人工智能期末复习
- 格式:doc
- 大小:195.05 KB
- 文档页数:4
1、人工智能的概念及其发展历史上先后出现的主流学派2、传统搜索算法的优点和不足,会用宽度优先和深度优先求解问题答:宽度优先搜索算法(又称广度优先搜索)是最简便的图的搜索算法之一,属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。
换句话说,它并不考虑结果的可能位址,彻底地搜索整张图,直到找到结果为止。
在状态图搜索中,从初始节点出发,同层优先搜索,逐层进行搜索。
深度优先搜索是在搜索树的每一层始终先只扩展一个子节点,不断地向纵深前进直到不能再前进(到达叶节点或受到深度限制)时,才从当前节点返回到上一级节点,沿另一方向又继续前进。
这种方法的搜索树是从根节点开始一枝一枝逐渐形成的。
宽度优先搜索将新扩展的节点放在open表的尾部,而深度优先搜索将新扩展的节点放在open表的前面。
3、高级搜索算法的优点和不足4、A*算法的概念、步骤以及应用5、适值函数的作用和意义,会分析问题的适值函数(估价函数,如八数码问题的估价函数)6、谓词逻辑的概念、原理、优点和不足;能够用其描述知识和过程7、产生式系统概念、组成;能够用其进行逻辑推导。
8、语义网络概念、原理,会用(比较详细)语义网描述知识9、机器学习、聚类分类概念,了解其所采用四个策略。
10、SA原理,其计算过程中的三函数两准则,能够用SA求解实际问题11、GA原理,交叉、变异、选择操作,能够用GA求解实际问题12、人工神经网络的历史和要素13、递归网络结构和原理14、BP网络,能描述网络结构,解释其原理15、Hopfield网络,能描述网络结构,解释其工作机理16、博弈树原理,会利用α-β剪枝搜索(掌握生成节点倒推值的方法、判定剪枝)答:博弈策略假设我们对所讨论的博弈问题构造了一棵完整的博弈树,我们希望能从中找出棋手应采用的策略。
这种策略应当确保棋手会赢,或者起码能够得到和局的结果首先我们把该博弈树的每一个节点标上w(对应于赢)、d(对应于和局)或者l(对应于输)。
人工智能期末复习一、名词解释1、人工智能(学科):人工智能学科是计算机科学中涉及研究、设计和应用智能机器的一个分支,是一门综合性的交叉学科和边缘学科。
2、语义网络:语义网络是一种用实体及其语义关系来表达知识的有向图。
3、机器学习:机器学习就是让机器(计算机)来模拟和实现人类的学习功能。
4、正向推理产生式系统:正向推理也称数据驱动方式,它是从初始状态出发,朝着目标状态前进,正向使用规则的一种推理方法。
所谓正向使用规则,是指以问题的初始状态作为初始综合数据库,仅当综合数据库中的事实满足某条规则的前提时,该规则才被使用。
正向推理产生式系统简单明了,且能求出所有解,但是执行效率较低,具有一定的盲目性。
5、遗传算法:遗传算法是在模拟自然界生物遗传进化过程中形成的一种自适应优化的概率搜索算法。
6、人工智能(能力):是智能机器执行的通常与人类智能有关的功能,如判断、推理、证明、识别、感知、理解、设计、思考、规划、学习和问题求解等思维活动。
7、机器学习系统:机器学习系统是指能够在一定程度上实现机器学习的系统。
8、逆向推理产生式系统:逆向推理也称目标驱动方式,它是从目标状态出发,朝着初始状态前进,反向使用规则的一种推理方法。
所谓逆向使用规则,是指以问题的目标状态作为初始综合数据库,仅当综合数据库中的事实满足某条规则的后件时,该规则才被使用。
逆向推理产生式系统不寻找无用数据,不使用与问题无关的规则。
9、演绎推理:演绎推理是从已知的一般性知识出发,去推出蕴含在这些已知知识中的适合于某种个别情况的结论。
是一种由一般到个别的推理方法,其核心是三段论,如假言推理、拒取式和假言三段论。
10、启发式搜索:状态空间的启发式搜索是一种能够利用搜索过程所得到的问题自身的一些特性信息来引导搜索过程尽快达到目标的搜索方法。
