池灌满;单独开乙龙头,6 h 可把空水池灌满.灌满水池的23要同时开甲、乙两龙头的时间是( ) A .83hB .43hC .4 hD .85h35.如图,从A 地到B 地,最短的路线是( ) A .A →G →E →BB .A →C →E →B C .A →D →G →E →B D .A →F →E →B36. 如图,已知∠C =∠D ,AC=AE ,要得到△ABC ≌△AED 还应给出的条件中错误的是( ) A .∠BAD =∠EACB .∠B=∠EC .ED=BC AB =AE37.如图,由A 测B 的方向是 ( ) A .南偏东25°B .北偏西25°C .南偏东65°D .北偏西65°38.下列图案是几种名车的标志,在这几个图案中,是轴对称图形的有( ) A .1个B .2个C .3个D .4个39.如果α∠和β∠互补,且αβ∠>∠,则下列表示β∠的余角的式子中:①90β-∠;②90α∠-;③1()2αβ∠+∠;④1()2αβ∠-∠.正确的有( ) A .4个B .3个C .2个D .1个40.在223.14, , , 0.31, 0.80800800087π-…(每两个8之间依次多1个0)这些数中,无理数的个数为 ( ) A .1个B .2个C .3个D .4个41.如图所示,在4×4的正方形网格中,∠l ,∠2,∠3的大小关系是( ) A .∠l>∠2>∠3 B .∠1=∠2>∠3 C .∠l<∠2=∠3D .∠l=∠2=∠342.平移前有两条直线互相垂直,那么这两条直线平移后( ) A .互相平行B .互相垂直C .相交但不垂直D .无法确定43.如图所示,在图①中,Rt △OAB 绕其直角顶点0每次旋转90°,旋转3次得到右边的图形,在图②中,四边形OABC 绕0点每次旋转120°,旋转2次得到右边的图形.以下四个图形中,不能通过上述方式得到的是( )44.“一条鱼在白云中飞翔”是( )A . 必然事件B . 不确定事件C . 确定事件D . 不可能事件45.同时抛掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有 1 到 6 的点数. 下 列事件中,属于不可能事件的是( ) A 点数之和为 12 B .点数之和小于 3 C .点数之和大于4且小于 8 D .点数之和为 13 46.解是12x y =⎧⎨=-⎩ 的方程组是( ) A .135x y x y +=⎧⎨-=⎩B . 135x y x y +=-⎧⎨-=-⎩C . 331x y x y +=⎧⎨+=⎩D . 2335x y x y +=-⎧⎨-=⎩47.如图①,在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >),再沿黑线剪开,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( ) A .22()()a b a b a b -=+- B .222()2a b a ab b +=++ C .222()2a b a ab b -=-+D .222()a b a b ⋅-=-48.下列各组所述的几何图形中,一定全等的是( ) A .有一个角是45°的两个等腰三角形 B .两个等边三角形C .腰长相等的两个等腰直角三角形D .各有一个角是40°,腰长都为5cm 的两个等腰三角形49.如图,直线AB 、CD 交于点O ,OE 平分∠AOD ,OF ⊥OE 于点0,若∠BOC=80°,则∠DOF= ( ) A .100°B .120°C . 130°D .140°50.已知△ABC 的三边长分别为6 cm ,7.5 cm ,9 cm ,△DEF 的一边长为4 cm ,当△DEF 的另两边长是下列哪一组时,这两个三角形相似( ) A .2 cm ,3 cmB .4 cm ,5 cmC .5 cm ,6 cmD .6 cm ,7 cm51.如果函数y=ax+b (a<0,b<O )和y=kx (k>0)的图象交于点P ,那么点P 应该位于( ) A .第一象限B .第二象限C .第三象限D .第四象限52.在Rt ⊿ABC 中,∠ACB =90°,∠A =30°,AC =3cm ,则AB 边上的中线为( ) A .cm 1B .cm 2C .cm 5.1D .cm 353.如图,在梯形ABCD 中,AD BC ∥,AB a DC b ==,,DC 边的垂直平分线EF 交BC 边于E ,且E 为BC 边的中点,又DE AB ∥,则梯形ABCD 的周长等于( )A .22a b +B .3a b +C .4a b +D .5a b +54.抽查20名学生每分脉搏跳动次数,获得如下数据(单位:次)81,73,77,79,80,78,85,80,68,90,80,89,82,81,84,72,83,77,79,75. 