新课标2016年高一物理暑假作业1 Word版含解析
- 格式:doc
- 大小:150.79 KB
- 文档页数:8
高一物理暑假作业答案(参考)高一物理暑假作业答案(参考)暑假来咯,同时也要做一下暑假的作业!心无旁骛,全力以赴,争分夺秒,顽强拼搏脚踏实地,不骄不躁,长风破浪,直济沧海,我们,注定成功!下面小编给大家整理了关于高一物理暑假作业答案内容,欢迎阅读,内容仅供参考!高一物理暑假作业答案一、选择题(本题共6道小题)1.汽车以额定功率在平直公路上匀速行驶,在t1时刻突然使汽车的功率减小一半,并保持该功率继续行驶,到t2时刻汽车又开始做匀速直线运动(设汽车所受阻力不变),则在t1~t2时间内()A.汽车的加速度保持不变B.汽车的加速度逐渐减小C.汽车的速度先减小后增大D.汽车的速度先增大后减小2.如图,在外力作用下某质点运动的速度v﹣时间t图象为正弦曲线,由图可判断()A.在0~t1时间内,外力在增大B.在t1~t2时间内,外力的功率先增大后减小C.在t2~t3时刻,外力在做负功D.在t1~t3时间内,外力做的总功为零3.物体在水平恒力F的作用下,在光滑的水平面上由静止前进了路程S,再进入一个粗糙水平面,又继续前进了路程S。
设力F在第一段路程中对物体做功为W1,在第二段路程中对物体做功为W2,则()A、W1>W2B、W14.将质量为m的小球置于半径为l的固定光滑圆槽与圆心等高的一端无初速度释放,小球在竖直平面内做圆周运动,若小球在最低点的势能取做零,则小球运动过程中第一次动能和重力势能相等时重力的瞬时功率为()A.mgB.mgC.mgD.mg5.如图所示,质量为m的物体置于倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,在外力作用下,斜面以加速度a沿水平方向向左做匀加速运动,运动中物体m与斜面体相对静止.则关于斜面对m的支持力和摩擦力的下列说法中错误的是()A.支持力一定做正功B.摩擦力一定做正功C.摩擦力可能不做功D.摩擦力可能做负功6..如图所示为汽车在水平路面上启动过程中的v-t图象,Oa为过原点的倾斜直线,ab段表示以额定功率行驶时的加速阶段,bc段是与ab段相切的直线,下述说法正确的是()A.0~t1时间内汽车以恒定功率做匀加速运动B.t1~t2时间内的平均速度为C.t1~t2时间内汽车牵引力做功等于mv-mvD.在全过程中t1时刻的牵引力及其功率都是值,t2~t3时间内牵引力最小二、实验题(本题共2道小题)7.某同学在实验室用如图所示的装置来研究有关做功的问题。
高一物理暑假作业及答案自己整理的高一物理暑假作业及答案相关文档,希望能对大家有所帮助,谢谢阅读!1.以下说法是正确的()A.书放在桌面上,书支撑的直接原因是书变形了B.当书放在桌面上时,支撑书的直接原因是桌面的变形C.对于形状规则的物体,重心必须在物体的几何中心。
D.由于垂直向上的升力而垂直上升的垂直向上投掷的物体2.2008年9月25日晚21时10分,中国在酒泉卫星发射中心成功将自行研制的神舟七号飞船送入太空。
宇宙飞船绕地球飞行了90分钟。
()A.“21: 10”和“90分钟”前者表示“时间”,后者也表示“时间”B.飞船绕地球飞行一周,其位移和距离都为零C.宇宙飞船绕地球飞行的平均速度是0,但它每一刻的瞬时速度不是0D.地面卫星控制中心在调整航天器的飞行姿态时,可以将航天器视为一个质点3.以下说法是正确的()A.当拳击手出拳时,他不打对手。
这时,只有施力物体,没有施力物B.力不能脱离受力物体,但可能没有受力物体。
C.只有相互接触的物体才会产生强烈的效果D.力必须与两个物体相联系,其中任何一个物体既是受力物体又是受力物体4.沿直线运动的质点的位移与时间的关系是x=5t t2(所有物理量均以国际单位表示),那么质点()A.前1秒的位移是5mB.前2秒的平均速度为5米/秒C.任何相邻1的位移差为1mD。
任意1s内速度增量为2m/S。
5.一个质点匀速直线运动,初速度10m/s,终速度15m/s,运动位移25m。
质点运动的加速度和时间分别为()a . 2.5m/s22sb . 2m/s 22.5 sc . 2m/s 22 SD . 2.5m/s22.5s6.如图所示,两个相同的弹簧S1和S2的刚度系数均为4 102牛顿/米,悬挂重量分别为M1=2公斤和M2=4公斤。
如果不考虑弹簧质量,G取10m/s2,s 1和s2弹簧在平衡状态下的伸长为()a . 5厘米、10厘米b . 10厘米、5厘米15厘米、10厘米、10厘米、15厘米第1页(共4页)7.物体从斜面上的某一点开始做匀速直线加速运动,3s后到达斜面底部,在水平地面上做匀速直线减速运动,9s后停止,则物体在斜面上的位移与在水平面上的位移之比为()A.13B.12C.11D.318.汽车从静止开始,作匀速直线加速运动。
高一物理暑假生活作业【一】一、选择题.1.关于运动的合成与分解的说法中,正确的是()A.合运动的位移为分运动的位移矢量和B.合运动的速度一定比其中的一个分速度大C.合运动的时间为分运动时间之和D.合运动的位移一定比分运动位移大2.关于地球同步卫星,下列说法正确的是()A.它可以定位在夷陵中学的正上空B.地球同步卫星的角速度虽被确定,但高度和线速度可以选择,高度增加,线速度减小,高度降低,线速度增大C.它运行的线速度一定小于第一宇宙速度D.它运行的线速度一定介于第一宇宙速度和第二宇宙速度之间3.(单选)物体做平抛运动时,描述物体在竖直方向的分速度υy (取向下为正)随时间变化的图线是图中的()A.B.C.D.4.一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定,有质量相同的小球A和B沿着筒的内壁在水平面内做匀速圆周运动,如图所示,A的运动半径较大,则()A.球A的角速度必大于球B的角速度B.球A的线速度必大于球B的线速度C.球A的运动周期必大于球B的运动周期D.球A对筒壁的压力必大于球B对筒壁的压力5.设行星绕恒星的运动轨道是圆,则其运行轨道半径r的三次方与其运行周期T的平方之比为常数,即=k,那么k的大小()A.只与行星的质量有关B.只与恒星的质量有关C.与恒星和行星的质量都有关D.与恒星的质量及行星的速率都无关6.(单选)质量为1kg的铅球从离地高18m处无初速度释放,经2s到达地面.