高中物理必修二必修2各单元综合练习题及答案解析
- 格式:docx
- 大小:37.00 KB
- 文档页数:3
第一节什么是抛体运动抛体运动的速度方向[自读教材·抓基础]1.抛体运动 将物体以一定的初速度向空中抛出,仅在重力作用下物体所做的运动叫作抛体运动。
2.抛体运动的速度方向 (1)在曲线运动中,质点在某一时刻(或某一位置)的速度方向就是曲线上这点的切线方向。
(2)做抛体运动的质点的速度方向,在其运动轨迹各点的切线方向上,并指向质点前进的方向。
(3)质点在曲线运动中速度的方向时刻在改变,即具有加速度,所以曲线运动是一种变速运动。
[学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(想一想)物理上的切线与数学上的切线有何区别?提示:数学上的切线不用考虑方向,而物理上的切线具有方向,即要符合物体运动或物理量的“大方向”。
[跟随名师·解疑难]1.如何理解曲线运动的方向?由平均速度的定义知v =s t,则曲线运动的平均速度应为时间t 内的位移s 与时间t 的比值,如图1-1-1所示,v =s AB t。
随时间t 的取值变小,由图知时间t 内位移的方向逐渐向A 点的切线方向靠近,当时间趋于无限短时,位移方向为A 点的切线方向,故极短时间内的平均速度方向为A 点的瞬时速度方向,即A 点的切线方向。
2.曲线运动的性质曲线运动的速度方向时刻在变化,不管大小是否变化,因其矢量性,速度时刻都在变化,即曲线运动一定是变速运动。
3.做曲线运动的物体一定有加速度吗?由于曲线运动是变速运动,所以,做曲线运动的物体一定有加速度。
[特别提醒] 做曲线运动的物体,其速度沿轨迹上所在点的切线方向,确定物体的速度方向应先明确其运动轨迹。
[学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(选一选)(多选)下列说法正确的是( )A .曲线运动的速度大小可以不变,但速度方向一定改变B .曲线运动的速度方向可以不变,但速度大小一定改变C .曲线运动的速度方向不是物体的运动方向D .做曲线运动的物体在某点的速度方向沿曲线上该点的切线方向抛体做直线或曲线运动的条件[自读教材·抓基础]1.抛体做直线运动的条件 :抛出时的速度方向在竖直方向上。
高二物理必修二各章节练习(非常全面好
用)
本文档旨在为高二学生提供一份非常全面且实用的物理必修二
各章节练。
以下是每个章节的练内容:
第一章:电场
- 选择题:20道题,涵盖了电场的基本概念、电场强度的计算
等方面。
- 解答题:10道题,考察了电场中带电粒子的运动、电势能等
问题。
第二章:电容与电
- 选择题:15道题,包含了电容的定义、电的组成和特点等方面。
- 解答题:8道题,涉及电容的串并联、电的充放电等知识点。
第三章:电流与电阻
- 选择题:18道题,内容涉及电流的定义、欧姆定律、电阻的串并联等内容。
- 解答题:12道题,考察了电流的计算、电阻的变化对电路的影响等问题。
第四章:电磁感应
- 选择题:20道题,包含了法拉第电磁感应定律、电磁感应现象的应用等方面的内容。
- 解答题:10道题,涉及电磁感应中电动势、自感等问题。
第五章:电磁波
- 选择题:15道题,内容涵盖了电磁波的基本特性、电磁波的产生等方面。
- 解答题:8道题,考察了电磁波的传播特性、电磁波的应用等知识点。
第六章:光的折射与全反射
- 选择题:18道题,包含了折射定律、全反射现象等方面的内容。
- 解答题:12道题,涉及光的折射、全反射的应用等问题。
第七章:光的干涉与衍射
- 选择题:20道题,内容涉及光的干涉、衍射的基本原理以及干涉、衍射的应用等方面。
- 解答题:10道题,考察了干涉、衍射的实验现象、干涉条纹的特点等知识点。
以上是高二物理必修二各章节练习的内容。
希望这份文档对学生们的物理学习有所帮助。
一、选择题⒈“神舟五号”飞船在发射和返回的过程中,哪些阶段中返回舱的机械能是守恒的?()A飞船升空的阶段。
B飞船在椭圆轨道上绕地球运行的阶段C进入大气层并运动一段时间后,降落伞张开,返回舱下降。
D在太空中返回舱与轨道舱分离,然后在大气层以外向着地球做无动力飞行。
⒉水平面上有一物体,受一水平方向的力的作用,由静止开始无摩擦地运动,经过路程S1,速度达到V,又经过路程S2,速度达到2V,则在S1和S2两段路程中该力所做功之比是()A 1:1B 1:2C 1:3D 1:4⒊某同学身高1.8M,在运动会上他参加跳高比赛,起跳后身体横着越过了1.8M高的横杆,据此可估算出他起跳时竖直向上的速度大约是()A 2M/SB 4M/SC 6M/SD 8M/S⒋关于1J的功,下列说法中正确的是()A把质量为1Kg的物体,沿力F的方向移动1m,力F做的功等于1J。
B把质量为1Kg的物体,竖直匀速举高1m,举力所做的功等于1J。
C 把重1N的物体,沿水平方向移动1m,水平推力所做的功等于1J。
D把重1N的物体,竖直匀速举高1m,克服重力所做的功等于1J。
⒌下列说法正确的是()①物体的机械能守恒,一定是只受重力和弹簧弹力作用。
②物体处于平衡状态时,机械能守恒。
③物体的动能和重力势能之和增大时,必定是有重力以外的力对物体做了功。
④物体的动能和重力势能在相互转化过程中,一定是通过重力做功来实现。
A ①②B ③④C ①③D ②④⒍原来静止的列车在水平轨道上启动后就保持恒定的功率前进,在其后的一段较短的时间内(列车所受阻力恒定)()A列车做匀加速直线运动。
B列车的加速度逐渐减小。
C列车的速度先增大后减小。
D列车的加速度先增大后减小。
⒎从离地H高处以速度V竖直向下抛出一个小球,若球撞地时无机械能损失,那么此球的回跳高度是()A H+V2/2gB H-V2/2gC V2/2gD 上述均有可能⒏以一定的初速度竖直向上抛出一个小球,上升的最大高度为h,运动中空气阻力的大小恒为f,则小球从抛出点到再回到原抛出点的过程中,空气阻力对小球做的功为()A 0B -fhC -2fhD -4fh⒐如下图所示,在粗糙斜面顶端固定一弹簧,其下端挂一物体,物体在A点处于平衡状态.现用平行于斜面向下的力拉物体,第一次直接拉到B点,第二次将物体先拉到C点,再回到B点.则这两次过程中()A.重力势能改变量相等B.弹簧的弹性势能改变量相等C.摩擦力对物体做的功相等D.弹簧弹力对物体做功相等⒑.如下图所示,用轻弹簧和不能伸长的轻细线分别吊质量相同的小球A、B,将两球拉开使细线与弹簧都在水平方向上,且高度相同,而后由静止放开A、B两球,两球在运动中空气阻力不计,关于两球在最低点时速度的大小是()A.A球的速度大B.B球的速度大C.A、B球的速度大小相等D.无法判定二填空题⒒设飞机飞行中所受的阻力与速度的平方成正比,如果飞机以速度V匀速飞行时,其发动机的实际功率为P,则飞机以速度2V匀速飞行时,其发动机的实际功率为______ P。
绝密★启用前2020年秋人教版高中物理必修二综合测试本试卷共100分,考试时间90分钟。
一、单选题(共10小题,每小题4.0分,共40分)1.我国的人造卫星围绕地球的运动,有近地点和远地点,由开普勒定律可知卫星在远地点运动速率比近地点的运动速率小,如果近地点距地心距离为R1,远地点距地心距离为R2,则该卫星在远地点运动速率和近地点运动的速率之比为()A.B.C.D.2.爱尔兰作家萧伯纳曾诙谐的说“科学总是从正确走向错误”,像一切科学一样,经典力学也有其局限性,是“一部未完成的交响曲”,经典力学能适用于下列哪些情况()A.研究原子中电子的运动B.研究“嫦娥一号”飞船的高速发射C.研究地球绕太阳的运动D.研究强引力3.如图所示,长0.5 m的轻质细杆,其一端固定于O点,另一端固定有质量为1 kg的小球.小球在竖直平面内绕O点做圆周运动.已知小球通过最高点时速度大小为2 m/s,运动过程中小球所受空气阻力忽略不计,g取10 m/s2.关于小球通过最高点时杆对小球的作用力,下列说法中正确的是()A.杆对小球施加向上的支持力,大小为2 NB.杆对小球施加向上的支持力,大小为18 NC.杆对小球施加向下的拉力,大小为2 ND.杆对小球施加向下的拉力,大小为18 N4.关于功率的以下说法中正确的是()A.根据P=可知,机器做功越多,其功率就越大B.根据P=Fv可知,汽车牵引力一定与速度成反比C.对于交通工具而言,由P=Fv只能计算出牵引力的瞬时功率D.根据P=Fv可知,发动机功率一定时,交通工具的牵引力与运动速度成反比.5.欧盟和中国联合开发的伽利略项目建立起了伽利略系统(全球卫星导航定位系统).伽利略系统由27颗运行卫星和3颗预备卫星组成,可以覆盖全球,现已投入使用.卫星的导航高度为2.4×104km,倾角为56°,分布在3个轨道上,每个轨道面部署9颗工作卫星和1颗在轨预备卫星,当某颗工作卫星出现故障时可及时顶替工作.若某颗预备卫星处在略低于工作卫星的轨道上,以下说法中正确的是()A.预备卫星的周期大于工作卫星的周期,速度大于工作卫星的速度,向心加速度大于工作卫星的向心加速度B.工作卫星的周期小于同步卫星的周期,速度大于同步卫星的速度,向心加速度大于同步卫星的向心加速度C.为了使该颗预备卫星进入工作卫星的轨道,应考虑启动火箭发动机向前喷气,通过反冲作用从较低轨道上使卫星加速D.三个轨道平面只有一个过地心,另外两个轨道平面分别只在北半球和南半球6.若用假想的引力场线描绘质量相等的两星球之间的引力场分布,使其他星球在该引力场中任意一点所受引力的方向沿该点引力场线的切线上并指向箭头方向.则描述该引力场的引力场线分布图是()A.B.C.D.7.做曲线运动的物体,在运动过程中,一定变化的物理量是()A.速率B.速度C.加速度D.合外力8.关于做匀速圆周运动的物体,下列说法正确的是()A.因为在相等的时间内通过的圆弧长度相等,所以线速度恒定B.如果物体在0.1 s内转过30°角,则角速度为300 rad/sC.若半径r一定,则线速度与角速度成反比D.若半径为r,周期为T,则线速度为v=9.我国自主研发的北斗卫星导航系统中有数颗地球同步轨道卫星(其周期与地球自转周期相同),A 是其中一颗.物体B静止于赤道上随地球自转.分别把A、B的角速度记为ωA、ωB,线速度记为v A、v B,加速度记为a A、a B,所受地球万有引力记为F A、F B,则()A.ωA>ωBB.v A<v BC.a A>a BD.F A<F B10.我国成功发射“天宫二号”空间实验室,之后发射了“神舟十一号”飞船与“天宫二号”对接.假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是()A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接二、多选题(共4小题,每小题5.0分,共20分)11.(多选)如图所示,物体在恒力F作用下沿曲线从点A运动到点B,这时突然使它所受的力反向,但大小不变,即由F变为-F.在此力的作用下,物体以后的运动情况,下列说法中正确的是()A.物体不可能沿曲线Ba运动B.物体不可能沿直线Bb运动C.物体不可能沿曲线Bc运动D.物体不可能沿原曲线BA返回12.(多选)某物体同时受到三个力作用而做匀减速直线运动,其中F1与加速度a的方向相同,F2与速度v的方向相同,F3与速度v的方向相反,则()A.F1对物体做正功B.F2对物体做正功C.F3对物体做正功D.合外力对物体做负功13.(多选)一物体做变速运动时,下列说法正确的有()A.合外力一定对物体做功,使物体动能改变B.物体所受合外力一定不为零C.合外力一定对物体做功,但物体动能可能不变D.物体加速度一定不为零14.