以5次为组距分组,绘制频数分布表时,频率为0.45的一组是( ) A .72.5~77.5B .77.5~82.5C .82.5~87.5D .87.5~92.555.下列说法正确的是( )A .平行四边形面积公式s ab =(a 、b 分别是一条边长和这条边上的高),S 与a 成反比例B .功率P UI =中,当 P 是非零常数时,U 与I 成反比例C .11y x =-中,y 与x 成反比例 D .12x y -=中,y 与x 成正比例 56.已知正比例函数y 1=k1x和反比例函数y 2=k 2x 的图像都经过点(2,1),则k 1、k 2的值分别为:( ) A .k 1=12 ,k 2=2 B . k 1=2,k 2=12 C . k 1=2,k 2=2 D . k 1=12 ,k 2=1257.将抛物线22y x =-平移,得到223y x =--的图象,正确的方法是( )A . 向上平移 3 个单位B .向下平移3个单位C . 向上平移2 个单位D . 向下平移 2 个单位58.二次函数2()(0)y a x m m a =++≠,无论m 取什么实数,图象的顶点必在( ) A . 直线y=x 上B .直线y= 一x 上C . x 轴上D .y 轴上59.下列四个函数:①2y x =+;②6y x=;③23y x =;④2(26)y x x =--≤≤,四个函数图 象中是中心对称图形,且对称中心是原点的共有( ) A .1 个B .2 个C .3 个D .4 个60.已知线段 AB=3cm ,⊙O 经过点A 和点B ,则⊙O 的半径( ) A .等于3 cmB .等于1.5 cmC .小于3 cmD .不小于1.5 cm61.如图,点 C 在⊙O 上,已知∠C=45°, 则∠AOB 为( ) A .45°B .22.5°C .90°D .67.5°62.某校组织学生进行了一次社会调查,并对学生的调查报告进行评比.下图是将某年级60 篇学生调查报告的成绩进行整理,分成5组后画出的频数分布直方图.已知从左到右4个组的频率分别是0.05,0.15,0.35,0.30,那么这次评比中被评为优秀的调查报告有(分数大于或等于80分为优秀,且分数为整数) ( ) A .18篇B .24篇C .25篇D .27篇63.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB=2m ,CD=5m ,点P 到CD 的距离是3m ,则P 到AB 的距离是( ) A .56m B .67m C .65m D .103m64.下列命题为真命题的是( )A .三角形的中位线把三角形的面积分成相等的两部分B .对角线相等且相互平分的四边形是正方形C .关于某直线对称的两个三角形是全等三角形D .一组对边平行,另一组对边相等的四边形一定是等腰梯形 65.若两个图形位似,则下列叙述不正确的是( ) A .每对对应点所在的直线相交于同一 B .两个图形上的对应线段之比等于位似比 C .两个图形上对应线段必平行 D .两个图形的面积比等于位似比的平方66.其市气象局预报称:明天本市的降水概率为70%,这句话指的是( ) A . 明天本市70%的时间下雨,30%的时间不下雨 B . 明天本市70%的地区下雨,30%的地区不下雨 C . 明天本市一定下雨D . 明天本市下雨的可能性是70%67.已知α是等腰直角三角形的一个锐角,则sin α的值为( )A .12B .2C .2D .168.已知⊙O 的半径为 5 cm ,如果一条直线和圆心0的距离为 5 cm ,那么这条直线和⊙O 的位置关系是( ) A .相交B .相切C . 相离D . 相交或相离69.如图,点 P 在⊙O 上,下列各条件中能判定直线 PT 与⊙O 相切的是( )①tan O =tan T =;②OP=2,PT=4,OT=5;③305o O '∠=,059.5T ∠=;④OP=1,PT =OT = A .①B .①③C .①④D .①③④70.如图,以点O 为圆心的同心圆中,大圆的弦AB 切小圆于点C ,两圆的半径分别为5cm 和3cm ,则AB=( )A .8cmB .4cmC .D71.若⊙O 1 和⊙O 2相交于A 、B 两点,⊙O 1 和⊙O 2的半径分别为2 和,公共弦长为 2,∠O 1AO 2的度数为( ) A .105°B .75°或 15°C .105°或 15°D .15°72.如图,两圆有多种位置关系,图中不存在...的位置关系是( ) A .相交B .相切C .外离D .内含73.如图,以Rt ABC △的直角边AC 所在的直线为轴,将ABC △旋转一周,所形成的几何体的俯视图是( )74.如图是某一个多面体的表面展开图, 那么这个多面体是( ) A . 四棱柱 B . 四棱锥 C . 三棱柱 D .