二、填空题1、目前人工智能的主要学派有下列三家:符号主义、联结主义和行为主义。
2、常用的知识表示方法有一阶谓词逻辑表示法、产生式表示法、语义网络表示法、框架表示法和过程表示法。
人工智能:Artificial Intelligence,简称AI,主要研究如何使用人工的方法和技术,使用各种自动化机器或智能化机器模仿、延伸和扩展人的智能,实现某些机器的智能行为。
传统划分①符号主义学派②联结主义学派③行为主义学派现代1.符号智能流派2.计算智能流派3.群体智能流派人工智能的基本技术:1知识表示技术2知识推理、计算和搜索技术3系统实现技术。
符号智能的表示是知识的表示,运算是基于知识表示的推理或符号操作,采用搜索方法进行问题求解,一般在问题空间上进行,计算智能的表示是对象表示,运算时给予对象的表示的操作或计算,采用搜索方法进行问题求解,一般是在解空间上进行。
人工智能的研究领域:定理证明、专家系统、模式识别、机器学习、计算智能、自然语言处理、组合调度问题。
应用领域:难题求解、自动定理证明、自动翻译、智能管理、智能通信、智能仿真等。
人工智能的主要研究途径与方法:1功能模拟。
符号推演2结构模拟。
神经计算3行为模拟。
控制进化人工智能的研究目标及其意义:1目标:远期目标是要制造智能机器,即探索智能的基本机理,最终制造出和人有相似或相近智力和行为能力的综合智能系统;近期目标是实现机器智能,即研究如何使用现有的计算机具备更高的智能,在一定领域或在一定程度上去完成需要人的复杂脑力劳动才能完成的工作。
2意义:普遍的计算机智能低下,无法满足社会需求;研究AI是当前信息化社会的迫切需求;智能化是自动化发展的必然趋势;研究AI,对人类自身的智能的奥秘也提供有益的帮助。
人工智能的基本内容:1从人工智能的定义出发包括(感知与交流的模拟,记忆,联想,计算,思维的模拟,输出效率或行为模拟2从知识工程的角度出发包括(知识的获取,知识的处理以及知识的运用)人工智能诞生1956年夏,达特莫斯大学的研究会,麦卡锡提议正式采用了“AI”术语。
发展:推理期,知识期,学习期AI的现状与发展趋势:1多种途径齐头并进,多种方法协作互补2新思想、新技术不断涌现,新领域新方向不断开拓3理论研究更加深入,应用研究愈加广泛4研究队伍日益壮大,社会影响越来越大。
可编辑修改精选全文完整版《人工智能导论》期末复习一、题型:填空题、简答题、计算题、论述题二、复习重点:第一章:1.什么是人工智能?人工智能的三种观点分别是什么?2.实现人工智能的技术路线是哪四种?3.人工智能要研究的三个主要问题是什么?4.人工智能有哪些主要研究领域?第二章:1.什么是知识?何谓知识表示?2.用谓词逻辑表示法表示猴子摘香蕉问题。
3.产生式系统推理机的推理形式有哪三种?4.产生式系统一般由哪三个基本部分组成?5.用语义网络表示:“苹果树枝繁叶茂,上结了很多苹果,有大的,也有小的,有红的,也有绿的” 。
6.用与 / 或树方法表示三阶Hanoi 塔问题。
第三章:1.推理的含义是什么?2.应用归结原理求解下列问题:任何兄弟都有同一个父亲, John 和Peter 是兄弟,且 John 的父亲是 David ,问 Peter 的父亲是谁?第四章:1.可信度方法:例 4.1 ,例 4.22.主观 Bayes 方法:例 4.8 ,例 4.93.证据理论中描述证据和结论的不确定性采用哪两个函数度量?第五章:1.什么叫搜索?搜索的两层含义是什么?2.用全局最佳优先搜索方法求解以下八数码问题。
3.用代价树的深度优先搜索求解下面的推销员旅行问题。
第六章:1.什么是机器学习?机器学习研究的目标是什么?研究机器学习的意义何在?2.机器学习有哪些主要学习策略?3.机器学习系统的基本模型包含哪四个基本环节?4.实例学习的含义是什么?它包含哪两个空间模型?对规则空间进行搜索的方法有几种?第七章:1.什么是自然语言理解?自然语言理解过程有哪些层次?各层次的功能如何?2.对汉语语料库加工的方法是什么?汉语自动分词的方法有哪些?其难点何在?第八章:1.什么是专家系统?它有哪些基本特点?一般专家系统由哪些基本部分构成?2.知识获取的主要任务是什么?3.有哪几类专家系统开发工具?各有什么特点?第九章:1.解答 B-P 学习算法的流程图,并说明其优缺点。