(多选)如图所示,长为l的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直面内做圆周运动,关于最高点的速度v,下列说法正确的是()A.v的极小值为B.v由零逐渐增大,向心力也增大C.当v由逐渐增大时,杆对小球的弹力逐渐增大D.当v由逐渐减小时,杆对小球的弹力逐渐增大三、实验题(共1小题,每小题10.0分,共10分)15.某同学在“验证机械能守恒定律”时按如图甲所示安装好实验装置,正确进行实验操作,从打出的纸带中选出符合要求的纸带,如图乙所示.图中O点为打点起始点,且速度为零.甲乙(1)选取纸带上打出的连续点A、B、C,……,测出其中E、F、G点距起始点O的距离分别为h1、h2、h3,已知重锤质量为m,当地重力加速度为g,打点计时器打点周期为T.为验证此实验过程中机械能是否守恒,需要计算出从打下O点到打下F点的过程中,重锤重力势能的减少量ΔE p=________,动能的增加量ΔE k=________(用题中所给字母表示).(2)以各点到起始点的距离h为横坐标,以各点速度的平方v2为纵坐标建立直角坐标系,用实验测得的数据绘出v2-h图线,如图丙所示,该图象说明了________.丙(3)从v2-h图线求得重锤下落的加速度g=________ m/s2.(结果保留三位有效数字)四、计算题(共3小题,每小题10.0分,共30分)16.盘在地面上的一根不均匀的金属链重30 N,长1 m,从甲端缓慢提至乙端恰好离地时需做功10 J.如果改从乙端缓慢提至甲端恰好离地要做多少功?(取g=10 m/s2)17.一艘宇宙飞船绕地球作圆周运动时,由于地球遮挡阳光,会经历“日全食”过程,如图所示,太阳光可看作平行光,宇航员在A点测出地球的张角为α,已知地球的半径为R,地球质量为M,引力常量为G,求:(1)宇宙飞船离距地面的高度.(2)宇宙飞船的周期T.18.如图所示,斜面体ABC固定在水平地面上,小球p从A点静止下滑.当小球p开始下滑时,另一小球q从A点正上方的D点水平抛出,两球同时到达斜面底端的B处.已知斜面AB光滑,长度l=2.5 m,斜面倾角θ=30°.不计空气阻力,g取10 m/s2,求:(1)小球p从A点滑到B点的时间;(2)小球q抛出时初速度的大小.答案解析1.【答案】B【解析】由开普勒第二定律:行星与太阳的连线在相等时间内扫过的面积相等即rmv=c(常数),所以v=,v近∶v远=R2∶R1.2.【答案】BC【解析】经典力学适用于低速运动、宏观物体.电子是属于微观粒子,故A不适用;研究“嫦娥一号”飞船的高速发射,是低速运动、宏观物体.故B正确;研究地球绕太阳的运动,是低速运动、宏观物体.故C正确;强引力属于微观粒子之间的相互作用,故D不适用.3.【答案】C【解析】通过最高点时,小球受重力和杆的弹力F作用.假设弹力F和重力同向竖直向下,那么就有mg+F=m,带入数据得F=2 N,弹力大于0所以弹力方向与假设的方向相同,竖直向下,是拉力.答案C正确.4.【答案】D【解析】P=表明,功率不仅与物体做功的多少有关同时还与做功所用的时间有关,A选项错误;对于交通工具而言,由P=Fv可知,如果v为平均速度,则计算出的功率为平均功率,故C错误;P=Fv,当功率一定时,在一定阶段牵引力与速度成反比,但当牵引力等于阻力时,速度不变,牵引力也不再变化,D选项正确;当牵引力一定时,速度增加,功率也增加,在这种情况下牵引力F是不变的,B选项错误.5.【答案】B【解析】预备卫星在略低于工作卫星的轨道上,由开普勒第三定律=k知预备卫星的周期小于工作卫星的周期,由卫星的速度公式v=分析知,预备卫星的速度大于工作卫星的速度,由向心加速度公式a n==知,预备卫星的向心加速度大于工作卫星的向心加速度,A错误;地球同步卫星的周期为24 h,工作卫星的周期小于同步卫星的周期,由卫星的速度公式v=分析知,工作卫星的速度大于同步卫星的速度,由向心加速度公式a n =知,工作卫星的向心加速度大于同步卫星的向心加速度,B正确;预备卫星处于低轨道上,为了使该预备卫星进入工作卫星的轨道上,应考虑启动火箭发动机向后喷气,通过加速使其做离心运动,使卫星的轨道半径增大才能从较低轨道进入工作卫星的轨道,C错误.三个轨道平面都必须过地心,否则由于地球引力的作用,卫星不能稳定工作,D错误.6.【答案】B【解析】其他星球在该引力场中任意一点必定受到两星球的万有引力,方向应指向两星球,A、D错,由于两星球相互间引力场间的影响,其引力场线应是弯曲的,C错;故描述该引力场的引力场线分布图是图B.7.【答案】B【解析】物体做曲线运动时,速度方向一定变化,速度大小不一定变化,A错,B对.做曲线运动的物体的合外力或加速度既可能变,也有可能不变,C、D错.8.【答案】D【解析】物体做匀速圆周运动时,线速度大小恒定,方向沿圆周的切线方向,在不断地改变,故选项A错误;角速度ω==rad/s=rad/s,选项B错误;线速度与角速度的关系为v=ωr,由该式可知,r一定时,v∝ω,选项C 错误;由线速度的定义可得,在转动一周时有v=,选项D正确.9.【答案】C【解析】同步卫星和地球赤道上的物体的角速度相同,即ωA=ωB,A错误.由v=ωr,a=ω2r知,v A>v B,a A>a B,B错误,C正确.因为不知道卫星A与物体B的质量,无法比较F A、F B的大小,D错误.10.【答案】C【解析】若使飞船与空间实验室在同一轨道上运行,飞船加速,所需向心力变大,则飞船将脱离原轨道而进入更高的轨道,不能实现对接,A错误;若使飞船与空间实验室在同一轨道上运行,空间实验室减速,所需向心力变小,则空间实验室将脱离原轨道而进入更低的轨道,不能实现对接,B错误;要想实现对接,可使飞船在比空间实验室半径较小的轨道上加速,然后飞船将进入较高的空间实验室轨道,逐渐靠近空间实验室后,两者速度接近时实现对接,C正确,同理D错误.11.【答案】ABD【解析】物体沿曲线从点A运动到点B(点B除外)的过程中,其所受恒力F的方向必定指向曲线的内侧.当运动到B点时,因恒力反向,由曲线运动的特点“物体以后运动的曲线轨迹必定向合外力方向弯曲”可知:物体以后的运动只可能沿Bc运动.故本题正确选项为A、B、D.12.【答案】BD【解析】因物体做匀减速直线运动,a的方向与v的方向相反,故F1对物体做负功,A错误;F2与v的方向相同,做正功,B正确;F3与v 的方向相反,做负功,C错误;物体做匀减速直线运动时,物体所受合外力的方向与运动方向相反,做负功,故D正确.13.【答案】BD【解析】物体的速度发生了变化,则合外力一定不为零,加速度也一定不为零,B、D正确;物体的速度变化,可能是大小不变、方向变化,故动能不一定变化,合外力不一定做功,A、C 错误.14.【答案】BCD【解析】由于是轻杆,即使小球在最高点速度为零,小球也不会掉下来,因此v的极小值是零,A错;v由零逐渐增大,由F向=可知,F向也增大,B对;当v=时,F向==mg,此时杆恰对小球无作用力,向心力只由其自身重力提供;当v由增大时,则=mg+F,故F=m-mg,杆对球的力为拉力,且逐渐增大;当v由减小时,杆对球的力为支持力.此时,mg-F′=,F′=mg-m ,支持力F′逐渐增大,杆对球的拉力、支持力都为弹力,所以C、D也对,故选B、C、D. 15.【答案】(1)mgh2【解析】(1)重锤重力势能的减少量ΔE p=mgh2,动能增加量ΔE k=.(2)当物体自由下落时,只有重力做功,物体的重力势能和动能互相转化,机械能守恒.(3)由mgh=mv2可知题图的斜率表示重力加速度g的2倍,为求直线的斜率,可在直线上取两个距离较远的点,如(25.5×10-2,5.0)、(46.5×10-2,9.0),则g==×≈9.52 m/s2.16.【答案】20 J【解析】设绳子的重心离乙端距离为x,则当乙端刚离开地面时有mgx=10 J,可得:x=m.则绳子的重心离甲端为m,可知从乙端缓慢提至甲端恰好离地要做功W=mg(1-x)=20 J.17.【答案】(1).(2)2π【解析】(1)设飞船做圆周运动的半径为r,距离地面的高度为h.由几何关系知sin=①距离地面的高度为h=r-R②由①②解得h=R(2)由万有引力提供做圆周运动所需的向心力得G=m()2r③由①③解得T=2π18.【答案】(1)1 s(2)m/s【解析】(1)设小球p 从斜面上下滑的加速度为a,由牛顿第二定律得:a==g sinθ①设下滑所需时间为t1,根据运动学公式得l=at12②由①②得t1=③代入数据得t1=1 s;④(2)对小球q:水平方向位移x=l cosθ=v0t2⑤依题意得t2=t1⑥由④⑤⑥得v0==m/s.。
必修二参考答案及解析第四章曲线运动万有引力与航天第一单元曲线运动运动的合成与分解第二单元平抛和斜抛运动的规律第三单元圆周运动第四单元圆周运动在实际问题中的应用第五单元万有引力与航天章末综合检测第五章机械能守恒定律第一单元功和功率第二单元动能定理第三单元机械能守恒定律第四单元功能关系能量守恒定律第五单元实验:探究动能定理第六单元:实验:验证机械能守恒定律章末综合检测4-11、解析:若物体做匀速直线运动可以不受外力作用,所以A 错.做曲线运动的物体,加速度不为零,一定受到外力的作用,B 对.物体受到的外力越大,只能说明其加速度越大,C 错,D 对.答案:BD2、解析:运动员下落过程中,下落时间仅与竖直方向的运动有关,与水平方向的运动无关,即A 错,C 正确.着地速度是竖直方向速度与风速的合成,即B 正确.D 错.答案:BC3、解析:本题主要考查物体做曲线运动的条件、物体做匀变速运动的条件,分别分析如下:F 1、F 2为恒力,质点从静止开始做匀加速直线运动,F 1突变后仍为恒力,但合力的方向与速度方向不再共线,所以物体将做匀变速曲线运动,故A 正确.由加速度的定义a =ΔvΔt知在相等时间Δt 内Δv =a ·Δt 必相等,故B 正确.匀速直线运动的条件是F 合=0,所以不可能做匀速直线运动,故C 错.由于F 1突变后,F 1+ΔF 和F 2的合力仍为恒力,故加速度不可能变化,故D 错. 答案:AB4、解析:扶梯运动的速度v 1=h t 1,人运动的速度v 2=ht 2,所求情况下的速度v 3=v 1+v 2,所以t =h v 3=t 1t 2t 1+t 2,故C 正确.答案:C5、解析:依题意画出物理情景示意图,若要在最短时间内靠岸,则必须要求摩托艇相对于水的速度v 2的方向垂直于河岸,由于同时参与水的运动,摩托艇将相对河岸沿合速度v 的方向运动,在B 点登陆.由图示几何关系可以看出,速度三角形与位移三角形相似,故有v 1v 2=x d ,x =v 1v 2d .可见该题的正确选项为C.图16答案:C6、解析:红蜡块水平向右匀加速运动,竖直向上匀速运动,运动轨迹为曲线,并且是抛物线,选项C 对.答案:C7、解析:物体做匀速直线运动,则可知F 合=0,当将与速度反方向大小为2 N 的力旋转90°,F 合大小也变为2 2 N ,与速度方向成45°,且大小恒定,故物体将做加速度为 2 m/s 2的匀变速曲线运动,故B 正确.答案:B8、解析:由x =3t 2及y =4t 2知物体在x 、y 方向上的初速度为0,加速度分别为a x =6 m/s 2,a y =8 m/s 2,故a =a 2x +a 2y =10 m/s 2.答案:AC9、解析:由图线可知v y >0逐渐减小直至为零,结合提供选项可知D 对. 答案:D10、解析:由于河宽d =80 m ,A 、B 间沿水流方向的距离为l =100 m ,所以当船头指向正对岸时有d l =v 船v 水,此时合速度刚好沿AB 的连线,可以使船从A 运动到B ,若从B 向A运动,则由于水速大于船速,不论船向哪个方向,则渡船均不可能回到A 点,只可能向下游运动.故选项B 正确.答案:B11、解析:由x 方向的速度图象可知,在x 方向的加速度为1.5 m/s 2,受力F x =3 N ,由在y 方向的位移图象可知在y 方向做匀速直线运动,速度为v y =4 m/s ,受力F y =0.