三棱锥75.圆O 的直径为12cm ,圆心O 到直线l 的距离为7cm ,则直线l 与圆O 的位置关系是( ) A .相交B .相切C .相离D .不能确定76.把ad bc =写成比例式,错误的是( ) A .a:b=c:dB .b :d=a :cC .b:a=d:cD .b:d=c:a77.已知等腰三角形的腰长为 3,则此等腰三角形的面积为( )A .2B .4C .2D .478.弹簧的长度与所挂物体的质量关系为一次函数,如图所示,由图可知不挂物体时弹簧的长度为( ) A .7 cmB .8 cmC .9 cmD .10 cm79.如图反映的过程是:小明从家跑步到体育馆,在那里锻炼了一阵后又走到新华书店去买书,然后散步走回家,其中t 表示时间,s 表示小明离家的距离,那么小明在体育馆锻炼和在新华书店买书共用去的时间是( ) A .35minB .45minC .50minD .60min80.如果点M 在直线1y x =-上,则M 点的坐标可以是( ) A .(-1,0)B .(0,1)C .(1,0)D .(1,-1)81.等腰三角形周长是29,其中一边是7,则等腰三角形的底边长是( ) A .15B .15或7C .7D .1182.如图,正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从M 点沿正方体的表面爬到D ,点,蚂蚁爬行的最短距离是( )A B .3C .5D .283. , )A .2 个B .3 个C .4 个D .5 个84.若等式)2)(1(+-x x =21+⋅-x x 成立,则字母x 应满足条件( ) A .x ≥0B .x ≥-2C .-2≤x ≤1D .x ≥185.|3|0y +=的值为( )A .52B .52-C .72D .72- 86. 某造纸厂一月份生产纸 1200 t ,采用新技术后,每月比上个月提高相同的百分数, 且三月份比二月份多生产 207 t. 设每月提高的百分数为x ,根据题意列出下列方程,正确的是( )A .21200(1)1200(1)207x x +-+=B .21200(1)1200207x x +-=C .21200(1)1200207x x +-=D . 221200(1)1200207x x +-=87.某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x 名学生,根据题意,列出方程为( )A .x (x+1)=2550B .x (x-1)=2550C .2x (x+1)=2550D .x (x-1)=2550×288.□ABCD 的周长为20 cm ,两邻边之比为3:2,则较长边为( )A .6 cmB .4 cmC .2 cmD .3 cm89.下列各组条件中,不能判定四边形是平行四边形的是( )A .两组对边分别相等B .两组对角分别相等C .一组对边平行且相等D .一组对边平行,另一组对边相等90.在菱形ABCD 中,若∠ADC=120°,则BD :AC 等于( )A 2B 3C .1:2D 191.如图,在锐角△ABC 中,CD 和BE 分别是AB 和AC 边上的高,且CD 和BE 交于点P ,若∠A=50°,则∠BPC 的度数是( )A .150°B .130°C .120°D .100°92.在四边形中,锐角最多能有( )A .1个B .2个C .3个D .4个 93.关于x 的一元二次方程21(1)420m m x x ++++=的解为( )A .11x =,21x =-B .121x x ==C .121x x ==-D .无解94.从1到20的20个自然数中,任取一个,既是2的倍数,又是3的倍数的概率是( )A .120B .320C .12 D .31095.袋中有4个除颜色外其余都相同的小球,其中1个红色,1个黑色,2个白色. 现随机从袋中摸取一球,则摸出的球为白色的概率为( )A .1B .21C .31D .4196.下列图形中:角、线段、直角三角形、等边三角形、长方形,其中一定是轴对称图形的有( )A .2个B .3个C .4个D .5个 97.已知反比例函数2y x=,下列结论中,不正确...的是( ) A .图象必经过点(12), B .y 随x 的增大而减少C .图象在第三象限内D .若1x >,则2y <98.下列几何体中,是多面体的是( )99.绝对值不大于 2 的整数的个数一共有( )A .3 个B .4 个C .5 个D .6 个100.如图,直线a 、b 被直线c 所截,现给出下列四个条件:( 1 ) ∠l =∠5;(2) ∠ 1 = ∠7;(3)∠2 +∠3 =180°;(4)∠4 = ∠7. 其中能判定 a ∥b 的条件的序号是( )A . (1)(2)B . (1)(3)C .