相位式激光测距原理及其技术实现ppt课件
- 格式:ppt
- 大小:452.00 KB
- 文档页数:14
相位式光电测距的基本原理
嘿,朋友们!今天咱来聊聊相位式光电测距的基本原理,这可真是个神奇又有趣的玩意儿呢!
你看啊,相位式光电测距就好像我们和目标之间的一场特殊“对话”。
想象一下,我们发出一束光,就像我们向目标喊了一句话。
这束光跑啊跑,跑到目标那里,然后又反射回来。
我们呢,就等着接收这个反射回来的光。
这里面关键的就是这个“相位”啦!就好比我们听音乐的时候,不同的音符有不同的频率和相位。
这束光也是一样,它在传播的过程中,相位会发生变化。
我们通过检测这个相位的变化,就能知道光跑了多远啦!
说起来简单,实际可复杂着呢!这就像是解一道很难的谜题。
我们得非常精确地测量和分析这个相位的变化。
就好像你要在一堆沙子里找出一粒特别的沙子一样,需要特别的细心和耐心。
那这相位式光电测距有啥用呢?哎呀,用处可大了去了!比如在建筑工地上,工程师们要用它来精确测量距离,这样才能保证建筑物建得稳稳当当的呀!还有在测绘领域,没有它,那些地图可就没那么准确啦!
而且哦,这技术还在不断发展和进步呢!就跟我们人一样,不断学习,不断变得更好。
以后说不定能测的距离更远更精确呢!
总之呢,相位式光电测距真的是个了不起的东西。
它就像我们的眼睛一样,能帮我们看到那些我们用普通方法看不到的距离和细节。
它让我们的生活变得更方便,让我们的世界变得更精彩!所以啊,可别小看了这小小的相位式光电测距哦,它可是有着大大的能量呢!。
基本原理相位式激光测距是通过测量连续的调制光波往返距离产生的相位延迟,间接的测定光在空气中往返于待测目标间的飞行时间,从而求出被测距离。
由激光调制发射系统、反射器、光电探测接收系统、频率综合部分(本振信号产生)、相位测量、以及显示部分组成。
由于测距的调制信号频率比较高,如果直接测量相位信息,则对测相芯片的分辨率要求比较高,而且误差比较大。
因此通常测距仪都采用了混频测相的方式对,高频信号与本振信号进行差频然后得到中低频信号,进行相位比较,后续通过AD转换和单片机把相位差信息转换成我们所需要的距离信息并且显示出来。
频率选择根据测距仪的设计需要,比如:测量精度、量程、计算简便,选择合适的测尺频率。
测尺频率可由下式确定:相位测量技术相位式激光测距仪中测距光波被接收以后通过测量相位差来计算光波飞行时间,因此相位测量是测距仪中关系到测距精度的一个关键部分。
主要的数字相位测量方法有以下几种:自动数字测相、欠采样同步检测法、向量内积法。
由于相位式激光测仪的测距要求精度比较高,测距光波的调制频率比较高,因此直接进行相位测量,则对器件的要求比较高,现在一般都釆用混频的方式与数字检相搭配使用,这样可以先把高频信号差频成中频或低频信号,然后再进行相位比较。
激光测距仪的总体设计1)采用波长为650mn的半导体激光器做光源,雪崩二极管做光电探测器;2)选用单一的直接测尺方式,测尺频率为lOMHz ,本地振荡信号频率为9.995MHz;3)用AD8002A做光电探测器前置放大电路和带通滤波器;4)用于测相的混频输出信号为5KHz,理论测尺长度为15米。
测相精度在毫米量级;5)使用AD8302做测相芯片,模数转换芯片将模拟信号转换成数字信号,传送给单片机控制系统,并且通过LCD显示出距离;6)采用窄带干涉滤光片来抑制带外噪声。
激光调制:利用有源晶体振荡器来产生lOMHz的高频振荡信号接入调制电路V端,测距回波接收部分光电器件:APD硅光电二极管在体积、响应速度、可靠性上相比其他元件都有非常好的特性,特别是硅材料制成的雪崩光电二极管(Avalanche Photo Diode,简称APD)。
§4.2 相位式光电测距仪的工作原理相位式光电测距仪的种类较多,但其基本的工作原理是相同的。
本节将讨论相位式光电测距仪的工作原理,并着重介绍它的几个主要部件的工作原理。
4.2.1 相位式光电测距仪的工作原理相位式光电测距仪的工作原理可按图4-4所示的方框图来说明。
图4-4由光源所发出的光波(红外光或激光),进入调制器后,被来自主控振荡器(简称主振)的高频测距信号所调制1f ,成为调幅波。
这种调幅波经外光路进入接收器,会聚在光电器件上,光信号立即转化为电信号。
这个电信号就是调幅波往返于测线后经过解调的高颇测距信号,它的相位已延迟了Φ。
∆Φ+⨯=ΦN π2这个高频测距信号与来自本机振荡器(简称本振)的高频信号1f '经测距信号混频器进行光电混频,经过选频放大后得到一个低频(11f f f '-=∆)测距信号,用D e 表示。
D e 仍保留了高频测距信号原有的相位延迟∆Φ+⨯=ΦN π2。