因此质点的初速度为5 m/s ,A 选项正确;受到的合外力为3 N ,B 选项正确;显然,质点初速度方向与合外力方向不垂直,C 选项错误;2 s 末质点速度应该为v =62+42m/s =2 3 m/s ,D 选项错误.答案:AB12、解析:小船参与了两个运动:随水漂流和船在静水中的运动.因为分运动之间是互不干扰的,具有等时的性质,故(1)小船渡河时间等于垂直于河岸的分运动时间:t =t 1=dv 船=2004s =50 s , 沿河流方向的位移x 水=v 水t =2×50 m =100 m. 即在正对岸下游100 m 处靠岸.图21(2)要小船垂直河岸过河,即合速度应垂直于河岸,如图21所示,则cos θ=v 水v 船=24=12,所以θ=60°,即航向与上游河岸成60°角,渡河时间t =t 1=d v 合=d v 船sin θ=2004sin60° s =1003s ≈57.7 s.答案:(1)50 s 后在正对岸下游100 m 处靠岸 (2)航向与上游河岸成60°角 57.7 s4-21、解析:该题考查对平抛运动及其分运动的理解,同时考查探究问题的思维能力.实验中A 球做平抛运动,B 球做自由落体运动,两球同时落地说明A 球平抛运动的竖直分运动和B 球相同,而不能说明A 球的水平分运动是匀速直线运动,所以B 项正确.A 、C 、D 三项都不对.答案:B2、解析:在匀速飞行的飞机上释放物体,物体有一水平速度,故从地面上看,物体做平抛运动,C 对D 错;飞机的速度与物体水平方向上的速度相同,故物体始终在飞机的正下方,且相对飞机的竖直位移越来越大,A 、B 错.答案:C3、解析:两球在空中相遇,水平位移相等,即v 甲t 甲=v 乙t 乙,但t 甲>t 乙,则需要v 甲<v 乙,甲要早抛出才可以,故只有D 项正确.答案:D4、解析:物体平抛运动的时间t =v y g,由速度的合成与分解可知v y =v 2-v 20,故只有D 正确.答案:D5、解析:本题的关键是先求出速度方向与水平方向的夹角θ的正切值tan θ随时间t 的变化的关系式.由平抛运动的规律可得tan θ=v y v 0=g v 0t ,因为gv 0为定值,则tan θ与t 成正比,故B 正确.答案:B 6、解析:着地时速度的方向与水平地面的夹角为45°,故v y =v 0=2gh =2×10×1.25m/s =5.0 m/s ,A 正确;x =v 0t =v 02h g =5×2×1.2510 m =2.5 m ,B 正确;飞行时间t =2hg=0.5 s ,C 正确;着地时滑雪者重力做功的瞬时功率P =mg v y =60×10×5.0 W =3000 W ,D 错误.答案:D7、解析:由于物体做平抛运动,在竖直方向上h =12gt 2,t =2hg,因h a >h b ,故t a >t b ;因t =xv,由于水平方向x a =x b ,t b <t a ,所以v b >v a ,故A 项正确.答案:A8、解析:炮弹拦截成功,即两炮弹同时运动到同一位置,设此位置距地面的高度为h ,则x =v 1th =v 2t -12gt 2H -h =12gt 2由以上各式联立解得:v 1=xHv 2答案:D9、解析:竖直方向:据Δy =5l -3l =gT 2可求出g ;水平方向:v 0=x T =3lT,P 点竖直方向分速度v y =v =3l +5l 2T,故P 点速度大小v =v 20+v 2y ;无法求出小球质量m .故B 正确.答案:B10、解析:设AC 竖直间距为h ,子弹过B 点有:h -Δh =12g (x 2v 0)①子弹过C 点有:h =12g (x +ΔL v 0)2②由①②得v =gΔL Δh +(x +ΔL2)答案:gΔL Δh +(x +ΔL2)11、解析:(1)炸弹在空中做平抛运动,沿竖直方向做自由落体运动.其运动时间为t 1=2Hg =2×50010s =10 s ,因此可知炸弹落地爆炸后声音的传播时间为t 2=(13-10) s=3 s ,声音沿直线传播距离为x =v 声t 2=1000 m ,炸弹落地时飞机在其正上方500 m 处.由几何关系可知:在炸弹落地后的3 s 内飞机飞行的水平距离为:x =L 2-H 2=500 3 m =866 m所以飞机的飞行速度为:v =xt 2=288.7 m/s(2)炸弹做平抛运动的初速度与飞机速度相同.设落地时的速度为v ′,则由 v y =2gHv ′=v 2+2gH =305.5 m/s. 答案:(1)288.7 m/s (2)305.5 m/s12、解析:(1)若抛靶装置在子弹的射程以外,则不论抛靶速度为何值,都无法击中.H =12gt 2,x =v 1tl >x =v 12Hg=200 m即l >200 m ,无论v 2为何值都不能被击中.(2)若靶能被击中,则击中处应在抛靶装置的正上方,设经历的时间为t 1,则:l =v 1t 1,t 1=l v 1=100100s =1 s.y 1=12gt 21=12×10×12m =5 my 2=v 2t 1-12gt 21=20×12 m -12×10×12m =15 m.因为y 1+y 2=5 m +15 m =20 m =H, 所以靶恰好被击中. 答案:(1)l >200 m (2)恰好击中4-31、答案:BD2、解析:绳b 烧断前,竖直方向合力为零,即F a =ma ,烧断b 后,因惯性,要在竖直面内做圆周运动,且F ′a -mg =m v 2l,所以F ′a >F a ,A 错B 对,当ω足够小时,小球不能摆过AB 所在高度,C 对,当ω足够大时,小球在竖直面内能通过AB 上方最高点,从而做圆周运动,D 对.答案:BCD3、答案:A4、解析:三个物块做圆周运动的角速度ω相同,向心加速度a =ω2r ,C 离转轴最远,向心加速度最大.三个物块做圆周运动的向心力由静摩擦力F f 提供,F f =mω2r ,B 与A 相比,r 相同,m 小;B 与C 相比,m 相同,r 小,所以B 的摩擦力最小.当圆盘转速增大时,物块将要滑动,静摩擦力达到最大值,最大静摩擦力提供向心力,μmg =mω2r ,即ω=μg /r ,与质量无关,由于2r A =2r B =r C ,B 与A 同时开始滑动,C 比B 先滑动.选项A 、B 、D 正确.答案:ABD图65、解析:此题涉及物理量较多,当比较多个量中两个量的关系时,必须抓住不变量,而后才能比较变量.先对A 、B 两球进行受力分析,两球均只受重力和漏斗给的支持力F N .如图6所示,对A 球依牛顿第二定律:F N A sin α=mg ①F N A cos α=m v 2Ar A=mω2A r A ②对B 球依牛顿第二定律:F N B sin α=mg ③F N B cos α=m v 2Br B=mω2B r B ④由两球质量相等可得F N A =F N B ,不选C 项.由②④可知,两球所受向心力相等: m v 2A r A =m v 2B r B,因为r A >r B ,所以v A >v B ,A 项正确.mω2A r A =mω2B r B ,因为r A >r B ,所以ωA <ωB ,B 项是错误的.又因为ω=2πT,所以T A >T B ,D 项是正确的.答案:AD6、答案:AC7、解析:车突然停止时,A 球随之停下来,则张力F T 1=mg ,而B 球会以悬点为圆心向右摆动起来,则有F T 2-mg =m v 2L ,F T 2=m (g +v 2L )所以F T 1F T 2=g g +v 2L=13.答案:C 8、解析:由题可知,平盘边缘与滚轮的线速度相同,又因为v =rω=r ×2πf ,故xf 1=rf 2,转速n 与f 成正比,故n 1x =n 2r .A 选项正确.答案:A9、解析:设小球在水平面内做半径为R 的匀速圆周运动的速度为v图11根据F 向=m v 2R有mg tan θ=mg Rh =m v 2R则v =R gh若细线突然在A 处断裂,小球以速度v 做平抛运动,在地面上落点P 的位置与A 处的切线在同一竖直平面上,设与A 处的水平距离为x ;则有H =12gt 2 x =v t 解得x =R 2H h答案:R 2Hh10、解析:(1)设小球在空中的飞行时间为t 1,初速度为v 0,圆盘的角速度为ω,则小球平抛时间为t 1=2h g ,而R =v 0t 1,故v 0=R t 1=R g2h.(2)当OB 再次与v 0平行时,圆盘运动时间t 2=nT (n =1,2,3,4,…),T =2πω依题意有t 1=t 2,即 2h g =2n πω(n =1,2,3,4,…)解得ω=n π2gh(n =1,2,3,4,…)答案:(1)R g 2h (2)ω=n π 2gh(n =1,2,3,4,…)11、解析:速度相同包括大小相等和方向相同,由质点P 的旋转情况可知,只有当P运动到圆周上的C 点时P 、Q 的速度和方向才相同,即质点P 转过⎝⎛⎭⎫n +34周(n =0,1,2,3,…),经历的时间t =⎝⎛⎭⎫n +34T (n =0,1,2,3,…),质点P 的速率为v =2πRT.在同样的时间内,质点Q 做匀加速直线运动,速度应达到v ,由牛顿第二定律及速度公式得v =F m t ,联立以上三式,解得F =8πmR(4n +3)T2(n =0,1,2,3,…).4-41、解析:因小球做变速圆周运动,在P 点的合加速度应是向心加速度与切向加速度的合成,故只有D 选项符合要求.答案:D2、解析:绳、钉相碰时,绳的拉力不做功,球速不变,由于半径减小,由v =ωr 知,ω增大,F 向=F T -mg =m v 2r 将变大;a n =v 2r将变大.答案:BCD3、解析:射出后可认为子弹做匀速直线运动,要使子弹射中目标,需使合速度指向O点,其中一分速度沿P 点圆的切线方向,由平行四边形定则如图3 sin θ=ωRv,故选项D 正确.答案:D4、解析:因弹簧具有质量,弹簧断后弹力不立刻减为零,瞬间值不变,故a n =ω2l .选项B 正确.答案:B5、解析:汽车在水平面内做圆周运动,如果路面是水平的,汽车做圆周运动的向心力只能由静摩擦力提供;如果外侧路面高于内侧路面一个适当的高度,也就是路面向内侧倾斜一个适当的角度θ,地面对车支持力的水平分量恰好提供车所需要的向心力时,车轮与路面的横向摩擦力正好等于零.在此临界情况下对车受力分析,明确汽车所受合外力的方向:水平指向圆心.然后由牛顿第二定律列方程求解.答案:B图56、解析:汽车受重力mg 、路面对汽车的支持力F N ,牵引力F (暂且不考虑汽车运动过程中受到的阻力),如图5所示.设汽车所在位置路面切线与水平面所夹的角为θ.汽车运动时速率大小不变,沿轨迹切线方向合力为零,所以F -mg sin θ=0,F =mg sin θ 汽车在到达最高点之前,θ角不断减小,由上式可见,汽车的牵引力不断减小;从最高点向下运动的过程中,不需要牵引力,反而需要制动力,所以C 选项不正确,D 选项正确.在沿着半径的方向上,汽车有向心加速度,由牛顿第二定律:mg cos θ-F N =m v2R,F N =mg cos θ-m v 2R.可见,路面对汽车的支持力F N 随θ的减小而增大,当到达顶端时θ=0,F N =mg -m v 2R达到最大,F N <mg ,所以A 选项不正确,B 选项正确.故选BD.答案:BD7、解析:因地球为球形,飞机飞行中实际在绕地心做圆周运动,其加速度——向心加速度总是向下指向地心,乘客随飞机运动亦有指向地心向下的加速度,处于失重状态,故乘客对座椅的压力小于其重力.答案:C8、解析:若拉力突然消失,则小球沿着P 点处的切线运动,A 正确.