(1)(4)D . (3)(4)101.一个数的绝对值是最小的正整数,那么这个数是( )A .0B .-1C .1D .1±102.已知a 、b 两数在数轴上的对应点的位置如图所示,那么化简代数式12a b a b +--++结果是( )A . 1B .23b +C .23a -D .-1103.如图,直线1l 、2l 、3l 相交于点0,下列结论正确的是( )A .∠l=90°,∠2=30°,∠3=90°,∠4=60°B .∠l=∠3=90°,∠2=∠4=30°C .∠l=∠3=90°,∠2=∠4=60°D .∠l=∠3=90°,∠2=60°,∠4=30°104.小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x 根火腿肠,则关于x 的不等式表示正确的是( )A .34224x ⨯+<B .34224x ⨯+≤C .32424x +⨯≤D .32424x +⨯≥105.已知半径分别为5cm 和8cm 的两圆相交,则它们的圆心距可能是( )A .1cmB .3cmC .10cmD .15cm106.如图,点O 是两个同心圆的圆心,大圆半径OA 、OB 交小圆于点C 、D ,下列结论中正确的个数有( )(1)⌒AB =⌒CD ;(2 )AB= CD ;(3)∠OCD=∠OABA .0 个B .1个C .2 个D .3 个107.不等式2752x x -<-的正整数解有( )A .1个B .2个C .3个D .4个108.□ABCD 中,∠B=150°,AD=4cm ,对边AB ,CD 之间的距离是 ( )A 1cmB . 2 canC .3cmD .4cm109.□ABCD 中,∠A=55°,则∠B 、∠C 的度数分别是( )A .135°,55°B .55°,135°C .125°,55°D .55°,125°110.如图所示,在高为 300 m 的山顶上,测得一建筑物顶端与底部俯角分别为 30°和 60°,则该建筑物高为( )A .200mB .lOOmC .D .【参考答案】***试卷处理标记,请不要删除一、选择题1.D2.B3.A4.D5.D6.B7.B8.B9.C10.B11.A12.B13.D14.C15.B16.D17.A18.C19.C20.A21.A22.D23.B24.A25.A26.A27.B28.D32.B 33.C 34.D 35.D 36.D 37.C 38.C 39.B 40.C 41.B 42.B 43.D 44.D 45.D 46.D 47.A 48.C 49.C 50.C 51.C 52.A 53.C 54.B 55.B 56.A 57.B 58.B 59.A 60.D 61.C 62.D66.D 67.B 68.B 69.C 70.A 71.C 72.A 73.A 74.C 75.C 76.D 77.B 78.D 79.C 80.C 81.C 82.A 83.B 84.D 85.C 86.A 87.B 88.A 89.D 90.B 91.B 92.C 93.C 94.B 95.B 96.C100.A 101.D 102.B 103.D 104.B 105.C 106.B 107.B 108.B 109.C 110.A。
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息 一、选择题1.等腰三角形的“三线合一”是指( ) A .中线、高、角平分线互相重合B .腰上的中线、腰上的高、底角的平分线互相重合C .顶角的平分线、中线、高线三线互相重合D .顶角的平分线、底边上的高及底边上的中线三线互相重合2. 一组学生去春游,预计共需费用 120 元,后来又有 2 个同学参加进来,总费用不 变,于是每人可少分摊 3 元,原来这组学生的人数是( ) A.8 人B .10人C . 12人D . 30 人3.如图,有 6 个全等的等边三角形,下列图形中可由△OBC 平移得到的是( ) A .△OCDB .△OABC .△OAFD .△OEF4.下列图案是几种名车的标志,在这几个图案中,是轴对称图形的有( ) A .1个 B .2个C .3个D .4个5.已知12x y =⎧⎨=⎩是方程组120.ax y x by +=-⎧⎨-=⎩,的解,则a+b=( )A .2B .-2C .4D .-46.下列计算中,正确的是( ) A .2a+3b=5abB .a ·a 3=a 3C .a 6÷a 2=a 3D .(-ab )2=a 2b 27.如图,123,,∠∠∠的大小关系为( ) A .213>>∠∠∠B .132>>∠∠∠C .321>>∠∠∠D .123>>∠∠∠8.下列说法正确的是( ) A .周长相等的两个三角形全等 B .面积相等的两个三角形全等 C .三个角对应相等的两个三角形全等 D .三条边对应相等的两个三角形全等9.