《人工智能导论》期末复习知识点
人工智能导论知识点总结
一、定义:
人工智能(Artificial Intelligence,AI)是指研究如何实现机器的智能,即使用计算机来模拟或提高人类的智能表现和能力。
基于此,人工智能的主要任务是解决一些超出传统计算能力的问题,其中包括学习、推理和解决一些挑战。
二、技术:
人工智能技术可分为三个主要技术领域:
1、机器学习:机器学习是一种研究机器如何学习,并从这些学习中学习及其反馈环境的解决实际问题的学科。
包括规则学习、支持向量机以及深度学习。
2、自然语言处理:自然语言处理是指人工智能技术在处理人类自然语言的理解和翻译方面的应用研究。
它将注重语言应用的学习、理解、表达和使用,以及语言识别、概念识别和分析。
3、计算机视觉:计算机视觉是指使用计算机的视觉系统来处理可视化的图像、图片、视频信息,以及关于图像的相关内容的研究。
它是一种智能系统,包括图像处理、识别和分析等功能。
三、应用:
人工智能在各行各业都有广泛的应用,有助于改善工作效率,提高工作质量,提升企业竞争力,节省成本。
1、机器人:工业机器人、服务机器人等用于工厂生产线和服务行业,可以大大提高工作效率。
人工智能导论复习资料一、什么是人工智能人工智能,简单来说,就是让机器像人一样思考和行动。
它不是一种单一的技术,而是一个涵盖了多种学科和技术的领域,包括计算机科学、数学、统计学、心理学、语言学等等。
想象一下,你有一个智能助手,它能理解你的需求,回答你的问题,甚至帮你完成一些复杂的任务,比如规划旅行、管理财务。
这就是人工智能在日常生活中的一种应用。
人工智能的目标是创建能够执行需要人类智能才能完成的任务的计算机系统。
这些任务包括学习、推理、解决问题、理解语言、识别图像和声音等等。
二、人工智能的发展历程人工智能的发展并非一蹴而就,它经历了几个重要的阶段。
在早期,科学家们就开始思考机器能否像人类一样思考。
20 世纪50 年代,人工智能的概念被正式提出,当时的研究主要集中在基于规则的系统和符号推理上。
然而,由于计算能力的限制和对智能本质理解的不足,人工智能在20 世纪 70 年代遭遇了第一次寒冬。
到了 20 世纪 80 年代,随着专家系统的出现,人工智能迎来了一次小的复兴。
专家系统是一种基于知识库和推理规则的系统,可以解决特定领域的问题。
但随着问题的复杂度增加,专家系统的局限性也逐渐显现。
近年来,由于大数据的出现、计算能力的大幅提升以及深度学习算法的突破,人工智能再次取得了巨大的进展。
图像识别、语音识别、自然语言处理等领域都取得了令人瞩目的成果。
三、人工智能的核心技术(一)机器学习机器学习是人工智能的核心领域之一。
它让计算机通过数据自动学习模式和规律。
机器学习有监督学习、无监督学习和强化学习等多种方法。
监督学习是最常见的一种,比如通过大量已标记的图片(比如猫和狗的图片)来训练计算机识别新的猫和狗的图片。
无监督学习则是让计算机在没有标记的数据中自己发现模式,例如将相似的客户分组。
强化学习是通过奖励和惩罚机制来训练智能体做出最优决策,比如让机器人学会走路。
(二)深度学习深度学习是机器学习的一个分支,它使用多层神经网络来学习数据的表示。
大学人工智能期末考试试题带答案第一部分:选择题(每题2分,共30分)1. 人工智能的主要研究领域是()。
A. 计算机科学B. 机器人学C. 认知心理学D. 语言学答案:A2. 人工智能学科吸收了多方面的技术,包括()。
A. 数据科学B. 操作系统C. 控制系统D. 以上都是答案:D3. 以下哪些技术是人工智能的核心技术之一?A. 编程技术B. 机器研究C. 算法技术D. 测试技术答案:B4. 机器研究的主要目的是()。