在这个过程中重力和空气阻力对铅球做的功分别是(g 取10m/s2)()A.18J、2JB.180J、﹣18JC.180J、0D.200J、07.(单选)细绳一端固定在天花板上,另一端拴一质量为m的小球,如图所示.使小球在竖直平面内摆动,经过一段时间后,小球停止摆动.下列说法中正确的是()A.小球机械能守恒B.小球能量正在消失C.小球摆动过程中,只有动能和重力势能在相互转化D.总能量守恒,但小球的机械能减少8.(多选)跳伞运动员在刚跳离飞机、其降落伞尚未打开的一段时间内,下列说法中正确的是()A.重力做正功B.重力势能增加C.动能增加D.空气阻力做负功二.实验题.9.某实验小组利用拉力传感器和速度传感器探究功和动能变化的关系,如图所示,他们将拉力传感器固定在小车上,用不可伸长的细线将其通过一个定滑轮与钩码相连,用拉力传感器记录小车受到拉力的大小.在水平桌面上相距50.0cm的A、B两点各安装一个速度传感器,记录小车通过A、B时的速度大小.(小车中可以放置砝码.)(1)实验中木板略微倾斜,这样做目的是.A.是为了使释放小车后,小车能匀加速下滑B.是为了增大小车下滑的加速度C.可使得细线拉力等于砝码的重力D.可使得小车在未施加拉力时做匀速直线运动(2)实验主要步骤如下:①测量和拉力传感器的总质量M1;把细线的一端固定在拉力传感器上,另一端通过定滑轮与钩码相连;正确连接所需电路.②将小车停在C点,接通电源,,小车在细线拉动下运动,记录细线拉力及小车通过A、B时的速度.③在小车中增加砝码,或增加钩码个数,重复②的操作.(3)下表是他们测得的一组数据,其中M1是传感器与小车及小车中砝码质量之和,(v22﹣V12)是两个速度传感器记录速度的平方差,可以据此计算出动能变化量△E,F是拉力传感器受到的拉力,W 是拉力F在A、B间所做的功.表格中△E3=_____,W3=_____(结果保留三位有效数字).次数M1/kg|v﹣v|/(m/s)2△E/JF/NW/J10.5000.7600.1900.4000.20020.5001.650.4130.8400.42030.5002.40△E31.220W341.0002.401.202.4201.2151.0002.841.422.8601.43三、解答题.10.一辆汽车匀速率通过一座圆弧形拱桥后,接着又以相同速率通过一圆弧形凹形桥.设两圆弧半径相等,汽车通过拱桥桥顶时,对桥面的压力F1为车重的一半,汽车通过圆弧形凹形桥的最低点时,对桥面的压力为F2,求F1与F2之比.11.地球的两颗人造卫星质量之比m1:m2=1:2,圆周轨道半径之比r1:r2=1:2.求:(1)线速度之比;(2)角速度之比;(3)运行周期之比;(4)向心力之比.12.如图所示,让质量m=5.0kg的摆球由图中所示位置A从静止开始下摆,摆至最低点B点时恰好绳被拉断.已知摆线长L=1.6m,悬点O与地面的距离OC=4.0m.若空气阻力不计,摆线被拉断瞬间小球的机械能无损失.求:(1)摆线所能承受的拉力T;(2)摆球落地时的动能.新课标2016年高一物理暑假作业10参考答案1.A【考点】运动的合成和分解.【分析】位移、速度、加速度都是矢量,合成分解遵循平行四边形定则.合运动与分运动具有等时性.【解答】解:A、位移是矢量,合成遵循平行四边形定则,合运动的位移为分运动位移的矢量和.故A正确,D错误;B、根据平行四边形定则,知合速度可能比分速度大,可能比分速度小,可能与分速度相等故B错误;C、合运动与分运动具有等时性,合运动的时间等于分运动的时间.故C错误;故选:A.2.C【考点】同步卫星.【分析】物体做匀速圆周运动,它所受的合力提供向心力,也就是合力要指向轨道平面的中心.第一宇宙速度是近地卫星的环绕速度,也是的圆周运动的环绕速度.【解答】解:A、它若在除赤道所在平面外的任意点,假设实现了“同步”,那它的运动轨道所在平面与受到地球的引力就不在一个平面上,这是不可能的,因此同步卫星相对地面静止不动,同步通讯卫星只能定点在赤道的上空.故A错误;B、根据万有引力提供向心力,列出等式:,其中R为地球半径,h为同步卫星离地面的高度.由于同步卫星的周期必须与地球自转周期相同,所以T为一定值,根据上面等式得出:同步卫星离地面的高度h也为一定值.由于轨道半径一定,则线速度的大小也一定.故B 错误;C、D、同步卫星相对地球静止,低轨卫星相对地球是运动的,根据得,,第一宇宙速度的轨道半径等于地球的半径,所以低轨卫星的线速度小于第一宇宙速度,故C正确,D错误.故选:C.3.考点:平抛运动.版权所有专题:平抛运动专题.分析:物体做平抛运动时,只受重力,所以在竖直方向做自由落体运动,根据匀变速直线运动速度﹣时间关系即可求解.解答:解:物体做平抛运动时,在竖直方向做自由落体运动,故其竖直方向速度﹣时间图象为一条通过原点的倾斜直线.故选D.点评:本题考查了平抛运动的特点,在水平方向做匀速直线运动,在竖直方向做自由落体运动.4.B【考点】向心力;线速度、角速度和周期、转速.【分析】对小球受力分析,受重力和支持力,合力提供向心力,根据牛顿第二定律列式求解即可.【解答】解:对于任意一个小球,受力如图:将FN沿水平和竖直方向分解得:FNcosθ=ma…①,FNsinθ=mg…②.所以有:FN=,因此质量大的对筒壁压力大,由于A、B两球的质量相等,两球受到的支持力相等,则小球对筒壁压力大小相等,故D错误;由①:②可得:gcotθ=a,可知两球的向心加速度大小相等.又a==ω2r=所以半径大的线速度大,角速度小,周期大,与质量无关,故B 正确,AC错误.故选:B5.B【考点】开普勒定律.【分析】开普勒第三定律中的公式即=k,可知半长轴的三次方与公转周期的二次方成正比【解答】解:A、式中的k只与恒星的质量有关,与行星质量无关,故A错误;B、式中的k只与恒星的质量有关,故B正确;C、式中的k只与恒星的质量有关,与行星质量无关,故C错误;D、式中的k只与恒星的质量有关,与行星速率无关,故D错误;故选:B6.考点:功的计算.专题:功的计算专题.分析:重力做功只与初末位置有关,与运动过程无关,即可求得重力做的功,根据运动学基本公式求出加速度,再根据牛顿第二定律求出阻力,根据恒力做功公式求出阻力做功.解答:解:重力做的功为:W=mgh=1×10×18J=180J,根据得:a=,根据牛顿第二定律得:mg﹣f=ma解得:f=1N则空气阻力做铅球做的功Wf=﹣fh=﹣18J,故B正确,ACD错误.