山东聊城初中数学2020年学业水平考试真题及答案
- 格式:doc
- 大小:3.38 MB
- 文档页数:5
2020年山东省聊城市中考数学试卷2020年山东省聊城初中毕业生学业考试数学试题卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个符合题目要求) 1.在实数1-,2-,0,14中,最小的实数是( ). A. 1-B. 14C. 0D. 2- 2.如图所示的几何体的俯视图是( )A .B. C. D. 3.如图,在ABC 中,AB =AC ,∠C =65°,点D 是BC 边上任意一点,过点D 作DF ∥AB 交AC 于点E ,则∠FEC 的度数是( )A. 120°B. 130°C. 145°D. 150° 4.下列计算正确的是( ). A. 236a a a ⋅= B. 623a a a --÷= C. ()323628ab a b -=-D. 222(2)4a b a b +=+ 5.为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是( ) 成绩/分84 88 92 96 100 人数/人2 4 9 10 5 A. 92分,96分 B. 94分,96分 C. 96分,96分 D. 96分,100分6.计算345335÷⨯的结果正确的是( ). A. 1 B. 53 C. 5 D. 97.如图,在45⨯的正方形网格中,每个小正方形的边长都是1,ABC 的顶点都在这些小正方形的顶点上,那么sin ACB ∠的值为( ). A. 355 B. 175 C. 35 D. 458.用配方法解一元二次方程22310x x --=,配方正确的是( ).A. 2317416x ⎛⎫-= ⎪⎝⎭ B. 23142x ⎛⎫-= ⎪⎝⎭ C. 231324x ⎛⎫-= ⎪⎝⎭ D. 231124x ⎛⎫-= ⎪⎝⎭ 9.如图,AB 是O 的直径,弦CD AB ⊥,垂足为点M .连接OC ,DB .如果OC//DB ,23OC =,那么图中阴影部分的面积是( ).A. πB. 2πC. 3πD. 4π10.如图,有一块半径为1m ,圆心角为90︒的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为( ).A. 1m 4B. 3m 4C. 15D. 311.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n 个图形用图表示,那么图㊿中的白色小正方形地砖的块数是( ).…A. 150B. 200C. 355D. 50512.如图,在Rt ABC △中,2AB =,30C ∠=︒,将Rt ABC △绕点A 旋转得到Rt A B C '''∆,使点B的对应点B '落在AC 上,在B C ''上取点D ,使2B D '=,那么点D 到BC 的距离等于( ).A. 321⎛⎫+ ⎪ ⎪⎝⎭B. 31+C. 31-D. 31+二、填空题13.因式分解:(2)2x x x --+=________.14.如图,在O 中,四边形OABC 为菱形,点D 在AmC 上,则ADC ∠的度数是________. (第14题图) (第17题图) 15.计算:2111a a a a⎛⎫+÷= ⎪--⎝⎭________. 16.某校开展读书日活动,小亮和小莹分别从校图书馆的“科技”、“文学”、“艺术”三类书籍中随机地抽取一本,抽到同一类书籍的概率是________.17.如图,在直角坐标系中,点(1,1)A ,(3,3)B 是第一象限角平分线上的两点,点C 的纵坐标为1,且CA CB =,在y 轴上取一点D ,连接AC ,BC ,AD ,BD ,使得四边形ACBD 的周长最小,这个最小周长的值为________.三、解答题18.解不等式组131722324334x xx x x⎧+<-⎪⎪⎨--⎪≥+⎪⎩,并写出它的所有整数解.19.为了提高学生的综合素养,某校开设了五门手工活动课.按照类别分为:A“剪纸”、B“沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如下两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为________;统计图中的a=________,b=________;(2)通过计算补全条形统计图;(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.20.今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.21.如图,已知平行四边形ABCD中,E是BC的中点,连接AE并延长,交DC的延长线于点F,且AF=AD,连接BF,求证:四边形ABFC是矩形.22.如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量.先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD的顶端D的仰角为45°.居民楼AB的顶端B的仰角为55°.已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB 的高度(精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)23.如图,已知反比例函数kyx=的图象与直线y ax b=+相交于点(2,3)A-,(1,)B m.(1)求出直线y ax b=+的表达式;(2)在x轴上有一点P使得PAB△面积为18,求出点P的坐标.24.如图,在ABC 中,AB =BC ,以△ABC 的边AB 为直径作⊙O ,交AC 于点D ,过点D 作DE ⊥BC ,垂足为点E .(1)试证明DE 是⊙O 的切线;(2)若⊙O 的半径为5,AC =610,求此时DE 的长.25.如图,二次函数y =ax 2+bx +4的图象与x 轴交于点A(-1,0),B(4,0),与y 轴交于点C ,抛物线的顶点为D ,其对称轴与线段BC 交于点E .垂直于x 轴的动直线l 分别交抛物线和线段BC 于点P 和点F ,动直线l 在抛物线的对称轴的右侧(不含对称轴)沿x 轴正方向移动到B 点.(1)求出二次函数y =ax 2+bx +4和BC 所在直线的表达式; (2)在动直线l 移动的过程中,试求使四边形DEFP 为平行四边形的点P 的坐标; (3)连接CP ,CD ,在移动直线l 移动的过程中,抛物线上是否存在点P ,使得以点P ,C ,F 为顶点的三角形与DCE 相似,如果存在,求出点P 的坐标,如果不存在,请说明理由.。
2019—2020学年度聊城市莘县第一学期初三期中学业水平统一检测初中数学数学试卷讲明:本试卷总分值120分,考试时刻100分钟。
一、选择题〔本大题共15个小题,每题4分,在每题给出的四个选项中,只有一项符合题目要求〕1 •假设..a2(. a)2,那么a必须满足的条件是A. a 0B. a 0C. a 0D. a为任意实数2.方程2x(x 3) 5(x3)的根是555A. XB. x 3C. X1 3, X2D. X2223. 18的冋类二次根式是A. 27B. 72C. 2D. .124. 在Rt△ ABC中,假如各边长度都扩大2倍,那么锐角A的正切值1A .没有变化B .扩大2倍C.缩小一 D .不能确定25. 如以下图,假设/ 1 = Z 2=Z 3,那么图中相似三角形有1A. 2对B. 3对C. 4对 D . 5对6.关于X的元二次方程(a1)x22x a 1 0的一个根是0,那么a的值是A. 1B. -11C. 1或一1D.-7.将a J -根号外的因式移到根号内,正确的选项是Y a2c .10•假如把点A 向下平移2个单位后,得到点 A 坐标是〔3,— 2〕那么点A 的坐标是A . 〔1,— 2〕B . 〔 3,0〕C . 〔5,— 2 〕 D〔3,2〕11.将二次三项式X 26x 7进行配方,正确的结果应为A . 2(X 3) 22B . (X 3) 2C . (X 3)22 D . (X 3)2212 .设为锐角,且 cos4 ,那么cot54433A . —B .C . —D . —534513 .21 0;21 0,且,那么 的值为A . 2B . — 2C . 1D . 014 .化简 <54 .. 1\ 2 12的结果是BCD,那么cos 的值是(:\/\/B\A . 4iB .2C .■- 3 V6 D .2339•假设 a b-,那么-a3 b1 24 5 A . — B .C .— D .-3333&如以下图,在 Rt △ ABC 中,/ ACB=90 ° , CD 丄 AB 于D , AC2 2, AB 2、3,设A . 5、、2B . 6 - 3C . 3D . 53215•假设关于y的一元二次方程ky 4y 33y 4有实数根,那么k的取值范畴是7D . k 7 且 k 044〔本大题共 5个小题,每题4分,共20分,只要求填写最后结果〕c . k填空题 16. 时,关于x 的方程mx 223x 2x mx 1是一元二次方程。
『中考真题·真金试炼』2020年山东省聊城市中考数学试卷2020年山东省聊城初中毕业生学业考试数学试题卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个符合题目要求)1.在实数1-,2-,0,14中,最小的实数是( ). A. 1- B. 14C. 0D. 2-【答案】D 【解析】 【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】∵10124>>->-, ∴在实数1-,2-,0,14中,最小的实数是2-,故选:D .【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小. 2.如图所示的几何体的俯视图是( )A. B. C. D.【答案】C 【解析】 【分析】找到从几何体的上面看所得到的图形即可.【详解】从上面看几何体所得到的图形为俯视图,其中看得见的轮廓画实线,选项C 符合题意.故选:C .【点睛】本题主要考查了简单几何体的三视图,关键是掌握俯视图所看的位置.3.如图,在ABC 中,AB =AC ,∠C =65°,点D 是BC 边上任意一点,过点D 作DF ∥AB 交AC 于点E ,则∠FEC 的度数是( )A. 120°B. 130°C. 145°D. 150°【答案】B 【解析】 【分析】根据等腰三角形的性质得到∠B =∠C ,利用平行线的性质得到∠ EDC =∠B ,利用三角形的外角性质即可求解.【详解】∵AB =AC , ∴∠B =∠C =65°, ∵DF ∥AB ,∴∠ EDC =∠B =65°,∴∠FEC =∠EDC +∠C =65°+65°=130°. 故选:B .【点睛】本题考查了等腰三角形的性质,平行线的性质,三角形的外角性质,需熟练掌握. 4.下列计算正确的是( ). A. 236a a a ⋅= B. 623a a a --÷= C. ()323628ab a b -=-D. 222(2)4a b a b +=+【答案】C 【解析】 【分析】根据同底数幂的乘法、同底数幂的除法、积的乘方、完全平方公式逐一分析即可.【详解】A .23235a a a a +⋅==,该项不符合题意; B .()86622a a a a ---÷==,该项不符合题意; C .()()()33323236228ab a b a b -=-⋅⋅=-,该项符合题意;D .222(2)44a b a ab b +=++,该项不符合题意; 故选:C .【点睛】本题考查同底数幂的乘法、同底数幂的除法、积的乘方、完全平方公式等内容,解题的关键是掌握运算法则.5.为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是( )A. 92分,96分B. 94分,96分C. 96分,96分D. 96分,100分【答案】B 【解析】 【分析】根据中位数的定义和众数的定义分别求解即可.【详解】解:由统计表得共有30个数据,第15、16个数据分别是92,96, ∴中位数是9296=942+ ; 由统计表得数据96出现的次数最多, ∴众数为96. 故选:B【点睛】本题考查了求一组数据的中位数和众数.中位数是将一组数据由小到大(由大到小)排序后,位于中间位置的数据,当有偶数个数据时,取中间两数的平均数;众数是一组数据出现次数最多的数.6.÷ ).A. 1B.53C. 5D. 9【答案】A 【解析】 【分析】利用二次根式的乘除法则计算即可得到结果. 【详解】解:345335÷⨯345275=÷⨯1345275=⨯⨯ 1=,故选:A .【点睛】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.7.如图,在45⨯的正方形网格中,每个小正方形的边长都是1,ABC 的顶点都在这些小正方形的顶点上,那么sin ACB ∠的值为( ).3517 C.35D.45【答案】D 【解析】 【分析】过点A 作AD BC ⊥于点D ,在Rt ACD △中,利用勾股定理求得线段AC 的长,再按照正弦函数的定义计算即可.【详解】解:如图,过点A 作AD BC ⊥于点D ,则90ADC ∠=︒,∴225AC AD CD =+=,∴4sin 5AD ACB AC ∠==, 故选:D .【点睛】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线是解题的关键. 8.用配方法解一元二次方程22310x x --=,配方正确的是( ). A. 2317416x ⎛⎫-= ⎪⎝⎭B. 23142x ⎛⎫-= ⎪⎝⎭C. 231324x ⎛⎫-= ⎪⎝⎭ D. 231124x ⎛⎫-= ⎪⎝⎭ 【答案】A 【解析】 【分析】按照配方法的步骤进行求解即可得答案. 【详解】解:22310x x --= 移项得2231x x -=, 二次项系数化1的23122x x -=, 配方得22233132424x x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭即2317416x ⎛⎫-= ⎪⎝⎭ 故选:A【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤为(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方. 9.如图,AB 是O 的直径,弦CD AB ⊥,垂足为点M .连接OC ,DB .如果OC//DB ,23OC =,那么图中阴影部分的面积是( ).A. πB. 2πC. 3πD. 4π【答案】B 【解析】 【分析】 根据AB 是O 的直径,弦CD AB ⊥,由垂径定理得CM DM =,再根据OC//DB 证得MCO CDB ∠=∠,即可证明OMC BMD ≅△△,即可得出OBC S S =阴影扇形. 【详解】解:AB 是O 的直径,弦CD AB ⊥,90OMC ∴∠=︒,CM DM =.90MOC MCO ∴∠+∠=︒OC//DB MCO CDB ∴∠=∠又12CDB BOC ∠=∠1902MOC MOC ∴∠+∠=︒60MOC ∴∠=︒在OMC △和BMD 中,OCM BDM CM DMOMC BMD ∠=∠⎧⎪=⎨⎪∠=∠⎩OMC BMD ∴≅△△, OMC BMD S S ∴=△△()260232360OBC S S ππ⨯⨯∴===阴影扇形故选:B【点睛】本题考查了垂径定理,圆周角定理,平行线的性质,全等三角形的判定,扇形的面积,等积变换,解此题的关键是证出OMC BMD S S =△△,从而将阴影部分的面积转化为扇形OBC 的面积,题目比较典型,难度适中. 10.如图,有一块半径为1m ,圆心角为90︒的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为( ).A.1m 4B.3m 4C.15m 4D.3m 2【答案】C 【解析】 【分析】首先利用扇形的弧长公式求得圆锥的底面周长,求得底面半径的长,然后利用勾股定理求得圆锥的高. 【详解】解:设圆锥的底面周长是l ,则l=9011801802n r πππ⨯⨯==m , 则圆锥的底面半径是:()1224ππ÷=m , 则圆锥的高是:2211514⎛⎫-= ⎪⎝⎭m . 故选:C .【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.11.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n 个图形用图表示,那么图㊿中的白色小正方形地砖的块数是( ).…A. 150B. 200C. 355D. 505【答案】C 【解析】 【分析】由图形可知图①中白色小正方形地砖有12块,图②中白色小正方形地砖有12+7块,图③中白色小正方形地砖有12+7×2块,…,可知图中白色小正方形地砖有12+7(n-1)=7n+5,再令n=50,代入即可. 【详解】解:由图形可知图中白色小正方形地砖有12+7(n-1)=7n+5(块) 当n=50时,原式=7×50+5=355(块) 故选:C【点睛】考查了规律型:图形的变化,解决这类问题首先要从简单图形入手,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.12.如图,在Rt ABC △中,2AB =,30C ∠=︒,将Rt ABC △绕点A 旋转得到Rt A B C '''∆,使点B 的对应点B '落在AC 上,在B C ''上取点D ,使2B D '=,那么点D 到BC 的距离等于( ).A. 3213⎛⎫+ ⎪ ⎪⎝⎭B.313+ 31 31【答案】D 【解析】 【分析】根据旋转的性质和30°角的直角三角形的性质可得AB '的长,进而可得B C '的长,过点D 作DM ⊥BC 于点M ,过点B '作B E BC '⊥于点E ,B F DM '⊥于点F ,如图,则四边形B EMF '是矩形,解Rt △B EC '可得B E'的长,即为FM 的长,根据三角形的内角和易得30B DN C '∠=∠=︒,然后解Rt △B DF '可求出DF 的长,进一步即可求出结果.【详解】解:在Rt ABC △中,∵2AB =,30C ∠=︒, ∴AC =2AB =4,∵将Rt ABC △绕点A 旋转得到Rt A B C '''∆,使点B 的对应点B '落在AC 上, ∴2AB AB '==, ∴2B C '=,过点D 作DM ⊥BC 于点M ,过点B '作B E BC '⊥于点E ,B F DM '⊥于点F ,交AC 于点N ,如图,则四边形B EMF '是矩形,∴FM B E '=,在Rt △B EC '中,1sin 30212B E BC ''=⋅︒=⨯=,∴FM =1, ∵90,DB N CMN B ND MNC ''∠=∠=︒∠=∠, ∴30B DN C '∠=∠=︒,在Rt △B DF '中,3cos30232DF B D '=⋅︒=⨯=, ∴13DM FM DF =+=+, 即点D 到BC 的距离等于31+. 故选:D .【点睛】本题考查了解直角三角形、矩形的判定和性质以及旋转的性质等知识,正确作出辅助线、熟练掌握解直角三角形的知识是解题的关键.二、填空题13.因式分解:(2)2x x x --+=________.【答案】(2)(1)x x -- 【解析】 【分析】先把二、三两项分为一组,提取一个负号,再提取公因式(2)x -即可. 【详解】解:原式(2)(2)x x x =---(2)(1)x x =--【点睛】此题主要考查了提公因式法分解因式,关键是正确确定公因式. 14.如图,在O 中,四边形OABC 为菱形,点D 在AmC 上,则ADC ∠的度数是________.【答案】60︒ 【解析】 【分析】连接OB ,证明△OAB ,△OBC 都是等边三角形,得到∠AOC=120°,进而求出ADC ∠. 【详解】解:连接OB ,∵四边形OABC 为菱形,OA=OB , ∴OA=OB=OC=AB=BC,∴△OAB ,△OBC 都是等边三角形, ∴∠AOB=∠BOC=60°, ∴∠AOC=120°, ∵=AC AC , ∴1602ADC AOC ∠=∠=︒ .