A. 可视化数据B. 提高数据质量C. 从数据中研究形式化模型D. 数据压缩答案:C5. 人工神经网络是指()。
A. 一类集成电路B. 一类自动控制设备C. 一类算法D. 一类数学模型答案:D...第二部分:简答题(每题10分,共50分)6. 请简述机器研究中的“监督研究”和“无监督研究”的区别。
答案:监督研究是指研究算法需要具有标记的数据集来进行研究,也称之为有指导研究;无监督研究则是指算法可以从未标记的数据中进行研究和发现模式。
二者的主要区别在于是否有标记的数据集。
7. 请简要说明人工神经网络中的BP算法。
答案:BP算法是一种通过反向传导来训练多层神经网络的算法。
首先对于每个输入给予网络一个输出,然后计算误差并向后传递,通过不断调整神经元之间的权值和阈值来使误差最小化。
...第三部分:应用题(每题20分,共40分)8. 机器研究可以在金融领域中得到广泛应用,请举例说明。
答案:(可能答案会因人而异,以下仅供参考)- 风险管理:通过机器研究算法分析金融市场的现状和变化趋势,以及企业的财务状况,实现风险较低的金融产品设计和风险管控。
- 投资策略:机器研究可以通过模型训练出不同的投资策略,辅助人们进行投资决策。
- 信用评估:通过机器研究算法对客户的信用历史、银行流水等数据进行分析和评估,提高信用评估的准确率。
9. 请简单设计一个人工智能项目,包括实现的功能和技术手段等。
答案:(可能答案会因人而异,以下仅供参考)- 项目名称:智能交通管理系统- 实现的功能:通过复杂的路况分析、自适应信号灯控制等手段,提高城市交通流畅性,减少交通拥堵。
人工智能期末考试复习范围第1部分绪论1-1.什么是人工智能?试从学科和能力两方面加以说明.答:从学科方面定义:人工智能是计算机科学中涉及研究、设计和应用智能机器的一个分支。
它的近期目标在于研究用机器来模拟和执行人脑的某些智力功能,并开发相关理论和技术从能力方面定义:人工智能是智能机器所执行的通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习和问题求解等思维活动。
1-2.在人工智能的发展过程中,有哪些思想和思潮起了重要作用?答:1)数理逻辑和关于计算本质的新思想,提供了形式推理概念与即将发明的计算机之间的联系;2)1956年第一次人工智能研讨会召开,标志着人工智能学科的诞生;3)控制论思想把神经系统的工作原理与信息理论、控制理论、逻辑以及计算联系起来,影响了许多早期人工智能工作者,并成为他们的指导思想;4)计算机的发明与发展;5)专家系统与知识工程;6)机器学习、计算智能、人工神经网络和行为主义研究,推动人工智能研究的近一步发展。
1-3.为什么能够用机器(计算机)模仿人的智能?答:物理符号系统的假设:任何一个系统,如果它能够表现出智能,那么它就必定能执行输入符号、输出符号、存储符号、复制符号、建立符号结构、条件迁移6种功能。
反之,任何系统如果具有这6种功能,那么它就能够表现出智能(人类所具有的智能)。
物理符号系统的假设伴随有3个推论.推论一:既然人具有智能,那么他(她)就一定是各物理符号系统;推论二:既然计算机是一个物理符号系统,它就一定能够表现出智能;推论三:既然人是一个物理符号系统,计算机也是一个物理符号系统,那么我们就能够用计算机来模拟人的活动.1-4.人工智能的主要研究内容和应用领域是什么?其中,哪些是新的研究热点?答:研究和应用领域:问题求解(下棋程序),逻辑推理与定理证明(四色定理证明),自然语言理解,自动程序设计,专家系统,机器学习,神经网络,机器人学(星际探索机器人),模式识别(手写识别,汽车牌照识别,指纹识别),机器视觉(机器装配,卫星图像处理),智能控制,智能检索,智能调度与指挥(汽车运输高度,列车编组指挥),系统与语言工具。
人工智能原理期末考试复习
1. 什么是人工智能?发展经历了几个阶段?