故选:B7.考点:机械能守恒定律;功能关系.专题:机械能守恒定律应用专题.分析:小球长时间摆动过程中,重力势能和动能相互转化的同时,不断地转化为机械能,故摆动的幅度越来越小,最后停下.解答:解:A、小球在竖直平面内摆动,经过一段时间后,小球停止摆动,说明机械能通过克服阻力做功不断地转化为内能,即机械能不守恒,故A错误;B、小球的机械能转化为内能,能量的种类变了,但能量不会消失,故B错误;C、D、小球长时间摆动过程中,重力势能和动能相互转化的同时,不断地转化为机械能,故摆动的幅度越来越小,故C错误,D正确;故选D.8.考点:功能关系.分析:(1)运动员下降时,受到空气阻力作用,阻力向上,运动员向下,阻力对运动员做负功.(2)判断运动员重力势能大小的变化,从重力势能大小的影响因素进行考虑:重力势能大小的影响因素:质量、被举得高度.质量越大,高度越高,重力势能越大.(3)判断运动员动能大小的变化,从动能大小的影响因素进行考虑:动能大小的影响因素:质量、速度.质量越大,速度越大,动能越大.(4)运动员下降时,和空气之间存在摩擦阻力,克服摩擦做功,机械能转化为内能,机械能减小,内能增加.解答:解:A、运动员下降时,质量不变,高度不断减小,重力做正功.故A正确.B、运动员下降时,质量不变,高度不断减小,重力势能不断减小.故B错误.C、运动员下降时,质量不变,速度不断增大,动能不断增大.故C正确.D、运动员下降时,受到空气阻力作用,阻力向上,运动员向下,阻力对运动员做负功.故D正确;故选:ACD.9.考点:探究功与速度变化的关系.专题:实验题;动能定理的应用专题.分析:小车在钩码的作用下拖动纸带在水平面上做加速运动,通过速度传感器可算出AB两点的速度大小,同时利用拉力传感器测量出拉小车的力,从而由AB长度可求出合力做的功与小车的动能变化关系.解答:解:(1)为了使绳子拉力充当合力,即细线拉力做的功等于合力对小车做的功应先平衡摩擦力,摩擦力平衡掉的检测标准即:可使得小车在未施加拉力时做匀速直线运动,故CD正确;故选:CD;(2)①因为要计算总动能,所以要测量小车和砝码以及拉力传感器的总质量;②接通电源后要释放小车;(3)由各组数据可见规律△E=M(V22﹣V12)可得△E3=0.600J观察F﹣W数据规律可得数值上W3==0.610J故答案为:(1)CD;(2)小车、砝码;静止释放小车;(3)0.600;0.610.点评:值得注意的是:钩码的重力不等于细线的拉力,同时学会分析实验数据从而得出规律.10.F1与F2之比为1:3.【考点】向心力;牛顿第二定律.【分析】汽车在拱形桥的顶端和在凹地的最低点靠竖直方向上的合力提供向心力,根据牛顿第二定律得出压力大小之比.【解答】解:汽车通过桥顶A时,mg﹣F1=在圆弧形凹地最低点时F2﹣mg=,2F1=mg则F2﹣mg=mg﹣F1,F2=2mg﹣F1=4F1﹣F1=3F1,所以F1:F2=1:3答:F1与F2之比为1:3.11.见解析【考点】万有引力定律及其应用;人造卫星的加速度、周期和轨道的关系.【分析】(1)根据万有引力充当向心力,产生的效果公式可得出线速度和轨道半径的关系,可得结果;(2)根据圆周运动规律可得线速度和角速度以及半径的关系,直接利用上一小题的结论,简化过程;(3)根据圆周运动规律可得运行周期和角速度之间的关系,直接利用上一小题的结论,简化过程;(4)根据万有引力充当向心力可得向心力和质量以及半径的关系.【解答】解:设地球的质量为M,两颗人造卫星的线速度分别为V1、V2,角速度分别为ω1、ω2,运行周期分别为T1、T2,向心力分别为F1、F2;(1)根据万有引力和圆周运动规律得∴故二者线速度之比为.(2)根据圆周运动规律v=ωr得∴故二者角速度之比为.(3)根据圆周运动规律∴故二者运行周期之比为.(4)根据万有引力充当向心力公式∴故二者向心力之比为2:1.12.考点:动能定理的应用;牛顿第二定律;机械能守恒定律.版权所有专题:动能定理的应用专题.分析:(1)由动能定理可以求出摆球由A运动到B时的速度;摆球做圆周运动,在B由牛顿第二定律列方程,可以求出摆线所承受的拉力.(2)摆线断裂后,摆球做平抛运动,只有重力做功,由动能定理可以求出摆球落地时的动能.解答:解:(1)设摆球运动到最低点时的速度为v,以摆球为研究对象,从A到B的过程中,由动能定理得:mgL(1﹣cos60°)=mv2﹣0,摆球做圆周运动,在B点,由牛顿第二定律得:T﹣mg=m,解得:T=100N,v=4m/s;(2)从绳子断裂到摆球落地过程中,由动能定律得:mg(OC﹣L)=Ek﹣mv2,解得:Ek=160J;答:(1)摆线所能承受的拉力为100N.(2)摆球落地时的动能为160J.点评:对物体正确受力分析,明确物体运动过程,应用动能定理即可正确解题.【二】1.一物体做变速直线运动,某时刻速度的大小为5m/s,1s后速度的大小变为10m/s.在这1s内该物体的( )A.速度变化的大小可能小于5m/sB.速度变化的大小可能大于12m/sC.加速度的大小可能小于5m/s2D.加速度的大小可能大于13m/s2 2.甲、乙两车沿平直的公路通过同样的位移,甲车在前半段位移内以v甲1=40km/h的速度运动,在后半段位移内以v甲2=60km/h 的速度运动;乙车在前半段时间内以v乙1=40km/h的速度运动,后半段时间内以v乙2=60km/h的速度运动.则甲、乙两车在整个位移中的平均速度大小的关系是( )A.B.C.D.无法确定3.某质点以20m/s的初速度竖直向上运动,其加速保持不变,经2s到达点,上升高度为20m,又经过2s回到出发点时,速度大小仍为20m/s,关于这一运动过程的下列说法中正确的是( ) A.质点运动的加速度大小为10m/s2,方向竖直向下B.质点在这段时间内的平均速度大小为10m/sC.质点在点时加速度为零D.质点在落回抛出点时的速度与开始离开抛出点时的速度相同4.一个物体做变加速直线运动,依次经过A、B、C三点,B为AC的中点,物体在AB段的加速度恒为a1,在BC段的加速度恒为a2,已知物体经过A、B、C三点的速度为vA、vB、vC,有vAA.a1a2D.条件不足无法确定5.小石子从离地某一高度处由静止自由落下,某摄影爱好者恰好拍到了它下落的一段轨迹AB.