故答案为:60°【点睛】本题考查了菱形的性质,圆的半径都相等,圆周角定理,等边三角形性质,综合性较强.解题关键是连接OB ,得到△OAB ,△OBC 都是等边三角形. 15.计算:2111a a a a⎛⎫+÷= ⎪--⎝⎭________. 【答案】a - 【解析】 【分析】分式的混合运算,根据分式的加减乘除混合运算法则可以解答本题,括号里先通分运算,再进行括号外的除法运算,即可解答本题. 【详解】解:2a 111a a a⎛⎫+÷ ⎪--⎝⎭ =21a a 11a 1a a a⎛⎫+÷ ⎪--⎝⎭-- =2111a a a ÷-- =()1×a a 11a-- =−a故答案是:-a【点睛】本题考查的是分式的混合运算,能正确运用运算法则是解题的关键.16.某校开展读书日活动,小亮和小莹分别从校图书馆的“科技”、“文学”、“艺术”三类书籍中随机地抽取一本,抽到同一类书籍的概率是________. 【答案】13【解析】 【分析】先画出树状图求出所有等可能的结果数,再找出抽到同一类书籍的结果数,然后根据概率公式求解即可. 【详解】解:“科技”、“文学”、“艺术”三类书籍分别用A 、B 、C 表示,则所有可能出现的结果如下图所示:由上图可知:共有9种等可能的结果数,其中抽到同一类书籍的结果数有3种, ∴抽到同一类书籍的概率=3193=. 故答案为:13. 【点睛】本题考查了求两次事件的概率,属于基础题型,熟练掌握画树状图或列表的方法是解题的关键. 17.如图,在直角坐标系中,点(1,1)A ,(3,3)B 是第一象限角平分线上的两点,点C 的纵坐标为1,且CA CB =,在y 轴上取一点D ,连接AC ,BC ,AD ,BD ,使得四边形ACBD 的周长最小,这个最小周长的值为________.【答案】425+【解析】 【分析】先求出AC=BC=2,作点B 关于y 轴对称的点E ,连接AE ,交y 轴于D ,此时AE=AD+BD ,且AD+BD 值最小,即此时四边形ACBD 的周长最小;作FG ∥y 轴,AG ∥x 轴,交于点G ,则GF ⊥AG ,根据勾股定理求出AE 即可.【详解】解:∵(1,1)A ,点C 的纵坐标为1, ∴AC ∥x 轴,∵点(1,1)A ,(3,3)B 是第一象限角平分线上的两点,∴∠BAC=45°,∵CA CB=,∴∠BAC=∠ABC=45°,∴∠C=90°,∴BC∥y轴,∴AC=BC=2,作点B关于y轴对称的点E,连接AE,交y轴于D,此时AE=AD+BD,且AD+BD值最小, ∴此时四边形ACBD的周长最小,作FG∥y轴,AG∥x轴,交于点G,则GF⊥AG,∴EG=2,GA=4,在Rt△AGE中,22224225AE AG EG=+=+=,∴四边形ACBD的周长最小值为2+2+25=4+25.【点睛】本题考查了四条线段和最短问题.由于AC=BC=2,因此本题实质就是求AD+BD最小值,从而转化为“将军饮马”问题,这是解题关键.三、解答题18.解不等式组131722324334x xx x x⎧+<-⎪⎪⎨--⎪≥+⎪⎩,并写出它的所有整数解.【答案】该不等式组的解集是435x-≤<,它的所有整数解为0,1,2.【解析】【分析】分别求出两个不等式,确定不等式组的解集,写出整数解即可.【详解】解:131722324334x xx x x⎧+<-⎪⎪⎨--⎪≥+⎪⎩①②解不等式①,得3x<.解不等式②,得45x≥-.在同一数轴上表示出不等式①,②的解集:所以该不等式组的解集是435x-≤<.它的所有整数解为0,1,2.【点睛】本题考查了解不等式组,确定不等式组的解集可以借助数轴分别表示各不等式的解集,确定公共部分即可.19.为了提高学生的综合素养,某校开设了五门手工活动课.按照类别分为:A“剪纸”、B“沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如下两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为________;统计图中的a=________,b=________;(2)通过计算补全条形统计图;(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.【答案】(1)120,12,36;(2)详见解析;(3)625【解析】【分析】(1)由A所占的百分比及参加A类活动课的人数可求得总人数,再由总人数及B和D所占的百分比即可求得a和b的值,(2)先求得E类活动课参加的人数,再补全条形统计图即可;(3)先求出抽样调查中喜爱“葫芦雕刻”的学生所占的百分比,即可求得全校喜爱“葫芦雕刻”的学生人数.【详解】解:(1)1815%120÷=,12010%12a =⨯=,12030%36b =⨯=, 故答案为:120,12,36;(2)E 类别的人数为:1201812303624----=(人) 补全条形统计图如图所示:(3)C 类别所占的百分比为:3012025%÷=,302500625120⨯=(人) 答:全校喜爱“葫芦雕刻”的学生人数约为625人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图可以看出每个量所占的百分比.20.今年植树节期间,某景观园林公司购进一批成捆的A ,B 两种树苗,每捆A 种树苗比每捆B 种树苗多10棵,每捆A 种树苗和每捆B 种树苗的价格分别是630元和600元,而每棵A 种树苗和每棵B 种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍. (1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A 种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A 种树苗和B 种树苗各多少棵?并求出最低费用.【答案】(1)这一批树苗平均每棵的价格是20元;(2)购进A 种树苗3500棵,B 种树苗2000棵,能使得购进这批树苗的费用最低为111000元. 【解析】 【分析】(1)设这一批树苗平均每棵的价格是x 元,分别表示出两种树苗的数量,根据“每捆A 种树苗比每捆B 种树苗多10棵”列方程即可求解;(2)设购进A 种树苗t 棵,这批树苗的费用为w ,得到w 与t 的关系式,根据题意得到t 的取值范围,根据函数增减性即可求解.【详解】解:(1)设这一批树苗平均每棵的价格是x 元,根据题意,得630600100.9 1.2x x-=, 解之,得20x .经检验知,20x是原分式方程的根,并符合题意.答:这一批树苗平均每棵的价格是20元.(2)由(1)可知A 种树苗每棵价格为0.12098⨯=元,种树苗每棵价格为20 1.224⨯=元, 设购进A 种树苗t 棵,这批树苗的费用为w ,则1824(5500)6132000w t t t =+-=-+.∵w 是t 的一次函数,60k =-<,w 随着t 的增大而减小,3500t ≤, ∴当3500t =棵时,w 最小.此时,B 种树苗有550035002000-=棵,35001320060111000w ⨯+==-.答:购进A 种树苗3500棵,B 种树苗2000棵,能使得购进这批树苗的费用最低为111000元.【点睛】本题考查了分式方程的实际应用,一次函数实际应用,不等式应用等问题,根据题意得到相关“数量关系”,根据数量关系得到方程或函数解析式是解题关键.21.如图,已知平行四边形ABCD 中,E 是BC 的中点,连接AE 并延长,交DC 的延长线于点F ,且AF =AD ,连接BF ,求证:四边形ABFC 是矩形.【答案】见解析 【解析】 【分析】先根据平行四边形的性质、平行线的性质得到两角一边对应相等,再根据三角形全等的判定定理与性质可得AB CF =,然后根据平行四边形的判定可得四边形ABFC 是平行四边形,又根据等量代换可得BC AF =,最后根据矩形的判定(对角线相等的平行四边形是矩形)可得四边形ABFC 是矩形. 【详解】∵四边形ABCD 是平行四边形 ∴//,,AB CD AB CD AD BC == ∴,BAE CFE ABE FCE ∠=∠∠=∠∵E 为BC 的中点 ∴EB EC =∴()ABE FCE AAS ≅ ∴AB CF = ∵//AB CF∴四边形ABFC 是平行四边形AF AD =BC AF ∴=∴平行四边形ABFC 是矩形.【点睛】本题考查了平行四边形的判定与性质、三角形全等的判定定理与性质、矩形的判定等知识点,熟练运用各判定与性质是解题关键.22.如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB 的高度进行测量.先测得居民楼AB 与CD 之间的距离AC 为35m ,后站在M 点处测得居民楼CD 的顶端D 的仰角为45°.居民楼AB 的顶端B 的仰角为55°.已知居民楼CD 的高度为16.6m ,小莹的观测点N 距地面1.6m .求居民楼AB 的高度(精确到1m ).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)【答案】约为30m 【解析】 【分析】过点N 作EF ∥AC 交AB 于点E ,交CD 于点F ,可得AE=MN=CF=1.6,EF=AC=35,再根据锐角三角函数可得BE 的长,进而可得AB 的高度.【详解】解:过点N 作EF ∥AC 交AB 于点E ,交CD 于点F .则AE =MN =CF =1.6,EF =AC =35,∠BEN =∠DFN =90°, EN =AM ,NF =MC ,则DF =CD -CF =16.6-1.6=15. 在Rt △DFN 中,∵∠DNF =45°, ∴NF =DF =15.∴EN =EF -NF =35-15=20. 在Rt △BEN 中,∵tan ∠BNE =BEEN, ∴BE =EN·tan ∠BNE =20×tan55°≈20×1.43=28.6°. ∴AB =BE +AE =28.6+1.6≈30. 答:居民楼AB 的高度约为30m .【点睛】本题考查了解直角三角形的应用-仰角俯角问题,解决本题的关键是掌握仰角俯角定义. 23.如图,已知反比例函数ky x=的图象与直线y ax b =+相交于点(2,3)A -,(1,)B m .(1)求出直线y ax b =+的表达式;(2)在x 轴上有一点P 使得PAB △的面积为18,求出点P 的坐标.【答案】(1)33y x =--;(2)当点P 在原点右侧时,(3,0)P ,当点P 在原点左侧时,(5,0)P -. 【解析】 【分析】(1)通过点A 的坐标确定反比例函数的解析式,再求得B 的坐标,利用待定系数法将A ,B 的坐标代入,即可得到一次函数的解析式;(2)直线33y x =--与x 轴的交点为(1,0)E -,过点A ,B 作x 轴的垂线AC ,BD ,垂足分别为C ,D ,得到9182PABSPE ==,即4PE =,分情况讨论即可解决. 【详解】解:(1)∵(2,3)A -在ky x=的图象上, ∴32k=-,6k =-, 又点(1,)B m 在6y x-=的图象上,6m =-,即(1,6)B -.将点A ,B 的坐标代入y ax b =+,得326a ba b =-+⎧⎨-=+⎩,解得33a b =-⎧⎨=-⎩.∴直线的表达式为33y x =--.(2)设直线33y x =--与x 轴的交点为E , 当0y =时,解得1x =-.即(1,0)E -.分别过点A ,B 作x 轴的垂线AC ,BD ,垂足分别为C ,D .1136922222PABSPE AC PE DB PE PE PE =⋅+⋅=+=. 又18PABS=,即9182PE =,∴4PE =.当点P 在原点右侧时,(3,0)P , 当点P 在原点左侧时,(5,0)P -.【点睛】本题考查反比例函数与一次函数的性质,解题的关键是掌握数形结合的思想.24.如图,在ABC 中,AB =BC ,以△ABC 的边AB 为直径作⊙O ,交AC 于点D ,过点D 作DE ⊥BC ,垂足为点E .(1)试证明DE是⊙O的切线;(2)若⊙O的半径为5,AC=610,求此时DE的长.【答案】(1)见解析;(2)3【解析】【分析】(1)连接OD、BD,求出BD⊥AD,AD=DC,根据三角形的中位线得出OD∥BC,推出OD⊥DE,根据切线的判定推出即可;(2)先利用勾股定理求出BD的长,证得Rt△CDE和Rt△ABD,利用对应边成比例即可求解.【详解】(1)证明:连接OD,BD,∵AB为⊙O的直径,∴BD⊥AD,又∵AB=BC,△ABC是等腰三角形,∴AD=DC,∴OD是△ABC的中位线,∴OD∥BC,又DE⊥BC,∴DE⊥OD,∴DE是⊙O的切线;(2)由(1)知,BD是AC边上的中线,AC=10,得AD=CD=10,∵⊙O的半径为5, ∴AB=10, 在Rt△ABD中,BD=()22221031010AB AD-=-=, ∵AB=BC, ∴∠A=∠C, 在Rt△CDE和Rt△ABD中, ∵∠DEC=∠ADB=90°,∠C=∠A, ∴Rt△CDE∽Rt△ABD, ∴CD DE AB BD=,即31010=, 解得:DE=3.【点睛】本题综合考查了切线的判定、圆周角定理、相似三角形的判定与性质以及三角形中位线的判定与性质.解题的关键是熟练掌握和圆有关的各种性质定理,并且能够熟练运用.25.如图,二次函数y=ax2+bx+4的图象与x轴交于点A(-1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E.垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;(2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;(3)连接CP,CD,在移动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与DCE相似,如果存在,求出点P的坐标,如果不存在,请说明理由.【答案】(1)y=-x2+3x+4,y=-x+4;(2)521,24⎛⎫⎪⎝⎭;(3)存在,1684,525⎛⎫⎪⎝⎭【解析】【分析】(1)运用待定系数法,利用A ,B 两点的坐标构建二元一次方程组求解二次函数的表达式,利用B ,C 两点的坐标确定直线BC 的表达式; (2)先求得DE 的长,根据平行四边形的性质得到PF=DE ,点P 与点F 的横坐标相同,故利用抛物线与直线的解析式表示它们的纵坐标,根据其差等于DE 长构建一元二次方程求解; (3)结合图形与已知条件,易于发现若两三角形相似,只可能存在△PCF ∽△CDE 一种情况.△CDE 的三边均可求,(2)中已表示PF 的长,再构建直角三角形或借助两点间距离公式,利用勾股定理表示出CF 的长,这样根据比例式列方程求解,从而可判断点P 是否存在,以及求解点P 的值.【详解】(1)由题意,将A(-1.0),B(4.0)代入24y ax bx =++,得 4016440a b a b -+=⎧⎨++=⎩,解得13a b =-⎧⎨=⎩, ∴二次函数的表达式为234y x x =-++,当0x =时,y=4,∴点C 的坐标为(0,4),又点B 的坐标为(4,0),设线段BC 所在直线的表达式为y mx n =+,∴440n m n =⎧⎨+=⎩,解得14m n =-⎧⎨=⎩, ∴BC 所在直线的表达式为4y x =-+;(2)∵DE ⊥x 轴,PF ⊥x 轴,∴DE ∥PF ,只要DE=PF ,此时四边形DEFP 即为平行四边形.由二次函数y=-2x +3x +4=(x -32) 2+254,得D 的坐标为(32,254), 将32x =代入4y x =-+,即y=-32+4=52,得点E 的坐标为(32,52), ∴DE=254-52=154, 设点P 的横坐标为t ,则P(t ,-t 2+3t+4),F(t ,-t+4),PF=-t 2+3t+4-(-t+4)=-t 2+4t ,由DE=PF ,得-t 2+4t=154,解之,得t1=32(不合题意,舍去),t2=52,当t=52时,-t2+3t+4=-(52)2+3×52+4=214,∴P的坐标为(52,214);(3)由(2)知,PF∥DE,∴∠CED=∠CFP,又∠PCF与∠DCE有共同的顶点C,且∠PCF在∠DCE的内部, ∴∠PCF≠∠DCE,∴只有当∠PCF=∠CDE时,△PCF∽△CDE,由D (32,254),C(0,4),E(32,52),利用勾股定理,可得2235324222⎛⎫⎛⎫+-=⎪ ⎪⎝⎭⎝⎭,DE=25515424-=,由(2)以及勾股定理知,PF=-t2+4t,F(t,-t+4),CF=()22442t t t⎡⎤+--+=⎣⎦,∵△PCF∽△CDE,∴PF CFCE DE=,22324t=,∵t≠0,∴154(4t-+)=3,∴t=165,当t=165时,-t2+3t+4=-(165)2+3×165+4=8425.∴点P的坐标是(165,8425).【点睛】本题属于二次函数综合题,考查了一次函数的性质,二次函数的性质,相似三角形的判定和性质,平行四边形的判定和性质,勾股定理的应用等知识,解题的关键是,学会用数形结合的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.以下为复习中考真题试卷的意义,送给各位考生,祝愿大家金榜题名!中考学子都经历过无数次大小考试,也许会有同学疑惑为什么一定要考试?难道考试仅仅为了那短暂的分数和排名吗?当然不是这样的,实际上,考试是模拟中考的形式,考试是为了同学们在限定时间内,以有限的状态激发出最强的自己。