人工智能指的是能够感知或推断信息,并将其作为知识而拥有,以应用于环境或语境中适合的行为;
机器的智能称为人工智能,通常在运用程序、间或适当硬件的计算机系统中得以实现.
2. 人工智能研究的内容有哪些?
机器学习、知识表示方法、搜索求解策略、进化算法及其应用、确定性及不确定性推理方法、群体智能算法及其应用。
3. 人工智能有哪些研究领域?
安全防范、医疗诊断、语音识别、工业制造、计算机游戏、机器翻译。
4. 什么是知识?有哪些特性?有几种分类方法?
知识是人们在长期的生活及社会实践中、在科学研究及实验中积累起来的对客观世界的认识与经验。
相对正确性、不确定性、可表示性与可利用性。
分类方法:
(1)按知识的作用范围分为∶常识性知识和领域性知识﹔
(2)按知识的作用及表示分为∶事实性知识、规则性知识、控制性知识和元知识;
(3 )按知识的确定性分为:确定知识和不确定知识;
(4) 按人类思维及认识方法分为:逻辑性知识和形象性知识。
5. 什么是知识表示、命题、谓词,一阶谓词逻辑、产生式、框架、语义网络?
知识表示就是将人类知识形式化或者模型化;
命题是一个非真即假的陈述句;
谓词的一般形式: ),...,,(21n x x x P );n x x x ,...,,21是个体,某个独立存在的事物或者某个抽象的概念, P 是谓词名,用来刻画个体的性质、状态或个体间的关系。
一阶谓词逻辑表示:谓词不但可表示一些简单的事实,而且可以表示带有变量的“知识”,有时称为“事实的函数”。
进而可用谓词演算中的逻辑联接词“与()”、“或(v)"、“非(┐)”和“蕴含(→)”等来组合已有知识,从而表示出更复杂的知识。
产生式通常用于表示事实、规则以及它们的不确定性度量,适合于表示事实性知识和规则性知识。
框架是一种描述所论对象(一个事物、事件或概念)属性的数据结构。
语义网络:从图论的观点看,它其实就是“一个带标识的有向图”,由结点和弧(也称“边”)
所组成。
其中,结点表示各种事实、概念、属性及知识实体等,而弧表示它们之间的相互关系。
一般,我们将关系的说明算作指示器或指针。
6.产生式系统的基本形式是什么?有几部分组成?
把一组产生式放在一起,让它们相互配合、协同作用,一个产生式生成的结论可以供另一个产生式作为已知事实使用,以求得问题的解,这样的系统称为产生式系统;
一般来说一个产生式系统由规则库、综合数据库、控制系统三部分组成;
7.什么是推理、正向推理、逆向推理、混合推理?
推理是指从已知事实出发,运用已掌握的知识,推导出其中蕴含的事实性结论或归纳出某些新的结论的过程。
正向推理是一种从已知事实出发、正向使用推理规则的推理方式,它是一种数据(或证据)驱动的推理方式,又称前项链推理或自底向上推理。
反向推理是一种以某个假设目标为出发点,反向运用推理规则的推理方式,它是一种目标驱动的推理方式,又称反向链推理或自顶向下推理。
混合推理是把正向推理和反向推理结合起来所进行的推理。
8.推理的方式和分类有哪些?
演绎推理(三段论法)、归纳推理(完全归纳推理和不完全归纳推理)、默认推理(缺省推理);
确定性推理和不确定性推理(似然推理、近似推理);
单调推理、非单调推理;
启发式推理、非启发式推理。
9.什么是冲突﹖在产生式系统解决冲突的策略有哪些?
已知事实与知识库中的多个知识匹配成功称发生了冲突。
解决冲突的策略有:
1)按针对性排序
2)按已知事实的新鲜性排序
3)按匹配度排序
4)按条件个数排序
5)按上下文限制排序
6)按冗余限制排序
7)根据领域问题的特点排序。
10.什么是子句?什么是子句集?
任何原子谓词公式及其否定的析取式为子句。
由子句构成的集合称为子句集。
11.谓词公式分别化为相应的子句集。
步骤:
1)消去谓词公式中的"→"和“?"符号;
2)把否定符号移到靠紧谓词的位置上;
3)变量标准;
4)消去存在量词;
5)化为前束型;
6)化为Skolem标准型;
7)略去全称量词;
8)子句变量标准化。
12.什么是不确定推理?有哪几种方法?