该爱好者用直尺量出轨迹的长度,如图所示,已知曝光时间为11000s,则小石子出发点离A点的距离约为( )A.6.5mB.10mC.20mD.45m6.如图所示,小球沿足够长的斜面向上做匀变速运动,依次经a、b、c、d到达点e.已知ab=bd=6m,bc=1m,小球从a到c和从c 到d所用的时间都是2s,设小球经b、c时的速度分别为vb、vc,则( )A.vb=m/sB.vc=3m/sC.de=3mD.从d到e所用时间为4s7.做匀加速直线运动的物体,先后经过A、B两点时的速度分别为v和7v,经历的时间为t,则( )A.前半程速度增加3.5vB.前t2时间内通过的位移为11vt4C.后t2时间内通过的位移为11vt4D.后半程速度增加2v8.物体在一条直线上运动,依次经过A、C、B三个位置,在AC 段做加速度大小为a1的匀加速运动、CB段做加速度大小为a2的匀加速运动,且从A到C和从C到B的时间相等,物体经过A、B两点时的速度分别为vA和vB,经过C时的速度为vC=,则a1和a2的大小关系为( )A.a1a2D.条件不足无法确定9.磕头虫是一种不用足跳但又善于跳高的小甲虫.当它腹朝天、背朝地躺在地面时,将头用力向后仰,拱起体背,在身下形成一个三角形空区,然后猛然收缩体内背纵肌,使重心迅速向下加速,背部猛烈撞击地面,地面反作用力便将其弹向空中.弹射录像显示,磕头虫拱背后重心向下加速(视为匀加速)的距离大约为0.8mm,弹射高度为24cm.而人原地起跳方式是,先屈腿下蹲,然后突然蹬地向上加速,假设加速度与磕头虫加速过程的加速度大小相等,如果加速过程(视为匀加速)重心上升高度为0.5m,那么人离地后重心上升的高度可达(空气阻力不计,设磕头虫撞击地面和弹起的速率相等)( ) A.150mB.75mC.15mD.7.5m10.李凯同学是学校的升旗手,他每次升旗都做到了在庄严的国歌响起时开始升旗,当国歌结束时恰好五星红旗升到了高高的旗杆顶端.已知国歌从响起到结束的时间是48s,旗杆高度是19m,红旗从离地面1.4m处开始升起.若设李凯同学升旗时先拉动绳子使红旗向上匀加速运动,时间持续4s,然后使红旗做匀速运动,最后使红旗做匀减速运动,加速度大小与开始升起时的加速度大小相同,红旗到达旗杆顶端时的速度恰好为零.试计算李凯同学升旗时使红旗向上做匀加速运动加速度的大小和红旗匀速运动的速度大小.。
第十六天圆周运动中的运动学问题1.下列关于匀速圆周运动的说法中,正确的是() A.线速度不变B.角速度改变C.加速度为零D.周期不变2.质点做匀速圆周运动,下列说法中不正确...的是() A.在任何相等的时间里,质点的位移大小都相同B.在任何相等的时间里,质点通过的路程都相等C.在任何相等的时间里,连接质点和圆心的半径转过的角度都相等D.在任何相等的时间里,质点运动的平均速度都相同3.汽车在公路上行驶一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长,某国产轿车的车轮半径约为30 cm,当该型号轿车在高速公路上行驶时,驾驶员面前的速率计的指针指在“120 km/h”上,可估算出该车车轮的转速约为()A.1 000 r/s B.1 000 r/min C.1 000 r/h D.2 000 r/s 4.甲、乙两质点均做匀速圆周运动,甲的质量与运动半径分别是乙的一半,当甲转动80转时,乙正好转过60转,则甲与乙所受的向心力大小之比为()A.1∶4B.4∶1 C.4∶9D.9∶45.如图所示,B和C是一组塔轮,即B和C半径不同,但固定在同一转动轴上,其半径之比为R B∶R C=3∶2,A轮的半径大小与C轮相同,它与B轮紧靠在一起,当A轮绕过其中心的竖直轴转动时,由于摩擦作用,B轮也随之无滑动地转动起来.a、b、c分别为三轮边缘的三个点,则a、b、c三点在运动过程中的()A.线速度大小之比为3∶2∶2B.角速度之比为3∶3∶2C.转速之比为2∶3∶2D.向心加速度大小之比为9∶6∶46.正常走动的钟表,其时针和分针都在做匀速成转动,下列关系中正确的有()A.时针和分针角速度相同B.分针角速度是时针角速度的12倍C.时针和分针的周期相同D.分针的周期是时针周期的12倍7.A、B两物体都做匀速圆周运动,A的质量是B质量的一半,A的轨道半径是B轨道半径的一半,当A转过60︒角的时间内,B转过45︒角,则A物体的向心力与B物体的向心力之比为()A 1:4B 2:3C 4:9D 9:168.如图所示是一个玩具陀螺。
【推荐】高一物理暑假作业答案-word范文
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
高一物理暑假作业答案
一、单项选择题:(每小题只有一个选项符合题意.本大题5小题,每小题3分,共15分)。
1、 C
2、 B
3、 A
4、 D
5、D
二、多项选择题:(本大题共4小题,每小题4分,共16分。
在每小题给出的四个选项中、有多个选项是符合题目要求,全选对的得4分,选不全得2分,有错选或不选的得0分。
)
6、 AC
7、 AD
8、 BD
9、 ABD
三、填空题:把答案填在答题卡相应的横线上(本大题2小题,其中10小题6分,11小题12分,共18分)
10、每空2分
220 交流 0.02
11、(1) 每空1分,小计4分
位置 B C D E
v(ms-1) 0.7675 0.8760 0.9850 1.094
(2) 图像近似为一条直线 -----4分
(3) 1.07~1.11m/s2--------------- 4分
四、计算或论述题:(本大题3小题,其中12小题18分,13小题18分,14小题15分,共51分)。
12、每小问题6分
(1)5 m/s (2) 10.5 m (3) 3.5m/s
13、每小问题6分。
高一物理暑假作业试题及答案解析(20份)高一暑假作业1请阅读下列材料,回答1-3小题.2016年,中国空间站建设捷报频传。