山东省聊城市2020年数学学业考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2018七上·庐江期中) 若a2m+1b2n+3与5a4m﹣3b4n﹣5是同类项,则m、n的值是()A . m=2,n=﹣2B . m=﹣2,n=2C . m=﹣2,n=4D . m=2,n=42. (2分)下列变形不正确的是()A . 若a>b,则b<aB . -a>-b,得b>aC . 由-2x>a,得x>D . 由>-y,得x>-2y3. (2分)对于反比例函数y= ,下列说法正确的是()A . 图象经过点(1,﹣3)B . 图象在第二、四象限C . x>0时,y随x的增大而增大D . x<0时,y随x增大而减小4. (2分) (2016九下·海口开学考) 今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分钟).176 180 184 180 170 176 172 164 186 180该组数据的众数、中位数、平均数分别为()A . 180,180,178B . 180,178,178C . 180,178,176.8D . 178,180,176.85. (2分)(2017·海宁模拟) 在矩形ABCD中,有一个菱形BFDE(点E,F分别在线段AB,CD上),记它们的面积分别为SABCD和SBFDE ,现给出下列命题:①若 = ,则tan∠EDF= ;②若DE2=BD•EF,则DF=2AD,则()A . ①是假命题,②是假命题B . ①是真命题,②是假命题C . ①是假命题,②是真命题D . ①是真命题,②是真命题6. (2分)(2017·慈溪模拟) 如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为()A . 6cmB . 4cmC . 3cmD . 8cm二、填空题 (共12题;共12分)7. (1分) (2018七下·江都期中) ________8. (1分)对于正比例函数y=m, y的值随x的值增大而减小,则m的值为________9. (1分) (2017八下·红桥期中) 实数a、b在数轴上的位置如图所示,则 + 的化简结果为________.10. (1分)已知关于x的一元二次方程x2+kx+1=0有两个相等的实数根,则k=________ .11. (1分) (2017九上.德惠期末) 有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、 (6)点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是________.12. (1分) (2019七下·随县月考) 四川5•12大地震后,灾区急需帐篷.某企业急灾区所急,准备捐助甲、乙两种型号的帐篷共2000顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置9000人.设该企业捐助甲种帐篷x顶、乙种帐篷y顶,可列方程组为________.13. (1分)(2019·许昌模拟) 已知点P(-2,m)和点Q(2,n)是一次函数y=2x+3的图象上的两点,则m与n的大小关系是________.14. (1分)小明家的鱼塘养了某种鱼2000条,现准备打捞出售,为了估计鱼塘中的这种鱼的总质量,现从鱼塘中捕捞了3次,得到数据如下:鱼的条数平均每条鱼的质量第一次捕捞15 1.6千克第二次捕捞15 2.0千克第三次捕捞10 1.8千克鱼塘中这种鱼平均每条质量约是________千克,鱼塘中所有这种鱼的总质量约是________ 千克;若将这些鱼不分大小,按每千克7.5元的价格出售,小明家约可收入________ 元15. (1分)(2014·镇江) 如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°.若∠1=25°,∠2=70°,则∠B=________.16. (1分)(2017·桂平模拟) 如图,矩形ABCD的顶点A、C分别在直线a、b上,且a与b平行,∠2=58°,则∠1的度数为________°.17. (1分) (2020七上·自贡期末) 如图,长方形纸片ABCD,点E,F分别在边AB,CD上,连接EF,将∠BEF 对折 B落在直线EF上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′得折痕EN,若∠BEM=62°15′ ,则∠AEN=________.18. (1分)如图,△ABC中,BC=4,∠BAC=45°,以4为半径,过B、C两点作⊙O,连OA,则线段OA的最大值为________三、解答题 (共7题;共65分)19. (5分)计算:(1)(2)(3)(4)(5)(6) .20. (5分)(2019·岐山模拟) 解分式方程: .21. (10分)(2017·磴口模拟) 如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD丄PA于D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长;(3)若AD=1,AE=6,求AC的长.22. (10分) (2019八上·睢宁月考) 如图,已知O为坐标原点,四边形OABC为长方形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动.(1)当△ODP是等腰三角形时,请直接写出点P的坐标;(2)求△ODP周长的最小值.(要有适当的图形和说明过程)23. (10分)如图,已知正五边形ABCDE,AF∥CD交DB的延长线于点F,交DE的延长线于点G.(1)写出图中所有的等腰三角形;(2)求证:∠G=2∠F.24. (10分)(2018·安顺模拟) 已知抛物线y=ax2+bx+c经过A(﹣1,0),B(3,0),C(0,3)三点,直线L是抛物线的对称轴.(1)求抛物线的函数关系式;(2)求抛物线的顶点坐标;(3)设P点是直线L上的一个动点,当△PAC的周长最小时,求点P的坐标.25. (15分)(2014·资阳) 如图,已知直线l1∥l2 ,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.(1)求证:△ABP≌△CBE;(2)连结AD、BD,BD与AP相交于点F.如图2.①当 =2时,求证:AP⊥BD;②当 =n(n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求的值.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共12题;共12分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共65分) 19-1、19-2、19-3、19-4、19-5、19-6、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、。
山东省聊城市2020年初二下期末学业质量监测数学试题一、选择题(每题只有一个答案正确)1.多项式x 2﹣1与多项式x 2﹣2x+1的公因式是( )A .x ﹣1B .x+1C .x 2﹣1D .(x ﹣1)22.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=1.则图中阴影部分的面积为( )A .10B .12C .16D .113.如图,四边形ABCD 为矩形,△ACE 为AC 为底的等腰直角三角形,连接BE 交AD 、AC 分别于F 、 N,CM 平分∠ACB 交BN 于M,下列结论:(1)BE ⊥ED;(2)AB=AF;(3)EM=EA;(4)AM 平分∠BAC ,其中正确的结论有( )A .1个B .2个C .3个D .4个4.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,若BC =3,∠ABC =60°,则BD 的长为( )A .2B .3C .33D .35.在ABC ∆中,15AB =,13AC =,高12AD =,则三角形的周长是( )A .42B .32C .42或32D .37或336.下列命题正确的是().A .任何事件发生的概率为1B .随机事件发生的概率可以是任意实数C .可能性很小的事件在一次实验中有可能发生D .不可能事件在一次实验中也可能发生7.若a >b ,则下列结论不一定成立的是( )A .a-1>b-1B .ab 33> C .22a b > D .-2a <-2b8.下列长度的三条线段能组成三角形的是( )A .1,2,3B .2,2,4C .3,4,5D .3,4,89.在2(1)1y k x k =++-中,若y 是x 的正比例函数,则k 值为( )A .1B .1-C .±1D .无法确定10.后面的式子中(1)13;(2)3-;(3)21x -+;(4)38;(5)213⎛⎫- ⎪⎝⎭;(6)1(1)x x ->;二次根式的个数有( ).A .2个B .3个C .4个D .5个二、填空题11.已知点P(m-3,m+1)在第二象限,则m 的取值范围是_______________.12.如图,一根垂直于地面的木杆在离地面高3m 处折断,若木杆折断前的高度为8m ,则木杆顶端落在地面的位置离木杆底端的距离为________m .13.如图,已知等腰直角△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,AB =5,点E 是边AB 上的动点(不与A ,B 点重合),连接DE ,过点D 作DF ⊥DE 交AC 于点F ,连接EF ,点H 在线段AD 上,且DH =14AD ,连接EH ,HF ,记图中阴影部分的面积为S 1,△EHF 的面积记为S 2,则S 1=_____,S 2的取值范围是_____.14.如图,将一边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的点E ,使5DE =,折痕为PQ ,则PQ 的长__________.15.函数6y x=-的图象位于第________象限. 16.将正比例函数2y x =-的图象向上平移3个单位,所得的直线不经过第______象限.17.如图,在四边形ABCD 中, E 是BC 边的中点,连接DE 并延长,交AB 的延长线与F 点, AB BF =,请你添加一个条件(不需要添加任何线段或字母),使之能推出四边形ABCD 为平行四边形,你添加的条件是_________,并给予证明.三、解答题18.如图,小巷左右两侧是竖直的墙,一架梯子AB斜靠在左墙时,梯子底端到左墙角的距离AC为0.7米,顶端到地面距离BC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端到地面距离'B D 为2米,求小巷的宽度CD.19.(6分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M 在y轴上运动.(1)求直线AB的函数解析式;(2)动点M在y轴上运动,使MA+MB的值最小,求点M的坐标;(3)在y轴的负半轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.20.(6分)如图,在四边形ABCD中,AC⊥CD,若AB=4,BC=5,AD=241,∠D=30°,求四边形ABCD 的面积.21.(6分)(127315108(2) 3(23)24|63|----.22.(8分)已知:如图,在等腰梯形ABCD 中,AD BC ∥,2BC AD =,E 为BC 的中点,设AB a =,AD b =.(1)填空:BD =________;DC =________;AC =________;(用a ,b 的式子表示)(2)在图中求作BE DC +.(不要求写出作法,只需写出结论即可)23.(8分)如图1,BD 是矩形ABCD 的对角线,30ABD ∠=︒,1AD =.将BCD 沿射线BD 方向平移到'''B C D 的位置,连接'AB ,'C D ,'AD ,'BC ,如图1.(1)求证:四边形''AB C D 是平行四边形;(1)当'B 运动到什么位置时,四边形''AB C D 是菱形,请说明理由;(3)在(1)的条件下,将四边形''ABC D 沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接..写出所有可能拼成的矩形周长. 24.(10分)计算:(2-)×25.(10分)如图,已知在平面直角坐标系 xOy 中,正比例函数 y=kx 与一次函数 y=−x+b 的图象相交于点 A(4,3).过点 P(2,0)作 x 轴的垂线,分别交正比例函数的图象于点 B ,交一次函数的图象于点 C , 连接 OC.(1)求这两个函数解析式;(2)求△OBC 的面积;(3)在 x 轴上是否存在点 M ,使△AOM 为等腰三角形? 若存在,直接写出 M 点的坐标;若不存在,请说明理由.参考答案一、选择题(每题只有一个答案正确)1.A【解析】【分析】【详解】x2-1=(x+1)(x-1),x2-2x+1=(x-1)2,所以公因式是:x-1,故选A.【点睛】本题考查多项式的公因式,解题的关键是把每一个多项式都因式分解.2.C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE=12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×1=1,∴S阴=1+1=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.3.B【解析】【分析】连接DE,由∠ABC=∠AEC=∠ADC=90°,根据圆周角定理的推论得到点A、B、C、D、E都在以AC为直径的圆上,再利用矩形的性质可得AE=ME,即①正确;再根据圆周角定理得到∠AEB=∠ACB,∠DAC=∠CED,∠EAD=∠ECD,易证△AEF≌△CED,即可得到AB=AF,即②正确;由②得到∠ABF=∠AFB=45°,求出∠EMC=∠MCB+45°,而∠ECM=∠NCM+45°,即③正确;根据等腰三角形性质求出∠EAM=∠AME,推出∠EAM=45°+∠MAN,∠AME=45°+∠BAM,即可判断(4).【详解】连接DE.∵四边形ABCD为矩形,△ACE为AC为底的等腰直角三角形,∴∠ABC=∠AEC=∠ADC=90°,AB=CD,AD=BC,∴点A. B. C. D. E都在以AC为直径的圆上,∵AB=CD,∴弧AB=弧CD,∴∠AEB=∠CED,∴∠BED=∠BEC+∠CED=∠BEC+∠AEB=90°,∴BE⊥ED,故(1)正确;∵点A. B. C. D. E都在以AC为直径的圆上,∴∠AEF=∠CED,∠EAF=∠ECD,又∵△ACE为等腰直角三角形,∴AE=CE,在△AEF和∉CED中,,∴△AEF≌△CED,∴AF=CD,而CD=AB,∴AB=AF,即(2)正确;∴∠ABF=∠AFB=45°,∴∠EMC=∠MCB+45°,而∠ECM=∠NCM+45°,∵CM平分∠ACB交BN于M,∴∠EMC=∠ECM,∴EC=EM,∴EM=EA,即(3)正确;∵AB=AF,∠BAD=90°,EM=EA,∴∠ABF=∠CBF=45°,∠EAM=∠AME,∵△AEC是等腰直角三角形,∴∠EAC=45°,∴∠EAM=45°+∠MAN,∠AME=∠ABM+∠BAM=45°+∠BAM,∴∠BAM=∠NAM,∴(4)正确;故选D.【点睛】此题考查等腰三角形的判定与性质,圆周角定理,等腰直角三角形,解题关键在于作辅助线4.C【解析】【分析】只要证明△ABC是正三角形,由三角函数求出BO,即可求出BD的长.【详解】解:∵四边形ABCD菱形,∴AC⊥BD,BD=2BO,AB=BC,∵∠ABC=60°,∴△ABC是正三角形,∴∠BAO=60°,∴BO=sin60°•AB=3×333 22=,∴BD=33.故选C.【点睛】本题主要考查解直角三角形和菱形的性质的知识点,解答本题的关键是熟记菱形的对角线垂直平分,本题难度一般.5.C【解析】【分析】在Rt△ABD中,利用勾股定理可求出BD的长度,在Rt△ACD中,利用勾股定理可求出CD的长度,由BC=BD+CD或BC=BD-CD可求出BC的长度,再将三角形三边长度相加即可得出△ABC的周长.【详解】在Rt△ABD中,222215129BD AB AD=-=-=,在Rt△ACD中,222213125CD AC AD=-=-=,∴BC=BD+CD=14或BC=BD-CD=4,∴C△ABC=AB+BC+AC=15+14+13=42或C△ABC=AB+BC+AC=15+4+13=1.故选:C.【点睛】本题考查了勾股定理以及三角形的周长,利用勾股定理结合图形求出BC边的长度是解题的关键.在解本题时应分两种情况进行讨论,以防遗漏.6.C【解析】【分析】根据随机事件、不可能事件的定义和概率的性质判断各选项即可.【详解】A中,只有必然事件概率才是1,错误;B中,随机事件的概率p取值范围为:0<p<1,错误;C中,可能性很小的事件,是有可能发生的,正确;D 中,不可能事件一定不发生,错误故选:C【点睛】本题考查事件的可能性,注意,任何事件的概率P 一定在0至1之间.7.C【解析】【分析】不等式两边同时加减一个数,或同时乘除一个不为0的数,不等号不改变方向,不等式两边同时乘除一个不为0的数,不等号改变方向,根据不等式的性质判断即可.【详解】A .不等式a >b 两边同时减1,a-1>b-1一定成立;B .不等式a >b 两边同时除以3,a b 33>一定成立;C .不等式a >b 两边同时平方,不一定不成立,可举反例:12>-,但是()2212<-;D .不等式a >b 两边同时乘以-2,-2a <-2b 一定成立.故选C .【点睛】本题考查不等式的性质,熟记不等式两边同时加减一个数,或同时乘除一个不为0的数,不等号不改变方向,不等式两边同时乘除一个不为0的数,不等号改变方向,是解题的关键.8.C【解析】A 、1+2=3,不能构成三角形,故A 错误;B 、2+2=4,不能构成三角形,故B 错误;C 、3+4>5,能构成三角形,故C 正确;D 、3+4<8,不能构成三角形,故D 错误.故选C .9.A【解析】【分析】先根据正比例函数的定义列出关于k 的方程组,求出k 的值即可.【详解】函数()2y k 1x k 1=++-是正比例函数,210k 10k +≠⎧∴⎨-=⎩, 解得k 1=,故选A .【点睛】本题考查的是正比例函数的定义,正确把握“形如(0)=y kx k =≠的函数叫正比例函数”是解题的关键. 10.B【解析】【分析】0)a ≥的式子叫做二次根式可得答案.【详解】解:根据二次根式的定义:(1(3)(5是二次根式,而(2方数-3<0,不是二次根式,(4是立方根,不是二次根式,(61)x >中因1x >,故被开方数10x -<,不是二次根式;综上只有3个是二次根式;故选B.【点睛】此题主要考查了二次根式定义,关键是掌握被开方数是非负数.二、填空题11.﹣1<m <1【解析】试题分析:让点P 的横坐标小于0,纵坐标大于0列式求值即可.解:∵点P (m ﹣1,m+1)在第二象限,∴m ﹣1<0,m+1>0,解得:﹣1<m <1.故填:﹣1<m <1.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.4【解析】【分析】由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出木杆顶端落在地面的位置离木杆底端的距离.【详解】一颗垂直于地面的木杆在离地面3m处折断,木杆折断前的高度为8m,∴木杆顶端落在地面的位置离木杆底端的距离为()22534m-=.故答案为:4.【点睛】此题考查了勾股定理的应用,主要考查学生对勾股定理在实际生活中的运用能力.13.2516225751616S<【解析】【分析】作EM⊥BC于M,作FN⊥AD于N,根据题意可证△ADF≌△BDE,可得△DFE是等腰直角三角形.可证△BME≌△ANF,可得NF=BM.所以S1=12HD×BD,代入可求S1.由点E是边AB上的动点(不与A,B点重合),可得DE垂直AB时DE最小,即552 22DE<,且S 2=S△DEF-S1,代入可求S2的取值范围【详解】作EM⊥BC于M,作FN⊥AD于N,∵EM⊥BD,AD⊥BC∴EM∥AD∵△ABC是等腰直角三角形,AD⊥BC,AB=5∴∠B=∠C=45°=∠BAD=∠DAC,BD=CD=AD=52 2∵DF⊥DE∴∠ADF+∠ADE=90°且∠ADE+∠BDE=90°∴∠ADF=∠BDE且AD=BD,∠B=∠DAF=45°∴△ADF≌△BDE,∴AF=BE,DE=DF∴△DEF是等腰直角三角形,∵AF=BE,∠B=∠DAF=45°,∠EMB=∠ANF=90°∴△BME≌△ANF∴NF=BM∵211111125()2224816DHF EHD S S S HD MD HD FN AD BM MD AD +==⨯+⨯=⨯⨯+==∵点E 是边AB 上的动点∴55222DE < ∵221125216DEF S SS DE =-=- ∴225751616S < 【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的性质,关键是证△DEF 是等腰直角三角形. 14.1【解析】【分析】先过点P 作PM ⊥BC 于点M ,利用三角形全等的判定得到△PQM ≌△AED ,从而求出PQ=AE .【详解】过点P 作PM ⊥BC 于点M ,由折叠得到PQ ⊥AE ,∴∠DAE+∠APQ=90°,又∠DAE+∠AED=90°,∴∠AED=∠APQ ,∵AD ∥BC ,∴∠APQ=∠PQM ,则∠PQM=∠APQ=∠AED ,∠D=∠PMQ ,PM=AD∴△PQM ≌△AED∴22512+=1.故答案是:1.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.15.二、四【解析】【分析】根据反比例函数的性质:y=k x ,k >0时,图象位于一三象限,k <0时,图象位于二、四象限,可得答案. 【详解】解:反比例函数y=-6x 的k=-6<0, ∴反比例函数y=-6x的图象位于第二、四象限, 故答案为二、四.【点睛】本题考查反比例函数的性质,解题关键是利用y=k x,k >0时,图象位于一三象限,k <0时,图象位于二、四象限判断.16.三【解析】【分析】根据函数的平移规律,一次函数的性质,可得答案.【详解】由正比例函数y 2x =-的图象向上平移3个单位,得y 2x 3=-+,一次函数y 2x 3=-+经过一二四象限,不经过三象限,故答案为:三.【点睛】本题考查了一次函数图象与几何变换,利用函数的平移规律:上加下减,左加右减是解题关键. 17.添加的条件是:∠F=∠CDE【解析】【分析】由题目的已知条件可知添加∠F=∠CDE ,即可证明△DEC ≌△FEB ,从而进一步证明DC=BF=AB ,且DC ∥AB ,进而证明四边形ABCD 为平行四边形.