不确定性推理:从不确定性的初始证据出发,通过运用不确定性的知识,最终推出具有一定程度的不确定性但却是合理或者近乎合理的结论的思维过程。
可信度方法、证据理论。
13.什么是可信度?求取问题结论可信度的步骤?
可信度:根据经验对一个事物或现象为真的相信程度;
步骤:
第一步:对每一条规则求出CF(H);
第二步:根据结论不确定性的合成算法得到综合可信度。
14.可信度方法(计算)
15.深度优先、广度优先、A*、一致代价、遗传算法、模拟退火算法、蚁群算法、贪婪算法的原理、步骤(求解过程)、伪代码。
16.机器学习的基本概念?机器学习任务有哪些?
机器学习是人工智能的一个分支,从事研究和构建可以从数据或环境中学习的算法,用以改善性
能或作出预测。
任务:分类、回归、聚类、排名、密度估计、降维。
17.人工神经网络的特点是什么?
(1)并行性。
传统的计算方法是基于串行处理的思想发展起来的,计算和存储是完全独立的两个部分。
计算速度取决于存储器和运算器之间的连接通道,大大限制了它的运算能力。
而神经网络中的神经元之间存在大量的相互连接,所以信息输入之后可以很快地传递到各个神经元进行并行处理,在值传递的过程中同时完成网络的计算和存储功能,将输入输出的映射关系以神经元间连接强度(权值)的方式存储下来,其运算效率非常高。
(2)自学习、自组织性。
神经网络系统具有很强的自学习能力,系统可以在学习过程中不断地完善自己,具有创造性。
(3)联想记忆功能。
在神经网络的训练过程中,输入端给出要记忆的模式,通过学习并合理地调一节网络中的权系数,网络就能记住所有的输入信息。
在执行时,若网络的输入端输入被噪声污染的信息或是不完整、不准确的片断,经过网络的处理后,在输出端可得到恢复了的完整而准确的信息。
(4)很强的鲁棒性和容错性。
在神经网络中,信息的存储是分布在整个网络中相互连接的权值上的,这就使得它比传统计算机具有较高的抗毁性。
少数几个神经元损坏或断几处连接,只会稍许降低系统的性能,而不至于破坏整个网络系统,因而具有强的鲁棒性和容错性。
18.B P神经网络的主要功能是什么?
主要功能:通过调整输入节点与隐层点的连接强度和隐层点与输出节点的连接强度以及阈值,使误差沿梯度方向下降。
经过反复学习训练,确定与最小误差相对应的网络参数(权值与阀值)。
19.前馈神经网络与反馈神经网络有什么不同?
前馈型神经网络取连续或离散变量,一般不考虑输出与输入在时间上的滞后效应,只表达输出与输入的映射关系;
反馈型神经网络可以用离散变量也可以用连续取值,考虑输出与输入之间在时间上的延迟,需要用动态方程来描述系统的模型。
前馈型神经网络的学习主要采用误差修正法(如BP算法),计算过程一般比较慢,收敛速度也比较慢;
而反馈型神经网络主要采用Hebb学习规则,一般情况下计算的收敛速度很快。
反馈网络也有类似于前馈网络的应用,并且在联想记忆和优化计算方面的应用更显特点。
20.简要叙述网络、层、损失函数和优化器之间的关系。
输入进去的数据通过每层的权重的线性组合和非线性转换,以上一层的输入作为下一层的输出,经过多层后神经网络就会预估一下结果,和损失函数算一个loss score出来,这个误差会经过一个优化器反馈回去,每一层的权重都要做更新。
更新完之后再把输入数据丢进去看看有没有学的比较好。
21.简要叙述机器学习的工作流程。
(1)定义问题与要训练的数据。
收集这些数据,有需要的话用标签来标注数据。
(2)选择衡量问题成功的指标。
你要在验证数据上监控哪些指标?
(3)确定评估方法:留出验证?K折验证﹖你应该将哪一部分数据用于验证?
(4)开发第一个比基准更好的模型,即一个具有统计功效的模型。
(5)开发过拟合的模型。
(6)基于模型在验证数据上的性能来进行模型正则化与调节超参数。