若拉力突然变小,则小球做离心运动,但由于力与速度有一定的夹角,故小球做曲线运动,B 、D 错误.若拉力突然变大,则小球做近心运动,不会沿轨迹Pb 做离心运动,C 错误.答案:A9、解析:飞机经过最低点时对飞行员受力分析得:F N -mg =m v 2r∴F N =mg +m v2r=4589 N由牛顿第三定律得飞行员对座椅的压力为4589 N.图910、解析:被测试者做圆周运动所需的向心力由他所受的重力和座位对他的支持力的合力提供,如图9所示.x :F N cos30°=mrω2 y :F N sin30°=mg 得:F N =2mg被测试者对座位的压力和座位对他的支持力是一对作用力与反作用力,所以他对座位的压力大小是他所受重力的2倍.11、解析:已知a 、b 绳长均为1 m ,即Am =Bm =1 m ,AO =12AB =0.8 m在△AOm 中,cos θ=AO Am=0.81=0.8,图11sin θ=0.6,θ=37°小球做圆周运动的轨道半径r =Om =Am ·sin θ=1×0.6 m =0.6 m.b 绳被拉直但无张力时,小球所受的重力mg 与a 绳拉力FT a 的合力F 为向心力,其受力分析如图11所示,由图可知小球的向心力为F =mg tan θ根据牛顿第二定律得 F =mg tan θ=mr ·ω2解得直杆和球的角速度为ω=g tan θr =10×tan37°0.6rad/s =3.5 rad/s.当直杆和球的角速度ω>3.5 rad/s 时,b 中才有张力.4-51、解析:若将地球视为一个球体,则在地球上各处的引力大小相同,A 错;在地球上各处的角速度相同,D 错;在地球的表面附近,赤道的半径较大,由公式v =ωr 可知,半径越大线速度越大,B 对;在赤道上的重力加速度最小,C 错.答案:B2、解析:由单摆的振动可求得月球表面的重力加速度g ′,根据月球表面的物体所受的重力等于月球对物体的万有引力即可求得月球的密度.设月球表面的重力加速度为g ′,则T =2πl g ′.根据万有引力F =GMmr2和重力近似相等,GMm r 2=mg ′,即g ′=GM r 2,ρ=M V =M 43πr 3,联立可得ρ=3πl GrT 2.答案:B3、解析:因为要使飞船做向心运动,只有减小速度,这样需要的向心力减小,而此时提供的向心力大于所需向心力,所以只有向前喷气,使v 减小,从而做向心运动,落到B 点,故A 正确.答案:A4、解析:距离增大万有引力减小,A 正确;由m 1r 1ω2=m 2r 2ω2及r 1+r 2=r 得r 1=m 2rm 1+m 2,r 2=m 1r m 1+m 2,可知D 正确.F =G m 1m 2r 2=m 1r 1ω2=m 2r 2ω2,r 增大F 减小,因r 1增大,故ω减小,B 错;由T =2πω知C 正确.答案:B5、解析:设人的质量为m ,在地球上重力为G 地′,在星球上重力为G 星′.由G Mm R 2=G ′得R =GMm G ′,则R 星R 地=M 星·G 地′M 地·G 星′= 6.4×600960=2,故选B. 答案:B6、解析:由平抛运动公式可知,射程s =v 0t =v 02h g ,即v 0、h 相同的条件下s ∝1g,又由g =GMR 2,可得g 星g 地=M 星M 地(R 地R 星)2=91×(21)2=361,所以s 星s 地=g 地g 星=16,选项A 正确. 答案:A7、解析:如果土星外层的环是土星的一部分,它们是一个整体,角速度固定,根据v =ωR ,可知v ∝R ,选项A 正确.如果环是卫星群,则围绕土星做圆周运动,则应满足G Mm R 2=m v 2R ,可得v 2=GM R ,即v 2∝1R,选项D 正确.答案:AD8、解析:万有引力提供向心力GMm r 2=m v 2r ,v =GMr.v 1/v 2=r 2/r 1=18/19,故选C. 答案:C9、解析:设月球表面处的重力加速度为g 0,则h =12g 0t 2,设飞船在月球表面附近绕月球做匀速圆周运动所必须具有的速率为v ,由牛顿第二定律得mg 0=m v 2R,两式联立解得v=2Rh t,选项B 对.答案:B10、解析:由机械能守恒定律知,A 正确.对B 选项,由于卫星的机械能除了与高度有关外,还与质量有关,所以是错误的;由G Mm r 2=m 4π2T2r 知,离地面越高的卫星周期越大,C 正确;从列表中可以看出,11.18 km/s 的发射速度是第二宇宙速度,此速度是使卫星脱离地球围绕太阳运转,成为太阳的人造行星的最小发射速度,但逃逸不出太阳系,D 错误.答案:AC11、解析:设飞船的质量为m ,地球的质量为M ,在圆轨道上运行周期为T ,飞船绕地球做匀速圆周运动,由万有引力定律和牛顿第二定律得G Mm (R +h )2=m (R +h )4π2T2 ①由题意得T =tn②解得地球的质量M =4n 2π2(R +h )3Gt2③ 又地球体积V =43πR 3④所以,地球的平均密度ρ=M V =3πn 2(R +h )3Gt 2R 3.答案:4n 2π2(R +h )3Gt 2,3πn 2(R +h )3Gt 2R 312、解析:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有GMm r2=mrω2.航天飞机在地面上,有G MmR 2=mg .联立解得ω=gR2r2,若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π所以t =2πω-ω0=2πgR2r3-ω0 若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π所以t =2πω0-ω=2πω0-gR 2r 3答案:2πgR 2r 3-ω0或2πω0-gR2r 34-61、解析:做平抛运动的物体由于只受重力作用,故其加速度不变,A 正确.匀速圆周运动,加速度大小不变,但方向改变,B 错误.曲线运动中合外力不变时,其加速度就不变,D 正确,C 错误,故选A 、D.答案:AD2、解析:人观察小球的运动是以车为参考系的,所以当车突然向右匀加速运动后,相当于小球继续下落的同时,向左做匀加速运动,这两个运动的合运动轨迹显然应为C 选项.答案:C3、解析:A 选项,根据F =m 4π2rn 2,转速n 相同时,绳越长,即r 越大,向心力F 越大,故绳长的容易断,A 正确;B 选项,根据F =m 4π2T 2r ,周期相同时,r 越大,F 越大,也是绳长的容易断,B 错误;C 选项,根据F =m v2r,线速度v 大小相等时,r 越大,F 越小,可以判断,绳短的容易断,C 正确,D 错误.答案:AC4、解析:皮带传动且不打滑,A 点与B 点线速度相同,由a =v 2r 有a ∝1r;所以a A <a B ,A 点与C 点共轴转动,角速度相同,由a =ω2r 知a ∝r ,所以有a A >a C ,可见选项C 正确.答案:C5、解析:由于螺丝帽做圆周运动过程中恰好不下滑,则竖直方向上重力与摩擦力平衡,杆对螺丝帽的弹力提供其做匀速圆周运动的向心力,选项A 正确,BC 错误;无论杆的转动速度增大多少,竖直方向受力平衡,故选项D 错误.答案:A6、解析:由万有引力提供向心力G Mm r 2=m v2r知,当探测器到达质量密集区时,万有引力增大,探测器运行半径将减小,速度增大,故C 对.答案:C7、解析:若水速为零,因甲、乙相遇时相对位移是恒定的,只有甲、乙都沿虚线相向游,其相对速度最大,相遇时间最短.在水速不为零的情况下,两者在相向做匀速直线运动的基础上,都附加了同样的沿水流方向的运动,因此不影响他们相对位移和相对速度的大小,相遇时间和水速为零的情况完全相同仍为最短.另外,从位移合成的角度,更容易得到解答如下:设水速为零时,甲、乙沿虚线相向游动时位移分别为x 甲和x 乙,如图5所示,当水速不为零时,他们将在x 甲、x 乙的基础上都沿水流方向附加一个相同的位移x ′,由矢量合成的三角形定则知,甲、乙两人的实际位移应分别是图中的x 甲′,x 乙′.由图看出,此时他们仍到达了河中的同一点——即相遇,其相遇时间与水速为零时一样为最短.答案:A8、解析:设投在A 处的炸弹投弹的位置离A 的水平距离为x 1,竖直距离为h 1,投在B 处的炸弹投弹的位置离B 的水平距离为x 2,竖直距离为h 2.则x 1=v t 1,H =gt 21/2,求得x 1=4000 m ;x 2=v t 2,H -h =gt 22/2,求得x 2=3200 m .所以投弹的时间间隔应为:Δt =(x 1+1000 m -v 2)/v =9 s, 故C 正确.答案:C9、解析:设黑洞表面重力加速度为g ,由万有引力定律可得g =GM R 2,又有M R =c22G,联立得g =c22R =1×1012 m/s 2.选项C 正确.答案:C10、解析:小球在最高点时,杆可给球提供竖直向上的支持力,也可提供竖直向下的拉力,因此,小球在最高点的速度最小可以为零,故A 错;当最高点速度v <gL ,在最高点:杆给球竖直向上的支持力F ,mg -F =m v 2/L ,随着v 0增大,v 增大,F 减小,当v >gL 时,杆给球竖直向下的拉力,Mg +F =m v 2/L ,随v 0增大,v 增大,F 增大,故A 、C 错,B 对;小球做的是变速圆周运动,其合外力的方向不始终指向圆心,故D 错.答案:B11、解析:根据平抛运动的原理,还需要的器材是CF ,根据平抛运动的原理、实验操作、注意事项等知识可知AD 正确.答案:CF AD12、解析:从图中可以看出,a 、b 、c 、d 四点沿水平方向相邻两点间的距离均为2l ;根据平抛运动的规律,物体在任意两相邻间隔所用时间为t ,则有:v 0=2lt①由于a 、b 、c 、d 四点沿竖直方向依次相距l 、2l 、3l ;平抛物体在竖直方向做自由落体运动,而且任意两个连续相等时间里的位移之差相等,Δh =gt 2=l ,即t =l g②由①②得:v 0=2lg .代入数据得:v 0=2× 1.25×10-2×9.8 m/s =0.7 m/s. 答案:2lg 0.7 m/s13、解析:在最低点时杆对球一定是拉力,在最高点杆对球可能是拉力,也可能是支持力,由具体情况来决定.图9(1)在最低点对A 球受力分析如图甲所示,由牛顿第二定律有F -mg =m v 2R①代入数据解得F =30 N ②由牛顿第三定律,球对杆的拉力F ′=30 N ,方向向下.(2)同一根杆上转动的角速度相等,设OB ′=r =0.2 m ,v A R =v Br ③对B 受力分析如图乙所示.由牛顿第二定律有mg -F B =m v 2Br④联立③④代入数据得F B =5 N ,由牛顿第三定律知B 球对杆的压力F B ′=5 N .方向向下.答案:(1)30 N 向下 (2)5 N 向下14、解析:(1)由图可看出,物体沿x 方向的分运动为匀速直线运动,沿y 方向的分运动为匀变速直线运动,故合运动为匀变速曲线运动.(2)物体的初速度v 0=v 2x 0+v 2y 0=302+(-40)2 m/s =50 m/s.(3)在前3 s 内,x =v x ·t =30×3 m =90 m ,y =|v y 0|2·t =402×3 m =60 m ,故L =x 2+y 2=902+602m ≈108.2 m.在前6 s 内,x ′=v x t ′=30×6 m =180 m ,y ′=0,故L ′=x ′=180 m. 答案:(1)匀变速曲线运动 (2)50 m/s (3)180 m15、解析:设抛出点的高度为h ,第一次抛出时水平射程为x ;当初速度变为原来2倍时,水平射程为2x ,如图11所示.