9月15日在酒泉卫星发射中心成功发射“天宫二号”空间实验室.天宫二号发射后,成功进入高度约380公里的轨道运行,在神舟十一号载人飞船发射前,天宫二号将调整轨道至高度393公里的对接轨道,做好与神舟十一号载人飞船交会对接的准备.10月17日,搭载着航天员景海鹏、陈冬的神舟十一号载人飞船成功发射.并完成与天宫二号的自动交会对接,形成组合体,航天员进驻天宫二号,组合体在轨飞行33天,期间,2名航天员按计划开展了一系列科学实验.11月17日,神舟十一号飞船与天宫二号空间实验室成功实施分离,航天员景海鹏、陈冬踏上返回之旅.11月8日,神舟十一号返回舱顺利着陆.1.下列各种情况中,可将神州十一号飞船视为质点的是()A. 调整神州十一号飞船的飞行姿势B. 研究神州十一号飞船绕地球的运行轨道C. 研究神州十一号飞船与天宫二号对接的过程D. 观测宇航员在飞船内的实验活动2.组合体在轨飞行期间,2名航天员在天宫二号内工作和生活,该过程中航天员( )A. 一直处于失重状态B. 一直处于超重状态C. 不受重力作用D. 处于超重还是失重状态由航天员工作状态决定3.如图所示是“神舟十一号”航天飞船返回舱返回地面的示意图。
假定其过程可简化为:打开降落伞后,整个装置匀速下降,一段时间后,为确保安全着陆,点燃返回舱的缓冲火箭,返回舱做匀减速直线运动,则能反映其运动过程的v-t图象是( )A. B. C. D.4.为了安全,在行驶途中,车与车之间必须保持一定的距离.因为,从驾驶员看见某一情况到采取制动动作的时间里,汽车仍然要通过一段距离(称为反应距离);而从采取制动动作到车完全停止的时间里,汽车又要通过一段距离(称为制动距离)。
下表给出了汽车在不同速度下的反应距离和制动距离等部分数据。
请分析这些数据,表格未给出的数据X、Y应是:()A. X = 45,Y = 48B. X = 45,Y = 40C. X = 50,Y = 48D. X = 50,Y = 405.有四个运动的物体A、B、C、D,物体A、B运动的x-t图象如图甲所示,物体C、D 从同一地点沿同一方向运动的v-t图象如图乙所示.根据图象做出以下判断正确的是( )A. t=3 s时,物体C追上物体DB. t=3 s时,物体C与D间距离最大C. 在0~3 s时间内,物体B运动的位移为5 mD. 物体A和B均做匀加速直线运动且A的速度比B的大6.甲、乙两车在同一水平路面上的两平行车道做直线运动,某时刻乙车在前、甲车在后,相距6m,从此刻开始计时,两车运动的v-t图象如图所示。
第一天 匀变速直线运动的规律1.一物体做变速直线运动,某时刻速度的大小为5 m/s ,1 s 后速度的大小变成10 m/s.在这1 s 内该物体的( )A .速度转变的大小可能小于5 m/sB .速度转变的大小可能大于12 m/sC .加速度的大小可能小于5 m/s 2D .加速度的大小可能大于13 m/s 22.甲、乙两车沿平直的公路通过一样的位移,甲车在前半段位移内以v 甲1=40 km/h 的速度运动,在后半段位移内以v 甲2=60 km/h 的速度运动;乙车在前半段时刻内以v 乙1=40 km/h 的速度运动,后半段时刻内以v 乙2=60 km/h 的速度运动.则甲、乙两车在整个位移中的平均速度大小的关系是( )A.v v =甲乙B.v v >甲乙C.v v <甲乙D .无法确信3.某质点以20 m/s 的初速度竖直向上运动,其加速维持不变,经2 s 抵达最高点,上升高度为20 m ,又通过2 s 回到起点时,速度大小仍为20 m/s ,关于这一运动进程的下列说法中正确的是 ( ) A .质点运动的加速度大小为10 m/s 2,方向竖直向下 B .质点在这段时刻内的平均速度大小为10 m/s C .质点在最高点时加速度为零D .质点在落回抛出点时的速度与开始离开抛出点时的速度相同4.一个物体做变加速直线运动,依次通过A 、B 、C 三点,B 为AC 的中点,物体在AB 段的加速度恒为a 1,在BC 段的加速度恒为a 2,已知物体通过A 、B 、C 三点的速度为v A 、v B 、v C ,有v A <v C ,且v B =v A +v C2,则加速度a 1和a 2的大小为( )A .a 1<a 2B .a 1=a 2C .a 1>a 2D .条件不足无法确信5.小石子从离地某一高度处由静止自由落下,某摄影爱好者恰好拍 到了它下落的一段轨迹AB .该爱好者用直尺量出轨迹的长度,如图所示,已知曝光时刻为11 000 s ,则小石子起点离A 点的距离约为( ) A .6.5 m B .10 m C .20 mD .45 m6.如图所示,小球沿足够长的斜面向上做匀变速运动,依次经a 、b 、c 、d 抵达最高点e .已知ab =bd =6 m ,bc =1 m ,小球从a 到c 和从c 到d 所用的时刻都是2 s ,设小球经b 、c 时的速度别离为v b 、v c ,则( )A .v b m/sB .v c =3 m/sC .de =3 mD .从d 到e 所历时刻为4 s7.做匀加速直线运动的物体,前后通过A 、B 两点时的速度别离为v 和7v ,经历的时刻为t ,则( )A .前半程速度增加B .前t2时刻内通过的位移为11vt4C .后t 2时刻内通过的位移为11vt4D .后半程速度增加2v8.物体在一条直线上运动,依次通过A 、C 、B 三个位置,在AC 段做加速度大小为a 1的匀加速运动、CB 段做加速度大小为a 2的匀加速运动,且从A 到C 和从C 到B 的时刻相等,物体通过A 、B 两点时的速度别离为v A 和v B ,通过C 时的速度为v C a 1和a 2的大小关系为( )A .a 1<a 2B .a 1=a 2C .a 1>a 2D .条件不足无法确信9.磕头虫是一种不用足跳但又擅长跳高的小甲虫.当它腹朝天、背朝地躺在地面时,将头使劲向后仰,拱起体背,在身下形成一个三角形空区,然后猛然收缩体内背纵肌,使重心迅速向下加速,背部猛烈撞击地面,地面反作使劲便将其弹向空中.弹射录像显示,磕头虫拱背后重心向下加速(视为匀加速)的距离大约为0.8 mm ,弹射最大高度为24 cm.而人原地起跳方式是,先屈腿下蹲,然后突然蹬地向上加速,假设加速度与磕头虫加速进程的加速度大小相等,若是加速进程(视为匀加速)重心上升高度为0.5 m ,那么人离地后重心上升的最大高度可达(空气阻力不计,设磕头虫撞击地面和弹起的速度相等)( ) A .150 mB .75 mC .15 mD .7.5 m10.李凯同窗是学校的升旗手,他每次升旗都做到了在庄重的国歌响起时开始升旗,当国歌终止时恰好五星红旗升到了高高的旗杆顶端.已知国歌从响起到终止的时刻是48 s ,旗杆高度是19 m ,红旗从离地面1.4 m 处开始升起.若设李凯同窗升旗时先拉动绳索使红旗向上匀加速运动,时刻持续4 s ,然后使红旗做匀速运动,最后使红旗做匀减速运动,加速度大小与开始升起时的加速度大小相同,红旗抵达旗杆顶端时的速度恰好为零.试计算李凯同窗升旗时使红旗向上做匀加速运动加速度的大小和红旗匀速运动的速度大小.第1天1.BD 2.C 3.A 4.A 5.C 6.ABD 7.CD 8.C 9.A 10.0.1 m/s20.4 m/s。