已知数据13、、0.618、125、34-,任意抽取一个数是负数的概率为( )A .20%B .40%C .60%D .80%10.小强、小亮、小文三位同学玩投硬币游戏,三人同时各投出一枚均匀硬币,若出现3个正面向上或3个反面向上,则小强赢;若出现2个正面向上,1 个反面向上,则小亮赢;若出现 1 个正面向上,2个反面向上,则小文赢. 下面说法正确的是( ) A .小强赢的概率最小 B .小文赢的概率最小 C .亮赢的概率最小 D .三人赢的概率都相等11. 如图,宽为 50 cm 的矩形图案由 10个全等的小长方形拼成,其中一个小长方形的面积为( ) A .400cm 2 B .500 cm 2 C .600 cm 2 D .4000 cm 212.已知△ABC 在平面直角坐标系中的位置如图所(图中小方格的边长均代表1个单位),将△ABC 向右平移2个单位,则平移后的点B 的坐标是( )A .(-l ,1)B .(1,-l )C .(1,-2)D .(0,2)13. 如图,∠1的内错角是( ) A .∠2B .∠3C .∠4D .∠514.如图,已知 6.75R =, 3.25r =,则图中阴影部分的面积为(结果保留π)( ) A .35π⋅B .12.25πC .27πD .35π15.如图,△ABC、△ADE及△EFG都是等边三角形,D和G分别为AC和AE的中点。
初三数学模拟试卷一、精心选一选,相信自己的判断!(共10小题,每小题3分,共30分)1. (★)计算屈一血的结果是()3. (★)将二次函数y = %2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A. y = (%-l)2+2 B. y = (x+l)2+2 C. y = (x-l)2-2 D. y = (% + l)2 -2况是( )A.有两个不等实根B.有两个相等实根C.没有实根D.无法确定。
6. (★★)把长为8cm 的矩形按虚线对折,按图屮的虚线剪出一个直角梯形,找开得到一个等腰梯形, 剪掉部分的面积为6cn?,则打开后梯形的周长是()A. (10 + 2-\/^3) cmB. (10 + VTJ ) cm C ・ 22cm D. 18cm7. (★★)下面右边的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是 ()A. B.C. D. ~8. (★★)己知腮的面积为36,将腮沿兀的方向平移到C 的位置,使〃和C 重合,连结化/交才C 于〃,则DC 的面 积为 ( ) A. 6 B. 9 C. 12 D. 18X 0根的情 5.4. (★)如图1,现有一个圆心角为90。
,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接 缝忽略不计),则该圆锥底面圆的半径为( )B C &)C (第8题)9. (★★)某探究性学习小组仅利用一幅三角板不能完成的操作是( )A.作已知直线的平行线B.作已知角的平分线C.测量钢球的直径D.找已知圆的圆心10. (★★★)如图,正方形力滋9的边长是3cm,—个边长为lcm 的小正方形 沿着正方形昇彩的边AB-BC-dDAfAB 连续地翻转,那么这个小正方形笫 一次回到起始位置时,它的方向是()A. B. C. D.二、细心填一填,试试自己的身手!(共6小题,每小题3分,共18分) 10. (★)在函数y =』2-x 中,自变量兀的取值范围是 ______________ .11. (★)国家游泳屮心“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260000平方米,将260000用科学记数法表示应为 ________________ .x — 3 v 0 12. (★)不等式组彳 .的解集是2无一1三0------------13. (★★)如图,(甲)是四边形纸片ABCD ,其中Z 尿120。
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.如图所示,若六边形ABCDEF 绕着中心 0旋转∠α得到的图形与原来的图形重合,则α的最小值为( ) A . 180°B .120°C .90°D . 60°2.已知13x x -=,则221x x+的值等于( ) A .7B .9C .11D .133.下列扑克牌中,以牌的对角线交点为旋转中心,旋转180O 后能与原图形重合的有( )A .4张B .3张C .2张D .14.如图,在△ABC 中,已知∠ACB=90°,∠CAD 的角平分线交BC 的延长线于点E ,若∠B=50°,则∠AEB 的度数为( )A .70°B .20°C .45°D .50°5.