【详解】条件是:∠F=∠CDE ,理由如下:∵∠F=∠CDE∴CD ∥AF在△DEC 与△FEB 中,DCE EBF CE BECED BEF ∠∠∠⎧⎪⎪⎩∠⎨===, ∴△DEC ≌△FEB∴DC=BF ,∠C=∠EBF∴AB ∥DC∵AB=BF∴DC=AB∴四边形ABCD 为平行四边形故答案为:∠F=∠CDE .【点睛】本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.三、解答题18.小巷的宽度CD 为2.2米.【解析】【分析】先根据勾股定理求出AB 的长,同理可得出AD 的长,进而可得出结论.【详解】解:在Rt △ACB 中,∵∠ACB =90°,BC =2.4米,AC =0.7米,∴AB 2=0.72+2.42=6.1,在Rt △AB′D 中,∵∠ADB′=90°,B′D =2米,∴AD 2+22=6.1,∴AD 2=2.1.∵AD >0,∴AD =1.5米.∴CD =AC +AD =0.7+1.5=2.2米.答:小巷的宽度CD 为2.2米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用. 19.(1)y=-x+6;(2)M (0,65);(3)(0,-2)或(0,-6). 【解析】【分析】(1)设AB的函数解析式为:y=kx+b,把A、B两点的坐标代入解方程组即可.(2)作点B关于y轴的对称点B′,则B′点的坐标为(-6,0),连接AB′则A B′为MA+MB的最小值,根据A、B′两点坐标可知直线AB′的解析式,即可求出M点坐标,(3)分别考虑∠MAB为直角时直线MA 的解析式,∠ABM′为直角时直线BM′的解析式,求出M点坐标即可,【详解】(1)设直线AB的函数解析式为y=kx+b,则6042k bk b+=⎧⎨+=⎩解方程组得16kb=-⎧⎨=⎩直线AB的函数解析式为y= -x+6,(2)如图作点B关于y轴的对称点B′,则点B′的坐标为(-6,0),连接AB′则A B′为MA+MB的最小值,设直线AB′的解析式为y=mx+n,则4260m nm n+=⎧⎨-+=⎩,解方程组得1565 mn⎧=⎪⎪⎨⎪=⎪⎩所以直线AB′的解析式为1655y x=+,当x=0时,y=65,所以M点的坐标为(0,65),(3)有符合条件的点M,理由如下:如图:因为△ABM是以AB为直角边的直角三角形,当∠MAB=90°时,直线MA垂直直线AB,∵直线AB的解析式为y=-x+6,∴设MA的解析式为y=x+b,∵点A(4,2),∴2=4+b,∴b=-2,当∠ABM′=90°时,BM′垂直AB,设BM′的解析式为y=x+n,∵点B(6,0)∴6+n=0∴n=-6,即有满足条件的点M为(0,-2)或(0,-6).【点睛】本题考查了待定系数法求一次函数解析式,一次函数关系式为:y=kx+b(k≠0),要有两组对应量确定解析式,即得到k,b的二元一次方程组.熟练掌握相关知识是解题关键.20.413【解析】【分析】先运用勾股定理求出AC的长度,从而利用勾股定理的逆定理判断出△ABC是直角三角形,然后可将S四边形ABCD=S△ABC+S△ACD进行求解.【详解】解:在△ACD中,AC⊥CD,41D=30°,∴AC=141 2AD=∴22123AD AC-=在△ABC中,AB2+BC2=42+52=41,AC2=41,∴AB2+BC2=AC2,∴△ABC是直角三角形,且∠ABC=90°,∴S四边形ABCD=S△ABC+S△ACD=12AB·BC+12AC·CD=10+4132.【点睛】本题考查了勾股定理及其逆定理,解答本题的关键是判断出△ABC是直角三角形.21.(1)3;(2)-6.【解析】分析:(1)先把各二次根式进行化简,然后再进行乘除运算,最后合并同类二次根式即可得解; (2)先把二次根式进行化简和云绝对值符号,然后再进行乘除运算,最后合并同类二次根式即可得解. 详解:(1)原式=2333510225÷-⨯+ =32222-+=3.(2)原式=632636---+=-6.点睛:熟练掌握二次根式的化简,灵活运用运算律解题.在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待. 22.(1)b a -;a b +;2a b +(或a b b ++);(2)图见解析,AC .【解析】【分析】(1)利用BD BA AD =+即可求出BD ,首先根据已知可知2BC AD =,然后利用DC DB BC =+即可求出DC ,利用AC AB BC =+即可求出AC ;(2)首先根据已知可知BE AD =,然后利用三角形法则即可求出BE DC +.【详解】(1)BD BA AD a b b a =+=-+=-.∵AD BC ∥,2BC AD =,∴2BC AD =,∴2DC DB BC a b b a b =+=-+=+. 2AC AB BC a b =+=+;(2)作图如下:∵2BC AD =,E 为BC 的中点,∴BE AD =.∵AD BC ∥,∴BE AD =,∴BE DC AD DC AC +=+=.【点睛】本题主要考查向量的运算,掌握向量的运算法则是解题的关键.23.(1)见解析;(1)当'B 运动到BD 中点时,四边形''AB C D 是菱形,理由见解析;(3)6+或3.【解析】【分析】(1)根据平行四边形的判定定理一组对边相等一组对角相等,即可解答(1)有一组邻边相等的平行四边形是菱形,据此进行证明即可;(3)根据两种不同的拼法,分别求得可能拼成的矩形周长.【详解】(1)∵BD 是矩形ABCD 的对角线,30ABD ∠=︒,∴60ADB ∠=︒,由平移可得,''B C AD =,'''60D B C ADB ∠=∠=︒,∴''AD B C∴四边形''AB C D 是平行四边形,(1)当'B 运动到BD 中点时,四边形''AB C D 是菱形理由:∵'B 为BD 中点,∴Rt ABD △中,1''2AB BD DB ==, 又∵60ADB ∠=︒,∴'ADB 是等边三角形,∴'AD AB =,∴四边形''AB C D 是菱形;(3)将四边形ABC′D′沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形如下:∴矩形周长为63+或233+.【点睛】此题考查平移的性质,菱形的判定与性质,矩形的性质,图形的剪拼,解题关键在于掌握各性质定理 24..【解析】试题分析:原式利用乘法分配律计算即可得到结果.试题解析:原式=2 ==. 考点:二次根式的混合运算.25.(1)y=34x; y=−x+7;(2)72;(3)存在,M (8,0),M (258,0),M (5,0),M (-5,0). 【解析】【分析】(1)分别把A(4,3)代入y=kx ,y=−x+b ,用待定系数法即可求解;(2)先求出点B 和点C 的坐标,然后根据三角形的面积公式计算即可; (3)分AO=AM 时,AM=OM 时,AO=OM 时三种情况求解即可.【详解】(1)把A(4,3)代入y=kx ,得4k=3, ∴k=34, ∴y=34x; 把A(4,3)代入y=−x+b ,得-4+b=3,∴b=7,∴y=−x+7;(2)当x=2时, y=34x=32, y=−x+7=5,∴B (2,32),C (2,5), ∴BC=5-32=72, ∴△OBC 的面积=12OP·BC=12×2×72=72; (3)解347y x y x ⎧=⎪⎨⎪=-+⎩,得43x y =⎧⎨=⎩, ∴A (4,3).设M (x ,0) 当AO=AM 时,=解之得 x 1=8,x 2=0(舍去), ∴M (8,0); 当MA=OM 时,x =,解之得 x =258, ∴M (258,0); 当AO=OM 时, x =, 解之得x 1=5,x 2=5-, ∴M (5,0)或M (-5,0).∴M(8,0),M(25,0),M(5,0),M(-5,0)时,△AOM 为等腰三角形.8【点睛】本题考查了待定系数法求一次函数解析式,图形与坐标,勾股定理及分类讨论的数学思想.熟练掌握待定系数法是解(1)的关键,求出点B和点C的坐标是解(2)的关键,分三种情况讨论是解(3)的关键.。
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx +4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<12.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=k x(k<0)的图象经过点B,则k的值为()A.﹣12 B.﹣32 C.32 D.﹣363.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:型号(厘米)38 39 40 41 42 43数量(件)25 30 36 50 28 8商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()A.平均数B.中位数C.众数D.方差4.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°5.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )A .22B .4C .32D .426.下列计算正确的是( ) A .235+=B .a a a +=222C .(1)x y x xy +=+D .236()mn mn =7.如图所示,直线a ∥b ,∠1=35°,∠2=90°,则∠3的度数为( )A .125°B .135°C .145°D .155°8.化简221x -÷11x -的结果是( ) A .21x + B .2xC .21x - D .2(x +1)9. 如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )A .B .C .D .10.下列四个几何体中,主视图与左视图相同的几何体有( )A .1个B .2个C .3个D .4个二、填空题(本题包括8个小题)11.如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A 在整个旋转过程中所经过的路径总长为_____.12.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a (不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b ,则点(a,b )在直线11+22y x =图象上的概率为__. 13.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为_________.14.如图,有一直径是2的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC ,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为 米.15.如图,正方形ABCD 和正方形OEFG 中, 点A 和点F 的坐标分别为 (3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.16.若3,a ,4,5的众数是4,则这组数据的平均数是_____.17.如果方程x 2-4x+3=0的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tanA 的值为_______.18.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.三、解答题(本题包括8个小题)19.(6分)如图二次函数的图象与x 轴交于点()30A -,和()10B ,两点,与y 轴交于点()0,3C ,点C 、D 是二次函数图象上的一对对称点,一次函数的图象经过B 、D求二次函数的解析式;写出使一次函数值大于二次函数值的x 的取值范围;若直线BD 与y 轴的交点为E 点,连结AD 、AE ,求ADE ∆的面积; 20.(6分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.21.(6分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x (x >10)只时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少? 22.(8分)如图所示,在Rt ABC △中,90ACB ∠=︒,用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹)连接AP 当B 为多少度时,AP 平分CAB ∠.23.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.请根据所给信息,解答以下问题: 表中a = ___ ;b =____ 请计算扇形统计图中B 组对应扇形的圆心角的度数; 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率. 24.(10分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的A 点和东人工岛上的B 点间的距离约为5.6千米,点C 是与西人工岛相连的大桥上的一点,A ,B ,C 在一条直线上.如图,一艘观光船沿与大桥AC 段垂直的方向航行,到达P 点时观测两个人工岛,分别测得PA ,PB 与观光船航向PD 的夹角18DPA ∠=︒,53DPB ∠=︒,求此时观光船到大桥AC 段的距离PD 的长(参考数据:180.31sin ︒≈,180.95cos ︒≈,180.33tan ︒≈,530.80sin ︒≈,530.60cos ︒≈,53 1.33tan ︒≈).25.(10分)如图所示,直线y=12x+2与双曲线y=kx相交于点A(2,n),与x 轴交于点C .求双曲线解析式;点P 在x 轴上,如果△ACP 的面积为5,求点P 的坐标.26.(12分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB 交CB的延长线于G.求证:△ADE≌△CBF;若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】试题分析:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选C.考点:一次函数与一元一次不等式.2.B【解析】【详解】解:∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,∴OA=5,AB∥OC,∴点B的坐标为(8,﹣4),∵函数y=k(k<0)的图象经过点B,x∴﹣4=k,得k=﹣32.8故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.3.B【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选:C.点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.4.C【解析】【详解】解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故选C.【点睛】本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.5.B【解析】【分析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBFAD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.6.C【解析】解:A、不是同类二次根式,不能合并,故A错误;B.23a a a+=,故B错误;C.1x y x xy+=+(),正确;D.2326mn m n=(),故D错误.故选C.7.A【解析】分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题. 8.A 【解析】 【分析】原式利用除法法则变形,约分即可得到结果. 【详解】 原式=211x x +-()()•(x ﹣1)=21x +.故选A . 【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键. 9.C 【解析】 【分析】根据左视图是从左面看所得到的图形进行解答即可. 【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间. 故选:C . 【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图. 10.D 【解析】解:①正方体的主视图与左视图都是正方形; ②球的主视图与左视图都是圆; ③圆锥主视图与左视图都是三角形; ④圆柱的主视图和左视图都是长方形; 故选D .二、填空题(本题包括8个小题) 11.3026π. 【解析】分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可. 详解:∵AB=4,BC=3,转动一次A 的路线长是:90π42π180⨯=, 转动第二次的路线长是:90π55π1802⨯=, 转动第三次的路线长是:90π33π1802⨯=, 转动第四次的路线长是:0, 以此类推,每四次循环,故顶点A 转动四次经过的路线长为:53ππ2π6π22++=, ∵2017÷4=504…1,∴顶点A 转动四次经过的路线长为:6π5042π3026π.⨯+= 故答案为3026π.点睛:考查旋转的性质和弧长公式,熟记弧长公式是解题的关键. 12.16【解析】 【分析】根据题意列出图表,即可表示(a ,b )所有可能出现的结果,根据一次函数的性质求出在11+22y x =图象上的点,即可得出答案. 【详解】 画树状图得:∵共有6种等可能的结果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直线11+22y x = 图象上的只有(3,2), ∴点(a ,b )在11+22y x =图象上的概率为16. 【点睛】本题考查了用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于不放回实验. 13.1. 【解析】 【详解】 设P (0,b ),∵直线APB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=4x-的图象上,∴当y=b,x=-4b ,即A点坐标为(-4b,b),又∵点B在反比例函数y=2x的图象上,∴当y=b,x=2b ,即B点坐标为(2b,b),∴AB=2b -(-4b)=6b,∴S△ABC=12•AB•OP=12•6b•b=1.14.1 4【解析】【分析】先利用△ABC为等腰直角三角形得到AB=1,再设圆锥的底面圆的半径为r,则根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=901 180π⨯,然后解方程即可.【详解】∵⊙O的直径,∴AB=2BC=1,设圆锥的底面圆的半径为r,则2πr=901180π⨯,解得r=14,即圆锥的底面圆的半径为14米故答案为14.15.(1,0);(﹣5,﹣2).【解析】【分析】本题主要考查位似变换中对应点的坐标的变化规律.因而本题应分两种情况讨论,一种是当E和C是对应顶点,G和A是对应顶点;另一种是A和E是对应顶点,C和G是对应顶点.