为了进行比相,主振高频测距信号的一1f 部分称为参考信号与本振高频信号1f '同时送入参考信号混频器,经过选频放大后,得到可作为比相基准的低频(11f f f '-=∆)参考信号,0e 表示,由于没有经0e 过往返测线的路程,所以不存在0e 象中产生的D e 那一相位延迟Φ。
因此,D e 和同时送人0e 相位器采用数字测相技术进行相位比较,在显示器上将显示出测距信号往返于测线的相位延迟结果。
当采用一个测尺频率时1f ,显示器上就只有不足一周的相位差∆Φ所相应的测距尾数,超过一周的整周数所相N 应的测距整尺数就无法知道,为此,相位式测距仪的主振和本振二个部件中还包含一组粗测尺的振荡频率,即主振频率 32,f f 和本振频率 32,f f ''。
激光相位法测距的原理激光相位测距中,把连续的激光进行幅度调制,调制光的光强随时间做周期性变化,测定调制光往返过程中所经过的相位变化即可求出时间和距离。
图.1 相位式激光测距原理示意图如图1所示,设发射处与反射处(提升容器)的距离为x ,激光的速度为c ,激光往返它们之间的时间为t ,则有:cxt 2设调制波频率为f ,从发射到接收间的相位差为 ,则有:N cfxft 242 (2) 其中,N 为完整周期波的个数, 为不足周期波的余相位。
因此可解出:)(2)22(24N N fcN f c f c x(3) 其中,f c L s 2 称为测尺或刻度,N 即是整尺数, 2 N 为余尺。
根据测得的相位移的大小,可知道N 余尺的大小。
而整尺数N 必须通过选择多个合适的测尺频率才能确定,测尺频率的选择是提升容器精确定位的关键因素之一。
多尺测量方法测量正弦信号相移的方法都无法确定相位的整周期数,即不能确定出相位变化中 2的整倍数N ,而只能测量不足 2的相位尾数 ,因此公式(2.3)中的N 值无法确定,使该式产生多个解,距离D 就不能确定。
解决此缺陷的办法是选用一个较低的测尺频率s f ,使其测尺长度s L 稍大于该被测距离,这种状况下不会出现距离的多值解。
但是由于测相系统的测相误差,会导致测距误差,并且选用的s L 越大则测距误差越大。
因此为了得到较高的测距精度而使用较短的测尺长度,即较大的测尺频率s f ,系统的单值测定距离就相应变小。
为了解决长测程和高精度之间的矛盾,一般使用的解决办法是:当待测距离D 大于基本测尺sb L (精测测尺)时,可再使用一个或几个辅助测尺sl L (又叫粗测测尺),然后将各个测尺测得的距离值组合起来得到单一的和精确的距离信息。
由此可见,用一组测尺共同对距离D 进行测量就可以解决距离的多值解,即用短尺保证精度,用长尺保证量程。
这样就解决高精度和长测程的矛盾[4]。
本系统选用10米作为精尺,1000米作为粗尺,带入公式即可求得精尺频率和粗尺频率:精尺频率 MHz L cf 152510(4) 粗尺频率 kHz L cf 150210001000 (5) 其中,光速s m c /1038 。
相位式激光测距仪1、相位式激光测距技术相位式激光测距仪,是利用固定频率的高频正弦信号,连续调制激光源的发光强度并测定调制激光往返一次所产生的相位延迟。
通过相位延迟计算测量的距离。
相位式测距是通过测量连续的幅度调制信号在待测距离上往返传播所产生的相位延迟,间接地测定信号传播时间,从而得到被测距离的。
这种方法测量精度高,通常在毫米量级。
1.1基本原理相位式激光测距的基本原理框图如图1.1所示。
图1.1 相位法激光测距基本原理图它由激光发射系统、角反射器、接收系统、综合频率系统、混频鉴相系统和计数显示系统等组成。
角反射器是一种三个反射面之间互成90 °的光学棱镜,90 角要求有误差小于±2 '' 的加工精度;它可以把射来的光线按原方向反射回去,即一个入射光射入后,不论入射角如何,经角反射器棱镜反射后的光线与入射光线平行。
相位法激光测距技术就是利用发射的调制光和被目标反射的接收光之间光波的相位差所包含的距离信息来实现对被测目标距离量的测量。
由于采用调制和差频测相技术,具有测量精度高的优点,广泛应用于有合作目标的精密测距场合。
基本原理如下:图1.2 相位式激光测距调制波形图设调制频率为 f ,幅度调制波形如图 1.2 所示,波长为λ=c/f式中c是光速,λ是调制波形的波长。
由图可知,光波从 A 点传到 B 点的相移φ 可表示为φ= 2 mπ +∆φ = ( m +∆m )2π式中,m 是零或正整数,∆m 是个小数,∆m=∆φ/2π。
A,B 两点之间的距离L 为L=ct=cφ/(2πf)式中,t 表示光由 A点传到B 点所需时间。
由于用一台测距仪直接测量 A 和B 两点光波传播的相移是非常困难的,因此采用在B 点设置一个反射器(即所谓合作目标),使从测距仪发出的光波经反射器反射再返回测距仪,然后由测距仪的测相系统对光波往返一次的相位变化进行测量。
图1.3 示意地表示光波在距离L 上往返一次后的相位变化。