高一物理学科暑假作业(一)答案第一章:匀变速直线运动(卷一)答案二、选择题:1、 A2、 B3、 B4、 C5、 D6、 C7、 B8、B9、 B 10、 B 三、实验题:11、 0.1 ,0.3 12、1.92 m/s 2, 0.768 m/s 四、计算题:13、(1)运动员打开伞后做匀减速运动,由v 22- v 12=2as 2可求得运动员打开伞时的速度为v 1=60 m/s , 运动员自由下落距离为s 1=v 12/2g=180 m , 运动员离开飞机时距地面高度为s=s 1+s 2= 305 m. (2)自由落体运动的时间为t 1 = 6 s ,打开伞后运动的时间为t 2=3.85 s , 离开飞机后运动的时间为t=t 1+t 2=9.85 s14、解:设至少经过时间t 追上,则2000352)10(+=+-t t v t v mm (8分) 代入数据解得 t =150s (2分)高一物理学科暑假作业(二)答案第一章:匀变速直线运动(卷二)答案二、选择题:1、BC2、C3、C4、BD5、C6、C7、B8、C三、实验题:9、1.18 m/s ; 1.50 m/s 2。
10、0.877m/s 3.51m/s 2四、计算题:11、方法一:可将物体的运动过程视为匀变速直线运动。
根据题意画出运动草图如图1-3所示。
规定向下方向为正,则V 0=-10m/sg=10m/s 2据h =v 0t+∴物体刚掉下时离地1275m 。
方法二:如图1-3将物体的运动过程分为A→B→C 和C→D 两段来处理。
A→B→C 为竖直上抛运动,C→D 为竖直下抛运动。
在A→B→C 段,据竖直上抛规律可知此阶段运动时间为由题意知t CD =17-2=15(s )=1275(m )12、解析:设甲车刹车后经时间t ,甲、乙两车速度相等,则:v 0-a 1t =v 0-a 2(t -Δt),代入数据得:t =2 s. 在这段时间内,甲、乙走过的位移分别为x 甲、x 乙,则: x 甲=v 0t -12a 1t 2=26 m ;x 乙=v 0Δt +v 0(t -Δt)-12a 2(t -Δt)2=27.5 m ;Δx =x 甲-x 乙=1.5 m即甲、乙两车行驶过程中至少应保持1.5 m 的距离.第二章:相互作用(卷一)答案二、选择题:1、 C 2、B 3、 A 4、A 5、AD 6、D7、B 8、C 9、AD 10、AD三、实验题:11、答案:100 0.15解析:由胡克定律可得F =kx =k(h +l -l 0)=k(h -l 0)+kl.因此F -l 图线的斜即为弹簧的劲度系数k =30-200.2-0.1 N /m =100 N /m ,k(h -l 0)=10 N ,得l 0=0.15 m.12、 F 1/(x 2-x 1)N /m x 113、解析 物体的受力分析如右图所示,木箱受到了四个力的作用.将拉力F 按水平方向与竖直方向分解为两个分力F 1和F 2,得F 1=F cos θ, F2=F sin θ.在水平方向上由二力平衡可得 F 1=F f =F cos θ①在竖直方向上G =F 2+F N =F N +F sin θ② 又F f =μF N ③联立以上各式解得F =20 N .14、解析:选取B 为研究对象,它受到重力mg 、三棱柱对它的支持力F NB 、墙壁对它的弹力F 的作用(如图所示)而处于平衡状态,根据平衡条件有:竖直方向上:F NB cos θ=mg水平方向上:F NB ·sin θ=F 解得F =mg tan θ再以A 和B 整体为研究对象,它受到重力(M +m )g 、地面支持力F N 、墙壁的弹力F 和地面的摩擦力F f 的作用(如图12乙所示)而处于平衡状态.根据平衡条件有:F N -(M +m )g =0 F =F f可得:F N =(M +m )g ,F f =F =mg tan θ.15、解析:取B 为研究对象,受力分析如图16所示.由平衡条件得2mg sin α=μF N 1+μF N 2① 对于A ,由平衡条件得F ′N 2=F N2=mg cos α②对于A 、B 整体,由平衡条件得 F ′N1=F N1=3mg cos α③ 由①②③得μ=12tan α第二章:相互作用(卷二)答案二、选择题:1、B2、A3、B4、A5、AD6、A7、AC8、C 三、填空题9、 30 N ; 40 N 10、 8; 与F 3方向相反 11、F ; F ';不变 四、计算题:12、(1)340 N (2)0.2413、 解:如图所示,以结点C 为研究对象,由共点力的平衡条件有0060cos 30cos B A F F = 0060sin 30sin B A C F F F +=又G = F C 由①知 A B F F 3=由题意知,当F B =100N 时,物重G 有最大值G max 联立解得 N G 33200max =(或115N)高一物理学科暑假作业(五)答案第二章:相互作用(卷三)答案二、选择题:1、BD2、B3、D4、B5、B 、C6、AD7、D 三、实验题8、拉力过大,超过了弹簧的弹性限度 100 N/m A9、I .(1) 还要记录两条细绳套的方向;(2) 按选定的标度做平行四边形; (3) 要把结点拉到O 点. II .1.4N ,2.73N . 四、计算题10、解:对A 点进行受力分析,如图所示,由题意可得:αcos GF OA =,αtan G F AB = 设OA 先断,则320=OA F N ,解得︒=30α,此时310tan ==αG F AB N<30N 。
高一物理暑假作业及答案(1)某同学在安装实验装置和进行其余的操作时都准确无误,他在分析数据时所建立的坐标系如图乙所示,他的失误之处是_________________________________________________________________________________________________;(2)该同学根据自己所建立的坐标系,在描出的平抛运动轨迹图上任取一点(x,y),运用公式求小球的初速度,这样测得的平抛初速度值与真实值相比______。