【详解】∵正方形ABCD和正方形OEFG中A和点F的坐标分别为(3,2),(-1,-1),∴E(-1,0)、G(0,-1)、D(5,2)、B(3,0)、C(5,0),(1)当E和C是对应顶点,G和A是对应顶点时,位似中心就是EC与AG的交点,设AG 所在直线的解析式为y=kx+b (k≠0),∴231k b b =+⎧⎨-=⎩,解得11b k =-⎧⎨=⎩. ∴此函数的解析式为y=x-1,与EC 的交点坐标是(1,0);(2)当A 和E 是对应顶点,C 和G 是对应顶点时,位似中心就是AE 与CG 的交点,设AE 所在直线的解析式为y=kx+b (k≠0),320k b k b +=⎧⎨-+=⎩,解得1212k b ⎧=⎪⎪⎨⎪=⎪⎩, 故此一次函数的解析式为1122y x =+…①, 同理,设CG 所在直线的解析式为y=kx+b (k≠0),501k b b +=⎧⎨=-⎩,解得151k b ⎧=⎪⎨⎪=-⎩, 故此直线的解析式为115y x =-…② 联立①②得1122115y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩解得52x y =-⎧⎨=-⎩,故AE 与CG 的交点坐标是(-5,-2). 故答案为:(1,0)、(-5,-2).16.4【解析】试题分析:先根据众数的定义求出a 的值,再根据平均数的定义列出算式,再进行计算即可.试题解析:∵3,a ,4,5的众数是4,∴a=4,∴这组数据的平均数是(3+4+4+5)÷4=4.考点:1.算术平均数;2.众数.17.13或4【解析】解方程x 2-4x+3=0得,x 1=1,x 2=3,①当3是直角边时,∵△ABC 最小的角为A ,∴tanA=13; ②当3是斜边时,根据勾股定理,∠A 的邻边=223122-=,∴tanA=2422=; 所以tanA 的值为13或24. 18.72【解析】 分析:延长AB 交2l 于点F ,根据12//l l 得到∠2=∠3,根据五边形ABCDE 是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB 交2l 于点F ,∵12//l l ,∴∠2=∠3,∵五边形ABCDE 是正五边形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案为:72°.点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.三、解答题(本题包括8个小题)19.(1)()()31y x x =-+-;(2)2x <-或1x >;(3)1.【解析】【分析】(1)直接将已知点代入函数解析式求出即可;(2)利用函数图象结合交点坐标得出使一次函数值大于二次函数值的x 的取值范围;(3)分别得出EO ,AB 的长,进而得出面积.【详解】(1)∵二次函数与x 轴的交点为()30A -,和()10B , ∴设二次函数的解析式为:()()31y a x x =+-∵()0,3C在抛物线上,∴3=a(0+3)(0-1),解得a=-1,所以解析式为:()()31y x x=-+-;(2)()()31y x x=-+-=−x2−2x+3,∴二次函数的对称轴为直线1x=-;∵点C、D是二次函数图象上的一对对称点;()0,3C∴()2,3D-;∴使一次函数大于二次函数的x的取值范围为2x<-或1x>;(3)设直线BD:y=mx+n,代入B(1,0),D(−2,3)得23m nm n⎧⎨-⎩+=+=,解得:11mn-⎧⎨⎩==,故直线BD的解析式为:y=−x+1,把x=0代入()()31y x x=-+-得,y=3,所以E(0,1),∴OE=1,又∵AB=1,∴S△ADE=12×1×3−12×1×1=1.【点睛】此题主要考查了待定系数法求一次函数和二次函数解析式,利用数形结合得出是解题关键.20.这种测量方法可行,旗杆的高为21.1米.【解析】分析:根据已知得出过F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性质得出即可.详解:这种测量方法可行.理由如下:设旗杆高AB=x.过F作FG⊥AB于G,交CE于H(如图).所以△AGF∽△EHF.因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x﹣1.1.由△AGF∽△EHF,得AG GF EH HF=,即1.530 23x-=,所以x﹣1.1=20,解得x=21.1(米)答:旗杆的高为21.1米.点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.21.(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.【解析】试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;(3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.答:一次至少买1只,才能以最低价购买;(3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;综上所述:;(3)y==,①当10<x≤45时,y 随x 的增大而增大,即当卖的只数越多时,利润更大. ②当45<x≤1时,y 随x 的增大而减小,即当卖的只数越多时,利润变小.且当x=46时,y 1=303.4,当x=1时,y 3=3.∴y 1>y 3.即出现了卖46只赚的钱比卖1只赚的钱多的现象.当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.22.(1)详见解析;(2)30°.【解析】【分析】(1)根据线段垂直平分线的作法作出AB 的垂直平分线即可;(2)连接PA ,根据等腰三角形的性质可得PAB B ∠=∠,由角平分线的定义可得PAB PAC ∠=∠,根据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案.【详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线,∴PA=PB ,∴点P 即为所求.(2)如图,连接AP ,∵PA PB =,∴PAB B ∠=∠,∵AP 是角平分线,∴PAB PAC ∠=∠,∴PAB PAC B ∠=∠=∠,∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当30B∠=︒时,AP平分CAB∠.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.23.(1)0.3,45;(2)108︒;(3)1 6【解析】【分析】(1)根据频数的和为样本容量,频率的和为1,可直接求解;(2)根据频率可得到百分比,乘以360°即可;(3)列出相应的可能性表格,找到所发生的所有可能和符合条件的可能求概率即可. 【详解】(1)a=0.3,b=45(2)360°×0.3=108°(3)列关系表格为:由表格可知,满足题意的概率为:1 6 .考点:1、频数分布表,2、扇形统计图,3、概率24.5.6千米【解析】【分析】设PD的长为x千米,DA的长为y千米,在Rt△PAD中利用正切的定义得到tan18°=yx,即y=0.33x,同样在Rt△PDB中得到y+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可.【详解】设PD的长为x千米,DA的长为y千米,在Rt△PAD中,tan∠DPA=DA DP,即tan18°=yx,∴y=0.33x,在Rt△PDB中,tan∠DPB=64 5.6g)56x⨯-(,即tan53°=5.6yx+,∴y+5.6=1.33x,∴0.33x+5.6=1.33x,解得x=5.6,答:此时观光船到大桥AC段的距离PD的长为5.6千米.【点睛】本题考查了解直角三角形的应用:根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.25.(1)6yx=;(2)(23-,0)或22,03⎛⎫- ⎪⎝⎭【解析】【分析】(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.【详解】解:(1)把A(2,n)代入直线解析式得:n=3,∴A(2,3),把A坐标代入y=kx,得k=6,则双曲线解析式为y=6x.(2)对于直线y=12x+2,令y=0,得到x=-4,即C(-4,0).设P(x,0),可得PC=|x+4|.∵△ACP面积为5,∴12|x+4|•3=5,即|x+4|=2,解得:x=-23或x=-223, 则P 坐标为203⎛⎫- ⎪⎝⎭,或2203⎛⎫- ⎪⎝⎭,. 26.(1)证明见解析(2)当四边形BEDF 是菱形时,四边形AGBD 是矩形;证明见解析;【解析】【分析】(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS ,ASA ,SSS )来证明全等;(2)先由菱形的性质得出AE=BE=DE ,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD 是矩形.【详解】解:()1证明:∵四边形ABCD 是平行四边形,∴4C ∠=∠,AD CB =,AB CD =.∵点E 、F 分别是AB 、CD 的中点,∴12AE AB =,12CF CD =. ∴AE CF =.在AED 和CBF 中,AD CB DAE C AE CF =⎧⎪∠=∠⎨⎪=⎩,∴()ADE CBF SAS ≅.()2解:当四边形BEDF 是菱形时,四边形AGBD 是矩形.证明:∵四边形ABCD 是平行四边形,∴//AD BC .∵//AG BD ,∴四边形AGBD 是平行四边形.∵四边形BEDF 是菱形,∴DE BE =.∵AE BE =,∴AE BE DE ==.∴12∠=∠,34∠=∠.∵1234180∠+∠+∠+∠=,∴2223180∠+∠=.∴2390∠+∠=.即90ADB ∠=.∴四边形AGBD 是矩形.【点睛】本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS ,SAS ,AAS ,ASA .2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC 的度数为()A.125°B.75°C.65°D.55°2.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b63.如图,反比例函数y=-的图象与直线y=-x的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则△ABC的面积为( )A.8 B.6 C.4 D.24.方程(m–2)x2+3mx+1=0是关于x的一元二次方程,则()A.m≠±2B.m=2 C.m=–2 D.m≠25.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==6.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2=()A.70°B.110°C.130°D.140°7.在△ABC中,AB=AC=13,BC=24,则tanB等于()A .513B .512C .1213D .1258.等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数 9.在函数y =1x x 中,自变量x 的取值范围是( ) A .x≥1 B .x≤1且x≠0 C .x≥0且x≠1 D .x≠0且x≠110.下列现象,能说明“线动成面”的是( )A .天空划过一道流星B .汽车雨刷在挡风玻璃上刷出的痕迹C .抛出一块小石子,石子在空中飞行的路线D .旋转一扇门,门在空中运动的痕迹二、填空题(本题包括8个小题)11.在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是13,则n =_____. 12.因式分解:=______.13.因式分解:mn (n ﹣m )﹣n (m ﹣n )=_____.14.如图,在边长为3的菱形ABCD 中,点E 在边CD 上,点F 为BE 延长线与AD 延长线的交点.若DE=1,则DF 的长为________.15..如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是_______.16.如图,在四边形ABCD 中,∠B =∠D =90°,AB =3, BC =2,tanA =43,则CD =_____.17.如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,连接BD,若∠C=40°,则∠B=_____度.18.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则依题意列方程为_________.三、解答题(本题包括8个小题)19.(6分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.商场要想在这种冰箱销售中每天盈利4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?20.(6分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:四边形BFDE是平行四边形.21.(6分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.如图(2),将∠MDN 绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.在图(2)中,若AB=AC=10,BC=12,当△DEF 的面积等于△ABC 的面积的14时,求线段EF 的长. 22.(8分)如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5 km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)23.(8分)一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.24.(10分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.25.(10分)如图,已知⊙O 经过△ABC 的顶点A 、B ,交边BC 于点D ,点A 恰为BD 的中点,且BD =8,AC =9,sinC =13,求⊙O 的半径.26.(12分)解方程:214111x x x ++=--.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.【详解】延长CB,延长CB,∵AD∥CB,∴∠1=∠ADE=145,∴∠DBC=180−∠1=180−125=55.故答案选:D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质. 2.D【解析】试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.试题解析:(ab2)3=a3•(b2)3=a3b1.故选D.考点:幂的乘方与积的乘方.3.A【解析】试题解析:由于点A、B在反比例函数图象上关于原点对称,则△ABC的面积=2|k|=2×4=1.故选A.考点:反比例函数系数k的几何意义.4.D【解析】试题分析:根据一元二次方程的概念,可知m-2≠0,解得m≠2.5.A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:5152x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.6.D【解析】∵四边形ADA'E的内角和为(4-2)•180°=360°,而由折叠可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.7.B【解析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,225AB BD-=,故tanB=512ADBD=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.8.B【分析】根据一次函数的定义,可得答案.【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣12x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.9.C【解析】【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.故x的取值范围是x≥2且x≠2.故选C.【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.10.B【解析】【分析】本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;【详解】解:∵A、天空划过一道流星说明“点动成线”,∴故本选项错误.∵B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,∴故本选项正确.∵C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,∴故本选项错误.。
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为( ) A .26×105B .2.6×102C .2.6×106D .260×1042.如图,E 为平行四边形ABCD 的边AB 延长线上的一点,且BE:AB=2:3,△BEF 的面积为4,则平行四边形ABCD 的面积为()A .30B .27C .14D .323.将抛物线()2y x 13=-+向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( ) A .()2y x 2=-B .()2y x 26=-+ C .2y x 6=+D .2y x =4.下列图形中,周长不是32 m 的图形是( )A .B .C .D .5.要使分式有意义,则x 的取值应满足( )A .x=﹣2B .x≠2C .x >﹣2D .x≠﹣26.如图,在平面直角坐标系xOy 中,△A B C '''由△ABC 绕点P 旋转得到,则点P 的坐标为( )A .(0, 1)B .(1, -1)C .(0, -1)D .(1, 0)7.一次函数1y kx b =+与2y x a =+的图象如图所示,给出下列结论:①k 0<;②0a >;③当3x <时,12y y <.其中正确的有( )A .0个B .1个C .2个D .3个8.在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④9.如图所示,90,,E F B C AE AF ∠=∠=∠=∠=,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM ∆≅∆,其中正确的是有( )A .1个B .2个C .3个D .4个10.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( ) A .能中奖一次 B .能中奖两次 C .至少能中奖一次D .中奖次数不能确定二、填空题(本题包括8个小题) 11.分解因式: 22a b ab b -+=_________.12.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是_____.13.计算1x x +﹣11x +的结果为_____. 14.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为_____.15.如图,已知△ABC 中,AB =AC =5,BC =8,将△ABC 沿射线BC 方向平移m 个单位得到△DEF ,顶点A ,B ,C 分别与D ,E ,F 对应,若以A ,D ,E 为顶点的三角形是等腰三角形,且AE 为腰,则m 的值是______.16.如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=12xx,连接CE,CF,则△CEF 周长的最小值为_____.17.一次函数1y kx b=+与2y x a=+的图象如图,则()0kx b x a+-+>的解集是__.18.