由几何关系可知: L 2=h 2+x 2①(3L )2=h 2+(2x )2 ②①②联立,得:h =33L设该星球表面的重力加速度为g则竖直方向h =12gt 2 ③又因为GMmR2=mg (或GM =gR 2) ④由③④联立,得M =23LR 23Gt 2.答案:23L ·R 23Gt 216、解析:(1)炸弹脱离飞机后做平抛运动 在水平方向上:s =v 0t在竖直方向上:H =12gt 2v y =gt联立可解得:s =v 02Hgv =v 20+v 2y =v 20+2gH(2)①物块静止时,分析受力如图13所示. 由平衡条件有 f =mg sin θ N =mg cos θ再由图中几何关系有cos θ=R R 2+H 2,sin θ=HR 2+H 2故有f =mgHR 2+H 2N =mgR R 2+H2②分析此时物块受力如图14所示. 由牛顿第二定律有mg tan θ=mrω2.其中tan θ=H R ,r =R2.可得ω=2gHR.答案:(1)v 02H g v 20+2gH (2)①mgH R 2+H2mgRR 2+H2 ②2gH R 17、解析:(1)水滴在竖直方向上做自由落体运动,有h =12gt 2,得t 1=2h g.(2)分析题意可知,在相邻两滴水的下落时间内,圆过的最小角度应为π,所以最小角速度为ω=πt 1=πg 2h.(3)第二滴水落在圆盘上的水平位移为x 2=v ·2t 1=2v 2hg,第三滴水落在圆盘上的水平位移为x 3=v ·3t 1=3v 2hg.当第二与第三滴水在盘面上的落点位于同一直径上心两侧时,两点间的距离最大,则x =x 2+x 3=5v 2hg.答案:(1)2hg(2)πg2h(3)5v2hg5-11、解析:力对物体做功的表达式为W=Fl cosθ,0°≤θ<90°时,F做正功,θ=90°,F 不做功,90°<θ≤180°时,F做负功,支持力始终竖直向上,与位移同向,θ=0°,故支持力始终做正功,D正确.答案:D2、解析:作用力与反作用力等大反向,但二者对地位移无此关系.例如静止于水面上的小船,人水平跳离船时,作用力与反作用力都做正功,故D对A错.又如在水平地面上滑行的物体,相互作用的摩擦力,一个做功,另一个不做功,故B错.答案:D3、解析:由于两个物体质量相同、下落高度相同,所以重力对两物体做的功相同,A 选项正确.由于下落的时间不同,所以重力的平均功率不相同,B选项错误.根据机械能守恒可知,两物体到达底端时动能相同,即速度大小相同、方向不同,D选项错误.由瞬时功率的计算式可得P A=mg v cosθ,P B=mg v,因此,到达底端时重力的瞬时功率P A<P B,C选项正确.答案:AC4、解析:因匀速运动,故F1·cosα=μ(mg-F1·sinα)F2·cosα=μ(mg+F2sinα)由以上两式可以看出,F1<F2,Ff甲<Ff乙由公式W=F·L·cosα,得W1<W2;W3<W4.答案:B5、解析:力F做的功等于每段恒力F与该段滑块运动的位移数值(v-t图象中图象与坐标轴围成的面积)的乘积,第1秒内,位移为一个小三角形面积S;第2秒内,位移也为一个小三角形面积S;第3秒内,位移为两个小三角形面积2S,故W1=1S,W2=3S,W3=4S,所以W1<W2<W3.答案:B6、解析:整个过程动能变化量为零,所以合力的功为零,A项正确.摩擦力大小相等,第一段位移大,所以B项正确.第一段是加速的,牵引力大于摩擦力,所以P>P1,C项错.加速阶段和减速阶段平均速度相等,所以摩擦力的平均功率相等,D项正确.答案:ABD7、解析:汽车所受阻力为F f=Pv1,汽车速度为v2时的牵引力为F=Pv2,由牛顿第二定律得F -F f =ma ,即P v 2-Pv 1=ma ,所以a =P (v 1-v 2)m v 1v 2,应选C.答案:C8、解析:若火车在5 min =300 s 内,匀加速至30 m/s ,则行驶的位移x =12v t =4.5 km ,而该题中火车是以额定功率出发,由速度—时间图线得火车的行驶距离一定大于4.5 km ,如图14中所示,阴影部分的面积一定大于△OAB 的面积,故选A.答案:A9、解析:猴子对地的高度不变,所以猴子受力平衡.设猴子的质量为m ,木棒对猴子的作用力为F ,则有F =mg ;对木棒,设木棒的重力为Mg ,则木棒所受合力为F ′+Mg =mg +Mg ,根据力的作用相互性F =F ′,根据牛顿第二定律,Mg +mg =Ma ,可见a 是恒量,t 时刻木棒速度v =at ,猴子做功的功率P =mg v =mgat ,P 与t 为正比例关系,故B 正确.答案:B10、解析:由F -mg =ma 和P =F v 可知,重物匀加速上升过程中钢绳拉力大于重力且不变,达到最大功率P 后,随v 增加,钢绳拉力F 变小,当F =mg 时重物达最大速度v 2,故v 2=P mg ,最大拉力F =mg +ma =P v 1,A 错误,B 、C 正确,由P v 1-mg =ma 得:a =P m v 1-g ,D 正确.答案:BCD11、解析:欲使拉力做功最少,须使拉力作用的位移最小,故重物应先在拉力作用下加速,再撤去拉力使木箱减速,到达50 m 处时速度恰好减为0.设加速时加速度的大小为a 1,减速时加速度的大小为a 2.由牛顿第二定律得,加速时有: 水平方向F cos37°-μF N =ma 1 竖直方向F sin37°+F N -mg =0 减速时有:μmg =ma 2且有v 2=2a 1x 1=2a 2x 2 x 1+x 2=x 联立以上各式解得:x 1≈24 m 由功的定义,有W =Fx 1cos37°=400×24×0.8 J =7.68×103 J. 答案:7.68×103 J12、解析:(1)当F =F f 时,速度最大,所以,根据P 额=F f ·v m 得F f =P 额v m=80×10320 N =4×103 N.(2)根据牛顿第二定律,得F -F f =ma ,①根据瞬时功率计算式,得 P =F v =Fat ,② 所以由①②两式得P =(F f +ma )at =(4×103+2×103×2)×2×3 W =4.8×104W .(3)根据P =F v 可知:随v 的增加,直到功率等于额定功率时,汽车完成整个匀加速直线运动过程,所以P 额=Fat m ③将式①代入式③得t m =P 额(F f +ma )a =80×103(4×103+2×103×2)×2 s =5 s.(4)根据功的计算式得W F =Fs =F ·12at 2m =(F f +ma )·12at 2m=(4×103+2×103×2)×12×2×52 J=2×105J.答案:(1)4×103N (2)4.8×104W (3)5 s (4)2×105J5-21、解析:在0~t 1时间内,速度增大,由动能定理得,选项A 正确,由P =F ·v 可知,在t =0及t =t 2时刻,外力功率为零,v -t 图象中的图线的斜率代表加速度,在t 1时刻a =0,则F =0,外力功率为0,选项B 、C 均错;在t 1~t 3时间内,动能改变量为零,由动能定理得,选项D 正确.答案:AD2、解析:设小球初动能为E k 0,阻力为f ,上升到最高点,由动能定理,得:0-E k 0=-(mg +f )·H .上升到离地面高度为h 点时,设动能为E k 1,则E k 1-E k 0=-(mg +f )·h ,E k 1=2mgh ;在下落至离地面高度h 处,设动能为E k 2,则E k 2=(mg -f )(H -h ),E k 2=12mgh ;联立以上各式,解得:h =49H ,故选项D 正确.答案:D3、解析:在合力F 的方向上,由动能定理得,W =Fs =12m v 2,某个分力的功为W 1=F 1s cos30°=F 2cos30°s cos30°=12Fs =14m v 2,故B 正确.。
综合复习与测试试卷(答案在后面)一、单项选择题(本大题有7小题,每小题4分,共28分)1、在下列关于速度的定义中,正确的是:A、物体单位时间内通过的路程B、物体单位位移经过的时间C、物体位置变化的大小D、物体单位时间内位置变化的大小2、一个物体从静止开始,沿直线做匀加速运动,在5秒内通过的路程是25米,那么物体的加速度是多少?A、5 m/s²B、2.5 m/s²C、1 m/s²D、0.5 m/s²3、题干:一个物体在水平面上做匀速直线运动,其受到的合力为0。
以下说法正确的是:A、物体一定不受任何力的作用B、物体受到的摩擦力与拉力大小相等,方向相反C、物体可能受到重力和支持力,但合力为0D、物体的质量与受到的合力无关4、题干:一个物体从静止开始做自由落体运动,不计空气阻力。
以下说法正确的是:A、物体的速度随时间线性增加B、物体的加速度随时间线性减小C、物体的位移随时间平方增加D、物体的动能随时间线性增加5、在真空中,有两个静止的点电荷,它们之间静电力的大小为F。
如果保持两个点电荷的电量不变,而使它们之间的距离增大到原来的2倍,则它们之间的静电力的大小变为多少?A、F/2B、FC、2FD、F/46、一个物体在光滑水平面上受到一个恒定的水平拉力作用,开始从静止出发沿直线运动。
在接下来的10秒内,该物体的速度增加了20 m/s,则这个恒定的水平拉力的大小为多少,如果物体的质量是2 kg?A、2 NB、4 NC、10 ND、20 N7、在下列关于弹性势能的叙述中,正确的是()A、弹簧的弹性势能与其形变程度成正比B、弹力越大,弹性势能就越大C、弹簧的弹性势能与弹簧的质量成正比D、弹性势能只存在于理想弹簧上二、多项选择题(本大题有3小题,每小题6分,共18分)1、下列关于力的概念及其作用的描述,正确的是:A、力是物体对物体的作用,物体间不接触也可以产生力的作用B、力的单位是牛顿,简称NC、力的三要素是大小、方向和作用点D、力可以改变物体的运动状态,但不能改变物体的形状2、关于运动和静止的相对性,以下说法正确的是:A、如果物体相对于某个参照物位置没有变化,那么这个物体是静止的B、运动和静止是绝对的,不受参照物选择的影响C、两个相对运动的物体,相对于彼此可能是静止的D、选择不同的参照物,同一个物体的运动状态可能是静止的,也可能是运动的3、关于功和功率的关系,下列说法中正确的是()A、功率大,说明物体做功多B、做功多的物体,其功率必定大C、做功快的物体,其功率必定大D、力对物体不做功,说明物体没有移动三、非选择题(前4题每题10分,最后一题14分,总分54分)第一题题目:一滑块从斜面顶端自由下滑,不计空气阻力。