(填”偏大”、“偏小”或“相等”)12. (10分)由理论分析可得:弹簧的弹性势能公式(式中k 为弹簧的劲度系数,x为弹簧的形变量)。
为验证这一结论,A、B两位同学设计了以下的实验。
①首先他们都进行了如图甲所示的实验:将一根轻质弹簧竖直挂起,在弹簧的另一端挂上一个已知质量为m的小铁球,稳定后测得弹簧的伸长量为d。
②A同学完成步骤①后,接着进行了如图乙所示的实验:将这根弹簧竖直地固定在水平桌面上,并把小铁球放在弹簧上,然后竖直地套上一根带有插销孔的长透明塑料管,利用插销压缩弹簧;拔掉插销时,弹簧对小铁球做功,使小铁球弹起,测得弹簧的压缩量为x时小铁球上升的高度为H。
③B同学完成步骤①后,接着进行了如图丙所示的实验:将这根弹簧放在水平桌面上,一端固定在竖直的墙上,另一端被小铁球压缩,测得压缩量为x,释放弹簧后,小铁球从高为h的桌面上水平抛出,抛出的水平距离为L。
w W w .X k b 1.c O m(1)A、B两位同学进行图甲所示的实验的目的是为了确定什么物理量?___________(写出所求物理量并用m、d、g表示出来)(2)如果成立,那么A同学测出的物理量x与d、H的关系式是:x=______。
B同学测出的物理量x与d、h、L的关系式是:x=_______________。
(3)试分别分析两位同学的实验误差的主要来源。
___________________________________________________________ _______________13. (10分)如图甲所示,固定光滑细杆与地面成一定倾角,在杆上套有一个光滑小环,小环在沿杆方向的推力F的作用下向上运动,推力F及小球速度随时间的变化规律分别如图乙、丙所示,取重力加速度,求小环的质量m及细杆与地面间的倾角。
精心整理高一下册物理暑假作业及答案【篇一】一、单项选择题(每小题只有一个答案正确,共9小题,每小题4 变形变 飞行一圈时间为90分钟.则()A .“21点10分”和“90分钟”前者表示“时刻”后者也表示“时刻”B .飞船绕地球飞行一圈,它的位移和路程都为0C.飞船绕地球飞行一圈平均速度为0,但它在每一时刻的瞬时速度都不为0D.地面卫星控制中心在对飞船进行飞行姿态调整时可以将飞船看作质点2m/s5.某一质点做匀加速直线运动,初速度为10m/s,末速度为15m/s,运动位移为25m,则质点运动的加速度和运动的时间分别为()A.2.5m/s22sB.2m/s22.5sC.2m/s22sD.2.5m/s22.5s6.如图所示,两根相同的弹簧S1、S2,劲度系数皆为k=4×102N/m,悬挂的重物的质量分别为m1=2kg和m2=4kg.若不计弹簧质量,g取10m/s2,则平衡时弹簧S1、S2的伸长量分别为()3s停止,tA.位移不同B.平均速度不同C.经历时间不同D.加速度不同9.汽车刹车后开始做匀减速运动,第1s内和第2s内的位移分别为5m和3m,那么从2s末开始,汽车还能继续向前滑行的距离是()A.1.25mB.1mC.1.125mD.1.5m二、多项选择题(每小题有两个或多个答案正确,共6小题,每小题4分,共24分.)中车先做匀加速运动,接着做匀减速运动,开到乙地刚好停止,其v-t 图象如图所示,那么0~t0和t0~3t0两段时间内()A.加速度大小之比为3∶1B.位移大小之比为1∶2C.平均速度大小之比为2∶1D.平均速度大小之比为1∶113.一质点作匀变速直线运动,第5s末速度为,第9s末速度为-,则质点在运动过程中()A.第7s末的速度为零B.第5s初到第9s末物体运动的平均速度为零在时刻在0的滑块2s内2.5m,A.滑块的加速度为5m/s2B.滑块的初速度为5m/sC.滑块运动的总时间为3sD.滑动运动的总位移为4.5m第Ⅱ卷(非选择题)三、实验题(本题共1小题,7个填空,每空2分,共14分.)16.电磁打点计时器是一种使用低压______(填“交”或“直”)流电源的计时仪器。
考点:平抛运动、向心力、运动的合成与分解、万有引力定律、功和功率、机械能守恒定律的应用.
新课标2016年高一物理暑假作业1
一、选择题.
1.关于平抛运动的性质,以下说法中正确的是()
①是变加速运动
②是匀变速运动
③是匀速率曲线运动
④是两个直线运动的合运动.
A.①③B.①④C.②③D.②④
2.如图所示,光滑的水平面上,小球m在拉力F作用下做匀速圆周运动,若小球到达P点时F突然发生变化,下列关于小球运动的说法正确的是()
A.F突然消失,小球将沿轨迹Pa做离心运动
B.F突然变小,小球将沿轨迹Pa做离心运动
C.F突然变大,小球将沿轨迹pb做离心运动
D.F突然变小,小球将沿轨迹Pc逐渐靠近圆心
3.(单选)小船在静水中的速度为v,现使小船渡过一河流,渡河时船头朝对岸垂直划行,若船行至河中心时,水流速度增大,则渡河时间将()
4.地球质量是月球质量81倍,若地球吸引月球的力大小为F,则月球吸引地球的力大小为()
A.F B.9F C.27F D.81F
5.(单选)已知地球同步卫星离地面的高度约为地球半径的6倍。
若某行星的平均密度为地
球平均密度的一半,它的同步卫星距其表面的高度是其半径的2.5倍,则该行星的自转周期约为
A.6小时
B. 12小时
C. 24小时
D. 36小时
6.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2、3相切于P 点,则()
A.卫星在轨道3上的速率大于在轨道1上的速率
B.卫星在轨道3上的角速度等于在轨道1上的角速度
C.卫星在轨道1上经过Q点时的速率小于它在轨道2上经过Q点时的速率
D.卫星在轨道2上经过P点时的加速度大于它在轨道3上经过P点时的加速度
7.(单选)如图所示,a、b、c三个相同的小球,a从光滑斜面顶端由静止开始自由下滑,同时b、c从同一高度分别开始自由下落和平抛.下列说法正确的有()
8.(单选)质量为m的汽车,启动后沿平直路面行驶,如果发动机的功率恒为P,且行驶过程中受到的摩擦阻力大小一定,汽车速度能够达到的最大值为v,那么当汽车的车速为v/4时,汽车的瞬时加速度大小为
A. B. C. D.
二.实验题.