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是三、解答题(本题包括8个小题)19.(6分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.求证:∠CBP=∠ADB.若OA=2,AB=1,求线段BP的长.20.(6分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周 3台 5台 1800元 第二周4台10台3100元(进价、售价均保持不变,利润=销售收入-进货成本)求A ,B 两种型号的电风扇的销售单价.若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A 种型号的电风扇最多能采购多少台?在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.21.(6分)如图,AB 为半圆O 的直径,AC 是⊙O 的一条弦,D 为BC 的中点,作DE ⊥AC ,交AB 的延长线于点F ,连接DA .求证:EF 为半圆O 的切线;若DA =DF =63,求阴影区域的面积.(结果保留根号和π)22.(8分)吴京同学根据学习函数的经验,对一个新函数y =2545x x --+的图象和性质进行了如下探究,请帮他把探究过程补充完整该函数的自变量x 的取值范围是 .列表: x … ﹣2﹣10 123 4 56…y…517-m ﹣152-﹣5n﹣112- 517-…表中m = ,n = .描点、连线在下面的格点图中,建立适当的平面直角坐标系xOy 中,描出上表中各对对应值为坐标的点(其中x 为横坐标,y 为纵坐标),并根据描出的点画出该函数的图象:观察所画出的函数图象,写出该函数的两条性质:① ; ② .23.(8分)如图,在△ABC 中,点D 是AB 边的中点,点E 是CD 边的中点,过点C 作CF ∥AB 交AE 的延长线于点F,连接BF.求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.24.(10分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:125,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).25.(10分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星6C卫星发射升空,卫星进入预定轨道.如图,火星从地面C处发射,当火箭达到A点时,从位于地面雷达站D处测得DA的距离是6km,仰角为42.4︒;1秒后火箭到达B点,测得DB的仰角为45.5︒.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)求发射台与雷达站之间的距离CD;求这枚火箭从A到B的平均速度是多少(结果精确到0.01)?26.(12分)校园手机现象已经受到社会的广泛关注.某校的一个兴趣小组对“是否赞成中学生带手机进校园”的问题在该校校园内进行了随机调查.并将调查数据作出如下不完整的整理;看法频数频率赞成 5无所谓0.1反对40 0.8(1)本次调查共调查了人;(直接填空)请把整理的不完整图表补充完整;若该校有3000名学生,请您估计该校持“反对”态度的学生人数.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.C 【解析】 【分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】260万=2600000=62.610⨯. 故选C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值. 2.A 【解析】∵四边形ABCD 是平行四边形, ∴AB//CD ,AB=CD ,AD//BC , ∴△BEF ∽△CDF ,△BEF ∽△AED ,∴22BEF BEF CDF AED S S BE BE S CD S AE ∆∆∆∆⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, ,∵BE :AB=2:3,AE=AB+BE , ∴BE :CD=2:3,BE :AE=2:5,∴44925BEF BEF CDF AED S S S S ∆∆∆∆==, , ∵S △BEF =4,∴S △CDF =9,S △AED =25,∴S 四边形ABFD =S △AED -S △BEF =25-4=21, ∴S 平行四边形ABCD =S △CDF +S 四边形ABFD =9+21=30, 故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键. 3.D 【解析】根据“左加右减、上加下减”的原则,将抛物线()2y x 13=-+向左平移1个单位所得直线解析式为:()22y x 113y x 3=-++⇒=+; 再向下平移3个单位为:22y x 33y x =+-⇒=.故选D . 4.B 【解析】 【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可. 【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32. 采用排除法即可选出B 故选B. 【点睛】此题考查多边形的周长,解题在于掌握计算公式. 5.D 【解析】 试题分析:∵分式有意义,∴x+1≠0,∴x≠﹣1,即x 的取值应满足:x≠﹣1.故选D .考点:分式有意义的条件.6.B【解析】试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.试题解析:由图形可知,对应点的连线CC′、AA′的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.故旋转中心坐标是P(1,-1)故选B.考点:坐标与图形变化—旋转.7.B【解析】【分析】仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.【详解】①∵y1=kx+b的图象从左向右呈下降趋势,∴k<0正确;②∵y2=x+a,与y轴的交点在负半轴上,∴a<0,故②错误;③当x<3时,y1>y2错误;故正确的判断是①.故选B.【点睛】本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b (k≠0)y随x的变化趋势:当k>0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小. 8.C 【解析】试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5. ∵ 3.44<4<4.5,∴1.5<4<1.91,∴1.4<8<1.9, 所以8应在③段上. 故选C考点:实数与数轴的关系 9.C 【解析】 【分析】根据已知的条件,可由AAS 判定△AEB ≌△AFC ,进而可根据全等三角形得出的结论来判断各选项是否正确. 【详解】 解:如图:在△AEB 和△AFC 中,有90B C E F AE AF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴△AEB ≌△AFC ;(AAS ) ∴∠FAM=∠EAN ,∴∠EAN-∠MAN=∠FAM-∠MAN , 即∠EAM=∠FAN ;(故③正确) 又∵∠E=∠F=90°,AE=AF , ∴△EAM ≌△FAN ;(ASA ) ∴EM=FN ;(故①正确)由△AEB ≌△AFC 知:∠B=∠C ,AC=AB ; 又∵∠CAB=∠BAC ,∴△ACN≌△ABM;(故④正确)由于条件不足,无法证得②CD=DN;故正确的结论有:①③④;故选C.【点睛】此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难.10.D【解析】【分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【点睛】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A1=②为必然事件;()0P A1③<<为随机事件.二、填空题(本题包括8个小题)11.【解析】先提取公因式b,再利用完全平方公式进行二次分解.解答:解:a1b-1ab+b,=b(a1-1a+1),…(提取公因式)=b(a-1)1.…(完全平方公式)12.25°.【解析】∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.13.11x x -+. 【解析】【分析】根据同分母分式加减运算法则化简即可.【详解】原式=11x x -+, 故答案为11x x -+. 【点睛】本题考查了分式的加减运算,熟记运算法则是解题的关键.14.﹣1 【解析】【分析】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,再解关于k 的方程,然后根据一元二次方程的定义确定k 的值即可.【详解】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,整理得k 2+1k=0,解得k 1=0,k 2=﹣1,因为k≠0,所以k 的值为﹣1.故答案为:﹣1.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.258或5或1. 【解析】【分析】根据以点A ,D ,E 为顶点的三角形是等腰三角形分类讨论即可.【详解】解:如图(1)当在△ADE 中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.(2)又AC=5,当平移m 个单位使得E 、C 点重合,此时AE=ED=5,平移的长度m=BC=1,(3)可以AE 、AD 为腰使ADE 为等腰三角形,设平移了m 个单位:则223(m-4)+AD=m ,得:2223(m-4)=m +,得m=258, 综上所述:m 为258或5或1, 所以答案:258或5或1. 【点睛】 本题主要考查等腰三角形的性质,注意分类讨论的完整性.16.22+45【解析】【分析】如图作CH ∥BD ,使得CH =EF =22,连接AH 交BD 由F ,则△CEF 的周长最小.【详解】如图作CH ∥BD ,使得CH =EF =22,连接AH 交BD 由F ,则△CEF 的周长最小.∵CH =EF ,CH ∥EF ,∴四边形EFHC 是平行四边形,∴EC =FH ,∵FA =FC ,∴EC+CF =FH+AF =AH ,∵四边形ABCD 是正方形,∴AC ⊥BD ,∵CH ∥DB ,∴AC ⊥CH ,∴∠ACH =90°,在Rt △ACH 中,AH =22AC CH +=45,∴△EFC 的周长的最小值=22+45,故答案为:22+45.【点睛】本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.17.1x <-【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.18.4【解析】【分析】当CD ∥AB 时,PM 长最大,连接OM ,OC ,得出矩形CPOM ,推出PM=OC ,求出OC 长即可.【详解】当CD ∥AB 时,PM 长最大,连接OM ,OC ,∵CD ∥AB ,CP ⊥CD ,∴CP ⊥AB ,∵M 为CD 中点,OM 过O ,∴OM ⊥CD ,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM 是矩形,∴PM=OC ,∵⊙O 直径AB=8,∴半径OC=4,即PM=4.【点睛】本题考查矩形的判定和性质,垂径定理,平行线的性质,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.三、解答题(本题包括8个小题)19.(1)证明见解析;(2)BP=1.【解析】分析:(1)连接OB ,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;(2)证明△AOP ∽△ABD ,然后利用相似比求BP 的长.详(1)证明:连接OB ,如图,∵AD 是⊙O 的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC 为切线,∴OB ⊥BC ,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB , ∴∠A=∠OBA , ∴∠CBP=∠ADB ;(2)解:∵OP ⊥AD ,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D ,∴△AOP ∽△ABD ,∴AP AO AD AB =,即1241BP +=, ∴BP=1.点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质.20.(1) A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标.【解析】【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.【详解】(1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台.依题意,得3518004103100x yx y+=⎧⎨+=⎩解得250210xy=⎧⎨=⎩答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台.(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30-a)台.依题意,得200a+170(30-a)≤5400,解得a≤10.答:A种型号的电风扇最多能采购10台.(3)依题意,有(250-200)a+(210-170)(30-a)=1400,解得a=20.∵a≤10,∴在(2)的条件下超市不能实现利润为1400元的目标.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.21.(1)证明见解析(2)6π【解析】【分析】(1)直接利用切线的判定方法结合圆心角定理分析得出OD⊥EF,即可得出答案;(2)直接利用得出S△ACD=S△COD,再利用S阴影=S△AED﹣S扇形COD,求出答案.【详解】(1)证明:连接OD,∵D为弧BC的中点,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF为半圆O的切线;(2)解:连接OC与CD,∵DA=DF,∴∠BAD=∠F,∴∠BAD=∠F=∠CAD,又∵∠BAD+∠CAD+∠F=90°,∴∠F=30°,∠BAC=60°,∵OC=OA,∴△AOC为等边三角形,∴∠AOC=60°,∠COB=120°,∵OD⊥EF,∠F=30°,∴∠DOF=60°,在Rt△ODF中,DF=∴OD=DF•tan30°=6,在Rt△AED中,DA=∠CAD=30°,∴DE=DA•sin30°=EA=DA•cos30°=9,∵∠COD=180°﹣∠AOC﹣∠DOF=60°,由CO=DO,∴△COD是等边三角形,∴∠OCD=60°,∴∠DCO=∠AOC=60°,∴CD∥AB,故S△ACD=S△COD,∴S 阴影=S △AED ﹣S 扇形COD =216093362360π⨯⨯-⨯=27362π-.【点睛】此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出S △ACD =S △COD 是解题关键.22.(1)一切实数(2)-12,-52 (3)见解析(4)该函数有最小值没有最大值;该函数图象关于直线x =2对称【解析】【分析】 (1)分式的分母不等于零;(2)把自变量的值代入即可求解;(3)根据题意描点、连线即可;(4)观察图象即可得出该函数的其他性质.【详解】 (1)由y =2545x x --+知,x 2﹣4x+5≠0,所以变量x 的取值范围是一切实数. 故答案为:一切实数;(2)m =251(1)452-=--++,n =25531252-=--+, 故答案为:-12,-52; (3)建立适当的直角坐标系,描点画出图形,如下图所示:(4)观察所画出的函数图象,有如下性质:①该函数有最小值没有最大值;②该函数图象关于直线x=2对称.故答案为:该函数有最小值没有最大值;该函数图象关于直线x=2对称【点睛】本题综合考查了二次函数的图象和性质,根据图表画出函数的图象是解题的关键.23.(1)证明见解析;(2)四边形BDCF是矩形,理由见解析.【解析】(1)证明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四边形BDCF是矩形.证明:由(1)知DB=CF,又DB∥CF,∴四边形BDCF为平行四边形.∵AC=BC,AD=DB,∴CD⊥AB.∴四边形BDCF是矩形.24.(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米.【解析】试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:125,高为DE,可以求得DE的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB 的高度.试题解析:(1)∵在大楼AB 的正前方有一斜坡CD ,CD=13米,坡度为1:125, ∴1512125DE EC ==,设DE=5x 米,则EC=12x 米,∴(5x )2+(12x )2=132,解得:x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD 的高度DE 是5米;(2)过点D 作AB 的垂线,垂足为H ,设DH 的长为x ,由题意可知∠BDH=45°,∴BH=DH=x ,DE=5,在直角三角形CDE 中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,∵tan64°=AB AC , ∴2=AB AC, 解得,x=29,AB=x+5=34,即大楼AB 的高度是34米.25. (Ⅰ)发射台与雷达站之间的距离CD 约为4.44km ;(Ⅱ)这枚火箭从A 到B 的平均速度大约是0.51/km s .【解析】【分析】(Ⅰ)在Rt △ACD 中,根据锐角三角函数的定义,利用∠ADC 的余弦值解直角三角形即可;(Ⅱ)在Rt △BCD 和Rt △ACD 中,利用∠BDC 的正切值求出BC 的长,利用∠ADC 的正弦值求出AC 的长,进而可得AB 的长,即可得答案.【详解】(Ⅰ)在Rt ACD 中,6DA km =,42.4A CD ADC cos DC AD∠∠=︒=,≈0.74, ∴()642.4 4.44km CD AD cos ADC cos ∠=⋅=⨯︒≈.答:发射台与雷达站之间的距离CD 约为4.44km . (Ⅱ)在Rt BCD 中, 4.44km 45.5,BC CD BDC tan BDC CD∠∠==︒=,, ∴()4.4445.5 4.441.02 4.5288km BC CD tan BDC tan ∠=⋅=⨯︒≈⨯=.∵在Rt ACD 中,AC sin ADC AD∠=, ∴()642.4 4.02km AC AD sin ADC sin ∠=⋅=⨯︒≈.∴()4.5288 4.020.50880.51km AB BC AC =-=-=≈.答:这枚火箭从A 到B 的平均速度大约是0.51/km s .【点睛】本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键. 26.(1)50;(2)见解析;(3)2400.【解析】【分析】(1)用反对的频数除以反对的频率得到调查的总人数;(2)求无所谓的人数和赞成的频率即可把整理的不完整图表补充完整; (3)根据题意列式计算即可.