高中物理选择性必修第二册各章综合测验1.安培力与洛伦兹力.............................................................................................................. - 1 -2.电磁感应 ........................................................................................................................... - 15 -3.交变电流 ............................................................................................................................ - 27 -4.电磁振荡与电磁波............................................................................................................. - 39 -5.传感器 ................................................................................................................................ - 49 -1.安培力与洛伦兹力时间:90分钟 满分:100分一、单项选择题(本题共8小题,每小题3分,共24分)1.如图所示,一带负电的粒子(不计重力)进入磁场中,图中的磁场方向、速度方向及带电粒子所受的洛伦兹力方向标示正确的是( )2.如图所示,一根导线位于磁感应强度大小为B 、方向垂直纸面向里的匀强磁场中,其中AB =BC =CD =DE =l ,且∠C =120°、∠B =∠D =150°.现给这根导线通入由A 至E 的恒定电流I ,则导线受到磁场作用的合力大小为( )A .23BIl B.⎝ ⎛⎭⎪⎫2+32BIl C .(2+3)BIl D .4BIl3.在如图所示的匀强电场和匀强磁场共存的区域内,电子(重力不计)可能沿水平方向向右做直线运动的是( )4.电视显像管原理的示意图如图所示,当没有磁场时,电子束将打在荧光屏正中的O点,安装在管径上的偏转线圈可以产生磁场,使电子束发生偏转.设垂直纸面向里的磁场方向为正方向,若使电子打在荧光屏上的位置由a点逐渐移动到b点,下列变化的磁场能够使电子发生上述偏转的是 ( )5.固定导线c垂直纸面,可动导线ab通以如图所示方向的电流,用测力计悬挂在导线c 的上方,导线c中通以如图所示的电流时,以下判断正确的是( )A.导线a端转向纸外,同时测力计读数减小B.导线a端转向纸外,同时测力计读数增大C.导线a端转向纸里,同时测力计读数减小D.导线a端转向纸里,同时测力计读数增大6.一直导线平行于通电螺线管的轴线放置在螺线管的上方,如图所示,如果直导线可以自由地运动且通以方向为由a到b的电流,则导线ab受到安培力的作用后的运动情况为( )A.从上向下看顺时针转动并靠近螺线管B.从上向下看顺时针转动并远离螺线管C.从上向下看逆时针转动并远离螺线管D.从上向下看逆时针转动并靠近螺线管7.1932年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示,这台加速器由两个铜质D形盒D1、D2构成,其间留有空隙,下列说法正确的是( )A.离子从磁场中获得能量B.电场的周期随离子速度增大而增大C.离子由加速器的中心附近射入加速器D.当磁场和电场确定时,这台加速器仅能加速电荷量q相同的离子8.如图所示,将一束等离子体(即高温下电离的气体,含有大量带正电和负电的离子,从整体上来说呈电中性)喷射入磁感应强度为B的匀强磁场,磁场中有两块正对面积为S,相距为d的平行金属板,与外电阻R相连构成电路.设气流的速度为v,气体的电导率(电阻率的倒数)为g,则流过外电阻R的电流I及电流方向为( )A.BdvR,A→R→B B.BdvR,B→R→AC.BdvSggSR+d,A→R→B D.BdvSSR+gd,B→R→A二、多项选择题(本题共4小题,每小题4分,共16分)9.如图所示,虚线左侧的匀强磁场磁感应强度为B1,虚线右侧的匀强磁场磁感应强度为B2,且B1=2B2,当不计重力的带电粒子从B1磁场区域运动到B2磁场区域时,粒子的( )A.速率将加倍B.轨迹半径将加倍C.周期将加倍D.做圆周运动的角速度将加倍10.如图所示,质量为m的带电绝缘小球(可视为质点)用长为l的绝缘细线悬挂于O点,在悬点O下方有匀强磁场.现把小球拉离平衡位置后从A点由静止释放,则下列说法中正确的是( )A.小球从A至C和从D至C到达C点时,速度大小相等B.小球从A至C和从D至C到达C点时,细线的拉力相等C.小球从A至C和从D至C到达C点时,加速度相同D.小球从A至C和从D至C过程中,运动快慢一样11.一个用于加速质子的回旋加速器,其核心部分如图所示,D形盒半径为R,垂直D 形盒底面的匀强磁场的磁感应强度为B,两盒分别与交流电源相连.设质子的质量为m、电荷量为q,则下列说法正确的是( )A .D 形盒之间交变电场的周期为2πm qB B .质子被加速后的最大速度随B 、R 的增大而增大C .质子被加速后的最大速度随加速电压的增大而增大D .质子离开加速器时的最大动能与R 成正比12.如图所示,左右边界分别为PP ′、QQ ′的匀强磁场的宽度为d ,磁感应强度大小为B ,方向垂直于纸面向里,一个质量为m 、电荷量为q 的微观粒子,沿图示方向以速度v 0垂直射入磁场,欲使粒子不能从边QQ ′射出,粒子入射速度v 0的最大值可能是( )A.Bqd mB.2+2Bqd mC.2-2Bqdm D.2qBd 2m三、非选择题(本题共6小题,共60分)13.(8分)如图所示,虚线框内存在一沿水平方向且与纸面垂直的匀强磁场.现通过测量通电导线在磁场所受的安培力,来测量磁场磁感应强度的大小并判定其方向.所用部分器材已在图中给出,其中D 为位于纸面内的U 形金属框,其底边水平,两侧边竖直且等长;E 为直流电源;R 为电阻箱;为电流表;S 为开关.此外还有细沙、天平、米尺和若干轻质导线.(1)在图中画线连接成实验电路图.(2)完成下列主要实验步骤中的填空:①按图接线.②保持开关S 断开,在托盘内加入适量细沙,使D 处于平衡状态,然后用天平称出细沙质量m 1.③闭合开关S ,调节R 的值使电流大小适当,在托盘内重新加入适量细沙,使D ________________,然后读出________________,并用天平称出________________.④用米尺侧量________.(3)用测得的物理量和重力加速度g 表示磁感应强度的大小,可以得出B =________________.(4)判定磁感应强度方向的方法:若________,磁感应强度方向垂直纸面向外;反之,磁感应强度方向垂直纸面向里.14.(8分)如图所示,两平行金属导轨间的距离L =0.4 m ,金属导轨所在的平面与水平面夹角θ=37°,在导轨所在平面内,分布着磁感应强度B =0.5 T 、方向垂直于导轨所在平面的匀强磁场.金属导轨的一端接有电动势E =4.5 V 、内阻r =0.5 Ω的直流电源.现把一个质量m =0.04 kg 的导体棒ab 放在金属导轨上,导体棒恰好静止.导体棒与金属导轨垂直且接触良好,导体棒与金属导轨接触的两点间的电阻R 0=2.5 Ω,金属导轨电阻不计,g 取10 m/s 2.已知sin 37°=0.6,cos 37°=0.8,求:(1)通过导体棒的电流;(2)导体棒受到的安培力大小;(3)导体棒受到的摩擦力大小.15.(8分)在真空中,半径r =3×10-2 m 的圆形区域内有匀强磁场,方向如图所示,磁感应强度B =0.2 T .一个带正电的粒子,以初速度v 0=106 m/s ,从直径ab 的一端a 射入磁场,已知该粒子的比荷q m =108C/kg ,不计粒子重力,求:(1)粒子在磁场中做匀速圆周运动的半径是多少?(2)若要使粒子飞离磁场时有最大偏转角,求入射时v0方向与ab的夹角θ及粒子的最大偏转角β.16.(10分)如图甲所示,M、N为竖直放置彼此平行的两块平板,板间距离为d,两板中央各有一个小孔O、O′正对,在两板间有垂直于纸面方向的磁场,磁感应强度随时间的变化如图乙所示,设垂直纸面向里的磁场方向为正方向.有一群正离子在t=0时垂直于M板从小孔O射入磁场.已知正离子质量为m、带电荷量为q,正离子在磁场中做匀速圆周运动的周期与磁感应强度变化的周期都为T0,不考虑由于磁场变化而产生的电场的影响,不计离子所受重力.求:(1)磁感应强度B0的大小;(2)要使正离子从O′孔垂直于N板射出磁场,正离子射入磁场时的速度v0的可能值.17.(12分)如图所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60 T,磁场内有一块足够长的平面感光板ab,板面与磁场方向平行,在距ab的距离l=16 cm处,有一个点状的α粒子放射源S,它向各个方向发射α粒子,α粒子的速率均为v =3.0×106 m/s ,已知α粒子的比荷q m =5.0×107C/kg ,现只考虑在纸面内运动的α粒子,不计α粒子重力,求ab 上被α粒子打中的区域的长度.18.(14分)如图所示,平面直角坐标系xOy 中,在第二象限内有一半径R =5 cm 的圆,与y 轴相切于点Q (0,5 3 cm),圆内有匀强磁场,方向垂直于xOy 平面向外.在x =-10 cm 处有一个比荷为q m =1.0×108C/kg 的带正电的粒子,正对该圆圆心方向发射,粒子的发射速率v 0=4.0×106 m/s ,粒子在Q 点进入第一象限.在第一象限某处存在一个矩形匀强磁场区域,磁场方向垂直于xOy 平面向外,磁感应强度B 0=2 T .粒子经该磁场偏转后,在x 轴M 点(6 cm,0)沿y 轴负方向进入第四象限(不考虑粒子的重力).求:(1)第二象限圆内磁场的磁感应强度B 的大小.(2)第一象限内矩形磁场区域的最小面积.答案及解析1.解析:A图中带负电的粒子向右运动,掌心向外,四指所指的方向向左,大拇指所指的方向是向下,选项A错误;B图中带负电粒子的运动方向与磁感线平行,此时不受洛伦兹力的作用,选项B错误;C图中带负电的粒子向右运动,掌心向外,四指所指的方向向左,大拇指所指的方向是向下,选项C正确;D图中带负电的粒子向上运动,掌心向里,四指应向下,大拇指的方向向左,选项D错误.答案:C2.解析:据题图和几何关系求得A、E两点间的距离为:L等=(2+3)l.据安培力公式得F=BIL等=(2+3)BIl,故A、B、D错误,C正确.答案:C3.解析:在A图中,电子向右运动,受力如图电子做曲线运动,A错误;在B图中,电子只受向左的电场力,不受洛伦兹力,只要电子v足够大,可以向右做匀减速直线运动,通过电磁场,B正确;在C图中,向右运动电子所受电场力,洛伦兹力均竖直向下,与v不共线,做曲线运动,C错误;在D图中,向右运动电子所受电场力,洛伦兹力均竖直向上,与v不共线,做曲线运动,D错误.答案:B4.解析:电子偏转到a点时,根据左手定则可知,磁场方向垂直纸面向外,对应的B t图的图线应在t轴下方,C、D错误;电子偏转到b点时,根据左手定则可知,磁场方向垂直纸面向里,对应的B t图的图线应在t轴上方,A正确、B错误.答案:A5.解析:导线c中电流产生的磁场在右边平行纸面斜向左上,在左边平行纸面斜向左下,在ab左右两边各取一小电流元,根据左手定则,左边的电流元所受的安培力方向向外,右边的电流元所受安培力方向向里,知ab导线逆时针方向(从上向下看)转动.当ab导线转过90°后,两导线电流为同向电流,相互吸引,导致测力计的读数变大,故B正确,A、C、D 错误.答案:B6.解析:先由安培定则判断通电螺线管的南、北两极,找出导线左、右两端磁感应强度的方向,并用左手定则判断这两端受到的安培力的方向,如图甲所示.可以判断导线受到磁场力作用后从上向下看按逆时针方向转动,再分析导线转过90°时导线位置的磁场方向,再次用左手定则判断导线所受磁场力的方向,如图乙所示,可知导线还要靠近螺线管,所以D 正确,A、B、C错误.答案:D7.解析:离子在电场力作用下,从电场中获得能量,而洛伦兹力始终与速度的方向垂直,所以洛伦兹力不做功,离子不能从磁场中获得能量,A 错误;离子最终的速度与回旋半径成正比,要使半径最大,应使离子从中心附近射入加速器,C 正确;加速离子时,交变电场的周期与离子在磁场中运动的周期相等,离子在磁场中运动的周期T =2πm qB,与离子速度无关,与离子的比荷有关,当磁场和电场确定时,这台加速器仅能加速比荷相同的离子,B 、D 错误.答案:C8.解析:由左手定则知,正离子向上偏,负离子向下偏,故电流方向为A →R →B ,设带电离子电荷量为q ,由q E d =qvB ,I =E R +r ,r =ρd S ,ρ=1g ,联立解得I =BdvSg gSR +d ,故选C. 