如图,在ABC ∆中,AB=AC=10,AB 的垂直平分线交AC 于G ,BC=7,则GBC ∆的周长是( ) A .10 B .20 C .17 D .13 6.化简 2a 3 + a 2·a 的结果等于( ) A . 3a 3B .2a 3C .3a 6D .2a 67.c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形8.下列各式中从左到右的变形,是因式分解的是( ) A .(a+3)(a-3)=a 2-9; B .x 2+x-5=(x-2)(x+3)+1; C .a 2b+ab 2=ab (a+b )D .x 2+1=x (x+x1)9.把多项式m 2(a-2)+m (2-a )分解因式等于( ) A .(a-2)(m 2+m ) B .(a-2)(m 2-m )C .m (a-2)(m-1)D .m (a-2)(m+1)10.如图,△ABC ≌△BAD ,A 与B ,C 与D 是对应点,若AB=4cm ,BD=4.5cm ,AD=1.5cm ,则BC 的长为( ) A .4cmB .4.5cmC .1.5cmD .不能确定11.一个均匀的正方体骰子的六个面上分别标有一个1,二个2,三个3,则掷出3在上面的概率是( ) A .61 B .31C .21 D .32 12.如图所示,小明在A 处,小红在B 处,小李在C 处,AB=10 m ,BC=8 m ,下列说法正确的是( ) A .小红在小明东偏北35°处 B .小红在小明南偏西55°处C .小明在小红南偏西55°的距离为10 m 处D .小明在小李北偏东35°的距离为18 m 处13.一个三角形的三边长分别是5,6,7,另一个三角形和它是相似图形,其最长边长为10.5, 则另一个三角形的周长是( ) A .23B .27C .29D .3314.下列事件中,确定事件的个数是( )①下周日是晴天;③人没有氧气就会窒息而死;③三角形的面积=12底×高;④掷一 枚硬币,正面朝上. A .1 个B .2 个C .3 个D .4 个15.在下面四个图形中,既包含图形的旋转,又有图形的轴对称设计的是( )A .B .C .D .16.若关于x 的方程652mx =-的根为 1,则m 等于( ) A . 1B . 8C .18D . 4217.如图所示,∠l 和∠2是( ) A .同位角B .同旁内角C .内错角D .以上结论都不对18. 如图,AB ∥CD ,∠1=110°, ∠ECD =70°,∠E 等于( ) A .30°B . 40°C . 50°D . 60°19.如图,∠A =15°,AB=BC=CD=DE=EF ,则∠DEF 等于( ) A .90°B .75°C .60°D .45°20.某班50名学生右眼视力的检查结果如下表所示:那么该班学生右眼视力的众数和中位数分别是 ( ) A .4.9和4.8B . 4.9和4.7C .4.9和4.6D .4.8和4.721.有下列说法:①气象台预报明天阴有雨,所以明天下雨是必然事件;②9月份有30天是必然事件;③若a<0,则│a │=-a 是必然事件;④在只装有白球的口袋里摸出一个黑球,是不可能事件;其中说法正确的个数是( ) A .4个B .3个C .2个D .1个22.一元一次不等式组x ax b >⎧⎨>⎩的解为x a >,且a b ≠,则a 与b 的关系是( ) A .a b > B .a b < C .0a b >> D .0a b <<23.正方形网格中,AOB ∠如图放置,则sin AOB ∠=( )A BC .12 D .224.已知△ABC 在直角坐标系中的位置如图所示,若△A ′B ′ C ′与△ABC 关于y 轴对称,则点A 的对称点A ′的坐标为( ) A .(-4,2)B .(-4,-2)C .(4,-2)D .(4,2)25.下列式子成立的是( )A .(2a -1)2=4a 2-1B .(a+3b )2=a 2+9b 2C .(-a+b )(-a-b )=a 2-b 2D .(-a -b )2=a 2-2ab+b 226.下列方程的变形是移项的是( ) A .由723x =,得67x = B .由x=-5+2x, x =2x-5 C .由2x-3=x+5, 得2x+x=5-3 D .由111223y y -=+,得112123y y -=+27.在-5,110-,-3. 5,-0.01,-2,-12各数中,最大的数是( ) A .-12B .110-C .-0.01D .-528.下列说法中,不具有相反意义的一对量是( ) A .向东 2.5千米和向西2千米 B .上升 3米和下降1.5米 C .零上 6℃和零下5℃ D .收入5000元和亏损5 000元29.下面有一组按规律排列的数:1,2,4,8,16,32,…则第 2007 个数应是( ) A .20052B .20062C .20072D .2008230.