【详解】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;故答案为:50;(2)无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;看法频数 频率 赞成5 0.1 无所谓5 0.1 反对40 0.8统计图为:(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.【点睛】本题考查的是条形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某青年排球队12名队员年龄情况如下:年龄18 19 20 21 22人数1 4 32 2则这12名队员年龄的众数、中位数分别是()A.20,19 B.19,19 C.19,20.5 D.19,202.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°3.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)4.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==5.若2<2a-<3,则a的值可以是()A.﹣7 B.163C.132D.126.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数7.如图是由长方体和圆柱组成的几何体,它的俯视图是()A.B.C.D.8.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.19.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c10.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.10033100x yx y+=⎧⎨+=⎩B.1003100x yx y+=⎧⎨+=⎩C.100131003x yx y+=⎧⎪⎨+=⎪⎩D.1003100x yx y+=⎧⎨+=⎩二、填空题(本题包括8个小题)11.如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O过A、C两点,则图中阴影部分的面积之和为_____.12.分解因式:a3b+2a2b2+ab3=_____.13.如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为14.若A (﹣3,y 1),B (﹣2,y 2),C (1,y 3)三点都在y=1x -的图象上,则y l ,y 2,y 3的大小关系是_____.(用“<”号填空) 15.如图,Rt ABC ∆中,ACB=90∠︒,AC=CB=42,BAD=ADE=60∠∠︒,AD=5,CE 平分ACB ∠,DE 与CE 相交于点E ,则DE 的长等于_____.16.已知一个多边形的每一个内角都是144,则这个多边形是_________边形.17.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,位似比为2:3,点B 、E 在第一象限,若点A 的坐标为(1,0),则点E 的坐标是______.18.函数y=12-x x的自变量x 的取值范围是_____. 三、解答题(本题包括8个小题)19.(6分)如图,在平面直角坐标系中,O 为坐标原点,△ABO 的边AB 垂直于x 轴,垂足为点B ,反比例函数y =k x(x >0)的图象经过AO 的中点C ,交AB 于点D ,且AD =1.设点A 的坐标为(4,4)则点C 的坐标为 ;若点D 的坐标为(4,n). ①求反比例函数y =k x 的表达式; ②求经过C ,D 两点的直线所对应的函数解析式;在(2)的条件下,设点E 是线段CD 上的动点(不与点C ,D 重合),过点E 且平行y 轴的直线l 与反比例函数的图象交于点F ,求△OEF 面积的最大值.20.(6分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:甲登山上升的速度是每分钟 米,乙在A 地时距地面的高度b 为 米.若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式.登山多长时间时,甲、乙两人距地面的高度差为50米?21.(6分)已知C 为线段AB 上一点,关于x 的两个方程()112x m +=与()23x m m +=的解分别为线段AC BC ,的长,当2m =时,求线段AB 的长;若C 为线段AB 的三等分点,求m 的值. 22.(8分)如图,在△AOB 中,∠ABO=90°,OB=1,AB=8,反比例函数y=k x 在第一象限内的图象分别交OA ,AB 于点C 和点D ,且△BOD 的面积S △BOD =1.求反比例函数解析式;求点C 的坐标.23.(8分)如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.在图中画出以线段AB 为一边的矩形ABCD (不是正方形),且点C 和点D 均在小正方形的顶点上;在图中画出以线段AB 为一腰,底边长为2的等腰三角形ABE ,点E 在小正方形的顶点上,连接CE ,请直接写出线段CE 的长.24.(10分)如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE 的长(结果保留根号).25.(10分)校园空地上有一面墙,长度为20m ,用长为32m 的篱笆和这面墙围成一个矩形花圃,如图所示.能围成面积是126m 2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.若篱笆再增加4m ,围成的矩形花圃面积能达到170m 2吗?请说明理由.26.(12分)如图,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象分别交x 轴、y 轴于A 、B 两点,与反比例函数()0m y m x=≠的图象交于C 、D 两点.已知点C 的坐标是(6,-1),D (n ,3).求m 的值和点D 的坐标.求tan BAO ∠的值.根据图象直接写出:当x 为何值时,一次函数的值大于反比例函数的值?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.【详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为20202+=1.故选D.【点睛】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.2.A【解析】分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选:A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.3.D【解析】【详解】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且OA'OA=13.∴A EAD'=0E0D=13 .∴A′E=13AD=2,OE=13OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为13,∴点A的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).故答案选D.考点:位似变换.4.A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.C【解析】【分析】根据已知条件得到4<a-2<9,由此求得a的取值范围,易得符合条件的选项.【详解】解:∵22a-<3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范围是6<a<1.观察选项,只有选项C符合题意.故选C.【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法.6.C【解析】【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.7.A【解析】分析:根据从上边看得到的图形是俯视图,可得答案.详解:从上边看外面是正方形,里面是没有圆心的圆,故选A.点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.8.D【解析】【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n 的值,代入计算可得.【详解】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选D.。
山东省聊城市2020年八年级第二学期期末学业质量监测数学试题 一、选择题(每题只有一个答案正确)1.下列二次根式,化简后能与3合并的是( )A .18B .0.3C .13D .242.罗老师从家里出发,到一个公共阅报栏看了一会儿报后,然后回家.右图描述了罗老师离家的距离S (米)与时间t (分)之间的函数关系,根据图象,下列说法错误的是( )A .罗老师离家的最远距离是400米B .罗老师看报的时间为10分钟C .罗老师回家的速度是40米/分D .罗老师共走了600米3.某学校在开展“节约每一滴水”的活动中,从九年级的500名同学中任选出10名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表所示:节水量(单位:t )0.5 1 1.5 2 同学数(人) 2 3 4 1请你估计这500名同学的家庭一个月节约的水总量大约是( ) A .400t B .500t C .700t D .600t4.矩形各内角的平分线能围成一个( ) A .矩形 B .菱形 C .等腰梯形 D .正方形5.下列等式不一定成立的是( )A .2(5)5-=B ab a b =C 2(3)3ππ-=-D 82233=6125a +a 的值是( )A .7a =B .2a =-C .1a =D .1a =-7.下列说法中:①样本中的方差越小,波动越小,说明样本稳定性越好;②一组数据的众数只有一个;③一组数据的中位数一定是这组数据中的某一个数据;④数据3,3,3,3,2,5中的众数为4;⑤一组数据的方差一定是正数.其中正确的个数为()A.0 B.1 C.2 D.48.如果(2+)2=a+b,a,b为有理数,那么a+b=()A.7+4B.11 C.7 D.39.下列几组数中,能作为直角三角形三边长度的是()A.6,9,10 B.5,12,17 C.4,5,6 D.1,2,310.小明在画函数6yx=(x>0)的图象时,首先进行列表,下表是小明所列的表格,由于不认真列错了一个不在该函数图象上的点,这个点是A.(1,6)B.(2,3)C.(3,2)D.(4,1)二、填空题11.已知a+b=5,ab=-6,则代数式ab2+a2b的值是______.12.函数y3x1=-的自变量x的取值范围是.13.如图,在一次测绘活动中,某同学站在点A处观测停放于B、C两处的小船,测得船B在点A北偏东75°方向160米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为________米.14.正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM=226,AE=8,则ED=_____.15-2x3-x,则x的取值范围是____.16.甲乙两人同时开车从A地出发,沿一条笔直的公路匀速前往相距400千米的B地,1小时后,甲发现有物品落在A地,于是立即按原速返回A地取物品,取到物品后立即提速25%继续开往B地(所有掉头和取物品的时间忽略不计),甲乙两人间的距离y 千米与甲开车行驶的时间x 小时之间的部分函数图象如图所示,当甲到达B 地时,乙离B 地的距离是_____.17.如图,在矩形ABCD 中,5,3,AB BC ==点E 为射线BC 上一动点,将ABE △沿AE 折叠,得到.AB E '若'B 恰好落在射线CD 上,则BE 的长为________.三、解答题18.如图,矩形纸片ABCD 中,AB =8,AD =6,折叠纸片使AD 边落在对角线BD 上,点A 落在点A ′处,折痕为DG ,求AG 的长.19.(6分)已知:a 、b 、c 满足2(8)5|320a b c -+--=求:(1)a 、b 、c 的值;(2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.20.(6分)如图①,已知正方形ABCD 的边长为1,点P 是AD 边上的一个动点,点A 关于直线BP 的对称点是点Q ,连接PQ 、DQ 、CQ 、BQ ,设AP =x .(1)BQ +DQ 的最小值是_______,此时x 的值是_______;(2)如图②,若PQ 的延长线交CD 边于点E ,并且∠CQD =90°.①求证:点E 是CD 的中点; ②求x 的值.(3)若点P 是射线AD 上的一个动点,请直接写出当△CDQ 为等腰三角形时x 的值.21.(6分)问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图1,图 2 都是8×8 的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.操作发现:小颖在图1 中画出△ABC,其顶点A,B,C 都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE,EF 分别经过点C,A,她借助此图求出了△ABC 的面积.(1)在图1 中,小颖所画的△ABC 的三边长分别是AB=,BC=,AC=;△ABC 的面积为.解决问题:(2)已知△ABC 中,AB=10,BC=2 5,AC=5 2,请你根据小颖的思路,在图2的正方形网格中画出△ABC,并直接写出△ABC 的面积.22.(8分)计算:(12+8)×323.(8分)在我市开展的“好书伴我成长”读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数.统计数据如下表所示:(1)50个样本数据的平均数是______册、众数是______册,中位数是______册;(2)根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数.24.(10分)移动营业厅推出两种移动电话计费方式:方案一,月租费用15元/元,本地通话费用0.2元/分钟,方案二,月租费用0元/元,本地通话费用0.3元/分钟.(1)以x表示每个月的通话时间(单位:分钟),y表示每个月的电话费用(单位:元),分别表示出两种电话计费方式的函数表达式;(2)问当每个月的通话时间为300分钟时,采用那种电话计费方式比较合算?25.(10分)近几年杭州市推出了“微公交”,“微公交”是国内首创的纯电动汽车租赁服务.它作为一种绿色出行方式,对缓解交通堵塞和停车困难,改善城市大气环境,都可以起到积极作用.据了解某租赁点拥有“微公交”20辆.据统计,当每辆车的年租金为9千元时可全部租出;每辆车的年租金每增加0.5千元,未租出的车将增加1辆.(1)当每辆车的年租金定为10.5千元时,能租出多少辆?(2)当每辆车的年租金增加多少千元时,租赁公司的年收益(不计车辆维护等其他费用)可达到176千元?参考答案一、选择题(每题只有一个答案正确)1.C【解析】【分析】.【详解】解:A合并,不合题意;B,与CD合并,不合题意.故选:C.【点睛】此题主要考查了同类二次根式,正确化简二次根式是解题关键.2.D【解析】【分析】根据函数图象中的数据可以判断各个选项中的说法是否正确.【详解】解:由图象可得,罗老师离家的最远距离是400米,故选项A正确,-=分钟,故选项B正确,罗老师看报的时间为15510÷-=米/分,故选项C正确,罗老师回家的速度是400(2515)40+=米,故选项D错误,罗老师共走了400400800故选:D.【点睛】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.3.D【解析】【分析】先计算这10名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数500即可解答.【详解】解:=1.2(t),500×1.2=600(t),答:估计这500名同学的家庭一个月节约的水总量大约是600 t;故选:D.【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.004.D【解析】【分析】根据矩形的性质及角平分线的性质进行分析即可.【详解】矩形的四个角平分线将矩形的四个角分成8个45°的角,因此形成的四边形每个角是90°又知两条角平分线与矩形的一边构成等腰直角三角形,所以这个四边形邻边相等,根据有一组邻边相等的矩形是正方形,得到该四边形是正方形.故选D.【点睛】此题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角直接利用二次根式的性质分别化简的得出答案.【详解】A.(2=5,正确,不合题意;B=(a≥0,b≥0),故此选项错误,符合题意;C=π﹣3,正确,不合题意;D=故选B.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.6.B【解析】【分析】根据同类二次根式的定义得出5+a=3,求出即可.【详解】=∴5+a=3,解得:a=﹣1.故选B.【点睛】本题考查了同类二次根式和最简二次根式,能根据同类二次根式的定义得出5+a=3是解答此题的关键.7.B【解析】①样本的方差越小,波动性越小,说明样本稳定性越好,故①正确;②一组数据的众数不只有一个,有时有好几个,故②错误;③一组数据的中位数不一定是这组数据中的某一数,若这组数据有偶数个即是将一组数据从小到大重新排列后最中间两个数的平均数,故③错误;④数据:2,2,3,2,2,5的众数为2,故④错误;⑤一组数据的方差不一定是正数,也可能为零,故⑤错误.所以说法正确的个数是1个.故选B.直接利用完全平方公式将原式展开,进而得出a ,b 的值,即可得出答案. 【详解】 解:∵(2+)2=a+b (a ,b 为有理数),∴7+4=a+b , ∴a=7,b=4,∴a+b=1.故选B .【点睛】此题主要考查了二次根式的化简求值,正确得出a ,b 的值是解题关键.9.D【解析】【分析】要求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A 、2226910+≠,故不是直角三角形,故错误;B 、22251217+≠,故不是直角三角形,故错误;C 、222456+≠,故不是直角三角形,故错误;D 、222123,+= 故是直角三角形,故正确. 故选:D .【点睛】本题考查的是勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.10.D【解析】【分析】首先将各选项代入计算看是否在直线上即可.【详解】A 选项,当1x = 代入661y == 故在直线上. B 选项,当2x = 代入632y == 故在直线上. C 选项,当3x = 代入623y == 故在直线上. D 选项,当4x = 代入6342y == 故不在直线上. 故选D.【点睛】本题主要考查直线上的点满足直线方程,是考试的基本知识,应当熟练掌握.二、填空题11.-1.【解析】【分析】先利用提公因式法因式分解,然后利用整体代入法求值即可.【详解】解:∵ab 2+a 2b=ab (a+b ),而a+b=5,ab=-6,∴ab 2+a 2b=-6×5=-1.故答案为:-1.【点睛】此题考查的是因式分解,掌握利用提公因式法因式分解是解决此题的关键.12.1x 3≥. 【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,13x 10x 3-≥⇒≥. 13.1【解析】【分析】根据已知条件得到∠BAC=90°,AB=160米,AC=120米,由勾股定理即可得到结论.