答案:C9.解析:带电粒子在洛伦兹力作用下做匀速圆周运动,轨迹半径R =mvqB ,周期T =2πm qB,角速度ω=2πT =qB m,洛伦兹力不做功,B 1=2B 2,故由B 1进入B 2后v 不变,R 加倍,T 加倍,ω减半,B 、C 正确.答案:BC10.解析:由题意可知,当进入磁场后,才受到洛伦兹力作用,且力的方向与速度垂直,所以只有重力做功,则小球从A 至C 和从D 至C 到达C 点时,速度大小相等,加速度相同,从A 至C 和从D 至C 过程中,运动快慢也一样,A 、C 、D 正确;由于进出磁场的方向不同,由左手定则可知,洛伦兹力方向不同,所以细线的拉力的大小不同,故B 错误.答案:ACD11.解析:D 形盒之间交变电场的周期等于质子在磁场中运动的周期,A 项正确;由r =mvqB 得:当r =R 时,质子有最大速度v m =qBR m,即B 、R 越大,v m 越大,v m 与加速电压无关,B 正确,C 错误;质子离开加速器时的最大动能E km =12mv 2m =q 2B 2R 22m,故D 错误. 答案:AB12.解析:粒子射入磁场后做匀速圆周运动,由R =mv 0qB知,粒子的入射速度v 0越大,R 越大.当粒子的径迹和边界QQ ′相切时,粒子刚好不从QQ ′射出,此时其入射速度v 0应为最大.若粒子带正电,其运动轨迹如图甲所示(此时圆心为O 点),容易看出R 1-R 1sin (90°-45°)=d ,将R 1=mv 0qB 代入得v 0=2+2Bqd m,选项B 正确;若粒子带负电,其运动轨迹如图乙所示(此时圆心为O ′点),容易看出R 2+R 2cos 45°=d ,将R 2=mv 0qB代入得v 0=2-2Bqdm,选项C 正确.答案:BC 13.解析:(1)根据实验目的和电磁天平的原理,将电源、开关、电阻箱、电流表及U 形金属框串联起来,连接成如答图所示的电路图.(2)设金属框质量为M ,托盘质量为m 0,第一次操作中未接通电源时由平衡条件得Mg =(m 0+m 1)g ;第二次接通电源后,重新加入适量细沙,使D 重新处于平衡状态,然后读出电流表的示数I ,用天平称出此时细沙的质量m 2,并测量出金属框底部的长度l .(3)若金属框受到的安培力竖直向下,由平衡条件得BIl +Mg =(m 0+m 2)g ,两式联立解得B =m 2-m 1g Il .若金属框受到的安培力竖直向上,则B =m 1-m 2g Il .综上可得B =|m 2-m 1|Ilg . (4)若m 2>m 1,则由左手定则可知磁感应强度方向垂直纸面向外,反之,磁感应强度方向垂直纸面向里.答案:(1)如解析图所示(1分) (2)③重新处于平衡状态(1分) 电流表的示数I (1分) 此时细沙的质量m 2(1分) ④D 的底边长度l (1分) (3)|m 2-m 1|Ilg (2分) (4)m 2>m 1(1分)14.解析:(1)根据闭合电路欧姆定律I =ER 0+r=1.5 A .(2分)(2)导体棒受到的安培力F 安=BIL =0.3 N .(2分)(3)导体棒受力分析如图,将重力正交分解F 1=mg sin 37°=0.24 N ,(1分)F 1<F 安,根据平衡条件,mg sin 37°+F f =F 安,(1分)解得F f =0.06 N .(2分)答案:(1)1.5 A (2)0.3 N (3)0.06 N15.解析:(1)粒子射入磁场后,由于不计重力,所以洛伦兹力充当其做圆周运动需要的向心力,根据牛顿第二定律有:qv 0B =mv 20R(2分)得R =mv 0qB=5×10-2m .(2分)(2)粒子在圆形磁场区域的运动轨迹为一段半径R =5 cm 的圆弧,要使偏转角最大,就要求这段圆弧对应的弦最长,即为场区的直径,粒子运动轨迹的圆心O ′在ab 弦的中垂线上,如图所示,由几何关系知sin θ=r R=0.6,所以θ=37°,(2分)而最大偏转角β=2θ=74°.(2分)答案:(1)5×10-2m (2)θ=37° β=74°16.解析:(1)正离子射入磁场,洛伦兹力提供向心力,qv 0B 0=mv 20r,(2分)正离子做匀速圆周运动的周期T 0=2πrv 0,(1分)联立两式解得磁感应强度B 0=2πm qT 0.(2分)(2)要使正离子从O ′孔垂直于N 板射出磁场,v 0的方向应如图所示,当正离子在两板之间只运动一个周期,即t =T 0时,有r =d4,(1分)当正离子在两板之间运动n 个周期,即t =nT 0时,有r =d4n(n =1,2,3,…),(2分)联立解得正离子的速度的可能值为v 0=B 0qr m =πd 2nT 0(n =1,2,3,…).(2分)答案:(1)2πm qT 0 (2)πd 2nT 0(n =1,2,3,…)17.解析:α粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R 表示其轨迹半径,有qvB =m v 2R,(2分)可得R =mv qB,(1分)代入数值得R =10 cm ,(1分) 则2R >l >R .(1分)由于α粒子的速率一定,轨迹半径一定,则由定圆旋转法作出α粒子运动的临界轨迹如图所示,其中SP 垂直于ab ,在P 1点α粒子的运动轨迹与ab 板相切,即P 1点为ab 上被α粒子打中区域的左边界,由几何知识有P 1P = R 2-l -R2,(2分)P 2点为ab 上被α粒子打中区域的右边界, SP 2=2R ,由几何关系得PP 2=2R2-l 2,(2分)所求长度为P 1P 2=P 1P +PP 2,(1分) 代入数据得P 1P 2=20 cm.(2分) 答案:20 cm18.解析:(1)画出粒子的运动轨迹,如图所示 作O 1P 1垂直于PO ,由几何关系知∠O 1OP =60°(2分)设粒子在第二象限圆内磁场做匀速圆周运动的半径为r 1,由几何关系有tan 60°=r 1R(2分)由洛伦兹力提供向心力得qv 0B =m v 20r 1(2分)解得B =4315T.(2分)(2)粒子在第一象限内转过14圆周,设轨迹半径为r 2,由洛伦兹力提供向心力得qv 0B 0=m v 20r 2(2分)答图中的矩形面积即最小磁场区域面积,由几何关系得S min =2r 2⎝ ⎛⎭⎪⎫r 2-22r 2(2分) 联立解得矩形磁场区域的最小面积为S min =4(2-1)cm 2.(2分) 答案:(1)4315T (2)4(2-1)cm22.电磁感应时间:90分钟 满分:100分一、单项选择题(本题共8小题,每小题3分,共24分)1.一平面线圈用细杆悬于P 点,开始时细杆处于水平位置,释放后让它在如图所示的匀强磁场中运动,已知线圈平面始终与纸面垂直,当线圈第一次通过位置Ⅰ和位置Ⅱ时,顺着磁场的方向看去,线圈中的感应电流的方向分别为( )A .逆时针方向 逆时针方向B .逆时针方向 顺时针方向C .顺时针方向 顺时针方向D .顺时针方向 逆时针方向2.如图所示,在一蹄形磁铁下面放一个铜盘,铜盘和磁铁均可以自由绕OO ′轴转动,两磁极靠近铜盘,但不接触.当磁铁绕轴转动时,铜盘将( )A .以相同的转速与磁铁同向转动B .以较小的转速与磁铁同向转动C .以相同的转速与磁铁反向转动D .静止不动3.如图所示,空间有一垂直于纸面向里的匀强磁场,一长为L 的直金属棒与磁感应强度方向垂直,当它以速度v 沿与棒和磁感应强度都垂直的方向运动时,棒两端的感应电动势大小为E ;将此棒弯成一半圆形置于与磁感应强度相垂直的平面内,当它沿垂直直径的方向以速度v 运动时,棒两端的感应电动势大小为E ′,则E ′E等于( )A.π2B.2πC.1 D.1π4.如图所示电路中,L a、L b两灯相同,闭合开关S电路达到稳定后两灯一样亮,则( )A.当S断开的瞬间,L a、L b两灯中电流立即变为零B.当S断开的瞬间,L a、L b两灯中都有向右的电流,两灯不立即熄灭C.当S闭合的瞬间,L a比L b先亮D.当S闭合的瞬间,L b比L a先亮5.如图所示,条形磁铁从高h处自由下落,中途穿过一个固定的空心线圈.开关S断开,条形磁铁至落地用时t1,落地时速度为v1;S闭合,条形磁铁至落地用时t2落地时速度为v2,则它们的大小关系正确的是( )A.t1>t2,v1>v2 B.t1=t2,v1=v2C.t1<t2,v1<v2 D.t1<t2,v1>v26.如图甲所示,面积S=1 m2的导体圆环内通有垂直于圆平面向里的磁场,磁场的磁感应强度B随时间t变化的关系如图乙所示(B取向里为正),以下说法正确的是( )A.环中没有产生感应电流B.环中产生顺时针方向的感应电流C.环中产生的感应电动势大小为1 VD.环中产生的感应电动势大小为2 V7.如图所示,将两块水平放置的金属板用导线与一线圈连接,线圈中存在方向竖直向上、大小变化的磁场,两板间有一带正电的油滴恰好处于静止状态,则磁场的磁感应强度B随时间t变化的图像是( )8.如图所示,A是一边长为L的正方形导线框.虚线框内有垂直纸面向里的匀强磁场,磁场宽度为3L.线框的bc边与磁场左右边界平行且与磁场左边界的距离为L.现维持线框以恒定的速度v沿x轴正方向运动.规定磁场对线框作用力沿x轴正方向为正,且在图示位置时为计时起点,则在线框穿过磁场的过程中,磁场对线框的作用力随时间变化的图像正确的是( )二、多项选择题(本题共4小题,每小题4分,共16分)9.如图甲所示,10匝的线圈内有一垂直纸面向里的磁场,线圈的磁通量在按图乙所示规律变化,下列说法正确的是( )A.电压表读数为10 VB.电压表读数为15 VC .电压表“+”接线柱接A 端D .电压表“+”接线柱接B 端10.如图所示,纸面内有一矩形导体闭合线框abcd ,ab 边长大于bc 边长,置于垂直纸面向里、边界为MN 的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN .第一次ab 边平行MN 进入磁场,线框上产生的热量为Q 1,通过线框导体横截面积的电荷量为q 1;第二次bc 边平行于MN 进入磁场,线框上产生的热量为Q 2,通过线框导体横截面的电荷量为q 2,则( )A .Q 1>Q 2B .q 1>q 2C .q 1=q 2D .Q 1=Q 211.如图甲为电动汽车无线充电原理图,M 为受电线圈,N 为送电线圈.图乙为受电线圈M 的示意图,线圈匝数为n ,电阻为r ,横截面积为S ,两端a 、b 连接车载变流装置,匀强磁场平行于线圈轴线向上穿过线圈.下列说法正确的是( )A .只要受电线圈两端有电压,送电线圈中的电流一定不是恒定电流B .只要送电线圈N 中有电流流入,受电线圈M 两端一定可以获得电压C .当线圈M 中磁感应强度均匀增加时,M 中有电流从a 端流出D .若Δt 时间内,线圈M 中磁感应强度均匀增加ΔB ,则M 两端的电压为nS ΔBΔt12.如图所示,在水平桌面上放置两条相距l 的平行粗糙且无限长的金属导轨ab 与cd ,阻值为R 的电阻与导轨的a 、c 端相连.金属滑杆MN 垂直于导轨并可在导轨上滑动,且与导轨始终接触良好.整个装置放于匀强磁场中,磁场的方向竖直向上,磁感应强度的大小为B .滑杆与导轨电阻不计,滑杆的中点系一不可伸长的轻绳,绳绕过固定在桌边的光滑轻滑轮后,与一质量为m 的物块相连,拉滑杆的绳处于水平拉直状态.现若由静止开始释放物块,用I 表示稳定后回路中的感应电流,g 表示重力加速度,设滑杆在运动中所受的摩擦阻力恒为F f ,则在物块下落过程中( )A .物块的最终速度为mg -F f RB 2l 2B .物块的最终速度为I 2Rmg -F fC .稳定后物块重力的功率为I 2R D .