某人第一次向南走 40 km ,第二次向北走30 km ,第三次向北走 40 km.那么最后相当 于这人( ) A .向南走 110 km B .向北走 50 km C .向南走 30 km D .向北走30 km31.五个有理数的积是负数,这五个数中负因数个数是( ) A .1 个 B .3 个 C .5 个 D .以上选项都有可能32.下列说法中,错误的是( ) A .无理数是一种小数 B .带根号的数是无理数 C .无理数是实数的一种 D .无限不循环小数是无理数33.下列各组两个式子中,是同类项的是( ) A .34ab 与3a bB .1n n a bc +-与2235n n a bcC .210()()x y x y -+-与2()()x y x y -+D .235mn 与28nm34.某商店举行“优惠酬宾”活动,规定如下: ①如果一次购物不超过200元,则不打折扣;②如果一次购物超过200元但不超过500元的,按标价给予九折优惠;③如果一次购物超过500元的,其中500元按②中的规定给予优惠,超过500元的部分则给予八折优惠. 小王两次去购物,分别付款l68元和423元,如果他只去一次购买同样的商品,则他应付款( ) A .522.8元B .510.4元C .560.4元D .472.8元35.2007年10月,“欧洽会”在浙江上虞举行,总投资额累计达8700万欧元. 总投资额用记数法表示( ) A .38.710⨯欧元B .78.710⨯欧元C .38710⨯ 欧元D .48.710⨯欧元36.下列各组中的两项为同类项的是( ) A . 23a b 与223abB .2x y 与2x zC .2mnp 与2mnD .12pq 与qp 37.如图①,在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >),再沿黑线剪开,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( ) A .22()()a b a b a b -=+- B .222()2a b a ab b +=++ C .222()2a b a ab b -=-+D .222()a b a b ⋅-=-38.若x 表示一个两位数,y 也表示一个两位数,小明想用 x 、 y 来组成一个四位数,且把 x 放在 y 的右边..,你认为下列表达式中哪一个是正确的( ) A .yx B .x+y C .100x+y D .100y+x39.2006 年 8月超强台风登陆浙江苍南,苍南遭受严重的损失,各方积极投入抢险,抗洪救灾小组A 地段有 28 人,B 地段有 15 入,现又凋来 29 人,分配在 A ,B 两个地段,使A 地段的人是B 地段的 2倍,则调往A ,B 地段的人数分别是( ) A .l8 人, 11人B . 24 人,25 人C. 20人 ,9人D . 14 人,15 人40.如图,用8块相同的小长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是( ) A .200 cm 2B .300 cm 2C .600 cm 2D .2400 cm 241.将方程2x 472312x ---=-去分母,得( )A .22(2x 4)(7)x --=--B .24(2x 4)7x --=--C .244(2x 4)(7)x --=--D .24447x x -+=-+42.下列方程的变形中,正确的是( ) A .由3(1)5(1)=0x x ---,得28x = B .由12x 3x +=-,得2x 13x -=-- C .由1123x -=,得321x -=D .由2x 3=,得23x =43.如图,从A 地到B 地,最短的路线是( ) A .A →G →E →BB .A →C →E →B C .A →D →G →E →B D .A →F →E →B44.如图, 已知直线 AB 、CD 相交于点 0,OA 平分∠EOC, ∠EOC =100°,则∠BOD 的度数是( ) A .20°B .40°C .50°D . 80°45.如图,OF 是∠BOE 的平分线,OC ⊥OE ,OD ⊥OF ,那么,图中与∠AOF 互补的角有( ) A .1个B .2个C .3个D . 4个46.下列说法错误的是 ( ) A .(-3)2的平方根是±3B .绝对值等于它的相反数的数一定是负数C .单项式235x y z 与322zy x -是同类项D .近似数3.14×103有三个有效数字47.以下列各组线段的长为边,能构成三角形的是( ) A .4 cm ,5 cm ,6 cm B .2 cm ,3 cm ,5 cm C .4 cm ,4 cm 。