【详解】解:根据题意得:∠BAC=90°,AB=160米,AC=120米,在Rt △ABC 中,==1米.故答案为:1.【点睛】 本题考查解直角三角形的应用-方向角问题,会识别方向角是解题的关键.14.1【解析】解:如图,过B 作BP ⊥EH 于P ,连接BE ,交FH 于N ,则∠BPG=90°.∵四边形ABCD 是正方形,∴∠BCD=∠ABC=∠BAD=90°,AB=BC ,∴∠BCD=∠BPG=90°.∵GB 平分∠CGE ,∴∠EGB=∠CGB .又∵BG=BG ,∴△BPG ≌△BCG ,∴∠PBG=∠CBG ,BP=BC ,∴AB=BP .∵∠BAE=∠BPE=90°,BE=BE ,∴Rt △ABE ≌Rt △PBE(HL ),∴∠ABE=∠PBE ,∴∠EBG=∠EBP +∠GBP=12∠ABC=15°,由折叠得:BF=EF ,BH=EH ,∴FH 垂直平分BE ,∴△BNM 是等腰直角三角形.∵BM=226,∴BN=NM=213,∴BE=113.∵AE=8,∴Rt △ABE 中,AB=22BE AE -=12,∴AD=12,∴DE=12﹣8=1.故答案为1.点睛:本题考查了翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的定义、勾股定理、线段垂直平分线的性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题.15.2≤x ≤3【解析】【分析】根据二次根式有意义的条件得到不等式组,解不等式组即可.【详解】根据题意得;2030x x -≥⎧⎨-≥⎩解得:2≤x≤3 故答案为:2≤x≤3【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数要大于等于0是关键.16.1【解析】【分析】结合题意分析函数图象:线段OC 对应甲乙同时从A 地出发到A 返回前的过程,此过程为1小时;线段CD 对应甲返回走到与乙相遇的过程(即甲的速度大于乙的速度);线段DE 对应甲与乙相遇后继续返回走至到达A地的过程,因为速度相同,所以甲去和回所用时间相同,即x=2时,甲回到A地,此时甲乙相距120km,即乙2小时行驶120千米;线段EF对应甲从A地重新出发到追上乙的过程,即甲用(5﹣2)小时的时间追上乙,可列方程求出甲此时的速度,进而求出甲到达B地的时刻,再求出此时乙所行驶的路程.【详解】解:∵甲出发到返回用时1小时,返回后速度不变,∴返回到A地的时刻为x=2,此时y=120,∴乙的速度为60千米/时,设甲重新出发后的速度为v千米/时,列得方程:(5﹣2)(v﹣60)=120,解得:v=100,设甲在第t小时到达B地,列得方程:100(t﹣2)=10解得:t=6,∴此时乙行驶的路程为:60×6=360(千米),乙离B地距离为:10﹣360=1(千米).故答案为:1.【点睛】本题考查了一次函数与一元一次方程的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x和y表示的数量关系.17.53或15【解析】【分析】如图1,根据折叠的性质得到AB=A B'=5,B'E=BE,根据勾股定理求出BE,如图2,根据折叠的性质得到A B'=AB=5,求得AB=BF=5,根据勾股定理得到CF=4根据相似三角形的性质列方程即可得到结论.【详解】∵四边形ABCD是矩形,∴AD=BC=3,CD=AB=5,如图1,由折叠得AB=A B'=5,B'E=BE,∴224DB AB AD ''=-=,∴1B C '=,在Rt △B CE '中,222B E B C CE ''=+ ,∴2221(3)BE BE =+-,解得BE=53; 如图2,由折叠得AB=A B '=5,∵CD ∥AB , ∴∠BB C '=∠ABB ',∵BB C FBB ''∠=∠,∴ABB FBB ''∠=∠,∵AE 垂直平分BB ',∴BF=AB=5,∴224CF BF BC =-=,∵CF ∥AB ,∴△CEF ∽△ABE ,∴CF CE AB BE =, ∴435BE BE-=, ∴BE=15, 故答案为:53或15. 【点睛】此题考查矩形的性质,折叠的性质,勾股定理,相似三角形的判定及性质,根据折叠的要求正确画出符合题意的图形进行解答是解题的关键.三、解答题18.AG=1.【解析】【分析】由折叠的性质得∠BA′G=∠DA′G=∠A=90°,A′D=6,由勾股定理得BD=10,得出A′B=4,设AG=A′G=x,则GB=8-x,由勾股定理得出方程,解方程即可得出结果.【详解】∵矩形ABCD折叠后AD边落在BD上,∴∠BA′G=∠DA′G=∠A=90°,∵AB=8,AD=6,∴A′D=6,BD10,∴A′B=4,设AG=A′G=x,则GB=8-x,由勾股定理得:x2+42=(8-x)2,解得:x=1,∴AG=1.【点睛】本题主要考查折叠的性质、矩形的性质、勾股定理,熟练掌握折叠的性质、勾股定理是解题的关键.19.(1),b=1,;(2)能,+1.【解析】【分析】(1)根据非负数的性质列式求解即可;(2)根据三角形的任意两边之和大于第三边进行验证即可.【详解】解:(1)根据题意得,,b-1=0,=0,解得,b=1,;(2)能.∵>1,∴能组成三角形,三角形的周长+1.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,三角形的三边关系.20.(11;(3) ①理由详见解析;②13;(3) 3. 【解析】 试题分析:(1)根据两点之间,线段最短可知,点Q 在线段BD 上时BQ +DQ 的值最小,是BD 的长度,利用勾股定理即可求出;再根据△PDQ 是等腰直角三角形求出x 的值;(3) ①由对称可知AB=BQ=BC,因此∠BCQ=∠BQC.根据∠BQE=∠BCE=90°,可知∠EQC=∠ECQ,从而EQ=EC.再根据∠CQD=90°可得∠DQE+∠CQE=90°, ∠QCE+∠QDE=90°,而∠EQC=∠ECQ, 所以∠QDE=∠DQE ,从而EQ=ED.易得点E 是CD 的中点;②在Rt △PDE 中,PE= PQ+QE=x+12,PD=1﹣x ,PQ=x ,根据勾股定理即可求出x 的值.(3) △CDQ 为等腰三角形分两种情况:①CD 为腰,以点C 为圆心,以CD 的长为半径画弧,两弧交点即为使得△CDQ 为等腰三角形的Q 点; ②CD 为底边时,作CD 的垂直平分线,与AC 的交点即为△CDQ 为等腰三角形的Q 点,则共有 3个Q 点,那么也共有3个P 点,作辅助线,利用直角三角形的性质求之即得.试题解析:(1. (3)①证明:在正方形ABCD 中,AB=BC ,∠A=∠BCD=90°.∵Q 点为A 点关于BP 的对称点,∴AB=QB ,∠A=∠PQB=90°,∴QB=BC ,∠BQE=∠BCE ,∴∠BQC=∠BCQ ,∴∠EQC=∠EQB ﹣∠CQB=∠ECB ﹣∠QCB=∠ECQ ,∴EQ=EC .在Rt △QDC 中,∵∠QDE=90°﹣∠QCE ,∠DQE=90°﹣∠EQC ,∴∠QDE=∠DQE ,∴EQ=ED ,∴CE=EQ=ED ,即E 为CD 的中点.②∵AP=x ,AD=1,∴PD=1﹣x ,PQ=x ,CD=1.在Rt △DQC 中,∵E 为CD 的中点,∴DE=QE=CE=12,∴PE=PQ+QE=x+12, ∴()22211x+=1-x +22⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 解得 x=13.(3)△CDQ 为等腰三角形时x 的值为,3, 如图,以点B 为圆心,以AB 的长为半径画弧,以点C 为圆心,以CD 的长为半径画弧,两弧分别交于Q 1,Q 3.此时△CDQ 1,△CDQ 3都为以CD 为腰的等腰三角形.作CD 的垂直平分线交弧AC 于点Q 3,此时△CDQ 3以CD 为底的等腰三形.以下对此Q 1,Q 3,Q 3.分别讨论各自的P 点,并求AP 的值.讨论Q ₁:如图作辅助线,连接BQ 1、CQ 1,作PQ 1⊥BQ 1交AD 于P ,过点Q 1,作EF ⊥AD 于E ,交BC 于F .∵△BCQ 1为等边三角形,正方形ABCD 边长为1,∴12Q F =,122Q E =. 在四边形ABPQ 1中,∵∠ABQ 1=30°,∴∠APQ1=150°,∴△PEQ1为含30°的直角三角形,∴1=.∵AE=12,∴②讨论Q3,如图作辅助线,连接BQ3,AQ3,过点Q3作PG⊥BQ3,交AD于P,连接BP,过点Q3作EF⊥CD于E,交AB于F.∵EF垂直平分CD,∴EF垂直平分AB,∴AQ3=BQ3.∵AB=BQ3,∴△ABQ3为等边三角形.在四边形ABQP中,∵∠BAD=∠BQP=90°, ∠ABQ₂=60°,∴∠APE=130°∴∠EQ3G=∠DPG=180°-130°=60°,∴2Q E=,∴,∴,∴∴ ③对Q3,如图作辅助线,连接BQ 1,CQ 1,BQ 3,CQ 3,过点Q 3作BQ 3⊥PQ 3,交AD 的延长线于P ,连接BP ,过点Q 1,作EF ⊥AD 于E ,此时Q 3在EF 上,不妨记Q 3与F 重合.∵△BCQ 1为等边三角形,△BCQ 3为等边三角形,BC=1,∴12QQ =1Q E =,∴EF =. 在四边形ABQ 3P 中∵∠ABF=∠ABC+∠CBQ 3=150°,∴∠EPF=30°,∴32. ∵AE=12,∴+3.综上所述,△CDQ 为等腰三角形时x 的值为33, 考点:⒈四边形综合题; ⒉正方形的性质; ⒊等腰三角形的性质.21.(1)132;(2)图见解析,1 【解析】【分析】根据勾股定理、矩形的面积公式、三角形面积公式计算.【详解】解:(1)AB =1,BC ,AC ,△ABC 的面积为:4×4﹣12×3×4-12×1×4﹣12×3×1= 132, 故答案为:1; 17;10;132;(2)△ABC 的面积:7×2﹣12×3×1﹣ 12×4×2﹣ 12×7×1=1. 【点睛】 本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2. 22.6.【解析】【分析】先化简二次根式,再利用乘法分配律计算可得.【详解】原式=(32)3 =6.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.23. (1)1, 2, 1;(1)本次活动中读书多于1册的约有108名.【解析】【分析】(1)根据平均数,众数,中位数的定义解答即可;(1)根据样本的频数估计总体的频数.【详解】解:(1) 观察表格.可知这组样本救据的平均数是0311321631741250x ⨯+⨯+⨯+⨯+⨯== ∴这组样本数据的平均数为1.∵在这组样本数据中.2出现了17次,出现的次数最多,∴这组数据的众数为2.∵将这组样本数据按从小到大的顺序排列.其中处于中间的两个数都是1,∴这组数据的中位数为1.(1) 在50名学生中,读书多于1本的学生有I 8名.有1830010850⨯=. ∴根据样本数据,可以估计该校八年级200名学生在本次活动中读书多于1册的约有108名.【点睛】本题考查了平均数,众数,中位数的知识,掌握各知识点的概念是解题的关键.24.(1)方案一中通话费用关于时间的函数关系式为y=15+0.2x ,(x≥0);方案二中通话费用关于时间的函数关系式为y=0.3x ,(x≥0);(2)采用方案一电话计费方式比较合算.【解析】试题分析:(1)根据“方案一费用=月租+通话时间×每分钟通话费用,方案二的费用=通话时间×每分钟通话费用”可列出函数解析式;(2)根据(1)中函数解析式,分别计算出x=300时的函数值,即可得出答案.试题解析:(1)根据题意知,方案一中通话费用关于时间的函数关系式为y=15+0.2x ,(x≥0);方案二中通话费用关于时间的函数关系式为y=0.3x ,(x≥0).(2)当x=300时,方案一的费用y=15+0.2×300=75(元),方案二的费用y=0.3×300=90(元),∴采用方案一电话计费方式比较合算.点睛:本题主要考查一次函数的应用,根据方案中所描述的计费方式得出总费用的相等关系是解题的关键. 25.(1)17;(2)每辆车的年租金增加2千元时,年收益可达到176千元.【解析】【分析】(1)1.5-9=1.5,由题意得,当租金为1.5千元时有3辆没有租出,然后计算即可;(2)设每辆车的年租金增加x 千元时,直接根据收益=176千元作为等量关系列方程求解即可.【详解】解:(1)()2010.590.517--÷=(辆).(2)设每辆车的年租金增加x 千元,()()200.59176x x -÷+=整理得()()120x x +-=,11x ∴=-(舍),22x =.即每辆车的年租金增加2千元时,年收益可达到176千元.【点睛】本题考查了一元二次方程的应用,审清题意,找出合适的等量关系是解答本题的关键.。
二O 一九年山东省聊城市初中学生学业水平考试数 学 试 题一、选择题(本题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求) 1.的相反数是A. BC. D2.如图所示的几何体的左视图是3.如果分式11x x -+的值为0,那么x 的值为 A .﹣1 B .1 C .﹣1或1 D .1或04.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是A .96分,98分B .97分,98分C .98分,96分D .97分,96分5.下列计算正确的是A .66122a a a += B .25822232-÷⨯= C .223331()(2)2ab a b a b -⋅-= D .271120()a a a a ⋅-⋅=- 6.下列各式不成立的是 A= B= C5== D=7.若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为A .m ≤2B .m <2C .m ≥2D .m >28.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果∠A =70°,那么∠DOE 的度数为A .35°B .38°C .40°D .42°9.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为 A .0k ≥ B .0k ≥且2k ≠ C .32k ≥D .32k ≥且2k ≠ 10.某快递公司每天上午9:00~10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲,乙两仓库的快件数量y (件)与时间x (分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为A .9:15B .9:20C .9:25D .9:3011.如图,在等腰直角三角形ABC 中,∠BAC =90°,一个三角尺的直角顶点与BC 边的中点O 重合,且两条直角边分别经过点A 和点B ,将三角尺绕点O 按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB ,AC 分别交于点E ,F 时,下列结论中错误的是 A .AE +AF =AC B .∠BEO +∠OFC =180°C .OE +OF =2BC D .S 四边形AEOF =12S △ABC 12.如图,在Rt △ABO 中,∠OBA =90°,A(4,4),点C 在边AB 上,且AC CB =13,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为 A .(2,2) B .(52,52) C .(83,83) D .(3,3)二、填空题(本题共5个小题,每小题3分,共15分,只要求填写最后结果)13.计算:115()324--÷= .14.如图是一个圆锥的主视图,根据图中标出的数据(单位:cm ),计算这个圆锥侧面展开图圆心角的度数为 .15.在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分A ,B ,C ,D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是 . 16.如图,在Rt △ABC 中,∠ACB =90°,∠B =60°,DE 为△ABC 的中位线,延长BC 至F ,使CF =12BC ,连接FE 并延长交AB 于点M .若BC =a ,则△FMB 的周长为 . 17.数轴上O ,A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次眺动到AO 的中点A 1处,第2次从A 1点跳动到A 1O 的中点A 2处,第3次从A 2点跳动到A 2O 的中点A 3处.按照这样的规律继续跳动到点A 4,A 5,A 6,…,A n (n ≥3,n 是整数)处,那么线段A n A 的长度为 (n ≥3,n 是整数).三、解答题(本题共8个小题,共69分,解答题应写出文字说明,证明过程或推演步骤)18.(本题满分7分)计算:221631()3969a a a a a +-+÷+--+. 19.(本题满分8分)学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min )进行了抽样调查.并将抽查得到的数据分成5组,下面是未完成的频数、顿率分布表和频数分布扇形图.请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为 ,表中的a = ,b = ,c = ; (2)试计算第4组人数所对应的扇形圆心角的度数;(3)该校九年级其有1000名学生,请估计这些学生中每天课前预习时间不少于20min 的学生人数. 20.(本题满分8分)某商场的运动服装专柜,对A ,B 两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.(1)问A ,B 两种品牌运动服的进货单价各是多少元?(2)由于B 品牌运动服的销量明显好于A 品牌,商家决定采购B 品牌的件数比A 品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B 品牌运动服? 21.(本题满分8分)在菱形ABCD 中,点P 是BC 边上一点,连接AP ,点E ,F 是AP 上的两点,连接DE ,BF ,使得∠AED =∠ABC ,∠ABF =∠BPF .(1)求证:△ABF ≌△DAE ; (2)求证:DE =BF +EF .22.(本题满分8分)某数学兴趣小组要测量实验大楼部分楼体的高度(如图①所示,CD部分),在起点A处测得大楼部分楼体CD的顶端C点的仰角为45°,底端D点的仰角为30°,在同一剖面沿水平地面向前走20米到达B处,测得顶端C的仰角为63.4°(如图②所示),求大楼部分楼体CD的高度约为多少米?(精确到1米)(参考数据:sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00 1.41≈1.73)23.(本题满分8分)如图,点A(32,4),B(3,m)是直线AB与反比例函数(0)ny xx=>图象的两个交点,AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB的表达式;(2)△ABC和△ABD的面积分别为S1,S2,求S2﹣S1.24.(本题满分10分)如图,△ABC内接于⊙O,AB为直径,作OD⊥AB交AC于点D,延长BC,OD交于点F,过点C作⊙O的切线CE,交OF于点E.(1)求证:EC=ED;(2)如果OA=4,EF=3,求弦AC的长.25.(本题满分12分)如图,在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于点A(﹣2,0).点B(4,0),与y 轴交于点C(0,8),连接BC ,又已知位于y 轴右侧且垂直于x 轴的动直线l ,沿x 轴正方向从O 运动到B (不含O 点和B 点),且分别交抛物线,线段BC 以及x 轴于点P ,D ,E .(1)求抛物线的表达式;(2)连接AC ,AP ,当直线l 运动时,求使得△PEA 和△AOC 相似的点P 的坐标; (3)作PF ⊥BC ,垂足为F ,当直线l 运动时,求Rt △PFD 面积的最大值.。