物块重力的最大功率可能大于mg mg -F f RB 2l 2三、非选择题(本题共6小题,共60分)13.(6分)观察如图实验装置,实验操作中,当导体棒AB 沿着磁感线方向上下运动时,电流计指针________(选填“偏转”或“不偏转”);当导体棒AB 垂直磁感线方向左右运动时,电流计指针________(选填“偏转”或“不偏转”);若流入电流计的电流从右接线柱进入,指针就往右偏转,则为使图中电流计指针往左偏转,导体棒AB 应往________(选填“上”“下”“左”“右”)运动.14.(8分)我们可以通过实验探究电磁感应现象中感应电流方向的决定因素和其所遵循的物理规律.以下是实验探究过程的一部分.(1)如图甲所示的实验装置,当磁铁的N 极向下运动时,发现电流表指针偏转,若要探究线圈中产生的感应电流的方向,必须知道________.(2)如图乙所示,实验中发现闭合开关时,电流表指针向右偏转.电路稳定后,若向左移动滑动变阻器的滑片,则电流表指针向________偏转;若将线圈A 抽出,则电流表指针向________偏转.(填“左”或“右”)15.(7分)如图所示,电阻为0.1 Ω的正方形单匝线圈abcd 的边长为0.2 m ,bc 边与匀强磁场边缘重合.磁场的宽度等于线圈的边长,磁感应强度大小为0.5 T .在水平拉力作用下,线圈以8 m/s 的速度向右穿过磁场区域.求线圈在上述过程中(1)感应电动势的大小E;(2)所受拉力的大小F;(3)感应电流产生的热量Q.16.(9分)如图甲所示,平行长直金属导轨水平放置,间距L=0.4 m.导轨右端接有阻值R=1 Ω的电阻.导体棒垂直放置在导轨上,且接触良好,导体棒及导轨的电阻均不计,导轨间正方形区域abcd内有方向竖直向下的匀强磁场,bd连线与导轨垂直,长度也为L.从0时刻开始,磁感应强度B的大小随时间t变化,规律如图乙所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s后刚好进入磁场,若使棒在导轨上始终以速度v=1 m/s做直线运动,求:(1)棒进入磁场前,回路中的电动势E.(2)棒在运动过程中受到的最大安培力F.17.(14分)如图所示,空间存在B=0.5 T、方向竖直向下的匀强磁场,MN、PQ是水平放置的平行长直导轨,其间距L=0.2 m,电阻R=0.3 Ω接在导轨一端,ab是跨接在导轨上质量m=0.1 kg、电阻r=0.1 Ω的导体棒,已知导体棒和导轨间的动摩擦因数为0.2.从零时刻开始,对ab棒施加一个大小为F=0.45 N、方向水平向左的恒定拉力,使其从静止开始沿导轨滑动,过程中棒始终保持与导轨垂直且接触良好,求:(1)导体棒所能达到的最大速度;(2)试定性画出导体棒运动的速度—时间图像.18.(16分)如图所示,平行倾斜光滑导轨与足够长的平行水平光滑导轨平滑连接,导轨电阻不计.质量分别为m 和12m 的金属棒b 和c 静止放在水平导轨上,b 、c 两棒均与导轨垂直.图中de 虚线往右有范围足够大、方向竖直向上的匀强磁场.质量为m 的绝缘棒a 垂直于倾斜导轨静止释放,释放位置与水平导轨的高度差为h .已知绝缘棒a 滑到水平导轨上与金属棒b 发生弹性正碰,金属棒b 进入磁场后始终未与金属棒c 发生碰撞.重力加速度为g ,求:(1)绝缘棒a 与金属棒b 发生弹性正碰后分离时两棒的速度大小; (2)金属棒b 进入磁场后,其加速度为其最大加速度的一半时的速度大小; (3)两金属棒b 、c 上最终产生的总焦耳热.。
最新高中物理必修二单元测试题全套带答案详解(教科版)第一章抛体运动单元质量评估(90分钟 100分)[来源:学*科*网Z*X*X*K][来源:学§科§网]一、选择题(本大题共10小题,每小题4分,共40分。
每小题至少一个答案正确)1.某人游长江,他以一定的速度面部始终垂直河岸向对岸游去。
江中各处水流速度相等,他游过的路程,过河所用的时间与水速的关系是()A.水速大时,路程长,时间长B.水速大时,路程长,时间短C.水速大时,路程长,时间不变D.路程、时间与水速无关2.在无风的情况下,跳伞运动员从水平飞行的飞机上跳伞,下落过程中受到空气阻力,下列描述下落速度的水平分量大小vx 、竖直分量大小vy与时间t的图像,可能正确的是()3.滑雪运动员以20 m/s的速度从一平台水平飞出,落地点与飞出点的高度差为3.2 m。
不计空气阻力,g取10 m/s2。
运动员飞过的水平距离为s,所用时间为t,则下列结果正确的是()A.s=16 m,t=0.50 s B.s=16 m,t=0.80 sC.s=20 m,t=0.50 s D.s=20 m,t=0.80 s4.做曲线运动的物体,一定变化的物理量是()A.速率B.速度C.加速度D.合外力5.如图所示,沿y方向的一个分运动的初速度v1是沿x方向的另一个分运动的初速度v2的2倍,而沿y方向的分加速度a1是沿x方向的分加速度a2的一半。
对于这两个分运动的合运动,下列说法中正确的是()A.一定是曲线运动B.一定是直线运动C.可能是曲线运动,也可能是直线运动D.无法判定6.如图所示,在同一竖直面内,小球a、b从高度不同的两点,分别以初速度va 和vb沿水平方向抛出,经过时间ta和tb后落到与两抛出点水平距离相等的P点。
若不计空气阻力,下列关系式正确的是()A.ta >tb,va<vbB.ta>tb,va>vbC.ta <tb,va<vbD.ta<tb,va>vb7.如图所示,斜面上有a、b、c、d四个点,且ab=bc=cd。
必修二综合测试卷一、选择题(本大题共10个小题,每小题一个或者一个以上正确答案,请将正确答案的序号选出并填写在对应题号下的空格中,每小题5分,共50分)1、一船在静水中的速度为6 m/s,要横渡流速为8 m/s的河,下列说法正确的是()A.这船不能渡过此河B.船能行驶到正对岸C.若河宽60 m,过河的最少时间为10 sD.若河宽60 m,过河的最少时间为7.5 s2、有一种叫做“蹦极跳”的运动,如图所示,质量为m的游戏者身系一根长为L、弹性优良的轻质柔软橡皮绳,从高处由静止开始下落1.5L时到达最低点,若在下落过程中不计空气阻力,则以下说法正确的是()A.速度先增大后减小B.加速度先减小后增大C.动能增加了mgLD.重力势能减小了mgL3、在光滑水平面上,用绳子系一小球,做半径为R的匀速圆周运动,若绳的拉力为F,在小球经圆周的过程中,F所做的功为()A.0B.C.RFD.RF4、质点所受的力F随时间变化的规律如图所示,力的方向始终在一直线上,已知t=0时质点的速度为零,在图示的t1、t2、t3和t4时刻中,哪一时刻质点的动能最大()A.t1B.t2C.t3D.t45、某质点在光滑水平面上做匀速直线运动,现对它施加一个大小不变、方向改变的水平力,则下列说法正确的是()A.质点可能做匀加速直线运动B.质点可能做匀减速直线运动C.质点可能做匀速圆周运动D.质点可能做匀变速曲线运动6、如图所示,在水平放置的半径为R的圆柱体的正上方的P点将一个小球以水平速度v0沿垂直于圆柱体的轴线方向抛出,小球飞行一段时间后恰好从圆柱体的Q点沿切线飞过,测得O、Q连线与竖直方向的夹角为θ,那么小球完成这段飞行的时间是()A. B. C. D.7、如图所示,一个内壁光滑的圆锥筒,其轴线垂直于水平面,圆锥筒固定不动。
有一个质量为m的小球A紧贴着筒内壁在水平面内做匀速圆周运动,筒口半径和筒高分别为R和H,小球A所在的高度为筒高的一半。
综合复习与测试试卷(答案在后面)一、单项选择题(本大题有7小题,每小题4分,共28分)1、关于机械波的传播,下列说法正确的是()。
A、机械波可以在真空中传播。
B、机械波的频率等于波源的振动频率。
C、机械波的波速与波源的振动速度相等。
D、机械波在不同介质中的波长相同。
2、关于电磁波的性质,下列说法中正确的是()。
A、电磁波在真空中传播速度小于在空气中的传播速度。
B、改变电磁波的频率可以改变其在真空中传播速度。
C、电磁波的传播不需要介质。
D、电磁波在不同介质中的波长相同。
3、下列哪项属于平抛运动的特点?()A、水平方向做匀速直线运动,竖直方向做匀加速直线运动B、初始速度方向仅水平C、任何时刻的速度方向都是曲线运动D、加速度方向随时间不断变化4、一个带有电荷的小球A和一个小带电塑料球B靠近时,观察到小球A被排斥,小球B被吸引。
由此可以推断下列哪项结论是正确的?()A、小球A和小球B带同种电荷B、小球A和小球B带异种电荷C、小球A带正电,小球B带负电D、无法确定小球A和小球B的电荷性质5、一个物体从静止开始沿水平面加速运动,下列说法中正确的是:A、物体的动能随时间线性增加B、物体的加速度随时间线性增加C、物体的速度随时间线性增加D、物体的动能随速度的平方增加6、一个物体在光滑水平面上受到一个恒定的外力作用,下列说法中正确的是:A、物体的速度将保持不变B、物体的加速度将保持不变C、物体的动能将保持不变D、物体的位移将保持不变7、在真空中传播的两束单色光,波长分别为λ1和λ2,已知λ1 > λ2,则下列说法正确的是:A)光线传播速度v1 > v2B)光子能量E1 > E2C)光线波长λ1 < λ2D)光的频率ν1 < ν2二、多项选择题(本大题有3小题,每小题6分,共18分)1、关于匀变速直线运动的基本公式,以下说法正确的是:at2)A、位移与时间的关系公式为(s=v0t+12B、速度与时间的关系公式为(v=v0+at)at2)C、位移与速度的关系公式为(s=vt−12)D、平均速度的公式为(v avg=v0+v22、关于牛顿运动定律,以下说法正确的是:A、牛顿第一定律又称为惯性定律,指出一个物体如果不受外力作用,或者所受外力的合力为零,那么物体将保持静止或匀速直线运动状态。
高中物理必修二必修2各单元综合练习题
及答案解析
这篇文档将提供高中物理必修二必修2各单元的综合练题和答案解析。
以下是各个单元的练题及其答案解析:
单元1: 电磁感应
1. 问题: 在电磁感应实验中,当磁铁快速穿过线圈时,是否会导致感应电流的产生?为什么?
2. 答案解析: 是的,当磁铁快速穿过线圈时,会导致感应电流的产生。
这是由于磁感线切割线圈导线时,会在导线中引发感应电动势,从而产生感应电流。
单元2: 核能与辐射
1. 问题: 什么是核裂变和核聚变?它们有何不同?
2. 答案解析: 核裂变是指重核分裂成两个或更多轻核的过程,释放出大量能量。
核聚变是指两个或更多轻核融合成一个较重的核
的过程,同样也释放出大量能量。
它们的主要区别在于核裂变是发生在重核中,而核聚变是发生在轻核中。
单元3: 光的折射
1. 问题: 折射定律是什么?请用公式表示出来。
2. 答案解析: 折射定律是描述光在介质中传播时折射现象的规律。
其公式为`n1*sin(θ1) = n2*sin(θ2)`,其中 `n1` 和 `n2` 分别为两个介质的折射率,`θ1` 和`θ2` 分别为入射角和折射角。
单元4: 牛顿定律与万有引力
1. 问题: 牛顿第三定律是什么?它与万有引力定律有何关系?
2. 答案解析: 牛顿第三定律是指任何两个物体之间都存在相互作用力,且大小相等、方向相反。
万有引力定律是牛顿第三定律的一个具体应用,描述了物体之间的引力相互作用。
万有引力定律表明两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
单元5: 电磁波
1. 问题: 电磁波的特点有哪些?
2. 答案解析: 电磁波是由电场和磁场相互作用而产生的波动现象。
它具有以下特点:
- 电磁波传播速度恒定,等于光速。
- 电磁波可以在真空中传播。
- 电磁波具有波长和频率的特性。
- 不同种类的电磁波具有不同的波长和频率范围。
以上是高中物理必修二必修2各单元的综合练习题及答案解析。
希望对你的学习有所帮助!。