9.平抛物体的运动规律可以概括为两点:①水平方向作匀速运动,②竖直方向作自由落体运动。
为了研究平抛物体的运动,可做下面的实验:如图所示,用小锤打击弹性金属片,A球就水平飞出,同时B球被松开,做自由落体运动,两球同时落到地面。
这个实验
A. 只能说明上述实验中的第①条
B. 只能说明上述实验中的第②条
C. 不能说明上述实验中的任何一条
D. 能同时说明上述实验中的两条
10.一同学要研究轻质弹簧的弹性势能与弹簧长度改变量的关系。
实验装置如下图甲所示,在离地面高为h的光滑水平桌面上,沿着与桌子右边缘垂直的方向放置一轻质弹簧,其左端固定,右端与质量为m的小刚球接触。
将小球向左压缩弹簧一段距离后由静止释放,使小球沿水平方向射出桌面,小球在空中飞行落到位于水平地面的记录纸上留下痕迹。
重力加速度为g
(1)若测得某次压缩弹簧释放后小球落点P痕迹到O点的距离为s,则释放小球前弹簧的弹性势能表达式为;
(2)该同学改变弹簧的压缩量进行多次测量得到下表一组数据:
结合(1)问与表中数据,弹簧弹性势能与弹簧压缩量x之间的关系式应为;(3)完成实验后,该同学对上述装置进行了如下图乙所示的改变:(I)在木板表面先后钉上白纸和复写纸,并将木板竖直立于靠近桌子右边缘处,使小球向左压缩弹簧一段距离后由静止释放,撞到木板并在白纸上留下痕迹O;(II)将木板向右平移适当的距离固定,再使小球向左压缩弹簧一段距离后由静止释放,撞到木板上得到痕迹P;(III)用刻度尺测量纸上O 点到P点的竖直距离为y。
若已知木板与桌子右边缘的水平距离为L,则(II)步骤中弹簧的压缩量应该为。
三、解答题.
11.宇航员在某星球表面以初速度v0竖直向上抛出一个物体,物体上升的最大高度为h.已知该星球的半径为R,且物体只受该星球引力作用.
(1)求该星球表面的重力加速度;
(2)如果要在这个星球上发射一颗贴近它表面运行的卫星,求该卫星做匀速圆周运动的线速度和周期.
12.如图所示,一个高为h的斜面,与半径为R的圆形轨道平滑地连接在一起.现有一小球从斜面的顶端无初速地滑下,若要使小球通过圆形轨道的顶端B而不落下,则:
(1)B点速度至少为多少?
(2)斜面的高度h应为多大?
【KS5U】新课标2016年高一物理暑假作业1
参考答案
1.D
【考点】平抛运动.
【分析】平抛运动的物体只受重力,是一种匀变速曲线运动,可以分解为水平和竖直两个方向直线运动的合成.
【解答】解:①、②、③平抛运动的物体只受重力,加速度为g,是一种匀变速曲线运动,故①③错误,②正确.
④平抛运动可以分解为水平方向的匀速直线运动和竖直方向自由落体运动,即平抛运动是两个直线运动的合运动.故④正确.
故选:D.
2.A
【考点】向心力;牛顿第二定律;离心现象.
【分析】当向心力突然消失或变小时,物体会做离心运动,运动轨迹可是直线也可以是曲线;当向心力突然变大时,物体做向心运动,要根据受力情况分析.
【解答】解:A、在水平面上,细绳的拉力提供m所需的向心力,当拉力消失,物体受力合为零,将沿切线方向做匀速直线运动,A正确;
B、当向心力减小时,将沿Bb轨道做离心运动,B错误;
C、F突然变大,小球将沿轨迹Bc做向心运动,故C错误;
D、F突然变小,小球将沿轨迹Bb做离心运动,故D错误;
故选A.
3.
4.A
【考点】万有引力定律及其应用.
【分析】根据牛顿第三定律,作用力和反作用力大小相等,地球吸引月球的力大小为F,则月球吸引地球的力大小也一定为F.
【解答】解:根据牛顿第三定律,地球吸引月球的力大小为F,则月球吸引地球的力大小也一定为F.
故选:A.
5.B
本题主要考查万有引力定律以及天体运动;
对地球同步卫星有解得结合解得
,即地球密度为,同理可得行星密度为,又因为某行星
的平均密度为地球平均密度的一半,解得即,故选项B 正确。
6.C
【考点】人造卫星的加速度、周期和轨道的关系.
【分析】卫星绕地球做匀速圆周运动时,其向心力由万有引力提供,卫星通过做离心运动或近心运动实现轨道的变化,根据万有引力提供向心力列式求解.
【解答】解:A、卫星绕地球做匀速圆周运动时,由万有引力提供向心力得:,得,可知卫星的轨道半径越大,速率越小,所以卫星在轨道3上的速率小于在轨道1上的速率.故A错误.
B、由万有引力提供向心力得:G=mrω2 ,得,则轨道半径大的角速度小,所以卫星在轨道3上的角速度小于在轨道1上的角速度,故B错误.
C、从轨道1到轨道2,卫星在Q点是做逐渐远离圆心的运动,要实现这个运动必须使卫星加速,使其所需向心力大于万有引力,所以卫星在轨道1上经过Q点时的速率小于它在轨道2上经过Q点时的速率.故C正确.
D、卫星运行时只受万有引力,由G=m得:加速度a=,则知在同一地点,卫星的加速度相等,故D错误.
故选:C
7.
求得是平均功率的大小,在计
8.C
本题主要考查牛顿第二定律以及功率;
当汽车速度最大时有,当速度为时,有解得,由牛顿
第二定律可得
,解得 ,故选项C 正确。
9.B
10.(1)(2分)h mgs E P 42= (2)(2分)h m gx E P 2410= (3)(2分)
y h L x 200=
11.见解析
【考点】万有引力定律及其应用;竖直上抛运动;向心力.
【分析】以初速度v 0竖直上抛一物体,物体在重力作用下做匀减速直线运动,当物体速度减为0时,物体上升到最大高度,已知初速度末速度和位移,根据匀变速直线运动的速度位移关系可以求出该星球表面的重力加速度g ,卫星绕星球表面做匀速圆周运动,重力提供万有引力,据此列式可得卫星运行的周期和线速度.
【解答】解:(1)因为上抛物体做匀减速直线运动,已知初速度v 0、末速度v=0、位移为h ,据:
v 02=2gh
(2)卫星贴近表面运转,重力提供万有引力,
答:(1)该星球表面的重力加速度是;
(2)如果要在这个星球上发射一颗贴近它表面运行的卫星,该卫星做匀速圆周运动的线速度是,周期是.
12.
m
≥点速度至少为
2R+
≥
点速度至少为
.。